
SECURE CONTROL PROTOCOLS FOR

RESOURCE-CONSTRAINED EMBEDDED SYSTEMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Jin Kyu Koo

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2012

Purdue University

West Lafayette, Indiana

ii

This dissertation is dedicated to my family.

iii

ACKNOWLEDGMENTS

First and foremost, I would like to express sincere gratitude to my academic

advisors, Prof. Saurabh Bagchi and Prof. Xiaojun Lin. Prof. Bagchi always treated

me as a colleague, and pushed me to try more meaningful work with full trust in my

capability. His encouragement and constructive comments were the cure for several

obstacles during Ph.D. study. The passion that he showed me at nights when we sat

together and worked intensely to finish a paper would be the one that I will never

forget in my research career. Prof. Lin gave me a chance of training myself to think

more rigorously throughout my Ph.D. study. His keen insight was a huge help to

point out my mistakes and to find the first step to a solution in various research

activities. I am sure that his guidance upgraded my state of maturity as a researcher.

I also want to thank my committee members, Prof. Sonia Fahmy and Prof.

Ninghui Li for taking time to serve in my committee despite their busy schedules. I

appreciate all their valuable comments and helpful criticisms.

This dissertation would never been finished without my dear family’s uncondi-

tional support. I would like to give my deepest gratitude to each and every member

in my family. Special thanks go to my wife, Jiwon and my son, Jonghyun. I appre-

ciate Jiwon’s support in taking this journey with me. Jonghyun’s smile was the best

remedy against every down moment.

Last but not least, I would like to thank the Korea Institute for Advancement of

Technology (KIAT) for providing the financial support in part for my Ph.D. work.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . xi

1 INTRODUCTION . 1

1.1 Embedded Systems and Their Security 1

1.2 Summary of Contributions . 2

1.3 Document Outline . 4

2 RELATED WORK . 5

2.1 Clock Synchronization in Sensor Networks 5

2.2 Timely Event Reporting in Sensor Networks 8

2.3 Privacy Protection and Cost Saving in Smart Grids 9

3 CLOCK SYNCHRONIZATION IN SENSOR NETWORKS 11

3.1 CSOnet . 13

3.1.1 CSOnet Architecture . 13

3.1.2 CSOnet Hardware . 16

3.2 Can FTSP be Used to Synchronize CSOnet? 19

3.3 Proposed Protocol . 23

3.3.1 Operational Scenario . 23

3.3.2 Synchronization Protocol . 25

3.3.3 Failure Handling . 28

3.3.4 Packet Sequences and State Management 29

3.3.5 Fast Recovery . 30

3.3.6 Choice of Important Parameters 31

3.4 Experiments . 32

v

Page

3.4.1 Experimental Methodology 32

3.4.2 Network-wide Synchronization Time 34

3.4.3 Synchronization Error . 38

3.5 Discussion . 40

4 TIMELY EVENT REPORTING IN SENSOR NETWORKS 44

4.1 Problem Statement . 46

4.2 Straw-Man Protocols . 49

4.3 Proposed protocol: SEM . 53

4.3.1 Detail of SEM . 54

4.3.2 Overhead Analysis . 61

4.4 Miscellaneous Issues . 62

4.5 Experiments . 64

5 PRIVACY PROTECTION AND COST SAVING IN SMART GRIDS . . 68

5.1 System Model . 70

5.2 Solution Approach I: Basic Formulation 72

5.2.1 Mapping between X(n) and Y (n) 72

5.2.2 Strategy for charging/discharging the battery 74

5.2.3 Basic approach . 75

5.2.4 Simulation study for the basic approach 78

5.3 Solution Approach II: Advanced Formulation 80

5.3.1 Advanced approach: Privatus 80

5.3.2 Simulation study for Privatus 83

5.4 Per-day Energy Usage Flattening 84

5.4.1 Total energy usage different across days 84

5.4.2 Solution summary . 85

5.4.3 Virtual battery state . 86

5.4.4 Battery capacity . 87

5.4.5 Per-day usage flattening algorithm 88

vi

Page

5.4.6 Simulation study for per-day usage flattening 90

5.4.7 Effects on cost saving . 92

5.5 Experiment . 93

5.5.1 Metrics and simulation parameters 93

5.5.2 Information leakage and cost saving 95

5.6 Discussion . 102

6 CONCLUSION . 105

7 FUTURE WORK . 108

7.1 Tree topology creation in Harmonia 108

7.2 Sem deployment into a testbed . 108

7.3 Handling practical issues in Privatus 109

LIST OF REFERENCES . 110

VITA . 114

vii

LIST OF TABLES

Table Page

3.1 Values of parameters in Harmonia used in the experiments. 33

3.2 Slopes of the linear relationship between network-wide synchronization
time and synchronization period observed in our experiments. 38

3.3 One-hop synchronization error. 38

viii

LIST OF FIGURES

Figure Page

3.1 South Bend Interceptor Sewer and CSO Diversion Structure. 15

3.2 CSOnet’s Hierarchical Architecture. 15

3.3 Overlaid map view of the largest of the 36 CSO areas in South Bend. It
shows the four different kinds of nodes - Instrumentation node (INode in
yellow), Relay node (RNode in red), Gateway node (GNode in green), and
Actuator node (Anode in gray). The blue box is a unit with a RNode and
a GNode. 17

3.4 The duty cycle of a Chasqui node showing the awake period (Ta = 6
seconds in the deployment) and the sleep period, which together constitute
a slot (Tw = 5 minutes in the deployment). The beginning of a round is
marked by the base station initiating a new synchronization process. . 18

3.5 FTSP’s problem with linear regression when working with sleep-wake op-
eration. 21

3.6 Sleep-wake operation and its relationship to the synchronization protocol. 24

3.7 Illustration of the synchronization protocol. 27

3.8 The signaling from the MaxStream radio to the microcontroller. The
signal on the transmit and on the receive side are used to take timestamps
which are used in Harmonia. 28

3.9 Network topologies used for our experiments. 34

3.10 Average network-wide synchronization time of Harmonia. 37

3.11 Average network-wide synchronization time of FTSP. 37

3.12 Synchronization error of Harmonia for the different nodes in Topology
1. 40

3.13 Synchronization errors of Harmonia with different values of tgap in Topol-
ogy 1. 40

3.14 Synchronization error of FTSP in Topology 1. 41

3.15 Synchronization error of FTSP in Topology 2. 41

4.1 Multi-hop routing paths to collect events. 47

ix

Figure Page

4.2 Line network model to collect events. 50

4.3 Staggered timeout. 52

4.4 Event gathering circle (EGC). 54

4.5 An example to show that a compromised node may hold the PT for more
than B time units without being identified. 56

4.6 Threshold Tth. 57

4.7 Time margin Tm. 59

4.8 Nodes placement for experiments. 64

4.9 False-alarm rate according to the number of retransmissions for the ARQ
mechanism. 65

4.10 Detection rate according to the delay introduced by a compromised node. 66

5.1 System model. 70

5.2 An example of the probabilistic symbol mapping between X(n) and Y (n)
in the corner cases when K = 20 and M = 4 ((a)-(c): empty or near-
empty battery; (d)-(f): full or near-full battery). The symbol ’*’ in PY (n)
represents the element that can be non-zero. 73

5.3 Desired battery state profile. 74

5.4 An example to derive the dynamic programming framework. 76

5.5 Simulation results for the basic approach. 79

5.6 Penalty areas. 80

5.7 Simulation results for Privatus. 84

5.8 Example of average daily usage across days (P = 7). In order to flatten
the the daily consumption, the days 1,2, and 4 need to use more energy
by the amount indicated by the red arrow, and the days 3,5,6, and 7 are
required to lessen the consumption by the amount indicated by the blue
arrow. 85

5.9 The methods to keep energy and use the kept energy. 87

5.10 Virtual battery state and corresponding actual battery state. 88

5.11 Simulation results for Privatus’s per-day usage flattening. 90

5.12 Per-day average usage changes. In the figure, ‘before’ represents the per-
day average use before flattening (i.e., U(d)), and ‘after’ means the per-day
average use after flattening. 91

x

Figure Page

5.13 Cost saving reduction due to the per-day usage flattening when P = 7.

The ratio rs is defined as rs =
Kvu−m

P
Umax
k

Kvu+(m−1)Umax
k

, which implies the ratio of

the maximum possible cost savings with and without the per-day usage
flattening. 93

5.14 Information leakage when K = 20 and m = 1. 95

5.15 Effects of sequence length m and capacity K in Privatus (α = 2; β = 1). 96

5.16 Effects of α and β in Privatus (K = 20). 98

5.17 Information leakage comparison between Privatus with α = 2 and β = 1
(legend: ‘prop’) and an existing scheme [23] (legend: ‘conv’), when K = 20
and m = 2. The higher is L1

(n,2), the worse is the information leakage. . 98

5.18 Cost saving comparison between Privatus and an existing scheme [23].
Here, we set u = 0.2143kWh and RH = $0.033/u = $0.155/kWh. This
results in the average daily usage (i.e., E(

∑nH

n=1 X(n))) equal to 30kWh. 99

5.19 Effects of the estimation error for the distribution of X(n) when K = 20. 100

5.20 Information leakage (m = 2, and s = 1) with the per-day usage flattening,
where K = 30, α = 1, β = 1, and P = 7. Days 1, 2, and 4 are of type 1. 101

xi

ABSTRACT

Koo, Jin Kyu Ph.D., Purdue University, August 2012. Secure Control Protocols for
Resource-Constrained Embedded Systems. Major Professors: Saurabh Bagchi and
Xiaojun Lin.

Embedded systems are increasingly being deployed into the world around us. For

example, they are used to monitor the environment around us, measure and control

the electrical grid, and control vehicles on the road. As they are integrated in the real

world, their security becomes increasingly important. However, due to their lower

cost, energy constraints and slow computation speed, maintaining security for these

systems is usually very challenging.

In this work, we study a range of the important security issues in the operation of

embedded systems, which includes reliable synchronization, timely event reporting,

and privacy-preserving data transmission. First, we propose a fast and reliable clock

synchronization protocol for wireless sensor networks, called CSOnet, which is for

wastewater monitoring and is deployed city-wide in a mid-sized US city, South Bend,

Indiana. The nodes in CSOnet have a low duty cycle (2% in current deployment)

and use an external clock, called the Real Time Clock (RTC), for triggering the sleep

and the wake-up. The RTC has a very low drift (2 ppm) over the wide range of

temperature fluctuations that the CSOnet nodes operate at, and it has low power

consumption (0.66 mW). However, there are two challenges to using RTC for syn-

chronization. First, RTC has a coarse time granularity of only 1 second. Therefore,

it is insufficient to synchronize the RTC itself, which would lead to a synchronization

error of up to 1 second. Such a large error would be unacceptable for the low duty

cycle operation when each node stays awake for only 6 seconds in a 5-minute time

window. The second challenge is that the synchronization has to be extremely fast

xii

because ideally the entire network should be synchronized during the 6 second wake-

up period. We address these challenges by designing a synchronization protocol called

HARMONIA. It has three design innovations. First, it uses the fine-granular micro-

controller clock to achieve synchronization of the RTC, such that the synchronization

error, despite the coarse granularity of the RTC, is in the micro-second range. Second,

HARMONIA pipelines the synchronization messages through the network resulting in

fast synchronization of the entire network. Third, HARMONIA provides failure han-

dling for transient node- and link-failures such that the network is not overburdened

with synchronization messages. Further, the recovery is done locally. We evaluate

HARMONIA on CSOnet nodes and compare the two metrics of synchronization error

and synchronization speed with the flooding time synchronization protocol (FTSP).

It performs only slightly worse in the former metric and significantly better in the

latter metric

Second, we design a timely event reporting protocol for event monitoring, which is

a common application of wireless sensor networks. For event monitoring, a number of

sensor nodes are deployed to monitor some phenomenon. When an event is detected,

the sensor nodes report it to a base station (BS), where a network operator can

take appropriate action using the event report. In this paper, we are interested in

scenarios where the event must be reported within a time bound to the BS, even

under the case that some sensors need multiple hops to reach the BS. However, such

a reporting process can be attacked by compromised nodes in the middle that drop,

modify, or delay the event report. To solve such a problem, we propose SEM, a secure

event monitoring protocol against arbitrary malicious attacks by Byzantine adversary

nodes that may collude among themselves. SEM can provide the following provable

security guarantees. As long as the compromised nodes want to stay undetected,

a legitimate sensor node can report an event to the BS within a bounded time. If

the compromised nodes prevent the event from being reported to the BS within the

bounded time, the BS can identify a small set of nodes that is guaranteed to contain

xiii

at least one compromised node. To the best of our knowledge, no prior work in the

literature can provide such guarantees.

Third, we introduce a privacy-preserving mechanism for smart meters in the smart

grids. In smart power grids, a smart meter placed at the customer endpoint reports

fine-grained usage information to utility providers. Based on this information, the

providers can perform demand prediction and set on-demand pricing. However, such

a fine-grain report also threatens user privacy, since users’ specific activity or behav-

ior patterns can be deduced from the fine-granular meter readings. To resolve this

issue, we design PRIVATUS, a privacy-protection mechanism that take advantage of

a rechargeable battery. In PRIVATUS, the meter reading reported to the utility is

probabilistically independent of the actual usage at any given time instant. PRIVA-

TUS also considerably reduces the correlation between the meter readings and the

actual usage pattern over time windows. Further, using stochastic dynamic program-

ming, PRIVATUS charges/discharges the battery in the optimal way to maximize

savings in the energy cost, by taking advantage of different price zones.

1

1. INTRODUCTION

1.1 Embedded Systems and Their Security

An embedded system is a kind of specialized computer that is designed to execute

a particular function. The embedded system is in contrast to a general-purpose

computer that is designed to be flexible to satisfy a wide range of end-user needs.

The embedded system often has a real-time contraint, i.e., the operational deadline

from an event to system response. Embedded systems control many devices in our

lives, such as smart phones and car navigation.

Since the embedded system is dedicated to specific tasks, design engineers can

optimize it to reduce the cost of the product. However, in the course of the efforts to

reduce the cost, the security of the embedded system may be compromised. This is

mainly because getting a market advantage for price-sensitive products has a higher

prioprity than making the product secure, considering that there is no quantitative

measure of security before the product is deployed. For example, many low-end

embedded systems still use a 8-bit microcontroller that operates at several MHz clock

frequency, and has a highly limited RAM space such as 16KB. These kinds of systems

have a limited room for security overhead: they take too long time to generate a digital

signature, or do not even have a memory available to store a cryptographic key.

Many embedded systems are battery-powered, and thus have significant energy

constraints. This energy constraint is also another obstacle in achieving secure con-

trol of the embedded systems, because sophisticated security features are usually

computation-intensive and thus consume a considerable amount of energy. For exam-

ple, a TinyECC cryptographic suite takes a few seconds to generate or verify a digital

signature in a 16-bit microcontroller working at 8MHz clock frequency. Considering

that a typical message transmission takes only a few microsecond at the same plat-

2

form, this kind of expensive cryptography scheme might be something that should

not be heavily used.

The challenges unique to embedded systems require new approaches to security

in all aspects of control mechanisms of the embedded systems. In this work, we study

a range of the important security issues in the operation of embedded systems, and

provide situation-tailored solutions.

1.2 Summary of Contributions

The focus of this work is on the design of secure control protocols for embedded

systems. Since the devices in most deployment scenarios for embedded systems have

constrained resources such as bandwidth, energy, or processing power, the design of

secure control protocols often turns out to be more challenging than in a general

purpose system. Overcoming the challenges, we provide situation-tailored solutions

for given problems with security in mind. Specifically, this work deals with three

different topics: clock synchronization in the sensor networks, timely event reporting

in sensor networks, and privacy-preserving data transmission in smart grids.

In the clock synchronization problem, we introduce our design experience for a

clock synchronization protocol used in a large-scale sensor network, called CSOnet,

which is deployed in the city of South Bend, Indiana for monitoring combined sewer

overflow events. The distinctive challenges for synchronization in CSOnet were as

follows. First, the synchronization had to be fast since the network only stayed awake

for 6 seconds every 5 minutes and the projected scale of the network is large, of the

order of a few hundred nodes. Second, the nodes in the CSOnet used the real time

clock (RTC), which is external to the microcontroller chip, for the trigger for wake up.

This is due to the RTC’s low drift over the large temperature range to which the nodes

are exposed. Its power consumption is also very low. However, the RTC has a coarse

granularity of only 1 second. Thus, we have the situation that wake up is controlled by

a clock whose granularity is so low that it is not sufficient to synchronize the clock,

3

given that the duty cycle is low. We found that no existing time synchronization

protocol addressed these challenges, motivating us to design and develop our protocol

called Harmonia. Harmonia is designed and implemented in TinyOS. It has three

primary design innovations. First, it uses the high-resolution microcontroller clock to

synchronize the low-resolution RTC. Second, the synchronization-related hand-shake

between two adjacent nodes happens in two phases through a single message in each

phase. However, Harmonia pipelines the two phases, with a node acting as a source

of the first phase message before it has itself received the second phase message.

This design is important in achieving a rapid synchronization of the entire network.

Third, reliability is built into Harmonia to handle transient node- and link-failures.

The goal is to localize the effect of a failure and not overburden the network with

synchronization-related messages.

We next turn to the problem of timely event reporting. We focus on the fact that

it is a difficult task to secure the event reporting process when the monitoring network

is under attack. The sensor nodes are inherently vulnerable to attacks because they

are usually deployed in non-protected environments. The adversary can often easily

access the sensor nodes, and may even compromise them by reprogramming. Once

some sensor nodes in a monitoring sensor network are compromised, they may prevent

other legitimate sensor nodes from reporting information in a timely manner. For

this reason, we propose Sem, a secure event monitoring protocol that can work even

when there exist compromised nodes in the network. We are interested in a multi-

hop network scenario where all sensor nodes except the base-station node can be

compromised. The compromised nodes can launch arbitrary attacks in a Byzantine

manner, such as dropping, modifying, and delaying the event report. They may also

arbitrarily collude among themselves. Even in such a hostile environment, Sem can

provide the following provable security guarantees: (1) As long as the compromised

nodes want to avoid being detected, a legitimate sensor node can report an event

to the base station within a bounded time. (2) If the compromised nodes launch

an attack that causes the event report not to arrive at the base station within the

4

bounded time, the base station can identify a small set of nodes that is guaranteed

to contain at least one compromised node.

In the last topic, we try to resolve a privacy issue in the smart grid, which is re-

portedly a key obstacle to faster deployment of the smart grid. Smart meters are key

component of the smart grid. Up to three-fourths of the homes in the United States

are expected to install the smart meter in the next decade. The smart meter provides

the utility companies ways to collect the measurement readings for energy usage in

a fine granularity (e.g., once in a few minutes). However, by gathering hundreds of

data points even in a day, the utility companies may reconstruct much of our daily

lives – when we wake up, when we go out for work, and when we come back after

work. They might sell or accidently reveal this information to marketing companies.

To fix this issue, we design Privatus, an algorithm by which the energy usage profile

reported to the utilities looks independent of the actual energy usage profile. This

is done by putting a rechargeable battery between the smart meter and the appli-

ances. Our algorithm also achieves additional cost saving by optimally controlling

the charge/discharge processes, based on stochastic dynamic programming.

1.3 Document Outline

The rest of this document is organized as follows. The related works of Har-

monia, Sem, and Privatus are summarized in Chapter 2. Chapter 3 presents

Harmonia, the clock synchronization protocol, tailored for the CSOnet. Chapter

4 describes our secure event monitoring protocol, Sem. In Chapter 5, we introduce

our privacy-preserving solution Privatus for smart grids. Conclusion of this work is

given in Chapter 6. Finally, Chapter 7 describes the future research issue.

5

2. RELATED WORK

2.1 Clock Synchronization in Sensor Networks

Clock synchronization has long been a subject of study in wired networks. Net-

work Time Protocol (NTP) [1] and global positioning system (GPS) receivers are

popularly used for synchronization. However, there are significant challenges in ap-

plying them to wireless sensor networks, such as high power consumption, accuracy

of only milliseconds, and unavailability of synchronization signals indoors. We also

need to consider that the hardware clocks on the individual nodes may experience

significant drifts. This happens chiefly due to manufacturing variations in the differ-

ent crystals, the temperature fluctuations the nodes (and consequently the crystals)

are exposed to, and aging of the crystals. Tight budget concerns in the design of the

sensor nodes rule out the use of the highly accurate oven controlled crystal oscillator

(OCXO) or high-end temperature compensated crystal oscillator (TCXO). Also, the

multi-hop nature of the sensor network precludes the use of client-server solutions,

which most of the solutions from the landline world fall in.

Therefore, there has been active research in time synchronization in the sensor

network community. We refer the reader to [2] for a good coverage of the early

work in this field and here we focus on the more recent work. At the high level,

Harmonia is motivated by the unmet need for synchronizing networks that are

sleep-wake enabled and that have low duty cycle. The real-world constraints of the

Chasqui node introduce the additional challenge for Harmonia to synchronize a low

resolution real time clock. These challenges are orthogonal to those addressed by the

existing work that we survey here.

The Timing-sync Protocol for Sensor Networks (TPSN) [3] aims to provide network-

wide time synchronization. The TPSN algorithm elects a root node and builds a

6

spanning tree of the network during an initial discovery phase. The synchronization

phase proceeds in rounds with the children node in the tree being synchronized to

their parents through a two-way message handshake in each round. Each node em-

beds its local clock’s readings in the two-way message handshake and through it the

child node can calculate the propagation delay and its clock offset relative to its par-

ent’s. TPSN introduced the idea of MAC layer time-stamping. However, TPSN does

not compensate for clock drifts which makes frequent resynchronization necessary. In

addition, TPSN requires the two-way handshake to complete between a parent-child

pair before the synchronization can propagate further in the network.

The Flooding Time Synchronization Protocol (FTSP) [4] has already covered it

in some detail in Section 3.2.

The Rapid Time Synchronization (RATS) [5] is also a MAC layer time-stamping

based protocol. In RATS, a root floods a message carrying an event time. On

receiving this message, nodes calculate the elapsed time since the event occurrence

using a simple time-stamping primitive calld Elapsed Time on Arrival (ETA) based

on the MAC layer time-stamping technique. By subtracting the elapsed time from

the receiving time, nodes convert the event time from the root’s local time to its

local time. This process may look similar to Harmonia’s SYNC/SYNCD flooding.

However, in Harmonia, as a SYNCD message propagates through a network, each

node calculates the relative difference in the MCC readings between the BS and itself.

By doing so, each node estimates the current value of the MCC at the BS.

The Reachback Firefly Algorithm (RFA) for clock synchronization [6] is inspired

by the way neurons and fireflies spontaneously synchronize. Each node periodically

generates a pulse (message) and observes pulses from other nodes to adjust its own

firing phase. RFA only provides synchronicity—nodes agree on the firing phases but

do not have a common notion of time. RFA is likely to take a long time to get all

the nodes to be firing synchronously and therefore will likely not be suitable for our

application.

7

In [7], the authors propose a way to estimate the drifts in the clocks of two nodes

caused by the environment-dependent variations. The authors introduce the notion

of a software compensated crystal oscillator (SCXO). In an SCXO, the differential

drift between the crystals of two nearby nodes is used to estimate the drift in the

crystal of one of the nodes. The solution comprises of a one time calibration phase

and a runtime measurement and compensation phase. SCXO achieves mean effective

clock stability of 1.6 ppm over a temperature range of -40◦C to 75◦C. This would

allow us to increase the period between synchronizations of CSOnet. The authors

provide a practical implementation of the SCXO work in [8] and describe a Crystal

Compensated Crystal based Timer (XCXT), a new way of compensating a pair of

crystals which achieves a 1.2ppm precision over a temperature range of -10 to 60◦C

while using only 1.27mW. The solution relies on a node having two crystal inputs

and two timer units (TMote Sky is their demonstration platform). To improve the

power consumption the authors describe two approaches. The first is to simply duty

cycle one of the crystals. The second approach is to use two crystals, one fast and the

other slow. The fast crystal (8 MHz crystal of the MSP430 microcontroller in their

demonstration) is used if fine granularity time is needed. The second slower crystal

(32 kHz in their demonstration) is used while the system is in sleep. Both crystals

compensate for each other’s drift and together form a highly stable timer unit. This

last hardware design feature, in a context quite different from that of the Chasqui

nodes, shares a similarity with the Chasqui design of two clocks. However, this is

used by the authors for achieving power savings.

A recent development in the field is gradient based clock synchronization [9]. In

this the authors present the design to minimize the clock offset between neighbor-

ing nodes. The motivation is that other time synchronization protocols synchronize

clocks based on some topology, whether assumed or created as part of the synchro-

nization protocol. Two geographically nearby nodes may be distant in this topology.

Therefore, existing protocols, while trying to ensure a small synchronization error

globally in the network, may cause the synchronization error in a local neighbor-

8

hood to be appreciable. Therefore, the authors design the protocol to have very low

synchronization error in local neighborhoods.

2.2 Timely Event Reporting in Sensor Networks

Event monitoring applications of WSNs have been researched for a variety of sce-

narios, including military surveillance and forest-fire detection. The common research

issue of event monitoring is energy efficiency and lifetime maximization of sensor net-

works. Several schemes are proposed to address the optimization of sensing coverage

(e.g., [10–12]), the goal of which is to monitor the system of interest using the minimal

amount of resources. Another direction to improve energy efficiency is to balance the

energy consumption over the sensor nodes (e.g., [11, 13]), since unbalanced energy

dissipation causes some nodes to die faster than others, thus reducing the network

lifetime. However, most of existing protocols are designed without security in mind.

Recently, event monitoring in the presence of compromised nodes began to receive

attention [14]. The authors in [14] assume the Man-in-the-middle attackers that can

prevent, delay, or manipulate the event report from a legitimate sensor node. Their

approach to defend against the compromised nodes is to make the sensor nodes flood

the event report over the entire network. This method will work when there exists

at least one “legitimate route” from each reporting node to the BS that does not

contain any compromised node. However, if the adversary simply compromises all

the neighboring sensor nodes of the BS, thus isolating the BS, this method cannot

provide any guarantee.

To the best of our knowledge, no existing solution can work in hostile environments

where the compromised nodes may block all the routing paths coming into the BS,

thereby leaving no chance for a legitimate node to report an event in time.

9

2.3 Privacy Protection and Cost Saving in Smart Grids

There has been extensive research about privacy protection in the area of database

systems, where the goal is to provide statistical information (such as sum, average, or

maximum) without revealing sensitive information about individuals. The common

approach to achieve this goal is data perturbation [15–17]. The perturbing data

can be simply done by swapping values between records [15], and adding noise into

the record [16]. Anonymizing attributes of the datasets is another form of the data

perturbation [17]. An example of this category is the concept of k-anonymity [17]

by which information contained in a record of the database cannot be distinguished

from at least k − 1 other records. However, none of methods in this area is directly

applicable to hide the privacy information in the meter readings from the smart

meters, because the utility companies do have to know precise meter reading records

for billing purpose.

Recently, many studies raised the privacy concern in the smart grid both from

a technical perspective and from a legal perspective [18–21]. These works suggest

enforcement of privacy properties based on organizational means, codes of conduct

and regulations, subject to current legislations. However, only a few works have been

proposed so far on the design of technical solutions to handle the privacy issue in the

smart grid.

Rial et. al. [22] proposed a privacy-preserving metering system, where the energy

bill for a specific period is calculated by the user and then sent to the utility com-

pany. This system allows the user not to report the fine-granularity meter readings.

However, it limits the power grid operator’s capability such as demand prediction.

Kalogridis et. al. [23] and McLaughlin et. al. [24] used a rechargeable battery to

perform low-pass filtering over the load profile. Their algorithm forces the battery to

charge (or discharge) a certain amount of energy if possible, when the required load is

smaller (or larger) than the previously metered load. Thus, the high-frequency varia-

tion on energy usage profile is not visible to the smart meter. This approach can help

10

eliminate load signatures that indicate which appliance is being used. However, the

low-frequency components of a load profile are still revealed without any protection.

Further, the proposed solution did not consider the cost-saving opportunity of using

the rechargeable battery.

Another work using the rechargeable battery is proposed by Varodayan et. al.

[25]. They considered a simple binary-state battery model, where the battery is

probabilistically charged by drawing the energy from the grid and discharged to feed

the appliances. However, in their model, the charging and discharging processes at

a given time instant are not independent of each other. This leads to a high level

of information leakage (at least 0.5 bit for one-bit information). The authors also

failed to consider the possible saving in the electricity cost by using the rechargeable

battery.

Our work also adopts the rechargeable battery to protect the user privacy, but we

design a mechanism by which the charging and discharging processes are guaranteed

to be independent of each other at a given time instant. Further, our design also con-

siders to reduce the correlation between the sequences of the charging and discharging

processes over multiple time instants (instead of just for a single time instant). This

makes it difficult for the adversary to make a meaningful guess on the user behavior

by observing the sequence of meter readings. In addition, our design ensures that the

way of charging the battery is optimal in the sense that we can maximize the average

saving in the energy cost. This is achieved by controlling the charging process by

dynamic programming [26].

11

3. CLOCK SYNCHRONIZATION IN SENSOR

NETWORKS

Wireless sensor actuator networks or WSANs consist of computer controlled sensors

and actuators that communicate over a wireless (usually RF) communication network.

WSANs use sensed data to power actuators which can then affect the sensed environ-

ment. The resulting changes in that environment can then be sensed by the network.

This forms a distributed feedback loop that has the potential for efficiently control-

ling geographically distributed processes at a scale that was previously unthinkable.

A metropolitan scale (city wide) WSAN, called CSOnet, is currently being built by

a partnership of private (EmNet, LLC), public (City of South Bend), and academic

(Purdue University and University of Notre Dame) agencies. The WSAN is being

built to control the frequency of combined sewer overflow (CSO) events in a mid

sized U.S. city (South Bend, Indiana). More than 700 cities in the U.S. have sewer

systems that combine sanitary and storm water flows in the same system. During rain

storms, wastewater flows can easily overload these combined sewer systems, thereby

causing operators to dump the excess water into the nearest river or stream. The

discharge is called a CSO event [27]. The problem addressed by CSOnet represents a

major public health and environmental issue faced by many U.S. cities. At present,

the system consists of 150 wireless sensor nodes monitoring 111 locations in the South

Bend sewer system.

The CSOnet deploys nodes in the sewage channels for sensing, on top of traffic

poles for relaying, and at major traffic intersections to act as gateways to the cellular

network, by which the sensed data is uploaded to a backend server. The nodes are

called Chasqui nodes, which are based on the Crossbow Mica2 mote design, but

expand on it to add a longer range and faster radio, and significant to our problem,

a Real Time Clock (RTC) with an extremely low drift of 2 ppm. The Chasqui nodes

12

are meant for long-term operation without the need to change batteries. Therefore, a

natural design point is to have low duty cycle operation of the network. In the current

deployment, each node stays awake for 6 seconds in a 5 minute period, leading to a

2% duty cycle. This led us to the requirement of accurate time synchronization for

the Chasqui nodes.

The distinctive challenges for synchronization in CSOnet were three-fold. First,

the synchronization had to be fast since the network only stayed awake for 6 seconds

at a time and the projected scale of the network is large, of the order of a few

hundred nodes. Second, the Chasqui nodes used the RTC, which is external to the

microcontroller chip, for the trigger for wake up. This is due to the RTC’s low drift

over the large temperature range to which the nodes are exposed—from -13◦F to

122◦F. However, crystals used for clocks have a tradeoff in three dimensions—drift,

granularity, and power consumption. The power consumption has also to be kept very

low and hence the RTC sacrifices the granularity that is exposed to the programmer—

it has a coarse granularity of only 1 second. Thus, we have the situation that wake

up is controlled by a clock whose granularity is so low that it is not sufficient to

synchronize the clock, given that the duty cycle is low. Third, the high power, long

range, and high speed radio used is a MaxStream 115.2 kbps radio where the firmware

is not available for modification. Thus, we cannot use a common technique used

in time synchronization protocols—MAC layer time-stamping. Additionally, MAC

layer time-stamping with high speed radios poses problems as documented in [28,29].

While we have posed these challenges in the context of CSOnet, we believe they

are more general than that. Abstracting out the details, these challenges to a time

synchronization protocol will be posed by any WSAN that has large scale, low duty

cycle operation, proprietary radio stack, and crystals that make a natural tradeoff

between drift, granularity, and power consumption.

We found that no existing time synchronization protocol addressed these chal-

lenges motivating us to design and develop our protocol called Harmonia. Harmo-

nia is designed and implemented in TinyOS and executes on the Chasqui nodes.

13

It has three primary design innovations. First, it has an algorithm to use the

high resolution microcontroller clock to synchronize the low resolution RTC. Sec-

ond, the synchronization-related hand-shake between two adjacent nodes happens in

two phases through a single message in each phase. However, Harmonia pipelines

the two phases, with a node acting as a source of the first phase message before it

has itself received the second phase message. This design is important in achieving a

rapid synchronization of the entire network. Third, reliability is built into Harmonia

to handle transient node and link failures. The goal is to localize the effect of a failure

and not overburden the network with synchronization-related messages.

To evaluate Harmonia, we create small-scale linear and tree topologies with

Chasqui nodes, with each node running the CSOnet application and having a low 2%

duty cycle. We evaluate the time to synchronize the network and the synchronization

error between any two pair of nodes. We compare this to FTSP running on Mica2

nodes. While a comparative evaluation on the same hardware platform would have

been desirable, each protocol relies critically on some specific hardware feature. The

results validate our design goal that Harmonia is faster than FTSP, while sacrificing

synchronization error. A representative result is that Harmonia is 8.7X and 12.1X

faster than FTSP for a 5 hop linear network depending on the setting of FTSP,

and with a period of 300ms for synchronization messages. The average one-hop

synchronization error of FTSP is only 1.5µs, while that of Harmonia is 16.77µs.

3.1 CSOnet

3.1.1 CSOnet Architecture

CSOnet’s architecture was designed to be a set of local WSANs that connect

to an existing wide area network (WAN) through gateway devices. CSOnet can

therefore be viewed as a heterogeneous sensor-actuator network. It consists of four

types of devices: (i) Instrumentation Node or INode: these nodes are responsible for

retrieving the measurement of a given environmental variable, processing that data

14

and forwarding the data to the destination gateway through a radio transceiver. (ii)

Relay Node or RNode: these nodes aid in forwarding data collected by INodes that are

more than one-hop away from the gateway node. The RNodes only serve to enhance

the connectivity in the wireless network. (iii) Gateway Node or GNode: these nodes

serve as gateways between the WSAN used to gather data from the INodes and a

Wide Area Network (WAN) which allows remote users easy access to CSOnet’s data.

(iv) Actuator Node or ANode: these nodes are connected to valves (actuators) that

are used to hold back water in the sewer system.

To appreciate the challenges posed to a synchronization protocol, we first need to

describe the system that is controlled by CSOnet. Figure 3.1 shows a sewer system in

which combined sewer trunk lines (sanitation and storm water flows) feed into a large

interceptor sewer. Prior to 1974, municipal combined sewer lines dumped directly

into rivers and streams. Under the Clean Water Act, cities were forced to treat the

water from these combined sewer lines before they were released into a river or stream.

One common way to meet this regulatory burden was to build an interceptor sewer

along the river. This sewer would intercept the flow from the combined sewer trunk

lines and convey that flow to a wastewater treatment plant (WWTP). Under dry

weather conditions the flows were small enough to be handled by the WWTP. Under

wet weather conditions (storms), the flows often overwhelmed the WWTP’s capacity,

thereby forcing operators to dump the excess directly into the river or stream. Such

discharges constitute the CSO events described earlier.

From Figure 3.1 we can see that the combined sewer trunk lines and interceptor

sewer connect at a CSO diversion structure. This is the point where we can apply

control. This means that the natural place to put ANodes is at the CSO diversion

points. These ANodes would then adjust the amount of water diverted into the

interceptor sewer line based on an adaptive threshold that is a function of the current

flows into the system. The GNode serves as a gateway between this particular WSAN

and neighboring WSANs up and down the interceptor line. Figure 3.2 illustrates this

system architecture with 2 different WSANs controlling the two diversion structures

15

Fig. 3.1. South Bend Interceptor Sewer and CSO Diversion Structure.

into the interceptor line. GNodes at these diversion structures and the WWTP are

used to exchange control information in a way that allows coordinated flow control

across the city’s entire sewer system.

Fig. 3.2. CSOnet’s Hierarchical Architecture.

16

3.1.2 CSOnet Hardware

The basic building block of CSOnet’s WSAN is a more rugged version of the Mica2

processor module called the Chasqui wireless sensor node. The Chasqui node started

with the original embedded node designs developed by U.C. Berkeley. EmNet, LLC

enhanced the radio subsystem and sensor/actuator interface subsystems of this earlier

design. The Chasqui node uses a 115 kbps MaxStream radio operating at 900 MHz.

It uses frequency hopping spread spectrum (FHSS) signaling to reduce the radio’s

sensitivity to interference. The radio has a larger maximum transmission power (1

watt) than the conventional Chipcon radio. Consequently, the Chasqui node has a

range of over 700 meters in urban environments and up to a 5 km range for line-of-sight

connections. The longer range of the Chasqui processor fits well with the distances

required by the CSOnet application. The MAC layer of the radio is implemented

in proprietary firmware that is closed source. However, a feature significant to our

synchronization protocol, is that the radio sends a signal a fixed offset time after the

first bit being sent out on the wireless channel and also a signal when the first bit is

received from the wireless channel. This signal is used to trigger an interrupt followed

by executing part of Harmonia’s algorithm.

To give a sense of the deployment for which our Harmonia is targeted, we provide

in Figure 3.3 an overlaid map view of the largest of the 36 CSO areas in South Bend,

which covers an area of 3758 acres. It has 7 RNodes, 3 INodes, 2 GNodes and 1

ANode, that controls an automated valve at the basin. Notice that the network of

Rnodes is almost linear. Due to the requirements of the application that the network

needs to span a large geographical area, the Rnodes provide relaying functionality,

and the radio has a long range, the network in most parts is almost linear. This is a

driver for some design decisions in Harmonia, which we will discuss in Section 3.5.

In spite of the higher transmission power required by the MaxStream module,

careful design of the CSOnet middleware and hardware allows the WSANs based on

the Chasqui node to operate for several years before changing batteries. The Chasqui

17

Fig. 3.3. Overlaid map view of the largest of the 36 CSO areas in South
Bend. It shows the four different kinds of nodes - Instrumentation node
(INode in yellow), Relay node (RNode in red), Gateway node (GNode in
green), and Actuator node (Anode in gray). The blue box is a unit with
a RNode and a GNode.

node consumes up to 5W when fully active and drops down to 0.14mW in sleep mode.

Long battery life can be effectively achieved by using low duty cycles. All the nodes

in CSOnet wake up at the beginning of every Tw seconds defined a slot, and stay

awake only for the first Ta seconds of each slot based on the RTC. Here, Ta is much

smaller than Tw to save battery power. In current deployment, those are set to Ta = 6

seconds and Tw = 300 seconds, resulting in a 2% duty cycle.

These values are possible due to the nature of the phenomenon that the WSAN is

meant to monitor—such events last for more than 5 minutes. The biggest limitation

to efficient communication in low duty cycle systems is precise synchronization. Typ-

18

Fig. 3.4. The duty cycle of a Chasqui node showing the awake period
(Ta = 6 seconds in the deployment) and the sleep period, which together
constitute a slot (Tw = 5 minutes in the deployment). The beginning of
a round is marked by the base station initiating a new synchronization
process.

ical crystal tolerances such as the one used in the Mica2 platform are on the order of

40 ppm yielding drifts of up to 3.456 seconds per day. Extreme temperature differen-

tials can be seen in the CSOnet application: nodes inside the sewer system are at a

relatively constant temperature of around 10◦C year round while nodes mounted on

traffic poles can experience temperatures ranging between -20◦C and 50◦C. Experi-

ments at these temperatures showed drifts of up to 3 seconds per day using regular

crystals. While synchronization algorithms can periodically reset the drift error be-

tween nodes, they also consume precious energy resources. Therefore, the Chasqui

node uses a precision RTC provided by the Maxim DS3231 chip [30]. Using this,

the nodes can coordinate their active and sleep cycles with sufficient precision to re-

liably function at a 2% duty cycle. The Chasqui node implements a precision RTC

with a typical drift of only 2 ppm giving CSOnet tight synchronism between synchro-

nization updates. Our calculation, based on experimental results for Harmonia’s

synchronization error, shows that the Chasqui nodes can reliably function with peri-

odic synchronization updates in Harmonia every 13 hours (see Section 4.5). With

such a duty cycle, the CSOnet applications based on the Chasqui processor node have

a service life in excess of three years with a 4 cell lithium battery pack.

19

3.2 Can FTSP be Used to Synchronize CSOnet?

The FTSP protocol [4] represents the state-of-the-art in synchronization protocols

and compensates for most sources of time variability, thus achieving highly accurate

synchronization. It does not rely on any network topology. A root is elected, based

on node IDs, and it initiates the synchronization by periodically broadcasting a syn-

chronization message. After some initial startup time when the caches are being

populated, each node periodically broadcasts to its neighbors its local estimate of

the time at the root node. FTSP uses a single broadcast message, rather than a

two-way handshake, to establish synchronization points between the sender and the

receiver. FTSP’s design eliminates many sources of synchronization error, notably

the interrupt handling time and the encoding/decoding time. It also uses MAC layer

time-stamping. Each node uses a linear regression table to estimate the offsets be-

tween the local clock and that of the root node. The performance of the protocol—the

synchronization error and the time to synchronize the network—is dependent on the

number of points that are used to create the regression line. This technique enables

each node to estimate its drift with respect to another node and compensate for it.

If we say that the synchronization packet flooding period is P , the number of

points needed to draw the regression line is NR (NR = 8 by default), and the maximum

number of hops in the network from the root is N , then FTSP takes approximately

NRPN time to synchronize the whole network [4]. This is because only after a node

finishes the linear regression by receiving the NR synchronization packets, it can start

to flood the estimate of the global time through a local broadcast. Moreover, if the

root fails and a new root needs to be re-elected, this takes PN/2 time on an average.

This is for the average case where the new root is at a distance N/2 from the old

root. Such time requirements of the FTSP make it challenging to apply it to CSOnet

synchronization since nodes in the CSOnet stays awake only for 6 seconds every

wakeup and many parts of the network are in effect connected in a linear topology.

For example, even if we set the value of P quite short (compared to values used in the

20

experiments in [4]) as P = 300ms and sacrifice the performance of linear regression by

taking the minimum two points, we can synchronize at most a 20-hop network from

the root within the 6 seconds. Practically this number will be much smaller because

nodes can communicate with each other for even less than 6 seconds due to the drift

in RTC when a synchronization protocol is initiated. For example, we are targeting

to synchronize the whole network within 2 seconds for this reason.

Let us consider two straw man proposals to adapt FTSP to our problem. First, we

use FTSP to synchronize the microcontroller clock (MCC) since it has a fine granu-

larity (0.125µs for the Mica2) and can benefit from the small synchronization error

achievable with FTSP. However, the MCC does not run during the time the Chasqui

node is asleep and the sleep-wake is guided by the RTC. Therefore, synchronizing the

MCC will not serve our purpose.

Second (and alternately to the first), we synchronize the RTC since the RTC

continues to tick through the microcontroller’s sleep period. Then we can relax the

requirement that the entire network needs to be synchronized within the awake period

of one slot. Rather the synchronization packets needed for regression can be collected

over multiple slots and the RTC synchronized with them. However, the RTC has a

coarse granularity of only 1 second and therefore, despite the small synchronization

error of FTSP, the clock may differ by up to 1 second. This would be unsuitable for

the low duty cycle CSOnet.

The two straw man proposals suggest the approach that we take in design of Har-

monia. The approach simply put is to synchronize the MCC first and then change

the RTC to a globally determined value at the same time based on the synchronized

MCC. This achieves both finely granular value for the time used in synchronization

algorithm and synchronism of RTC for sleep-wake. Therefore, applying FTSP to this

model boils down to first synchronizing the MCC using FTSP and then adjusting the

RTC based on this synchronized MCC. However, this runs in to the slow network-wide

synchronization problem of the FTSP explained at the beginning of this section. This

argument crucially depends on the following observation—the synchronization of the

21

MCC has to happen within one awake period of one slot. This cannot be staggered

over multiple slots.

(a) MCC drift between a pair of nodes. (b) MCC difference between the pair.

Fig. 3.5. FTSP’s problem with linear regression when working with sleep-
wake operation.

The reason is explained by Figure 3.5. Consider that node B is trying to synchro-

nize itself to the clock of node A. In Figure 3.5(a), we see two lines one corresponds

to node B’s MCC measured with respect to node B’s MCC — obviously this is a 45◦

line from the origin; the second corresponds to node A’s MCC again measured with

respect to node B’s MCC. The two clocks have different frequencies and hence the

difference in slope between the two lines. Node A’s clock also has an offset—time t0 in

the figure. In Figure 3.5(b), we see the MCC difference between nodes A and B with

respect to node B’s MCC. Ideally, node B should be able to estimate the difference

in drift between A’s MCC and its own MCC. Thus, in Figure 3.5(b), it should be

able to estimate the slope l. According to FTSP, if FTSP had completed within the

wake period, it would indeed have been able to estimate the slope. However, since

the synchronization does not complete within the wake period, node B hits against

the onset of sleep, time t1 in Figure 3.5(a). At this time the offset that node A’s

MCC has over node B’s MCC is ∆t. However, nodes A and B wake up after their

sleep based on a trigger from their respective RTCs. The RTCs also have different

frequencies. Therefore, nodes A and B wake up at slightly different times, say node

22

A wakes up before node B. Then the offset at node B’s MCC time t1 suddenly jumps

from ∆t to ∆t + ∆t′. In other words, the curve in Figure 3.5(b) has a discontinuity

at time t1. Now, consider what happens if node B had staggered its regression points

across the two awake periods. Node B would then have estimated, using FTSP, that

the slope of the relative MCC difference is l′ (Figure 3.5(b)), rather than the correct

slope of l. There is no fixed relation between l′ and l—it depends on the arbitrary

order and difference in time between the wake-up of nodes A and B.

The nub of the argument then is that the linear regression should be finished

within each awake period. For networks of the size of CSOnet, FTSP out-of-the-box

cannot achieve this as we will show in the experiments section. Yet a third strawman

proposal to modify FTSP to suit our needs is as follows. Use FTSP to synchronize

the MCC clocks across a large network by periodically keeping the nodes turned on

for more than 6 seconds. Then, synchronize the RTC clocks by using the MCC clocks.

The increase in the duty cycle will have to be done rarely (once every 13 hours in

our network as per the calculation in Section 4.5.3). However, the problem with this

approach would be that during the synchronization process, there is a large number

of messages that are sent down from the root throughout the network. With a period

of 300ms for synchronization messages in FTSP, the synchronization process takes a

long time - greater than 8 seconds for a 5-hop diameter network in our experiments

(see Figure 3.11) and which increases linearly with the number of hops. During this

period, it is quite likely that data messages flowing up toward the base station (BS)

will collide and have a low reliability. Considering that CSOnet is meant to detect

rare and critical events, such reduced reliability during the periodic synchronization

events would be unacceptable.

Moreover, a problem common to all these FTSP extensions is that they will not

handle efficiently the case that a node (or a sub-tree) comes out of failure and wants

itself (or the set of nodes in the sub-tree) to be synchronized. The extensions will

flood the synchronization messages all through the network. Hence, the need for a

new synchronization protocol, hence Harmonia.

23

3.3 Proposed Protocol

3.3.1 Operational Scenario

The CSOnet is connected for data dissemination and collection in a tree topology

whose root is a BS. The topology is created by stateless gradient-based routing [31].

Each node in the network has a gradient number that is an indication of how close

the node is to the destination. Since there might be several destinations, each node

stores one gradient number per destination in the network. Harmonia will also use

the tree topology.

Recollect that all nodes in the CSOnet wake up at the beginning of every Tw

seconds defined as a slot, and stay awake only for the first Ta seconds of each slot.

The BS initiates the synchronization procedure in certain slots. We say a new round

of synchronization is started when that happens. The BS may decide when to initiate

this based on a fixed period, for example, through calculation of the worst case drift

of the RTC, or some indication that the network has gone out of synchronism, for

example, inferring from a drop in the received data rate.

We first provide a conceptual view of how Harmonia works, hiding the technical

details. Note that there are two clocks in the picture - a MCC and the RTC. The

MCC has a high drift but high resolution, and it also does not tick when the node

is sleeping. The RTC has a low drift but low resolution, such that synchronizing

the RTC alone will have a large synchronization error (up to 1 second) and thus will

not be sufficient for our requirements. Our goal is to synchronize RTCs of all nodes

accurately enough to ensure all nodes in the network wake up at the same time.

The BS initiates the synchronization once a certain time has elapsed since waking

up. Synchronization happens in cascaded stages where the synchronization proceeds

along the tree topology with the BS acting as the root node. The interaction between

a node and its children happens in two phases. A pipelining effect is achieved between

multiple levels of the tree by having a node perform the first phase of the synchro-

nization with its children even though it has not completed its own synchronization,

24

Fig. 3.6. Sleep-wake operation and its relationship to the synchronization
protocol.

i.e., it is yet to complete its second phase. After a node has received the two phases

from its parent, a node is considered synchronized with respect to its parent. It then

sets an alarm using its MCC. The drift in the MCC during this alarm interval con-

tributes to the synchronization error in Harmonia, in addition to other factors. The

synchronization achieves the effect that the alarms of all the nodes in the network

will go off at the same time, modulo the synchronization error. When the alarm goes

off, a node sets its RTC’s second hand to a value determined by globally known pa-

rameters. Since all the nodes do this at the same time and since sleep-wake happens

according to the RTC value, this implies that the entire network is synchronized for

its sleep-wake.

Once the BS decides to synchronize a network, it begins the protocol Ts seconds

after it wakes up as depicted in Figure 3.6. The value of Ts should be chosen to

ensure that all the children of the BS have already woken up so as not to miss any

synchronization-related messages from the BS. In addition, since all nodes adjust their

RTC at Talarm = Ts + Tinterval they have to stay awake until the RTC is adjusted.

Thus the values for Ts and Tinterval must be taken to satisfy the following conditions:

Ts > Td and Ts + Tinterval < Ta − Td, (3.1)

25

where Td denotes the maximum offset in RTC that has built up between a parent and

a child node since the previous synchronization. However the second condition is not

as critical if we enforce the design that a node delays going to sleep till its alarm has

expired. Additionally, the value Tinterval used at the BS should be large enough that

all the nodes in the network have gone through both synchronization phases and are

ready to set their RTCs. However, there is a desire to keep Tinterval small since the

drift in the MCC during this interval contributes to the synchronization error.

3.3.2 Synchronization Protocol

Our goal is to synchronize RTCs of all nodes to ensure all nodes in the network

wake up at the same time. However, since RTC has only 1-second resolution, if we

adjust any node’s RTC on the basis of another node’s, there could be at worst a 1-

second synchronization error between the two nodes. In order to reduce this kind of

uncontrollable synchronization error, we adopt another timer in our protocol, which

uses a MCC provided by the Atmel Atmega128L, a microcontoller used in Chasqui

motes. The MCC provides much finer resolution than the RTC, operating at the

frequency of 8 MHz. However it cannot be used directly as a system clock since it

does not run when a node is sleeping. Therefore the core part of Harmonia is about

how to use the MCC to set the RTC to the same value, at the same time. Here “same

time” must be defined within a high resolution, identical to that of the MCC. From

now on, the value of the MCC is expressed using lowercase t not to be confused with

the value of the RTC, which is being expressed using uppercase T .

When the BS initiates the protocol, it sets an alarm to go off after Tinterval. To

achieve this, it sets the MCC timer that goes off at talarm. For example, for Tinterval = 2

seconds and for a 8 MHz MCC, it will set the timer to expire after 16 × 106 ticks.

When the alarm fires, the RTC’s second hand is set to the value Talarm = Ts+Tinterval.

Right after setting the alarm, the BS gets to be the first to do the following two-phase

26

message transmission. This is repeated recursively by each node with its children

through the network.

Phase 1: SYNC packet transmission and reception

- Transmission: A parent sends to its children a synchronization initiator packet

called SYNC that carries talarm. The parent records tp the local time at which

its radio chip starts to transmit the first bit of the SYNC through an antenna.

- Reception: Each child records tc the local time at which its radio chip starts to

receive the first bit of the SYNC.

Phase 2: SYNCD packet transmission and reception

- Transmission: A parent sends to its children a synchronization data packet called

SYNCD carrying the tp and tdif , where the tdif is the offset between its MCC

and the BS’s. For the BS, the tdif is always set to zero.

- Reception: After receiving the SYNCD, each child of the parent updates its tdif as

tdif = trcvdif + tc − tp (the “rcv” indicates it is the value received by the node),

and sets an alarm that goes off at (talarm + tdif).

Here each SYNC(SYNCD) packet is sent after a backoff time taken randomly from a

uniform distribution over [0, tbf], where tbf denotes the maximum backoff time. This

is to avoid contention in the synchronization packets among neighbors.

Figure 3.7 depicts the above two-phase synchronization packet transmissions and

receptions performed from the BS to two-level lower hierarchy. Every node in the

network becomes aware of talarm, the time at which the BS expires its alarm by

receiving SYNC packet from its parent. However, since all nodes’ MCC may not

be synchronized, each node needs to figure out the offset in the MCC between itself

and BS to make its alarm go off at the same physical time as at the BS. This is

done by the SYNCD packet propagation: When a node receives the SYNCD from its

parent, the SYNCD lets it know the offset between the parent and the BS, that is,

27

Fig. 3.7. Illustration of the synchronization protocol.

tdif . Thus the node can calculate the offset between itself and the BS by adding the

offset between itself and its parent to the received tdif . It would be obvious from the

above description that Harmonia does not compensate for the difference in drifts

in the MCCs or the RTCs of two nodes, nor for the jitter in the interrupt handling

times for the interrupts arising from the MaxStream signals.

Note that the tp and tc in the Phase 1 are recorded in a similar way that MAC

layer time-stamping technique gets timestamps, but unlike in the MAC layer time-

stamping, the value of tp is transmitted in a different packet—SYNCD, not SYNC.

This is because the MaxStream radio MAC firmware is not modifiable and we cannot

embed the tp into the SYNC.

MaxStream Signaling on Bit Transmission and Reception

In our description above, we simplified the issue of signaling from the MaxStream

radio to the microcontroller. In reality, what happens is depicted in Figure 3.8.

On the transmitter side, the radio generates a pulse of width TTL and on the receiver

side, the radio generates a pulse of width TRL. Trigger to the Chasqui microcontroller

happen respectively on the rising edge and the falling edge. There is a time difference,

28

say tpulsedif , between when the event is time-stamped at the transmitter and at the

receiver end, since TTL > TRL. According to the MaxStream 9XTend OEM RF

Module specification [32], tpulsedif is ideally 190µs. We reflect this using a parameter

tcon and thus tdif in phase 2 reception is updated as tdif = trcvdif +tc−tp+tcon. Here tcon

is a constant intended to compensate a synchronization error offset obtained when

without it. By this, we can compensate a signal propagation delay and a handling

time for the interrupts by the MaxStream radio as well as tpulsedif . We explain in

Section 4.5 how tcon is experimentally measured.

Fig. 3.8. The signaling from the MaxStream radio to the microcontroller.
The signal on the transmit and on the receive side are used to take times-
tamps which are used in Harmonia.

3.3.3 Failure Handling

In this section, we discuss how Harmonia can handle transient failures in either

links or nodes. A node needs to detect the loss of any synchronization packet. For

this it uses overhearing of its child’s synchronization packet as an implicit acknowl-

edgement (ACK).

After a node sends SYNC to its children, it sets a timer which goes off after

tout time within which it expects to overhear all its children sending SYNC to their

own children. If the node does not overhear the SYNC packet(s) from one or more

children, this is taken as an indication of failure and it sends the SYNC again. The

29

protocol has a bound Nmax for which the process will be tried, within a slot, before

declaring failure.

A parent node begins sending the SYNCD packet to its children only after it has

been assured that all its children have received the Sync packet, or that there has

been a failure. The same technique is used by the node to detect and to handle failure

in SYNCD.

3.3.4 Packet Sequences and State Management

In Harmonia, since retransmissions can occur, we need a way to allow the nodes

which have already received a packet to disregard the same type of packet subse-

quently. Practically those state variables are managed in the following manner. Every

node has two different kinds of round sequences: One is round sequence as a parent

denoted by Nrp and the other is round sequence as a child which is Nrc. Those are

both initially set to zero. Whenever BS initiates a new round of synchronization

procedure, it increases the Nrp by 1. All SYNC and SYNCD packets carry the node’s

Nrp value. A child accepts a synchronization packet with Nrp greater than or equal

to its current Nrc if the packet is from its parent. When a node receives a Nrp value

from its parent, it updates its own Nrp value to be the received one. It updates its

Nrc value as Nrc = Nrp + 1 after it sends SYNCD. This will help the node disregard

re-sends of the SYNC from its parent. All the round sequences are dealt with by

doing modular arithmetic in implementation to handle variable overflow.

In addition to the round sequences, the SYNC packet should carry another type

of sequence number for the ARQ operation denoted by Ntrial which represents how

many times the SYNC transmission has been tried so far including the current one.

A parent does not know at what value of Ntrial the SYNC packet will be received at

each child. Therefore, it has to record all the instants at which the SYNC is sent

with the corresponding value of Ntrial, and send all these information in the SYNCD

packet. Each child remembers the value of Ntrial in the SYNC it received, and finds

30

the corresponding time of sending the SYNC when it receives the SYNCD. It uses

this time to calculate tdif in reception step of the Phase 2. For example, if node A had

to send two SYNCs to satisfy its two children C1 and C2. The times corresponding

to these two sends are tp1 and tp2. Then when the node A sends the SYNCD, it has

fields: Trial 1: tp1; Trial 2: tp2.

3.3.5 Fast Recovery

In spite of trying Nmax number of times within a slot, a node may be unable to

synchronize all its children. Let us say node A is in such a situation. For this case,

we introduce the feature of fast recovery. The fast recovery allows the node A to

proactively initiate the synchronization procedure in the next slot, targeted only to

its descendant sub-tree, using the value of updated Nrp. Thus node A does not have

to wait for the BS to initiate the next synchronization round. Let us consider one of

node A’s child nodes C1. The fast recovery can happen because of any of the three

reasons: (i) node C1 did not even receive the SYNC; (ii) node C1 received the SYNC

but for some reason did not finish getting synchronized in the slot; (iii) node C1 is

synchronized, but the implicit ACK has been lost to node A, or node A is trying

to synchronize a sibling of node C1. For case (i), no special treatment of the state

variables Nrp or Nrc is needed for node C1 since these had not been incremented

(the SYNC was not even received). For case (ii), node C1 decrements its Nrc before

going to sleep so that it will accept the SYNC in the next slot. For case (iii), node

C1 disregards the synchronization message and sends an explicit ACK to node A

by transmitting a message called SYNCA. A node tries the fast recovery at most

Nmaxtrial times.

The fast recovery concept is powerful enough to handle the situation that a large

network cannot all be synchronized in one slot. Rather the synchronization pro-

ceeds with as much of the network being synchronized initially as possible, and the

unsynchronized parts of the network being handled through fast recovery.

31

3.3.6 Choice of Important Parameters

Here we discuss the tradeoffs in choosing the most important parameters in Har-

monia.

1. Ts: This is the time the BS waits after waking up to initiate the synchronization

messages. This value has to be large enough to accommodate clock drifts that have

built up between a parent and its child node. This is to ensure that the child node

is awake to receive the synchronization message. But, it must be small enough that

the synchronization can complete in the awake period of one slot. We find for the

CSOnet a value of 2 seconds is reasonable.

2. Nmax: This is the maximum number of times a node tries to synchronize its children

nodes within a slot. A larger value will increase the reliability of the synchronization

process, within one slot. However, it cannot be so large that the node arrives at the

time to sleep within the slot before it has exhausted all Nmax tries. Also there is

a resource consumption that goes up with increasing values of Nmax. This depends

upon the frequency of transient failures in the network. We find a value of 3 works

well for us.

3. Tinterval: This is the time after which an alarm will be triggered to set the RTC, all

together all through the network. This value should be large enough to give time for

the entire network to be synchronized. However, the drift in the MCC in this time

contributes to the synchronization error; therefore, it should be kept small. The value

will depend on the scale of the network and we should set it to the smallest possible

value that meets the above condition.

4. tbf , tout: The first is the backoff before sending a SYNC or SYNCD, the second is the

time between the two phases. We have the condition tout > tbf +tproc, where tproc is the

small time used in processing the synchronization message. This condition is required

since otherwise a node may mistake that its SYNC message to its child has been lost

when in reality the child was backing off before sending it along. The parameter tbf

should be chosen based on the network density, a higher density requiring a larger

32

value. The smaller the value of tbf is, the faster will be the synchronization time

of Harmonia. For our case with a network density of 6 neighbors, we find tbf =

100ms does not cause appreciable collisions. However, we are yet to do thorough

experimentation to determine its setting.

3.4 Experiments

3.4.1 Experimental Methodology

We tested Harmonia focusing on network-wide synchronization time and syn-

chronization error with three different network topologies shown in Figure 3.9. How-

ever, in our experiments, in all three topologies, the nodes are actually placed within

a short distance. This is to make the experiments feasible from a logistic standpoint.

Therefore, we use software topology control to define the neighbor relations between

the nodes. Thus, if node i is not connected to node j in the topology, it disregards all

packets it receives from node j and vice-versa. Note that this still causes contention

that would not be present in the actual network.

Metrics

We define the synchronization error for a node as the difference in its estimate of the

BS’s local time from the actual local time at the BS. For Harmonia, synchronization

error for node i corresponds to the difference in time when the BS and the node

adjusts its RTC. We measure this error right after node i has been synchronized. For

FTSP, a polling node queries the network nodes with a fixed period (3 seconds in our

experiments). On being polled, a node i responds with its estimate of the BS’s local

time and at that instant the BS’s own local time is also measured. The difference

gives the synchronization error. Thus, for FTSP, there can be a delay of up to 3

seconds from the synchronization to the measurement.

We define the network-wide synchronization time as the time from when a round

of the synchronization protocol begins to when all nodes in the network get all the

packets required to make an estimate of the BS’s local time and then have finished

33

the processing of the packets. In Harmonia, the time ends when the last node has

received SYNCD and done the processing (update its tdif) based on SYNCD.

For the experiments with Harmonia, the microcontroller is programmed to gen-

erate a rectangular pulse at Pin 7 and Pin 10 on the Chasqui board at the instants

when we have to pinpoint to calculate the synchronization error and the network-wide

synchronization time. These two pins are connected to an oscilloscope. Specifically,

a node generates the pulse at Pin 7 when it receives SYNCD for the first time in a

round of synchronization procedure and has completed the attendant processing. A

node generates a pulse at Pin 10 when it adjusts its RTC to get synchrony back. In

case of BS, it generates a pulse at Pin 7 whenever it initiates a round of the synchro-

nization procedure. Therefore, the synchronization error between a pair of nodes is

the time gap in the rising edge of the pulse generated at Pin 10 and the network-wide

synchronization time is measured by taking the time gap at Pin 7 between the BS

and the last node to generate the pulse.

Table 3.1
Values of parameters in Harmonia used in the experiments.

Ta Tw Ts Talarm tbf tcon Nmax

6s 5min 2s 4s 100ms 250µs 3

All the experimental results are statistics calculated from at least 10 points—in

many cases, it is more; the 10 runs are used when experimental errors caused us to

reject other runs. We have run experiments for Harmonia for four different values

for tout (tout = 150, 200, 250, and 300 (ms)) choosing other parameters as in Table

3.1. Regarding how to measure the value of tcon, we need to think about what the

potential sources are for the synchronization error in Harmonia: (i) the propagation

delay; (ii) the frequency difference in MCC of each node, accumulated between the

time the alarm is set to when the alarm fires, and (iii) the handling time for the

34

interrupts that the radio chip signals to record tp and tc with the SYNC packet. Let

us use the uncorrected equation for synchronization: tdif = tdif + tc − tp. Then, the

absolute value of the synchronization error between a sender (node i) and a receiver

(node j) E can be expressed as E = tcon + F , where if F is the error due to (ii), tcon

covers the error due to (i), (iii), and tpulsedif . We then measure the absolute value

E ′ of the synchronization error with node j as sender and node i as receiver. Then

E ′ = tcon − F . Hence, we can obtain tcon as tcon = (E + E ′)/2. Averaging over a

number of experiments, we select tcon as 250µs.

(a) Topology 1. (b) Topology 2. (c) Topology 3.

Fig. 3.9. Network topologies used for our experiments.

3.4.2 Network-wide Synchronization Time

Our main objective is to synchronize a network of sensor nodes running on a

very low duty-cycle quickly—within the time period for which they remain awake—

keeping the synchronization error among the nodes within a tolerable limit. Hence

synchronization time is the primary metric for us.

For the experiment with Harmonia, we vary the time between a SYNC and a

SYNCD message, denoted as tgap. This time is given by a time-out at the sender side

(tout) followed by a back-off at the sender side (chosen in a random uniform manner

from [0, tbf]). Therefore, the expected value of tgap = tout + tbf/2. This calculation of

tgap assumes there is no retransmission. In our experiments, there are collisions and

retransmissions, and the synchronization time value for Harmonia is measured in

35

the presence of such events. It is only that the average value of tgap would be higher

in that case from what is plotted.

Figure 3.10 shows that Harmonia can synchronize the three networks within

several hundred milliseconds for all the chosen parameters. We can see from the

figure that the synchronization time increases quite slowly with tgap compared to

FTSP as can be seen by comparing the result shown in Figure 3.11. Since Harmonia

pipelines the SYNC and SYNCD transmissions, a node does not have to finish getting

synchronized before it can act as a source of synchronization messages. Thus, the

network-wide synchronization time is kept small. When there is no retransmission,

increment in the network-wide synchronization time at each hop is due to the backoff,

not the timeout. In this situation, the total synchronization time can be modeled as

c+h×b, where c is the constant cost due to the timeout at the BS and b is the variable

cost which depends on the back-off and is multiplied by the number of hops h. Using

this, we can roughly estimate how many hops Harmonia can synchronize within a

single slot. As an example, let us consider the case of tgap = 200ms in Topology 1.

Since c = tout = 150ms and h = 5 in this case, we have b = (673.5 − 150)/5 = 104.7

(ms). On the other hand, Harmonia needs to finish all the procedure within Tinterval

(currently set to 2 seconds). Using b = 104.7ms, we can therefore calculate h=(2000-

150)/104.7=17.67 (hops), which can be an estimate of the maximum hops in linear

topology that can be synchronized within a slot. However, considering that the result

in Figure 3.10 was obtained in a collision-prone environment (all nodes are in one-hop

distance), the value of b will be much lower than 104.7ms in reality (nodes are sparsely

deployed) and thus we can expect that the limit of the hops that can be synchronized

within a slot would be larger than 17 hops with tgap = 200ms. The remainder of the

network that cannot be synchronized within one slot will be synchronized in the next

slot, according to the fast recovery mechanism.

We ran some testbed experiments using Mica2 motes for the topologies shown in

Figure 3.9 using FTSP to see if it can achieve our goal and also to compare FTSP

with Harmonia. In FTSP, each node periodically broadcasts the synchronization

36

packet (say with a period P) containing the MAC layer time-stamp of the instant

when the packet is sent. A node needs to receive NR (8 by default) number of such

packets to apply linear regression (to account for the clock drift) and get synchronized

with the root node. Since the network-wide synchronization time, say TN , is directly

proportional to P and NR, we reduced the values of these parameters as much as we

could to see how fast FTSP can synchronize the network. For linear regression, NR

has to be at least 2. We found that the TinyOS timer does not fire when we reduced

P below 10ms and therefore the minimum value for which we have the reading is P

= 10ms.

Figure 3.11 shows the network-wide synchronization time for FTSP for the three

topologies as a function of NR and P . From this figure, we can see that TN is even

larger than NRPN in reality where synchronization packets can collide. Except for

one-hop network of Topology 2, the network-wide synchronization time is quite large

for our purpose because we need to synchronize the network within at most 6 seconds

when the nodes are awake. Furthermore, this figure also shows that TN increases

with the increase in the number of hops in the network. Thus FTSP out-of-the-box

would not be suitable for deployment in CSOnet due to its performance in terms of

network-wide synchronization time.

Although we do not provide the network-wide synchronization time for larger

values of the synchronization period, note that Figure 3.11 shows that it increases

linearly with the synchronization period. The slope of this linear relationship depends

upon various factors like network topology, link reliabilities among the nodes, etc.

Table 3.2 shows the slope of these lines along with the y-intercept value using linear

regression.

First off, comparison between Harmonia and FTSP would ideally have been done

on the same platform. However, critical features of the protocols are dependent on

the features of the specific hardware. Thus, Harmonia depends on the signals from

the MaxStream radio while FTSP depends on MAC layer time-stamping available in

the Mica2 radio stack. Nevertheless, we see that the network-wide synchronization

37

time for Harmonia is of the order of a few seconds in FTSP and it is in the order

of a few hundreds of milliseconds in Harmonia. For example, with Topology 1,

which most closely resembles CSOnet topology, with tgap=200ms and equivalently,

P=200ms, FTSP is 7.4X and 9.8X slower than Harmonia, for number of regression

points 2 and 8 respectively. The improvement of Harmonia increases with increasing

values of the period. The improvement is 8.7X and 12.1X for tgap=P=300ms. Note

that the equivalence between tgap and P is not perfect. In FTSP, P denotes a fixed

period; in Harmonia, tgap is an expected value and this represents the gap between

SYNC and SYNCD messages and not a period.

Fig. 3.10. Average network-wide synchronization time of Harmonia.

Fig. 3.11. Average network-wide synchronization time of FTSP.

38

Table 3.2
Slopes of the linear relationship between network-wide synchronization
time and synchronization period observed in our experiments.

Topology 1 Topology 2 Topology 3

NR=2 NR=8 NR=2 NR=8 NR=2 NR=8

slope (s/ms) 0.0054 0.0110 0.0015 0.0060 0.0031 0.0052

y-intercept (s) 4.00 4.64 0.02 0.09 1.89 2.30

Table 3.3
One-hop synchronization error.

Harmonia FTSP (NR = 8)

average 16.77µs 1.5µs

max 38µs 3µs

3.4.3 Synchronization Error

First, we measure the synchronization error in Harmonia and FTSP in a single-

hop network. In this, there are only two nodes. For this, Harmonia results in an

average synchronization error of 16.77µs, while FTSP results in 1.5µs as shown in

Table 3.3.

Thus FTSP outperforms Harmonia in terms of synchronization error. There are

two primary contributory factors. First, we do not compensate for the differential

drifts in the MCCs of two nodes. Note however that we are exposed to this effect only

during the period Tinterval. Second, we do not account for the jitter in interrupt han-

dling that occurs when the MaxStream radio gives a signal on message transmission

and on message reception. However, since the RTC has a high precision oscillator

(with a drift of only 2 ppm), the synchronization error achieved by Harmonia still

means CSOnet can operate for extended periods of time between synchronizations. A

simple computation for this can be formulated as follows. Consider that in CSOnet,

39

for a safety margin, we do not want any two nodes to be out of synchrony by more

than 2 seconds. The current CSOnet deployment has a diameter of 20 hops. There-

fore, in the worst case, a parent and a child node can be allowed to go out of synchrony

by no more than 2/20 = 0.1 second. This is the worst case considering that the clock

drifts between any parent-child pair are in the same direction and therefore the errors

add up. Now, to calculate the frequency of Harmonia’s synchronization rounds, we

solve the following equation: 38µs + 2µs/second× x second = 0.1 second (we use the

measured value of maximum synchronization error of Harmonia as 38µs and the

fact that the RTC has a maximum drift of 2 ppm). Solving this equation, we get

that Harmonia must initiate a synchronization round every 13.88 hours in the worst

case.

How Harmonia will work in multi-hop networks can be seen from Figure 3.12,

where the synchronization error at node i is the absolute value of the synchronization

error between node i and the BS. We use the default value of tout = 200ms. The

synchronization error decreases from node 1 to node 2 in Topology 1. This can be

explained by the fact that the relative synchronization error between the BS and

node 1 has the opposite sign to that between node 1 and node 2. The sign of the

synchronization error between a pair of nodes depends on the relative frequencies

of the clocks of the two nodes and could be either positive or negative. Thus, the

synchronization error in Harmonia will not continuously build up as the number of

hops from the BS increases. We can confirm this from the result of Topology 3, where

node 3 has smaller synchronization error than node 1. We can also see from Figure

3.13 that the time gap between SYNC and SYNCD does not have a strong impact

on the synchronization error. This is expected — the synchronization error will go

up with Tinterval and with message load that would cause a higher rate of interrupts

at a node. With a really small value of tgap, the second effect could be seen, but this

was not observed during the experiments.

From Figures 3.14 and 3.15, we see that the synchronization error in FTSP is

very small (the results for Topology 3 are omitted since they are similar to that of

40

Topology 2). The error tends to increase when the synchronization messages are

sent too quickly (faster than 100ms) except for the one-hop network (Topology 2).

However, the error is always within the tolerable limit for CSOnet. Also as the number

of regression points is increased, the synchronization error decreases, as expected.

Fig. 3.12. Synchronization error of Harmonia for the different nodes in
Topology 1.

Fig. 3.13. Synchronization errors of Harmonia with different values of
tgap in Topology 1.

3.5 Discussion

On-demand synchronization

Harmonia can be easily extended to handle on-demand synchronization in which a

node requests its parent for initiating synchronization. It sends a SYNC REQ packet

which causes the parent to send the SYNC packet thereby initiating the first phase of

41

Fig. 3.14. Synchronization error of FTSP in Topology 1.

Fig. 3.15. Synchronization error of FTSP in Topology 2.

the two phase protocol. The child will send the request if it has not been synchronized

for greater than some multiple of the duration of a round. This threshold time is

such that if the node does not get synchronized then complete asynchrony may result,

meaning the node’s Ta wake period completely misses the wake period of a neighbor.

With the on-demand synchronization, the node initiating the request and the sub-tree

rooted at that node will be synchronized. This function would be important when a

node or a link recovers from a failure and the synchronization process had occurred

during the failure duration.

Issues with MAC layer time-stamping

MAC layer time-stamping is quite widely used in synchronization protocols, e.g.,

TPSN and FTSP. In CSOnet’s Chasqui node, MAC-layer time-stamping was not

possible due to the proprietary closed-source nature of the MAC protocol. However,

42

even if it had been possible, there are some cautions to using the technique. On the

receiving side, as soon as a (synchronization) packet comes in, it is time-stamped

at the MAC layer and put in a queue. A queue is required since for fast radios,

more than one packet may come in before being consumed by the synchronization

protocol. However, the packet itself may be discarded by the receiver if it fails the

CRC check. Then, in the absence of identifying information attached to the time-

stamp, the receiver has no way of discarding the timestamp that corresponds to the

discarded packet. This issue was hinted at in [29] and in subsequent postings on the

TinyOS help forum [28].

Synchronization in sparse (almost) linear networks

The CSOnet is almost linear in most parts when we consider the Rnodes as the

network nodes. This means that Harmonia can have a low back-off time since a

parent has one or only a few children nodes. However, in our experiments, we have

the Chasqui nodes placed on a table close by to each other and use software topology

control. This increases the likelihood of collisions. Additionally, MaxStream radio

typically sends larger-sized packets than the Chipcon radios making the packets more

susceptible to collisions. The maximum packet size in MaxStream is 2048 Bytes

while in CC2420 it is 128 Bytes. Therefore, in actual deployment, we expect that

Harmonia will have a lower synchronization time since it will incur smaller back-off

times.

Reliance on topology

Harmonia relies on some other middleware service (like the stateless gradient-based

routing in the case of CSOnet) to get the knowledge about the tree structure used

for communication. FTSP does not require this knowledge. Although at first glance

this may appear to be a drawback of Harmonia, we believe this prerequisite about

the knowledge of the topological structure is essential to tradeoff generality for syn-

chronization speed. It is because of this knowledge of the topological structure that a

node n1 can quickly start synchronizing its children after receiving the synchroniza-

tion packet from its parent. It just needs to backoff a short random time depending

43

upon the number of nodes present at the same depth of the tree as n1 to prevent

collision. Without such knowledge, after a node receives a synchronization packet, it

has to conservatively estimate the backoff time or wait for a timer with a sufficiently

long interval to fire before starting to broadcast its own synchronization packet. Al-

though Harmonia relies on the knowledge of the tree structure, it works with any

such structure as long as it gets this information from some other middleware applica-

tion. During the network operation, if the tree structure is changed due to node/link

failure, Harmonia will work with the new topology by adjusting the backoff period

of a node.

Handling permanent failures

If the external service that creates the topology runs relatively infrequently and a

node fails permanently or for a long time, the subtree rooted at the failed node may

lose synchrony. However, Harmonia can be adjusted such that a node does not need

to wait for the topology service to reconstruct the tree if its parent has a permanent

failure or a failure that persists for a long time. In such a situation, the children of the

failed node can select a new parent by broadcasting the ReqToChangeParent packet

containing the information about the depth of this node in the tree. Since many nodes

at different depths of the tree can receive this request, they may concurrently try to

be the parent of the requesting node. To avoid this, each node replies to this request

if its depth is smaller than that of the requesting node (i.e. if it is higher up in the

tree than the requesting node) after a random interval proportional to the difference

between its depth and that of the requesting node. This causes the nodes which are

in the closest tier above the requesting node in the tree to respond to the request

first and become the parent. If another node overhears this response, it will suppress

its response. This will allow the sub-tree to be synchronized before the topology has

been repaired.

44

4. TIMELY EVENT REPORTING IN SENSOR

NETWORKS

So far, we have focused on developing a reliable protocol for wireless sensor networks

(WSNs). In this chapter, we now look into security threats of WSNs. One of the

important application scenarios for WSNs that have a prominent security threat is

the domain of event monitoring systems [10, 33]. In event monitoring, the WSN is

deployed over a region where some phenomenon is to be monitored. For example, a

number of sensor nodes could be deployed over a battlefield to detect enemy intrusion.

When the sensor nodes detect the event being monitored, the event is reported to a

base station (BS), which can then be used by a network operator to take appropriate

action.

Significant work to date has focused on making data gathering (equivalently, event

monitoring) energy efficient. However, in some scenarios, energy consumption is not

an issue because the nodes can be plugged to a source of energy. An important case

for this is provided by monitoring in the smart grid, e.g., to detect if a powerline has

been shut off [34]. Here, the sensor nodes are installed on electric poles. A wireless

surveillance system using infrared (IR) beam sensors is another example for such

scenarios, since many of commercially available wireless IR beam sensor nodes are

plugged into existing electrical outlets [35]. In many such deployments, there exist

financial incentives to disrupt the event monitoring, which includes the possibility of

delaying the receipt of the monitored event at the BS.

However, it is a difficult task to secure the event reporting process when the mon-

itoring network is under the attack. The sensor nodes are inherently vulnerable to

attacks because they are usually deployed in non-protected environments. The ad-

versary can often easily access the sensor nodes, and may even compromise them by

reprogramming. Once some sensor nodes in a monitoring sensor network are compro-

45

mised, they may prevent other legitimate sensor nodes from reporting information in

a timely manner. On the other hand, if the BS fails to get a critical event report due

to such a malicious activity, the result could be catastrophic. For example, during

a powerline shutoff in smart grids, failure in taking action in time may lead to an

electrical blackout over a large area.

For this reason, we propose Sem, a secure event monitoring protocol that can

work even when there exist compromised nodes in the network. We are interested

in a multi-hop network scenario where all sensor nodes except the BS node can be

compromised. The compromised nodes can launch arbitrary attacks in a Byzantine

manner, such as dropping, modifying, and delaying the event report. They may also

arbitrarily collude among themselves. Even in such a hostile environment, Sem can

provide the following provable security guarantees:

• As long as the compromised nodes want to avoid being detected, a legitimate

sensor node can report an event to the BS within a bounded time.

• If the compromised nodes launch an attack that causes the event report not to

arrive at the BS within the bounded time, the BS can identify a small set of

nodes that is guaranteed to contain at least one compromised node.

We believe that in many practical scenarios, the adversary has the incentive to keep

the compromised nodes from being detected, since otherwise, the network operator

will be able to remove or reprogram the detected compromised node one by one,

eventually defeating the attack. Hence, the above security guarantees are meaningful

and useful to attain.

Our design of Sem is parsimonious in its usage of resources - both in the usage

of expensive computations for cryptographic operations, and in generating additional

network traffic. Specifically, Sem makes a distinction between a normal operation

mode and a diagnosis mode (when some attack has been detected and culprit nodes

are sought to be identified), by which Sem only uses the indispensable level of asym-

metric cryptography in the normal operations.

46

The problem that we address here has been solved before but with the following

caveats. Much of the early work focused on detecting malicious actions done on

packets by routing nodes, through the mechanism of overhearing [36]. However,

none of this work can handle colluding Byzantine adversaries. Subsequent work -

ODSBR [37] and PAAI [38] - can handle colluding Byzantine adversaries and can,

with careful tuning of timeouts, be made to handle delay attacks. However, they

require use of onion-manner asymmetric signatures for all their transmissions. This

makes such schemes infeasible for resource-constrained wireless networks because they

take too much time, bandwidth, and packet length.

The remainder of this chapter is organized as follows. Section 2.2 gives an overview

of the previous works for event monitoring. In Section 4.1, we formally state our

objective, assumptions, and notations. In Section 4.2, we discuss what approach we

have to take to achieve our objective. In Sections 4.3 and 4.4, we present Sem in

detail, and discuss the relevant miscellaneous issues. We provide experiment results

for Sem in Section 4.5.

4.1 Problem Statement

We consider a multi-hop wireless sensor network that consists of a base station

(BS) node and a number of sensor nodes. A sensor node is in charge of sensing a

delay-sensitive event like a power line shutoff. A network operator monitors the sensor

network through the BS that attempts to collect the events (if any) from the sensor

nodes. It is important that if an event occurs at a sensor node, the BS gets informed

of it as soon as possible in order for the network operator to take action in time.

Since some sensor nodes are more than one hop away from the BS, the events

sensed at such nodes are reported to the BS through a multi-hop routing path as

shown in Figure 4.1. However, if a node in the middle of the routing path is com-

promised, the compromised node may drop/modify the event report, or delay it for

a very long time. This problem cannot be resolved even if a legitimate node sends

47

Fig. 4.1. Multi-hop routing paths to collect events.

the event by flooding over the entire network, because the BS may be encircled by

compromised nodes. For example, in Figure 4.1, if nodes a and f are compromised,

no other sensor nodes can successfully report an event to the BS even by flooding.

This is often easy to achieve because networks have significant fan-in close to the BS,

leading to only a few nodes close to the BS.

Objective: The objective of this chapter is to overcome the aforementioned diffi-

culty in monitoring delay-sensitive events. We want to devise a protocol that provides

the following provable security guarantees. (1) As long as the compromised nodes

want to stay undetected, a legitimate node can report an event to the BS within

P time units; (2) If the compromised nodes launch an attack that causes the event

report from a legitimate node not to reach the BS within P time units, the BS can

identify a small set of nodes that is guaranteed to contain at least one compromised

node.

Note that we do not guarantee that all sensor nodes will report a detected event

to the BS within P time units: once a node is compromised, the event occurred at

the compromised node may not be reported. Intuitively, if the reporting node is

itself compromised, there is no way to get informed of the event that occurs at the

node. However, if a phenomenon is sensed by multiple sensor nodes, say n sensors,

and at least one of them is legitimate, it is still guaranteed to be reported to the

BS within P time units by our protocol. To make our protocol out of use, the

adversary needs to compromise all n sensor nodes. In many practical scenarios,

the value of n may be large (e.g., all sensor nodes around an invasion route by the

48

enemy movement). In contrast, without our protocol, the adversary only needs to

compromise the neighboring nodes of the BS to nullify the monitoring system. Thus,

security benefit from our protocol is significant.

Assumptions: (1) Only the BS can be trusted, i.e., any sensor node can be

compromised and then behave maliciously. The compromised nodes may arbitrarily

collude among themselves. (2) Byzantine adversary model is considered, i.e., the

compromised nodes can take arbitrary malicious actions. For example, the compro-

mised node may drop, modify, or delay the event reports. Further, they may launch

a jamming attack to prevent some nodes in the network from communicating. How-

ever, for ease of presentation, we assume for the time being that there is no jamming

attack. We will relax this assumption in Section 4.4. (3) All links are bi-directional.

(4) The time to transmit a packet across one hop is bounded above by B time units.

(5) We assume that transient packet loss can be recovered by a lower-layer automatic

repeat request (ARQ) mechanism. Further, we assume that nodes do not fail unless

they are compromised. We will also relax these assumptions in Section 4.4. (6) A

node shares a secret key with each of its neighboring nodes, which will be used for a

symmetric cipher.

Notations and Definitions: (1) [X1, . . . , Xn] returns the concatenation of the

input strings X1, . . . , Xn. (2) We use N(a) to denote ’node a’. (3) Sa(X) returns a

signed message for the input string X made by N(a) that is defined as [X, SIGa(X)],

where SIGa(X) is a signature created on the input string X by N(a) using its private

key. (3) Ca1,a2(X) returns a ciphered message for the input string X made by N(a1)

using the secret key shared with N(a2). (4) ID(a) denotes the identification (ID)

of N(a). (6) SET (a1, . . . , an) denotes the set of nodes N(a1), . . ., N(an). (7) A

suspicious set is a set of nodes that includes at least one compromised node in it.

49

4.2 Straw-Man Protocols

In this section, we first consider two straw-man protocols, and discuss the issues

of each protocol. This discussion will motivate the proposed protocol in the next

section to achieve our objective.

Straw-man protocol A1: As we have seen in Section 4.1, if we simply let the

sensor nodes send a report to the BS when they detect an event, the compromised

node in the middle of route may drop or tamper with this event report. Thus, the

BS may not know if the event has happened. To resolve this issue, the protocol A1

requires the BS to get a report from a sensor node every P/2 time units. Since a

node sends a report to the BS every P/2 time units, the BS can be notified of an

event within P time units in the worst case after the event. If the BS does not get

a new report within P/2 time units from a certain node, it can recognize that some

compromised node has dropped or delayed the report from the node.

Here, the nodes have to send a report periodically even without any event to

report. Further, the report should be signed by the reporting node, since otherwise

the compromised node may alter the report. Hence, this protocol incurs a large

overhead. What is worse with the protocol A1 is that the BS cannot identify who

the malicious node is after detecting a dropped or delayed report. This is because

the BS has to rely on other nodes’ opinions to locate the culprit, but the BS cannot

trust anybody except itself. Further, after the BS detects a malicious activity, the

compromised node may start acting normally. Thus, without an addition defense

mechanism in place, the BS cannot identify who is the malicious node after detection.

Straw-man protocol A2: The weakness of the protocol A1 leads to us to think

about an improved protocol by which the BS can detect a malicious behavior and

collect critical evidence at the same time. We note that we can make such a protocol

by adopting the acknowledgment (ACK) mechanism with staggered timeout, which

is used in ODSBR [37]. We refer to this protocol as protocol A2.

50

Fig. 4.2. Line network model to collect events.

The protocol A2 organizes sensor nodes to multiple line networks that originate

from the BS. For example, in Figure 4.1, the BS, N(a), N(b), and N(c) forms a line

network, while N(d), N(e), N(f), and the BS forms another line network. In the

protocol A2, the BS collects events from each line network separately. Thus, without

loss of generality, we consider one line network model of K hops as shown in Figure

4.2. In this model, we denote by N(0) the BS, and by N(i) the sensor node at a i-hop

distance from the BS. Define I = {0, 1, . . . , K}. We refer to the direction from N(0)

to N(K) as the forward direction, and the opposite as the backward direction.

In the protocol A2, N(0) (i.e., the BS) sends out a probe token (PT) in the forward

direction through the line network. The PT is defined as

PT = S0([ID(0), R,Q]), (4.1)

where R denotes the routing information of the line network model in Figure 4.2, and

Q is an integer variable, called round sequence. Every time N(0) sends out the PT,

it increases the value of Q by 1 to prevent the old PT from being re-used in replay

attacks. When N(K) receives the PT, it generates an ACK packet. On receiving

the ACK, N(i) for any i ∈ I\{0, K} forwards the ACK in the backward direction. If

N(i) has an event to report, it can embed the report into the ACK. Hence, if N(0)

receives the ACK from N(K), then no packet drop has occurred, and N(0) can be

informed of any embedded event. It is easy to see that if each round is completed

within P/2 time units, N(i) for any i ∈ I\{0} can report a sensed event to N(0)

within P time units.

51

To detect a malicious node that drops/delays either the PT or the ACK, N(i) for

any i ∈ I\{K} starts an ACK timer ta(i) immediately after transmitting the PT,

whose timeout value is set to Ba(i). If the ACK has not been received from N(i+ 1)

before ta(i) goes off, N(i) gives up waiting and generates its own ACK packet. Ideally,

only when N(i + 1) is a compromised node that drops either the PT or the ACK,

or delays it beyond a certain limit, N(0) receives the ACK generated by N(i). Note

that to ensure this property, if N(i+ 1) is legitimate, N(i+ 1) should be able to send

the ACK to N(i) before ta(i) expires. Due to this reason, the nodes calculates the

maximum time required for the PT to traverse from themselves to N(K) and for the

ACK to return to the current position along the reverse route. Then, N(i) for any

i ∈ I\{K} sets the timeout Ba(i) to this maximum value, which is equal to

Ba(i) = (K − i− 1)B + (K − i)B. (4.2)

Note that Ba(i) is larger than Ba(i+ 1) by 2B. As Figure 4.3 illustrates, this allows

N(i+ 1) to send N(i) the ACK before ta(i) expires, which can be either the one that

N(i + 1) has received from N(i + 2), or the one that N(i + 1) generates on its own.

More formally, we can state this property as the following lemma.

Lemma 1 For any i ∈ I\{K}, if both N(i) and N(i+ 1) are legitimate, N(i) has no

reason to generate its own ACK.

Proof Remember that nodes start the ACK timer right after transmitting the PT.

Since N(i+ 1) holds the PT for B time units at most, ta(i+ 1) starts within B time

units after ta(i) started. This implies that ta(i + 1) goes off at least B time units

earlier than ta(i) does, since Ba(i) = Ba(i+ 1) + 2B. Thus, N(i+ 1) can alway send

an ACK to N(i), whether it is what N(i + 1) generates on its own when ta(i + 1)

expires, or it is what N(i + 1) has received from N(i + 2) before ta(i + 1) expires.

Hence, N(i) should not be the node that generates its own ACK.

52

Fig. 4.3. Staggered timeout.

To prevent the compromised nodes from modifying the ACK (thereby falsely ac-

cusing legitimate nodes), or tampering with an event report in the ACK, the nodes

are required to sign on the ACK. In detail, the ACK generated by N(i) is defined as

ACK = Si([ID(i), Q,E]), (4.3)

where E denotes the event report. If nodes do not have anything to report, they

leave E as E = NULL. When N(i) forwards the ACK from N(i + 1) to N(i − 1)

(i.e., it does not generate its own ACK), the ACK sent by N(i), denoted by ACK(i),

is defined as

ACK(i) = Si([ACK(i+ 1), ID(i), E]). (4.4)

Note that the ACK is signed by the nodes in an onion manner, i.e., the ACK sent by

a node encapsulates the ACK (if any) sent by higher-indexed nodes. Thus, a compro-

mised node cannot modify or forge the ACK from any higher-indexed node, unless

they collude with each other. As a precaution against forging the sender ID, N(i)

sends Ci,i+1([ID(i), Q]) along with the PT. Similarly, N(i) sends Ci,i−1([ID(i), Q])

when sending the ACK to N(i− 1). Now, the protocol A2 can guarantee the follow-

ing. Recall that a suspicious set contains at least one compromised node.

Proposition 4.2.1 If N(0) gets the ACK generated by N(i) for i 6= K, SET (i, i+1)

is a suspicious set.

Proof Assume that SET (i, i+1) is not a suspicious set. Then, N(i) and N(i+1) are

both legitimate. Since no compromised node can forge the signature of a legitimate

53

node, the ACK that N(0) has received is indeed generated by N(i). This implies that

N(i) has received the PT, and thus forwarded the PT to N(i+ 1). Hence, by Lemma

1, N(i) cannot be the node that generate its own ACK. This is a contradiction.

Hence, we can see that the protocol A2 achieves our objective: it can collect the

event reports from sensor nodes within P time units if there is no attack; Otherwise,

it can identify a suspicious set that contains at least one compromised node. However,

note that the protocol A2 always requires the sensor nodes to send a signed packet

as in (4.4), i.e., the protocol A2 needs to use an expensive ACK mechanism signed

in an onion manner every P/2 time units, whether or not an event occurs. This

is important to provide the guarantee to identify a suspicious set when an event is

not received in time. Since the occurrence of events is unpredictable and the PT

generation by the BS has to be periodically done, the sensor nodes are required to

sign on the ACK in an onion manner even though they may not have anything to

report. However, this is very expensive in normal operations (when there is no attack)

since the onion-manner signing technique causes a heavy computation overhead for

the ACK. Further, it results in a large payload size for the ACK that often needs to

be fragmented into multiple packets.

4.3 Proposed protocol: SEM

The issue with the protocol A2 is that it requires an expensive onion-manner

signed ACK mechanism even in normal operations. Ideally, we would like to design

a protocol that has low overhead in normal scenarios when there is no attack, and

only invokes the heavier overhead when an attack is launched. For this purpose, we

now propose our new protocol, called Sem. The approach of Sem is to first detect

if something bad happens, i.e., if there exists a compromised node that hinders the

event collecting operation. If the event collecting operation looks fine, then Sem

cancels the ACK timers at the sensor nodes. Thus, Sem uses the expensive onion-

manner signed ACK mechanism only when some malicious activity that disturbs the

54

(a) An example of the

EGC.

(b) Abstract model of

the EGC.

Fig. 4.4. Event gathering circle (EGC).

BS’s event collection process is detected. By this, Sem can provide the same security

guarantees as the protocol A2, while eliminating the heavy communication overhead

to send the ACK under normal legitimate scenarios.

Towards this end, Sem organizes the nodes into a circular network that passes

through the BS as shown in Figure 4.4(a) (instead of the line network). We refer to

the circular route as event gathering circle (EGC). If the BS finds a situation that it

cannot include all the sensor nodes in the network into one single EGC, e.g., due to

scalability considerations, the BS can form multiple EGCs, and collect events from

each EGC independently. As long as each sensor node belongs to at least one EGC,

the BS can collect the event reports from the entire network. Thus, without loss of

generality, we consider the case that there is only one EGC in the network that is

modeled as a circular route of K hops as in Figure 4.4(b). Note that in this model,

N(i) denotes the sensor node at a i-hop distance from the BS in the forward direction,

thus implying that both N(0) and N(K) represent the BS.

4.3.1 Detail of SEM

The basic idea of how Sem detects the existence of a compromised node is as

follows. Every P/2 time units (or less), the BS node N(0) checks the EGC in the

same way as the protocol A2. Namely, N(0) sends out the PT in the forward direction

55

of the EGC. When N(K) receives the PT, it generates a signed ACK packet. Nodes

set up the timeout of the ACK timer similarly to (4.2). If N(i) for any i ∈ I\{0, K}

receives an ACK from N(i + 1) within the timeout, N(i) signs on the ACK and

forwards it to N(i − 1); Otherwise, N(i) generates its own ACK. However, in Sem,

if a sensor node N(i) has an event to report, it embeds the event report into the PT

instead of the ACK as

PT(i) = Si([PT(i− 1), ID(i), E]), (4.5)

where PT(i) denotes the PT sent by N(i). Note that N(i) embeds the event reports

into the PT only when it has an event to report.1 Since the event report is carried

by the PT, the compromised node may want to drop or delay the PT to prevent an

event from being reported in time to N(K), which is also the BS. However, note that

since N(0) = N(K), the BS node N(K) can measure the circulation time tc that is

defined as the time value of the ACK timer ta(0) when N(K) receives the the PT. If

all the sensor nodes in the EGC are legitimate, the circulation time tc should be less

than or equal to (K − 1)B. Hence, if the circulation time tc is larger than (K − 1)B,

it is certain that there exists at least one compromised node in the EGC. However,

even in such a case, as long as the value of tc is no larger than some threshold time,

say Tth, which is less than P/2, the BS may skip identifying the compromised node

because the BS can still collect the event within P time units after the event occurred.

Therefore, if tc ≤ Tth(< P/2), the BS cancels the ACK timers at the sensor nodes,

through which the BS prevents the nodes from doing the expensive ACK processing.

For this reason, we extend the timeout set up in (4.2) by a time margin Tm, in

order to give enough time for the BS to cancel the ACK timers at the sensor nodes

when tc ≤ Tth. Let B′a(i) be the new timeout of the ACK timer ta(i). Then, we can

express B′a(i) as

B′a(i) = Ba(i) + Tm. (4.6)

1This feature introduces a new vulnerability that a compromised node may simply remove the event
reports, since the BS has no way to know if there exists an event report before receving it. We
explain how to resolve this issue at the end of this section.

56

Fig. 4.5. An example to show that a compromised node may hold the PT
for more than B time units without being identified.

In addition, we let N(K) start to send an ACK in the backward direction Tm time

units after N(K) receives the PT. On the other hand, it is easy to see that even after

such a change, Lemma 1 still holds, and thus Proposition 4.2.1 also still holds, i.e.,

if N(0) gets the ACK generated by N(i) for i 6= K, SET (i, i + 1) is a suspicious

set. Canceling the ACK timers at the sensor nodes is done in such a way that N(0)

starts a new round. In detail, if tc ≤ Tth, the BS node N(0) sends out the PT of the

new round when the value of the ACK timer ta(0) in the current round reaches Tth.

This new round’s PT acknowledges the old round’s PT, and thus the sensor nodes

can safely cancel their old ACK timer when receiving the new round’s PT. Here, we

should ensure that the value of Tm is long enough so that the new round’s PT can

arrive at the sensor nodes before their ACK timer started in the old round expires.

If tc > Tth, the BS node N(0) stops circulating the PT, i.e. N(0) does not try

to cancel the ACK timers at the sensor nodes. Thus, N(0) will receive the ACK

signed by the sensor nodes in the onion manner. However, a wrong choice for the

value of Tth may lead to a situation that the BS cannot identify a suspicious set even

after receiving the ACK. To see this, consider the following example (see Figure 4.5),

where we set the threshold Tth as Tth = (K − 1)B + B, i.e., the BS will investigate

the EGC using the ACK mechanism if the circulation time tc is larger by a margin B

over the legitimate maximum bound, (K − 1)B time units. Suppose that N(K − 2)

is a compromised node, and it holds the PT for 2.1B time units, while other nodes

consume B time units to send the PT. Then, N(K) will find tc > Tth, and thus

57

Fig. 4.6. Threshold Tth.

generate an ACK after Tm time units, without initiating a new round. However, to

deliver the ACK, nodes may need less than B time units, depending on its current

computation load and the channel condition. Suppose that every node takes just 0.1B

time units to send the ACK. In this situation, it is easy to check that N(K − 2) can

forward N(K − 3) the ACK generated by N(K) before the ACK timer of N(K − 3)

expires. Figure 4.5 illustrates this situation. Therefore, the BS cannot find anything

wrong with the compromised node N(K − 2), since it will get the ACK signed by

all nodes in the EGC including N(K). Namely, although N(K − 2) holds the PT

more than B time units, and the BS detects that tc > Tth, N(K − 2) can avoid being

identified.

Therefore, we now have to answer the following two questions:

• What should be the appropriate value for the threshold Tth such that if tc > Tth,

the BS can always identify a suspicious set?

• What should be the appropriate value for the time margin Tm by which the BS

can cancel the ACK timers at the sensor nodes before they go off?

Note that if we can successfully answer these two questions, Sem can achieve our

objective, and only use the expensive onion-manner signed ACK mechanism when we

need to identify the compromised nodes.

In Proposition 4.3.1, we are looking to determine what is the smallest value of

Tth that we can set and not run into a problem, namely, that the BS is unable to

identify a suspicious set when tc > Tth. Note that as Tth increases, the time required

58

for collecting event reports from a node to the BS goes up linearly (the exact relation

is given in Corollary 1) and thus there is no incentive to make Tth large.

Proposition 4.3.1 If we set the threshold Tth = Ba(0), where Ba(0) = (2K − 1)B

(given by using (4.2) and setting i = 0), the BS can always identify a suspicious set

when tc > Tth.

Proof Suppose that N(0) receives the PT after tc > Tth. Then, the time left in the

ACK timer of N(0) is B′a(0)− tc = Ba(0)+Tm− tc < Ba(0)+Tm−Tth = Tm. Namely,

the time left in the ACK timer of N(0) is less than Tm. However, as mentioned

below (4.6), N(K) starts to send its own ACK only Tm time units after it receives

the PT. Therefore, N(0) will not receive the ACK generated by N(K), and instead

it will receive the ACK generated by some other node N(i) for i 6= K, as depicted

in Figure 4.6. In that case, by Proposition 4.2.1, SET (i, i + 1) is a suspicious set.

Note that N(0) will not receive multiple ACKs generated by multiple nodes. This is

because of the protocol feature that if a node N(i) receives an ACK within B′a(i) from

N(i + 1), then N(i) will put its own signature in an onion manner on that received

from N(i+ 1) and not generate its own ACK packet.

The goal of Proposition 4.3.2 is to answer the second of the two questions raised

above. Proposition 4.3.2 gives us a lower bound to setting the time margin Tm. A

larger value of Tm will mean, in the case of an attack, a longer time for a node to

generate an ACK in the backward direction. This would mean a longer time for the

BS to get the ACK and therefore to identify the suspicious set. Consequently, we

would like to set Tm to be as small as possible.

Proposition 4.3.2 If we set the time margin Tm as Tm ≥ 2Tth, then no legitimate

sensor node will generate its own ACK when tc ≤ Tth for every round.

Proof We prove this by focusing on a typical round Q. We seek to show that the

earliest time at which the ACK timer of any node expires is after the latest time at

which the ACK timer can be canceled at that node. Recollect that the ACK timer

59

Fig. 4.7. Time margin Tm.

at a node is canceled by the BS circulating the PT for the next round and that PT

reaching the node. Consider the situation in Figure 4.7, where the BS starts its ACK

timer of the Q-th round at p1, and it gets back the PT of the Q-th round within Tth

time units. Then, the BS wants to cancel all nodes’ ACK timers that were set up in

the Q-th round, and initiates the (Q+ 1)-th round at p2, which is Tth time units after

p1. The last node to receive the PT of the (Q + 1)-th round will be N(K − 1). The

time instant p3 is the latest time at which the PT of the (Q + 1)-th round reaches

back to the BS. Since tc ≤ Tth for both the Q-th and the (Q+ 1)-th rounds, p3 can be

expressed as p3 = p1 +B + 2Tth (the extra term B is due to the fact that the BS can

take up to B time units to transmit the PT in the (Q+ 1)-th round). Therefore, the

node N(K − 1) will receive the PT of the (Q + 1)-th round (and will consequently

cancel its ACK timer of the Q-th round) before p3.

Now, consider when the ACK timers of the nodes are scheduled to expire. Since

we are analyzing the earliest possible time when the ACK timers can expire, consider

that the ACK timers of all the nodes start along with that of N(0) at p1. The earliest

expiry will be for node N(K − 1), and by (4.2) and (4.6) that will be at p4, where

p4 = p1 + B + Tm. This means that the ACK timers for all the nodes will expire

at p4 or later. (As a side note, the ACK timer for N(0) will expire at p5.) Thus, to

guarantee that the latest time at which the ACK timer will get canceled at any node

60

is before the earliest time at which the ACK timer is scheduled to expire at any node,

we need the following condition: p3 ≤ p4, i.e., B+ 2Tth ≤ B+Tm, which implies that

Tm ≥ 2Tth.

Note that in the proof of Proposition 4.3.2, if the BS cannot get the PT of the

(Q + 1)-th round before p3, some legitimate sensor node may generate its own ACK

for the PT of the Q-th round. However, in this case, the ACK can be discarded by

the nodes who have already received the PT of the (Q + 1)-th round, because they

know that they have to send the ACK for the PT of the (Q+1)-th round. Further, in

this case, since the BS is expecting to receive an ACK, the statement of Proposition

4.3.2 sill holds.

Corollary 1 If tc ≤ Tth in every round, which means that the compromised nodes

(if any) stay undetected, a legitimate node can report an event within P time units,

where P = 2(B + Tth).

Proof By Proposition 4.3.1, the BS can finish each round within B + Tth time units

when no attack is detected (here, B comes from the time that the BS takes to send the

PT). Thus, each legitimate node in the EGC can report an event within 2(B + Tth)

time units, i.e., P = 2(B + Tth). The factor of 2 comes in because in the worst case,

the event report may be generated by a node right after the PT has crossed that

node.

In order to identify the compromised nodes that modify any contents in the PT,

the sensor nodes verify the signatures in the PT. If a node N(i) finds any inauthentic

signature in the received PT, it sends an event report as E = SE (Signature Error)

in the PT. Then, when the BS gets back the PT, we can guarantee the following.

Proposition 4.3.3 If the BS receives an event report E = SE from N(i) for any

i ∈ I\{0}, SET (i− 1, i) is a suspicious set.

61

Proof Assume SET (i− 1, i) is not a suspicious set. Then, both N(i− 1) and N(i)

are legitimate. Since N(i− 1) did not generate the event report E = SE, it must

have received authentic signatures in the PT. Thus, the signatures in the PT that

N(i) has received should also be authentic, which means that N(i) cannot be the

node that generates the event report as E = SE. This is a contradiction.

On the other hand, if a normal node, say N(i), sends an event report by piggy-

backing it as in (4.5), a compromised node between N(i) and N(K) may strip N(i)’s

siganture and event report from the PT, leaving only the PT originated by N(0). This

attack causes the BS to remain unaware of the event report. To prevent this attack,

when the BS receives event reports, it puts the list L into the PT of a new round,

which contains the IDs of nodes who sent the event reports in the previous round. By

looking at the list L, each node should see the IDs of the nodes from which it has seen

the event reports in the previous round. For example, N(i) should see its ID on the

list L in a new round. Otherwise, it implies that somebody behind N(i) removed the

event report from N(i). If N(i) does not see its ID on L, it drops the PT and sends

an ACK with a piggyback error (PE) message. When the BS receives a PE message,

the BS may ask the nodes on the EGC if they have such an error, by using ODSBR.

Based on the investigation result, we can find at least one compromised node out of

the highest-indexed node among those who have such an error and its next-hop node.

We omit the proof since it can be shown easily.

4.3.2 Overhead Analysis

We now calculate how much Sem can reduce the overhead from the protocol A2,

in terms of the number of packets required. The main difference in the overhead

comes from the fact that in normal operations, Sem does not need the ACK signed

in an onion manner. For this reason, we calculate the payload size of the ACK and

thus the number of packets that we need for accommodating the payload.

62

Consider the protocol A2, or Sem when an attack is detected. When a node sends

an ACK, it generates its signature. The size of the signature is 22 bytes when we use

TinyECC [39] that is a popular public key cryptography package for sensor platforms.

Since the ACK also includes the sender ID, which is usually 2 bytes, each node needs

at least 24 bytes to send an ACK. This means that when the ACK is conveyed from

N(K) to N(0) through the EGC, the payload size increases by 24 bytes at each node.

However, most of the commercial sensor nodes are IEEE 802.15.4 compliant devices,

where the payload size of a packet should be less than 114 bytes. Therefore, a single

packet can accommodate the ACK signed by up to four different nodes; If 4m nodes

sign on an ACK, where m is an integer, the ACK payload should be fragmented to

m packets at a sender and reassembled at a receiver. Thus, it is easy to see that if

K is a multiple of 4, the total number of packet transmissions for N(0) to receive the

ACK from N(K) via the EGC can be expressed as K(K + 4)/8, i.e., O(K2). On the

other hand, in both the protocol A2 and Sem, the PT can be sent in a single packet

so that for each round, we need O(K) packets for the PT circulation.

Recall that in the protocol A2, the BS has to receive the ACK, whether or not

there happens a malicious activity. Thus, each round needs O(K + K2) packets.

However, Sem does not require the BS to receive the ACK in normal operations.

Hence, the number of packet transmissions in normal mode is O(K). As a result,

Sem can reduce O(K2) packets overhead from the protocol A2 in the normal mode,

which corresponds to significant savings. Although Sem incurs similar overhead to

the protocol A2 when an attack is detected, this cost is likely small compared to

the overall system operation cost because our protocol can identify the compromised

node, which can then be removed, returning the system back to the normal mode.

4.4 Miscellaneous Issues

Wormhole Attacks: If two colluding compromised nodes N(i) and N(j) for any

i, j ∈ I\{0}, j > i+ 1, can talk to each other directly, N(i) can send the PT to N(j).

63

If this is the case, the BS cannot get an event report from a node, say N(k), between

N(i) and N(j). To prevent this, the BS may randomly select a node each round, and

make it send a null event report by notifying the command in the PT. When N(k)

is selected to do so, N(i) has to send the PT to N(i+ 1), but then N(i + 1) can

find the round sequence Q, which is increased by more than 1 from the one that it

has seen. This can be an indication that N(i) is a compromised node. If N(i) still

directly forwards the PT to N(j) in this case, N(j+1) will find that the PT does not

contain the null event report from N(k), which can also be an indication that N(j)

is compromised. By making any node who first finds such an indication to generate

an error event report, we can provide the same security guarantee as in Proposition

4.3.3.

Jamming Attacks: Note that a jamming attack may cause a node to stop

circulating the PT or the ACK. If N(i + 1) is a victim of the jamming attack, N(i)

will generate its own ACK. In this case, the BS thinks that SET (i, i+1) is a suspicious

set, which is wrong. Therefore, when we also consider the possibility of a jamming

attack, we replace SET (i, i + 1) in the Proposition 4.2.1 with the set of the nodes

within the jamming distance from the nodes N(i) and N(i + 1). Then, it is easy to

see that the statement of the proposition is still valid.

Persistent Failures: By choosing a sufficiently large number of retransmissions

in the ARQ mechanism, the packet loss probability due to transient node failures or

link failures can be very small. However, it may not be zero in practice. Thus, we

can still lose the PT or the ACK due to such transient failures, although chances are

rare. This implies that in practice, SET (i, i+ 1) identified by Proposition 4.2.1 may

not include any compromised node. However, in such a case, SET (i, i + 1) can be

regarded as a set of nodes that requires attention to repair. Thus, it is still useful to

identify such a set from the network management point of view.

Formation of the EGCs: There would be many ways to form EGCs. The

following is an example.

64

Fig. 4.8. Nodes placement for experiments.

(Step 1) Let S denote the set of nodes in a network. The BS node creates a topology

map of S, for example, using a link state routing protocol. Initially, all nodes are not

marked.

(Step 2) Suppose that X is the farthest node from the BS among the unmarked nodes

in S. Using Dynamic Source Routing (DSR) protocol, the BS node requests a route

to X. The response from X may include the round-trip path between X and the BS.

This round-trip path forms a EGC. Mark the nodes in the EGC.

(Step 3) Repeat Step 2 until all nodes in S are marked.

As is commonly assumed in the literature, we assume that there is no compromised

node at the beginning, and thus the formation of EGCs can be done with no attack

at the beginning.

4.5 Experiments

We have implemented Sem using TOSSIM [40], a popular sensor network simula-

tor based on TinyOS [41]. Our experiment network consists of 10 nodes, i.e., K = 10,

which forms a single EGC. The locations of the nodes are chosen as shown in Figure

4.8. The link gain between any two nodes is determined by a java tool included in

TinyOS v2.1, called LinkLayerModel [42], which models path loss and log-normal

shadowing. We use a path loss exponent of factor 2.2, and the standard deviation of

65

Fig. 4.9. False-alarm rate according to the number of retransmissions for
the ARQ mechanism.

log-normal shadowing is 3dB. By this model, the average receiving power at one-hop

distance is sufficiently high for correct reception. For digital signature, we assume to

use TinyECC [39] so that it takes about 2 second to generate a signature and about

2.4 seconds to verify a signature in the TOSSIM environment. Including the signature

overhead, the nodes hold the PT or the ACK less than 10 seconds, i.e., B = 10 sec-

onds. From Propositions 4.3.1 and 4.3.2, we choose Tth and Tm as Tth = Ba(0) = 190

seconds and Tm = 2Tth = 380 seconds, respectively. Thus, in this configuration, we

regard tc < 190 seconds as a legitimate case.

Figure 4.9 shows the false-alarm rate as we vary the number of retransmissions.

Here, the false-alarm rate is defined as the inverse of the number of successive rounds

until we lose the PT due to natural causes, for example, due to a bad communication

channel. Since in our experiment, we limit the number of rounds to run as 100, if

we do not lose the PT within 100 rounds, we report the false-alarm rate to be zero.

The result in Figure 4.9 shows that when we do not use the ARQ mechanism (i.e., no

retransmission), the PT can be easily lost due to link failures. Hence, the false-alarm

rate is high. However, when we allow the nodes to retransmit the PT up to three

times on transmission failures, nearly all false-alarms are eliminated. Therefore, we

conclude that at most three retransmissions would be a reasonable choice for the

ARQ mechanism in our configuration.

66

Fig. 4.10. Detection rate according to the delay introduced by a compro-
mised node.

In Figure 4.10, we show the detection rate according to the amount of the delay

incurred by a compromised node. For the experiment, we select three different posi-

tions for the compromised node (N(1), N(5), and N(9)). As we mentioned earlier,

the compromised nodes may hold the PT longer than B = 10 seconds without being

detected, since the BS will not complain anything unless the circulation time tc is

larger than the threshold Tth. Figure 4.10 shows such a situation. For example, if a

compromised node holds the PT for 120 seconds, the BS still receives the PT back

within Tth, and thus the compromised node never gets detected. However, when the

delay added by the compromised node is 140 seconds, the circulation time tc may be

larger than the threshold Tth, depending on how long the other nodes hold the PT.

We can see that if the amount of the malicious delay is over 150 seconds, it is always

detected. Here, remember that once the malicious activity is detected, the BS will

not cancel the ACK timers at the sensor nodes, thus gathering an ACK from the

nodes. Although we do not show in this figure, once detected, the compromised node

is always identified in a form of a suspicious set, as we proved. Further, the amount of

malicious delay that the compromised node can introduce without being detected is

always the amount of time that is left over in Tth after the nodes actually spent their

own time to transmit the PT. Thus, if we reduce the value of B, and thus reduce the

value of Tth, then the compromised node must also decrease malicious delay to avoid

67

being detected. On the other hand, we can also see from the figure that the position

of the compromised node does not affect the detection rate.

68

5. PRIVACY PROTECTION AND COST SAVING IN

SMART GRIDS

A smart grid is a type of the electrical grid in which electricity delivery systems are

equipped with computer-based remote control and automation, which can revolution-

ize the way that energy is generated and consumed. A key component of the smart

grid is the use of the smart meters, which measure energy usage at a fine granularity

(e.g., once in a few minutes). However, by gathering hundreds of data points even in

a day via the smart meter, the utility companies and third parties may learn a lot

about our daily lives, e.g., when we wake up, when we go out for work, and when we

come back after work. In an industrial setting, this may be used to reveal details of

the industrial process being used, or when a new process is adopted (which is achiev-

able if the new machinery has electricity usage very distinct from prior machinery).

Because of this privacy concern, there have been lawsuits to stop the installation of

smart meters [43]. As a result, such privacy concerns have delayed the wide and quick

deployment of smart grids.

There are a number of possible threat models for the above privacy risks. Given

that we do need to report our energy usage profile to the utility company, the most

important threat is that the metering data may be unwittingly disclosed from the

utility company to third-party vendors. This problem is well illustrated in an article in

MSNBC RedTape [44]. This article introduces a possible scenario with the smart grid

that you get a discount with your power company at the cost that your auto insurance

company may learn when you are home from the utility company. Additionally, due

to possibly poor implementation of cryptography mechanisms, an eavesdropper on the

wireless channel between the consumer’s premises and the wireless network collection

point may also determine the usage.

69

To resolve this issue, the first objective of this paper is to make it difficult for an

adversary to infer, based on the energy usage profile reported to the utilities, what

is going on inside the house. We achieve this objective by putting a rechargeable

battery at the user-end point (e.g., a home). The rechargeable battery acts like a

buffer between the power grid and the end user in such a way that the actual energy

usage pattern looks different from the energy usage pattern reported to the utility.

Additionally, the rechargeable battery provides us with an opportunity to lower

the energy bill, by exploiting the time-of-use (TOU) pricing feature of smart grid,

whereby electricity price varies according to pre-established time zones during a day.

Basically, the cost-saving will be accomplished by charging the battery when the price

is low and using the saved energy from the battery when the price is high. However,

the two goals of privacy protection and cost saving are not always compatible with

each other. Our goal is therefore to achieve as much energy cost savings as possible,

subject to privacy protection constraints. To the best of our knowledge, we are the

first to propose a mechanism that considers both privacy protection and cost saving

simultaneously.

In this paper, we present Privatus, our solution that guarantees that instan-

taneous values of the actual usage and the energy draw visible outside the home

are independent in an information-theoretic sense. Further, the patterns of both of

these variables are also designed to look dissimilar. We set up a dynamic program-

ming problem that minimizes the energy cost while preserving the privacy guarantee

mentioned above.

We evaluate our solution in terms of both the privacy information leakage and

the cost saving, and compare it to a previous solution that masked high frequency

variation in energy usage [23]. In our simulation environment, Privatus can preserve

at least 83% of the uncertainty of the actual usage sequences. In addition, Privatus

can achieve 72% of the theoretically-possible maximum cost saving with a 6.43kWh

battery. This translates to a saving of $16 per month in a typical residential pricing

plan [45], assuming the average daily usage of 30kWh. We believe that this saving

70

(a) Abstract model to draw and use energy. (b) The battery as a buffer.

Fig. 5.1. System model.

could provide an extra and significant incentive for users to invest in our solution in

addition to privacy protection. The interested reader is referred to Section 5.6 for

further discussion about this incentive.

5.1 System Model

Suppose that the smart meter measures the energy consumption once in every

fixed interval (e.g., 15 minutes), which we call the measurement interval. We denote

by X(n) the amount of energy consumed in the n-th measurement interval. We call

X(n) the use process. Denote the amount of energy that we draw from the power grid

in the n-th measurement interval by Y (n), which we call the draw process. The smart

meter measures Y (n) and reports it to the utility. Without any special technique,

i.e., as it happens today, the draw process Y (n) is the same as the use process X(n).

What we want to achieve in this paper is to de-correlate X(n) and Y (n) so that even

if an adversary can observe Y (n), no information is leaked about the use process

X(n). Toward this end, we put a rechargeable battery at the user-end as shown in

Figure 5.1(a). The rechargeable battery acts as a buffer between X(n) and Y (n):

instead of directly feeding X(n) by Y (n), we charge the battery by Y (n), and use

the saved energy in the battery to supply X(n). We will design an algorithm in the

charging controller, which will choose the value of Y (n) carefully to ensure that the

71

battery always has the appropriate level of energy (i.e., no shortage to feed X(n) or

no overflow), and that X(n) looks independent of Y (n).

We assume that the values ofX(n) and Y (n) may take any of the M different levels

{0, u, 2u, . . . , (M−1)u}, where u represents a unit amount of energy. A given value of

X(n) is assumed to be comsumed at a constant speed during the n-th measurement

interval. A given value of Y (n) is also assumed to be drawn from the power grid at

a constant speed. We denote by B(n) the energy level remaining in the battery at

the end of the n-th measurement interval. Assuming for simplicity that there is no

energy loss when charging and discharging the battery (for extension to the case with

energy loss, see Section 5.6), the value of B(n) can be expressed as

B(n) = B(0) +
n∑

m=1

D(m), (5.1)

where D(m) = Y (m)−X(m) and B(0) is the initial energy level of the battery that

is also a multiple of u. In practice, B(0) is the remaining energy in the battery at

the end of the previous day. Note that D(n) also takes its value as a multiple of u,

which is over the range [−(M − 1)u, (M − 1)u]. We model the battery as a buffer of

size K as illustrated in Figure 5.1(b), which implies that the battery capacity is Ku,

i.e., the range of B(n) is 0 ≤ B(n) ≤ Ku.

The probability distributions of X(n) and Y (n) are described by pX(i;n) and

pY (i;n), respectively, where pX(i;n) = P (X(n) = iu) and pY (i;n) = P (Y (n) = iu).

Define the distribution vectors of X(n) and Y (n) as

PX(n) = [pX(0;n), pX(1;n), . . . , pX(M − 1;n)] (5.2)

and

PY (n) = [pY (0;n), pY (1;n), . . . , pY (M − 1;n)], (5.3)

respectively. We assume that PX(n) is known to the user (i.e., the home owner). We

also assume that X(n) is independent, but does not need to be identically distributed

across the measurement interval index n. This means that for instance, X(5) is

independent of X(11), but PX(5) can be different from PX(11) (if the family leaves

72

home for work/school at 8 a.m., then clearly the usage before 8 a.m. and after 8 a.m.

will be different). As we will see later, PY (n) is our control parameter.

We are interested in the case where the electricity price per unit amount of energy

varies from time to time. More specifically, we first focus on the case where there

exist two time zones within a day, one of which has a low rate RL (dollars/u) and the

other has a high rate RH (dollars/u). The zone with a low rate is called the low-price

zone and the other is called the high-price zone. For ease of exposition, we assume

that the measurement intervals from n = 1 to n = nL fall into the low-price zone, and

the measurement intervals from n = nL + 1 to n = nH correspond to the high-price

zone. We treat the initial point n = 0 as the beginning of a day and the end of the

measurement interval of n = nH as the end of the day. In Section 5.6, we will discuss

how we can generalize the solution to handle the case with more than two price zones

in a day, and the case when the low-price and high-price zones are interleaved.

Because of the page limit, this paper assumes that the total amount of energy

usage per day is the same over days on average. Section 5.6 introduces a way to

release this assumption and generalize our solution.

5.2 Solution Approach I: Basic Formulation

5.2.1 Mapping between X(n) and Y (n)

In order to hide X(n) from an external adversary (i.e., an adversary outside the

home), we make Y (n) be independent of X(n). This implies that observing Y (n)

gives no meaningful information about X(n). This is achieved when we map X(n) to

Y (n) in such a way that pY (i;n) ≡ P (Y (n) = iu) = P (Y (n) = iu|X(n) = ju) for any

possible i and j. Practically, we achieve this by probabilistically choosing the value

of Y (n) according to PY (n), which is decided before the n-th measurement interval

starts, without considering what the value of X(n) will be.

However, selecting Y (n) randomly without being aware of X(n) may cause energy

shortage or overflow in the battery. For example, when B(n− 1) = 0 (i.e., there is

73

(a) B(n− 1) = 0 (b) B(n− 1) = u (c) B(n− 1) = 2u

(d) B(n− 1) = 20u (e) B(n− 1) = 19u (f) B(n− 1) = 18u

Fig. 5.2. An example of the probabilistic symbol mapping between X(n)
and Y (n) in the corner cases when K = 20 and M = 4 ((a)-(c): empty or
near-empty battery; (d)-(f): full or near-full battery). The symbol ’*’ in
PY (n) represents the element that can be non-zero.

no energy remaining in the battery before the n-th measurement interval starts),

if Y (n) is chosen to be zero, we cannot feed any non-zero value of X(n). This

means that sometimes we cannot use the appliances when we want. Similarly, when

B(n − 1) = Ku (i.e., the battery is full), a non-zero value of Y (n) does not make

sense if X(n) = 0, since we cannot draw the energy from the power grid unless we

throw it away.

To handle this issue, we put a restriction on PY (n) when the energy left in the

battery is smaller than (M − 1)u (near-empty) or larger than (K − (M − 1))u (near-

full), which we call the corner cases. More specifically, when B(n − 1) = ju for

j < (M − 1), we choose PY (n) such that pY (i;n) = 0 for i < (M − 1)− j. Similarly,

when B(n− 1) = (K − j)u for j < (M − 1), we choose PY (n) such that pY (i;n) = 0

for i > j. Consider the example in Figure 5.2 where K = 20 and M = 4. The possible

realizations of Y (n) at the near-empty case are: 3u when B(n−1) = 0; 3u or 2u when

B(n − 1) = u; 3u, 2u or u when B(n − 1) = 2u. At the near-full case, the possible

realizations of Y (n) are: 0 when B(n − 1) = 20u; 0 or u when B(n − 1) = 19u; 0,

74

1 L
n

H
n

n

0

ch
arg
e t
o f
ull

low-price zone

1
L
n

high-price zone

discharge

to em
pty

()B n

Ku

Fig. 5.3. Desired battery state profile.

u or 2u when B(n − 1) = 18u. The rationale behind this restriction on PY (n) is

that the battery must always have enough amount of energy to feed X(n) even at

the near-empty case, and that we never charge the battery more than its capacity

whatever X(n) is.

5.2.2 Strategy for charging/discharging the battery

The only way to achieve cost saving by exploiting the time-of-use pricing policy

is to charge the battery in the low-price zone and use the stored energy in the high-

price zone. If we charge iu amount of energy in the low-price zone and use it in the

high price zone, we can save (RH − RL)i (dollars). For this reason, the maximum

possible cost saving is (RH − RL)K (dollars) per day, which is obtained when we

charge the battery from empty to full in the low-price zone and discharge the battery

to zero by feeding X(n) in the high-price zone. Note that the maximum cost saving

is proportional to the battery capacity Ku.

Therefore, our strategy to achieve the saving in the energy bill is to force the

battery state to follow the trend shown in Figure 5.3. We achieve this by changing

PY (n) for every n, which is discussed in detail in the following subsection.

75

5.2.3 Basic approach

We first define the distribution vector space P as follows.

P =

{
[p0, p1, . . . , p(M−1)] :

M−1∑
i=0

pi = 1, 0 ≤ pi ≤ 1

}
, (5.4)

where we limit the value of pi to be a multiple of a constant c (0 < c < 1), in order

to make P be a finite set. For example, when c = 0.1 and M = 4, the distribution

vector space P contains [0.1, 0.2, 0.3, 0.4] and [0.5, 0.5, 0, 0] as two of its elements.

Then, PY (n) is assigned one element in P in the n-th measurement interval. Recall

that we force some elements of PY (n) to be zero, depending on the battery level

(Section 5.2.1). Therefore, the possible choice set in the n-th measurement interval

is dependent on B(n − 1) and we denote it by PB(n−1). Now, the key question for

us is “what would be the best choice for PY (n) ∈ PB(n−1) for each n to maximize the

cost saving?” This question is answered by solving the following stochastic optimal

control problems:

max
PY (n)∈PB(n−1)

0<n≤nL

E (B(nL)|B(0), PY (1), PY (2), . . . , PY (nL)) (5.5)

in the low-price zone, and

min
PY (n)∈PB(n−1)

nL<n≤nH

E (B(nH)|B(nL), PY (nL + 1), PY (nL + 2), . . . , PY (nH)) (5.6)

in the high-price zone. Namely, we maximize (or minimize) the expected amount of

the energy in the battery when each zone ends, given the battery level at the beginning

of the zone and the distribution vectors PY (1) through PY (nL) (or PY (nL+1) through

PY (nH)). We solve these optimization problems using dynamic programming [26].

To see how we use dynamic programming, let us first consider the following sim-

ple example in the low-price zone, where nL = 3. Then, the optimization objec-

tive is to maximize E (B(3)|B(0), PY (1), PY (2), PY (3)), which is equal to B(0) +

76

Fig. 5.4. An example to derive the dynamic programming framework.

E
(∑3

n=1D(n)|B(0), PY (1), PY (2), PY (3)
)
, where D(n) = Y (n)−X(n) as introduced

earlier. Since B(0) is given, we only need to focus on maximizing

E

(
3∑

n=1

D(n)|B(0), PY (1), PY (2), PY (3)

)
, (5.7)

which can be re-written as shown in Figure 5.4. Note in the figure that the calculations

can be done recursively. Stage 2 calculations are based on stage 3, stage 1 only on

stage 2. Thus, the optimal solution can be performed by maximizing the stage 3,

stage 2, and stage 1 in this order. In this manner, we first compute the optimal value

of PY (3) given B(2), then we compute the optimal value of PY (2) given B(1) until

we reach and compute the optimal value of PY (1). In the general case, PY (nL) is

computed first and then other PY (n)’s are computed in a backward direction (time-

wise) till PY (1) is computed.

Namely, the optimal solution for (5.5) is obtained by a backward-directional com-

putation procedure. In general, this procedure can be described by the following

recursive equation, called the Bellman equation:

J(nL + 1, B(nL)) = 0,

J(n,B(n− 1)) = max
PY (n)∈PB(n−1)

E (D(n) + J(n+ 1, B(n))|B(n− 1), PY (n)) , (5.8)

77

for n = nL, (nL−1), . . . , 1. Note that J(n,B(n−1)) in (5.8) represents the maximum

possible value of E(
∑nL

m=nD(m)) when B(n − 1) is given and the optimal decision

is made at time n, (n + 1), . . . , nL. In (5.8), the expectation is with respect to the

conditional distribution of D(n) given B(n−1) and PY (n), and thus it can be written

as

E (D(n) + J(n+ 1, B(n))|B(n− 1), PY (n))

=
∑

−(M−1)≤j≤(M−1),
0≤i+j≤K

pi,(i+j)(n) (j + J(n+ 1, (i+ j)u)) (5.9)

with i = B(n − 1)/u. Here, pi,(i+j)(n) denotes the probability of transition from

B(n − 1) = iu to B(n) = (i + j)u, resulting from D(n) = ju. Take M = 4 as an

example. The transition from B(n−1) = u to B(n) = 3u can happen if X(n) = 0 and

Y (n) = 2u, or X(n) = u and Y (n) = 3u. Thus, it is easy to see that the transition

probability pi,(i+j)(n) is in general given as follows: for j = 0,

pi,(i+j)(n) =
M−1∑
m=0

pX(m;n)pY (m;n), (5.10)

for j > 0 such that j ≤ (M − 1) and i+ j ≤ K,

pi,(i+j)(n) =

M−1−j∑
m=0

pX(m;n)pY (m+ j;n), (5.11)

and for j < 0 such that j ≥ −(M − 1) and i+ j ≥ 0,

pi,(i+j)(n) =

M−1−j∑
m=0

pX(m+ j;n)pY (m;n), (5.12)

and pi,(i+j)(n) = 0, otherwise. Solving (5.8) results in the optimal decision for PY (n)

when the value of B(n−1) is given, in the sense that PY (n) will maximize E(B(nL)).

The optimal solution for (5.6) can also be obtained in a similar way.

In summary, what we have done is to calculate a decision table. Each entry in

the decision table maps the given values of n and B(n − 1) to the optimal vector

PY (n) at the state. Note that the decision table can be pre-calculated before the run-

time. During the run-time, we just look up the decision table for a given state, i.e.,

78

n and B(n − 1), and probabilistically choose the value of Y (n) via the distribution

specified by the decision table entry. The size of this table can be large in practice

if K and nH are large. Thus, calculating the decision table can be computationally

expensive. However, note that the table can be reused from one day to another till

the distribution of the use process X(n) changes significantly. Section 5.6 provides

discussion about the table complexity.

5.2.4 Simulation study for the basic approach

We now present simulation results for our basic solution approach. By this simu-

lation study, we will identify the issues with the basic approach, which will motivate

us to improve our solution in Section 5.3.1 and propose Privatus.

In the simulation, we choose M = 4, K = 20, and c = 0.1. We fix each measure-

ment interval to be 15 minutes and thus we have 96 measurement intervals a day.

Thus, the value of nH becomes nH = 96 and we set nL = 32. In order to see more

clearly what Y (n) looks like compared to X(n), we make X(n) as a known repeated

pattern, instead of generating it randomly (Figure 5.5).

A sample result of the simulation is shown in Figure 5.5, where “PY (n) (index)”

in the bottom graph means the index number of the element in P selected as PY (n).

We can see that at each measurement interval, the values of X(n) and Y (n) are

mapped to each other in a random fashion. Further, the battery level indeed moves

according to the trend that it is charged to the full level in the low-price zone and

fully discharged in the high-price zone. However, we also observe that there exist

similar patterns for the sequences of X(n) and Y (n) for the measurement intervals of

16 ≤ n ≤ 32 and 70 ≤ n ≤ 96. More precisely, we see that the value of X(n) highly

likely reappears as the value of Y (n+1) when the battery is at the corner cases. This

is an undesirable behavior because if the adversary learns this characteristic, he or

she may infer the original values of X(n) with high accuracy by observing the values

79

Fig. 5.5. Simulation results for the basic approach.

of Y (n+ 1). Through this, we realize that our point-by-point de-correlation between

X(n) and Y (n) leaves an obvious vulnerability in practice.

After more careful study, we find that this issue occurs because of two reasons:

(R1) The first reason is that we charge/discharge the battery too fast. In the low-

price zone, the battery reaches the full state much earlier than the end of the zone.

Once at the full state, the battery stays close to the near-full states, since there is no

benefit to bring the energy level down to a lower one according to our optimization

objective in (5.5). The near-constant energy level of the battery implies that whatever

the value of X(n) is, the draw process Y (n) should somehow compensate for it. Since

the value of Y (n) is chosen before the value of X(n), we see this compensation effect

in Y (n+ 1). Similar logic applies to the high-price zone; (R2) The second reason is

that we have too much freedom when choosing PY (n). As a result, the draw process

can take a specific symbol with a very high probability to compensate the use process.

For example, if X(n) = 3u and the draw process needs to compensate it (due to the

first reason), the basic approach will likely choose PY (n+1) = [0, 0, 0, 1]. This implies

that we will charge with the current value of 3u with probability 1 at the (n+ 1)-th

80

()B n

Ku

0
1n +

L
n H

n

n

0
0L

n n−
0

2
L

n n+ +
0H

n n−

H
T

L
T

path 1 (desired)

path 2 (non-desirable)

penalty
area

Fig. 5.6. Penalty areas.

measurement interval. In other words, due to the high degree of freedom to choose

PY (n), Y (n) is chosen to be very similar to X(n− 1) in the corner cases.

In the next section, we will propose Privatus that suppresses these undesirable

effects (R1) and (R2).

5.3 Solution Approach II: Advanced Formulation

5.3.1 Advanced approach: Privatus

In order to fix (R1), we introduce penalty areas for when the battery level gets

too close to empty or too close to full as shown in Figure 5.6. The penalty areas

correspond to the battery states higher than the upper threshold TH or lower than

the lower threshold TL. In each zone (low-priced or high-priced), the penalty areas

begin after n0 measurement intervals, and end n0 measurement intervals before the

end of the zone. We modify our optimization objective in such a way that we incur

some penalty, whenever the battery state B(n) falls into the penalty areas. Hence,

the optimal decision for PY (n) would be changed to the one that still charges or

discharges the battery according to the trend in Figure 5.3, but does not hit the

penalty areas in the middle of the zones. In this sense, the modified optimization

objective would result in “path 1”-like battery profile rather than “path 2”-like one

81

in Figure 5.6. The “path 2”-like battery profile is what we have seen in the basic

approach.

We consider the effective battery state Be(n) in the optimization objective func-

tion, instead of the actual battery state B(n). The effective battery state Be(n)

is designed to increase as the actual battery state B(n) increases in the low-price

zone (or B(n) decreases in the high-price zone). However, every time B(n) goes

into a penalty area, Be(n) is deducted by some penalty amount. Denote by [x]+

the projection of x to non-negative values, i.e., [x]+ = x if x > 0, and [x]+ = 0

if x ≤ 0. Then, the effective battery state Be(n) in the low-price zone is defined

as Be(n) = Be(0) +
∑n

m=1De(m). Here, Be(0) = αB(0) and De(m) is given as, if

m ≤ n0 or m > nL − n0 (i.e., in near-beginning or near-end of the low-price zone),

De(m) = αD(m), and if m > n0 and m ≤ nL − n0,

De(m) = αD(m)− β
(
[B(m)− TH]+ + [TL −B(m)]+

)
, (5.13)

where α and β are positive integers, TL = (M − 1)u, and TH = (K − (M − 1))u. In

the high-price zone, we define Be(n) as Be(n) = Be(nL) +
∑n

m=nL+1 De(m), where

Be(nL) = α(Ku − B(nL)), and further, if m ≤ nL + n0 or m > nH − n0, De(m) =

−αD(m), and if m > nL + n0 and m ≤ nH − n0,

De(m) = −αD(m)− β
(
[B(m)− TH]+ + [TL −B(m)]+

)
. (5.14)

Note that if we ignore the second terms in (5.13) and (5.14), we simply have

Be(n) = αB(n) in the low-price zone, and Be(n) = α(Ku−B(n)) in the high-price

zone. That is, Be(n) increases from zero to the maximum αKu in both zones as B(n)

moves like in Figure 5.3. Thus, our optimization objective for achieving the maximal

cost saving is to maximize E(Be(nL)) in the low-price zone and E(Be(nH)) in the

high-price zone, given initial conditions. On the other hands, the terms leading by β

in (5.13) and (5.14) take into account the penalty. Whenever D(n) causes B(n) to fall

into a penalty area, we subtract β[B(n)− TH]+ or β[TL −B(n)]+ from Be(n). Hence,

we will expect that in the optimal decision for PY (n), B(n) would avoid hitting the

82

penalty area, or B(n) would attempt to get out of a penalty area if B(n − 1) was

already in the penalty area. The relative magnitudes of α and β determines how

sensitive we are to the penalty. If β is very large compared to α, B(n) may not even

go close to the penalty area to avoid any chance of incurring a high penalty score.

On the other hand, to address (R2), we adopt two strategies. First, we put the

restriction on PB(n−1) that it only contains the vectors v ∈ P such that ‖v−Vk‖ < Tk.

Here, Tk is a threshold at B(n − 1) = ku, and Vk is the distribution vector of Y (n)

for which the possible values of Y (n) at B(n − 1) = ku are selected equi-probably.

For instance, when M = 4 and K = 10, we have V5 = [0.25, 0.25, 0.25, 0.25] when

B(n − 1) = 5u, and V1 = [0.5, 0.5, 0, 0] when B(n − 1) = u. With this strategy, we

are forcing the different elements of PY (n) to be more or less equal, thus eliminating

the possibility that Y (n) is chosen deterministically (or with a high probability). By

controlling the threshold Tk, we can control how close to equal probability we want. If

Tk is low, then the choices are close to equally probable, but we also lose controllability

in forcing B(n) to the desired state according to the trend in Figure 5.3.

Second, we add one more restriction on PY (n) in non-corner cases (i.e., battery

neither empty nor full) such that it does not differ significantly from PY (n − 1). If

the two differ significantly, then Y (n) may try compensating for the use value in the

previous measurement interval and will hence track X(n−1). Therefore, our strategy

is that ‖PY (n) − PY (n − 1)‖ < TD, where TD is called the distance threshold. We

enforce this restriction to be applied only when the actual battery state stays in non-

corner cases for two consecutive measurement intervals, i.e., TL ≤ B(n − 2) ≤ TH

and TL ≤ B(n − 1) ≤ TH . Our intention behind this is to quickly get out of the

corner cases (which hits the penalty areas). In the extreme case, with this strategy,

PY (n− 1) = PY (n) implying that Y (n) is independent of X(n− 1).

83

Reflecting all the changes, the optimal choice for PY (n) in the low-price zone is

obtained by solving the following Bellman equation.

J(S(nL + 1)) = 0,

J(S(n)) = max
PY (n)∈P∗

B(n−1)

E (De(n) + J(S(n+ 1))|S(n)), (5.15)

for n = nL, (nL − 1), . . . , 1. Here, S(n) represents the state vector defined as S(n) =

[n,B(n− 1), Be(n− 1), PY (n− 1)]. P∗B(n−1) is defined as a subset of P whose element

v is such that the two restrictions described above are satisfied, i.e., v ∈ PB(n−1), and

if TL ≤ B(n−2) ≤ TH and TL ≤ B(n−1) ≤ TH , ‖v−PY (n−1)‖ < TD. The optimal

choice for PY (n) in the high-price zone can also be decided in a similar way.

5.3.2 Simulation study for Privatus

Now, we conduct a simulation test for Privatus. In order to see the difference

from the basic approach, we use the same simulation environment as in Section 5.2.4.

We choose Tk = 0.3 for k = 3, 4, . . . , 17; Tk = 0.25 for k = 2, 18; Tk = 0.2 for

k = 1, 19; Tk = 0.1 for k = 0, 20. With these threshold values, Pk only contains

[0, 0, 0.4, 0.6], [0, 0, 0.5, 0.5], and [0, 0, 0.6, 0.4] for k = 1, 19, for instance. For the

remaining parameters, we set α = 2, β = 1, n0 = 3, and TD = 0.2.

Figure 5.7 shows a sample result for the simulation, where the solid red lines

in the “B(n)/u” graph indicate the energy levels corresponding to the penalty area

thresholds TH and TL. First, we can see that B(n) follows the trend in Figure 5.3,

and it seldom hits the penalty area as we desired. Although B(n) enters the penalty

area at around n = 39, 76, 92, we can also see that B(n) tries to get out of penalty

area quickly. As a result, the battery neither goes to the full-state too quickly in

the low-price zone, nor goes to the empty-state too quickly in the high-price zone.

Second, in the “PY (n)(index)” graph, we observe that for many times, the decision

for PY (n) remains the same, or the speed of changing a decision becomes much slower

(compared to the result in Figure 5.5). By these two fixes, we see that the correlation

between the use process and the draw process is significantly reduced. We can no

84

Fig. 5.7. Simulation results for Privatus.

longer find similar patterns between the two. The point-by-point comparison of X(n)

and Y (n) still gives no meaningful clue from Y (n) to X(n), as this is by design that

is maintained in the basic approach and Privatus. Of course, this might be seen

as a subjective interpretation of the result. Thus, in the experiment section, we will

consider a metric to quantitatively measure how well we are protecting the privacy

and re-visit these results.

5.4 Per-day Energy Usage Flattening

5.4.1 Total energy usage different across days

So far, we have seen that Privatus hides the energy consumption pattern within

a day. However, the average total usage per day, i.e., E(
∑nH

n=1X(n)) may be different

across days, and this information can still be revealed to the adversary (by which the

adversary may know whether you are home or not for a given day). Thus, if there is

a significant difference in the average total usage between days, Privatus hides this

information by flattening the energy use across days on the average.

85

1
day d

2 3 4 5 6 7

: the average amount

of energy use per day

20kWh

30kWh

()U d

()

: the average of

 across daysU d

a
U

Fig. 5.8. Example of average daily usage across days (P = 7). In order to
flatten the the daily consumption, the days 1,2, and 4 need to use more
energy by the amount indicated by the red arrow, and the days 3,5,6, and
7 are required to lessen the consumption by the amount indicated by the
blue arrow.

5.4.2 Solution summary

We assume that the average energy consumption per day varies in a cycle of P

days. For example, P = 7 implies that a regular pattern of living is repeated every

week. We denote by day d the d-th day of the period, and define the index set for the

days as Id = {1, 2, . . . , P}. Define U(d) as the average amount of energy consumption

for day d. Namely, U(d) is E(
∑nH

n=1X(n)) for day d. The average of U(d) across days

is denoted by Ua, which is expressed as follows:

Ua =
1

P

∑
d∈Id

U(d). (5.16)

We categorize the days into two types, depending on whether U(d) < Ua. Type 1

day is the day with U(d) < Ua. Type 2 day is the day with U(d) ≥ Ua. The index

sets of type 1 days and type 2 days are denoted by I1
d = {d ∈ Id : U(d) < Ua} and

I2
d = {d ∈ Id : U(d) ≥ Ua}, respectively. Figure 5.16 shows an example of average

energy consumption with the period of a week, where the days 1, 2, and 4 are of type

1, and the days 3, 5, 6, and 7 are of type 2. In this example, to achieve the flat use

Ua across days, the type 1 days need to use more energy by the red-arrow amount,

and the type 2 days need to use less energy by the blue-arrow amount.

86

Then, the question is how we can change U(d) to Ua. In type 1 days, Privatus

consumes more energy than U(d) by charging more energy in the low-price zone than

used in the high-price zone, and by keeping the unused energy in the battery. This

kept energy is used up in type 2 days to bring U(d) down to Ua. Specifically, in type

2 days, Privatus charges less energy than used in the high-price zone: the gap is

supplied by the energy kept in type 1 days.

5.4.3 Virtual battery state

In order to flatten the energy usage across days, we apply the virtual battery state

Bv(n) to (5.15) in the place of the actual battery state B(n). The virtual battery

state Bv(n) is defined as follows:

Bv(n) = B(n)− Ek, (5.17)

where Ek denotes the amount of energy that is kept for future use. Namely, the

virtual battery state is the battery state that is adjusted to be lower by the amount

of the kept energy. The value of Ek increases whenever we keep some amount of

energy in type 1 days, and decreases whenever we use the kept energy in type 2 days.

We use a decision table that is obtained in (5.15) when the actual battery capacity

is Kvu, and just replace B(n) in (5.15) with Bv(n). This implies 0 ≤ Bv(n) ≤ Kvu.

We call the maximum virtual battery state the virtual battery capacity. That is, the

virtual battery capacity is Kvu. We will see later that the actual battery capacity

Ku required for flattening may be larger than the virtual battery capacity Kvu.

Figure 5.9 illustrates how Privatus keeps energy in type 1 days and uses the

kept energy in type 2 days, and how the virtual battery state changes accordingly.

To keep Uk amount of energy in a day of type 1, we update Ek as Ek ← (Ek + Uk)

before the (nL + 1)-th measurement interval starts, i.e., before the high-price zone

begins (see Figure 5.9(a)). This results in the sudden drop in Bv(n) in the boundary

between the low-price and high-price zones. Effectively, this causes the Uk amount

out of what is charged in the low-price zone to be kept for future use, and only the

87

L
n

H
n

n

0

low-price

zone

1
L
n

high-price

zone

()
v

B n

v
K u

k
U

1

set

to keep amount

k k k

k

E E U

U

← +

(a) To keep energy in type 1 days.

L
n

H
n

n

0

low-price

zone

1
L
n

high-price

zone

()
v

B n

v
K u

x
U

1

set

to use amount

from the kept energy

k k x

x

E E U

U

← −

(b) To use the kept energy in type 2 days.

Fig. 5.9. The methods to keep energy and use the kept energy.

rest of the charged energy is used in the high-price zone. On the other hand, to

use Ux amount of energy from the kept energy in a day of type 2, we update Ek as

Ek ← (Ek−Ux) before the first measurement interval starts, i.e., before the beginning

of the low-price zone of the day (see Figure 5.9(b)). This change in Ek leads to the

sudden jump in Bv(n) in the boundary between days. Since the battery looks already

charged by Ux amount, we can only charge up to (Ku−Ux) amount in the low-price

zone. Thus, we can reduce the energy consumption by Ux amount in a day of type

2. Note that this approach does not affect Privatus’s privacy protection mechanism

within a day, because what we do is only to modify the initial value of the battery

state at the beginning of the price zones. It only changes the amount of energy that

is used or charged per day.

5.4.4 Battery capacity

To see that the actual capacity Ku may be larger than the virtual battery capacity

Kvu, consider two consecutive days of type 1 in Figure 5.10(a). In day 1, we keep

Uk amount of energy. Thus, when day 2 begins, the actual battery already contains

Uk amount of energy as shown in Figure 5.10(b), although the virtual battery state

starts from zero. In the low-price zone of day 2, up to Kvu amount of energy can be

88

L
n H

n0 1
L
n

()
v

B n

v
K u

k
U

1 L
n

H
n

n

1
L
n

k
U

1

Day 1 Day 2

(a) Two consecutive days of type 1.

L
n

H
n0

Day 1

1
L
n

()B n

k
U

Day 2

L
n

H
n1n1 1

v k
K u U+

k
U

0

(b) Actual battery profile according to (a).

Fig. 5.10. Virtual battery state and corresponding actual battery state.

charged, which results in the actual battery state that reaches Kvu + Uk. Thus, in

this example, we need Kvu+Uk capacity for the actual battery. In general, when we

have m days of type 1 in a period, the actual battery capacity that we need is at most

Ku = Kvu + (m − 1)Umax
k , where Umax

k is the maximum amount of energy that we

keep for a day. Note that although the actual battery capacity is Kvu+(m−1)Umax
k ,

we pretend to have a battery of capacity Kvu (i.e., the virtual battery capacity) in

each day. The extra capacity over the virtual capacity Kvu is solely for keeping energy

for future use.

5.4.5 Per-day usage flattening algorithm

89

Algorithm 1 Energy Usage Flattening Across Days

1: for d = 1 to P do

2: if d ∈ I1
d then

3: KL = Kv − (Ua − U(d))/u

4: Uk = max{(B(nL)−KLu), 0}

5: set Ek ← (Ek + Uk) before the (n+ 1)-th measurement interval starts

6: else

7: Ux = min{(U(d)− Ua), Ek}

8: set Ek ← (Ek − Ux) before the first measurement interval starts

9: end if

10: end for

90

1 32 1 32 1 32 1 32 1 32 1 32 1 32
0
1
2
3

X
(n

)/
u

1 32 1 32 1 32 1 32 1 32 1 32 1 32
0
1
2
3

Y
(n

)/
u

1 32 1 32 1 32 1 32 1 32 1 32 1 32
0

10

20

30
B

v(n
)/

u

1 32 1 32 1 32 1 32 1 32 1 32 1 32
0

10

20

30

40

50

B
(n

)/
u

measurement interval (n)

use process

draw process

actual

battery state

virtual

battery state

day 1 day 2 day 3 day 4 day 5 day 6 day 7

type 1

Fig. 5.11. Simulation results for Privatus’s per-day usage flattening.

The resulting algorithm for flattening the total usage per day is given in Algorithm

1. The initial value of Ek at the beginning of a cycle is the final value of Ek in the

previous cycle. Note that in type 1 days, we may keep smaller amount of energy than

(Ua−U(d)). We first calculate the battery level KLu that is (Ua−U(d)) smaller than

Ku. Then, we only keep the energy beyond KLu for future use (line 4). Similarly, in

type 2 days, the amount of energy that we take from the kept energy may be smaller

than (U(d)− Ua) if the kept energy Ek is not enough (line 7).

5.4.6 Simulation study for per-day usage flattening

Figure 5.11 shows a simulation run for Privatus’s per-day usage flattening. In

this simulation, we choose P = 7, α = 1, β = 1, and K = 30. The other parameters

are the same as in Section 5.3.2. Type 1 days consist of days 1, 2, and 4, where we

randomly generate X(n) through PX(n) = [0.6, 0.2, 0.2, 0.0] in the low- price zone

91

1 2 3 4 5 6 7
90

100

110

120

130

140

day (d)

av
e.

 u
sa

ge
 p

er
 d

ay
(u

ni
t=

u)

before
after

Fig. 5.12. Per-day average usage changes. In the figure, ‘before’ represents
the per-day average use before flattening (i.e., U(d)), and ‘after’ means
the per-day average use after flattening.

and PX(n) = [0.2, 0.4, 0.4, 0.0] in the high-price zone. With this distribution, the

average usage in a day of type 1 is 96u. In type 2 days, we also generate X(n)

randomly, but PX(n) is changed to PX(n) = [0.5, 0.2, 0.2, 0.1] in the low-price zone

and PX(n) = [0.1, 0.3, 0.4, 0.2] in the high-price zone, respectively. This distribution

causes the average usage per day to be 137u in a day of type 2. Thus, we have

Ua = 120u.

We can see from the figure that there is a clear difference in the use process X(n)

between type 1 and type 2 days. However, in the draw process Y (n), it is hard to say

if there is any difference across days. As explained in Section 5.4.3, the virtual battery

state has a sudden drop before the start of the (nL + 1)-th measurement intervals in

a day of type 1, to keep at most 24u (=120u-96u) of energy. In a day of type 2,

the virtual battery state has a sudden jump before the start of the first measurement

interval, to use at most 17u (=137u-120u) of energy from the kept energy.

Figure 5.12 shows how the average usage changes with Privatus. We can see the

per-day average usage stays around 120u across days after flattening. In Section 5.5,

92

we will see in more detail the influences of the per-day usage flattening on privacy

protection.

5.4.7 Effects on cost saving

In Section 5.2.2, we have discussed that the maximum possible saving for a day is

determined by the amount of energy that is charged in the low-price zone and then

used in the high-price zone. Denote this amount of energy by Us. Without the per-

day usage flattening, we know that Us is equal to the actual battery capacity across

days, i.e., Us = Ku for every day.

However, when the per-day usage flattening is applied, Us becomes smaller than

Ku, and varies according to the type of a day. Specifically, in a type 1 day, we charge

Kvu amount of energy in the low-price zone, but use only Kvu−Uk amount of energy

in the high-price zone. Thus, in a type 1 day, we have Us = Kvu− Uk. On the other

hand, in a type 2 day, although we charge Kvu − Ux amount of energy in the low-

price zone, we use Kvu amount of energy, because the Ux amount of energy shortage

is supplemented from the kept energy in type 1 days. The Ux amount of energy is

the one that is charged in the low-price zone in days of type 1. Thus, we can say that

Us = Kvu in a type 2 day. When there arem days of type 1 out of P days of the period,

the per-day average of Us is 1
P

(m(Kvu− Umax
k) + (P −m)Kvu) = Kvu − m

P
Umax
k ,

assuming Uk = Umax
k for each day of type 1.

Therefore, we have that the worst-case average for the maximum possible cost

saving per day is (RH − RL)(Kvu − m
P
Umax
k)/u. Recall that without the per-day

usage flattening, the maximum possible cost saving per day is (RH−RL)(Kvu+(m−

1)Umax
k)/u. When we define the ratio rs of the maximum possible cost savings with

and without the per-day usage flattening as

rs =
Kvu− m

P
Umax
k

Kvu+ (m− 1)Umax
k

, (5.18)

we can see rs ≤ 1. This means that with the per-day usage flattening, we have a loss

in terms of the cost saving. Figure 5.13 shows how much the loss is depending on

93

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

U
k
max/K

v
r s

m=1
m=3
m=6

Fig. 5.13. Cost saving reduction due to the per-day usage flattening when

P = 7. The ratio rs is defined as rs =
Kvu−m

P
Umax
k

Kvu+(m−1)Umax
k

, which implies the

ratio of the maximum possible cost savings with and without the per-day
usage flattening.

conditions. First, we can see that as m increases with a fixed value of Umax
k , the cost

saving reduction also increases. This is because we keep more amount of energy in

type 1 days for future use, by which we loss the chance to achieve the cost saving.

For a similar reason, the increment in Umax
k with a fixed value of m also results in

the decrement in the cost saving. Note that when Ua remains constant, m and Umax
k

are inversely proportional to each other: the increment in m means the decrement in

Umax
k , and vice versa.

5.5 Experiment

5.5.1 Metrics and simulation parameters

First, we define the metric of information leakage from the use process to the draw

process as follows: for a positive integer m,

Ls
(n,m) = I(X̄(n,m); Ȳ

s
(n,m))/H(X̄(n,m)), (5.19)

94

where

X̄(n,m)=[X(n−m+1),X(n−m),...,X(n)], (5.20)

Ȳ s
(n,m)

=[Y (n−m+1+s),Y (n−m+s),...,Y (n+s)], (5.21)

and s is a non-negative integer called the timeshift offset. Here, H(X) denotes the

uncertainty of X , and I(X ;Y) is the mutual information between X and Y . Namely,

H(X) = −
∑

i P (X = i) logP (X = i) and

I(X ;Y)=
∑

i

∑
j P (X=i,Y=j) log

P (X=i,Y=j)
P (X=i)P (Y=j)

(5.22)

Note that X̄(n,m) and Ȳ s
(n,m) represent sequences of length m in the use process and the

draw process, respectively, with the draw process being time delayed by s measure-

ment intervals. Since I(X̄(n,m); Ȳ
s

(n,m)) = H(X̄(n,m)) − H(X̄(n,m))|Ȳ s
(n,m)), the metric

Ls
(n,m) can be interpreted as a measure of the uncertainty reduction in X̄(n,m) by ob-

serving Ȳ s
(n,m), normalized to the uncertainty of X̄(n,m). Thus, by this metric, we

can quantify how uncertain the adversary is when he attempts to guess the sequence

X̄(n,m) of the use process, based on the observed sequence Ȳ s
(n,m) of the draw process.

For example, the adversary knows that X̄(n,m) is surely the same as Ȳ s
(n,m), when

Ls
(n,m) = 1. In contrast, Ls

(n,m) = 0 means that Ȳ s
(n,m) gives no clue about X̄(n,m) at

all.

Second, given that the battery capacity is Ku, we define the metric for the cost

saving for a day as

S(r,K) = E

(
−

nL∑
m=1

rRHD(m)−
nH∑

m=nL+1

RHD(m)

)
, (5.23)

where r denotes the ratio of RL to RH . The term S(r,K) is the expected difference

between the original cost for what the user actually consumes,

nL∑
m=1

rRHX(m) +

nH∑
m=nL+1

RHX(m), (5.24)

95

0 20 40 60 80
0

0.5

1

measurement interval (n)
L (n

,1
)

s

s=0
s=1
s=2
s=10

(a) Basic approach.

0 20 40 60 80
0

0.05

0.1

measurement interval (n)

L (n
,1

)
s

s=0
s=1
s=2
s=10

(b) Privatus (α = 2; β = 1).

Fig. 5.14. Information leakage when K = 20 and m = 1.

and the money that a user pays to the utility company,

nL∑
m=1

rRHY (m) +

nH∑
m=nL+1

RHY (m). (5.25)

A positive value of S(r,K) means that we achieve cost saving. If S(r,K) is negative,

it means that we have to pay more compared to the baseline no-privacy-protection

scheme.

To be consistent with the previous simulations (in Figures 5.5 and 5.7), we use

the same parameters as before (i.e., M = 4; K = 20; nL = 32; nH = 96; α = 2;

β = 1; n0 = 3; c = 0.1) throughout the whole experiments, unless otherwise stated.

However, we randomly generate X(n) through PX(n) = [0.5, 0.2, 0.2, 0.1] in the low-

price zone and PX(n) = [0.1, 0.3, 0.4, 0.2] in the high-price zone. This setting results

in about 137u for the expected daily usage E(
∑nH

n=1 X(n)). To get the results, we

run 100,000 days in such a way that the remaining energy in the battery at the end

of a day becomes the initial energy level of the battery in the next day.

5.5.2 Information leakage and cost saving

General performance trend: Figure 5.14 shows the general performance trend

of our solution approaches (for m = 1). We can see that when s = 0, X(n) and

Y (n) are indeed independent in both the basic approach and Privatus. We can

96

0 20 40 60 80
0

0.05

0.1

0.15

measurement interval (n)
L (n

,m
)

1

m=1
m=2
m=3
m=4

(a) Information leakage ac-

cording to m (s = 1; K =

20).

0 20 40 60 80
0

5

10

measurement interval (n)

m=1
m=2
m=3
m=4

(b) Uncertainty of X̄(n,m)

(K = 20).

0 20 40 60 80
0

0.05

0.1

0.15

measurement interval (n)

L (n
,2

)
1

K=10

K=20

K=30

(c) Information leakage ac-

cording to K.

Fig. 5.15. Effects of sequence length m and capacity K in Privatus
(α = 2; β = 1).

also see that information leakage is the highest when s = 1, i.e., X(n) and Y (n+ 1)

has the highest dependency in our solution approaches. This is due to our solution’s

inherent nature that Y (n) is chosen to change the current battery state resulting from

X(n − 1) and the previous battery state. Figure 5.14(a) confirms again that in the

basic approach, this issue can be quite significant because Y (n) perfectly compensates

X(n−1) and reveals all information about X(n−1) (i.e., L1
(n,1) = 1) when the battery

is in the corner cases. However, we see in Figure 5.14(b) that this compensation effect

is greatly reduced. That is, in Privatus, Y (n) results in mostly near-zero uncertainty

reduction about X(n − 1). In even the worst case (for some measurement intervals,

with delay of 1 measurement interval), the uncertainty reduction is less than 10%. We

see that the worst-case information leakage in the advanced approach occurs around

the price zone boundaries. We suspect that this is because around the price zone

boundaries, there is no penalty defined and thus the battery state has a relatively

higher chance to remain costant, which again makes it more likely that Y (n) tries to

compensate for X(n− 1). On the other hand, we can see from the case when s = 10

that, with higher delays (i.e., larger values of s), the sequences of the use process and

the draw process become independent.

97

Effect of sequence length: In Figure 5.15(a), we see that in Privatus, the

information leakage increases as the sequence length m increases. This seems to im-

ply that the adversary gains more information when he observes longer sequences.

However, note from Figure 5.15(b) that the uncertainty of the use-process sequence

H(X̄(n,m)) also grows as m increases. In Figure 5.15(b), x-bit uncertainty can be un-

derstood in such a way that approximately the use-process sequence has 2x possible

realizations with equal probability 1/2x. Since M = 4, the uncertainty of the use-

process sequence becomes larger by a factor close to log2 4 (more precisely, log2 21.7 in

our simulation setting) as m increases by 1. Thus, the minor increment in percentage-

wise uncertainty reduction does not make it easier for the adversary to make guesses

about the use-process sequence. For example, when m = 3 and n = 32, the un-

certainty of the use-process sequence is 5.3 bits and uncertainty reduction is 11%.

This implies that the remaining uncertainty of the use-process sequence after observ-

ing the draw-process sequence is 5.3(1 − 0.11) = 4.72 bits, i.e., the adversary faces

the uncertainty to pick one out of 25.3(1−0.11) = 26.3 possible sequences, in order to

make a guess about the use-process sequence. On the other hand, when m = 4 and

n = 32, the uncertainty is 7.0 bits and the uncertainty reduction is 17%. This results

in 27.0(1−0.17) = 56.1 possible sequences as candidates for the use-process sequence.

Therefore, we conclude that the adversary has no advantage in observing a longer

sequence in the draw process.

Effects of battery capacity: Figure 5.15(c) shows how Privatus acts when the

battery capacity varies. We can infer from the figure that when the battery capacity

is too small, information leakage may be significant. This can be explained again by

the compensation effect of our solution. If the battery capacity is too small, there

is not much room for the battery state to fluctuate between the two penalty area

thresholds TL and TH (see Figure 5.7). This means that the battery state remains

relatively constant, which makes the compensation effect prominent. On the other

hand, once the battery capacity is above a threshold, further increasing the battery

capacity leads to little benefit in terms of further reducing the information leakage.

98

(3,1)(2,1)(1,1)(1,2)(1,3)
3

3.5

4

4.5

eff. battery state parameters (α,β)
av

e.
nu

mb
er

of
tim

es
hit

tin
g p

en
alt

y a
rea

s
(a) The number of times hitting the

penalty areas in a day according to α

and β.

0 20 40 60 80
0

0.1

0.2

0.3

measurement interval (n)

L (n,
2)

1

(α=3,β=1)
(α=2,β=1)
(α=1,β=1)
(α=1,β=2)
(α=1,β=3)

(b) Information leakage according to

α and β.

Fig. 5.16. Effects of α and β in Privatus (K = 20).

0 20 40 60 80
0

1

2

3

measurement interval (n)

X
(n

)/
u

(a) X(n) w/o a

significant low-pass

component.

0 20 40 60 80
0

0.05

0.1

measurement interval (n)

L (n
,2

)
1

prop
conv

(b) Information

leakage for (a).

0 20 40 60 80
0

1

2

3

measurement interval (n)
X

(n
)/

u

low−pass
X(n) sample

(c) X(n) w/ a signif-

icant low-pass com-

ponent.

0 20 40 60 80
0

0.1

0.2

measurement interval (n)

L (n
,2

)
1

prop
conv

(d) Information

leakage for (c).

Fig. 5.17. Information leakage comparison between Privatus with α = 2
and β = 1 (legend: ‘prop’) and an existing scheme [23] (legend: ‘conv’),
when K = 20 and m = 2. The higher is L1

(n,2), the worse is the information
leakage.

Effects of different values of α and β: Figure 5.16(a) shows the average

number of times that Privatus hits the penalty areas, given α and β. As explained

before, when the ratio of α to β goes down, the frequency to hit the penalty areas

also decreases. However, from Figure 5.16(b), we see a negative effect in terms of

information leakage, when the ratio of α to β is too low. In that case, the actual

battery state wants to stay in the middle of the two penalty area thresholds TH and

TL to avoid getting a penalty score. This makes the compensation effect larger.

99

0 0.5 1

0

5

10

ratio r=R
L
/R

H
30

 ×
 S

(r
,K

)
(d

ol
la

r)

max
prop
conv

(a) K = 10

(2.15kWh).

0 0.5 1
0

10

20

ratio r=R
L
/R

H

30
 ×

 S
(r

,K
)

(d
ol

la
r)

max
prop
conv

(b) K = 20

(4.3kWh).

0 0.5 1
0

10

20

30

ratio r=R
L
/R

H

30
 ×

 S
(r,

K)
(d

ol
la

r)

max
prop
conv

(c) K = 30

(6.43kWh).

Fig. 5.18. Cost saving comparison between Privatus and an existing
scheme [23]. Here, we set u = 0.2143kWh and RH = $0.033/u =
$0.155/kWh. This results in the average daily usage (i.e., E(

∑nH

n=1X(n)))
equal to 30kWh.

Comparison to prior work: In Figures 5.17 and 5.18, we compare Privatus

(‘prop’ in the figures) with an existing scheme (‘conv’ in the figures) proposed by

Kalogridis et. al. [23]. Kalogridis’ scheme performs a simple low-pass filtering over

the use process in a best-effort manner without considering the energy cost factor.

Thus, it reduces the high frequency variations in the resulting draw process. Kalo-

gridis’ scheme needs to estimate the value of X(n) beforehand (refer to [23] for detail).

We assume in the simulation that the estimation is perfect (i.e., without errors). Fig-

ure 5.17(a) shows a sample realization of X(n), obtained from PX(n) given in Section

5.5.1. Note that since X(n) is randomly chosen among M possible values from PX(n),

which is the same within each price-zone, there is not a significant low-frequency com-

ponent in X(n). In this case, we can see from Figure 5.17(b) that Privatus performs

slightly better than Kalogridis’ to keep the privacy information, except at the price

zone boundaries. However, if there is a significant low-pass component in X(n), Pri-

vatus will provide much better privacy protection than Kalogridis’. This is because

Kalogridis’ scheme still allows the low-pass component of load profile to be revealed.

To see this, we generate X(n) by adding a random value 0 or u to a rectangular

pulse whose period is 20 measurement intervals, as shown in Figure 5.17(c). Com-

parison result in such a case is given in Figure 5.17(d). Indeed, Privatus results

100

0 20 40 60 80
0

0.02

0.04

0.06

0.08

0.1

measurement interval (n)

L (n
,2

)
1

w/o errors
case1
case2
case3

(a) Information leakage when m = 2,

and s = 1.

0 0.5 1

0

5

10

15

20

ratio r=R
L
/R

H

30
 ×

 S
(r

,2
0)

(d
ol

la
r)

w/o errors
case1
case2
case3

(b) Cost saving when u =

0.2143kWh, and RH = $0.03/u.

Fig. 5.19. Effects of the estimation error for the distribution of X(n) when
K = 20.

in better lower information leakage than Kalogridis’ when there exists a considerable

low-frequency component in X(n). Meanwhile, Figure 5.18 shows that from the cost

saving point of view, Privatus has a huge advantage against Kalogridis’. In all of

the cases studied, Kalogridis’ scheme does not achieve a significant cost saving. On

the other hand, compared to the maximum possible cost saving, computed according

to Section 5.2.2 (‘max’ in the figures), Privatus achieves the saving of 48% of the

maximum when K = 10, 66% of the maximum when K = 20, and 72% of the maxi-

mum when K = 30. Thus, Privatus strikes a desirable balance between privacy and

cost saving. Considering that the average electricity consumption for a U.S. residen-

tial customer was 30kWh per day [46], Figure 5.18(c) shows that a typical home can

achieve about $16 saving for a month with a 6.43kWh battery, based on the following

tariff example: RL = 0.04/kWh and RH = 0.15/kWh [45].

Effects of estimation error in PX(n): In Figure 5.19, we study the effect of the

estimation error in PX(n). For this, we consider the situation where our estimation is

PX(n) = [0.5, 0.2, 0.2, 0.1] in the low-price zone and PX(n) = [0.1, 0.3, 0.4, 0.2] in the

high-price zone (i.e., the decision table is calculated based on these distributions),

101

2 32 2 32 2 32 2 32 2 32 2 32 2 32
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

measurement interval (n)

L
(n

,2
)

1

day 1 day 2 day 3 day 4 day 5 day 6 day 7

type 1

Fig. 5.20. Information leakage (m = 2, and s = 1) with the per-day usage
flattening, where K = 30, α = 1, β = 1, and P = 7. Days 1, 2, and 4 are
of type 1.

but X(n) is generated by different distributions: PX(n) = [0.1, 0.2, 0.3, 0.4] (‘case1’),

PX(n) = [0.25, 0.25, 0.25, 0.25] (‘case2’), and PX(n) = [0.4, 0.3, 0.2, 0.1] (‘case3’) for

all n. Figure 5.19(a) shows that although there exists an estimation error in PX(n),

it does not affect the information leakage much. However, we see some changes

around the day boundary. Note that ‘case1’ may represent the situation where the

use process requires more energy on average than we have estimated. In this case,

since the battery has less chance to hold the energy, the battery state may stay flat

around the start and the end of a day, which increases the information leakage there.

The opposite situation is represented by ‘case3’, where the battery has more chance

to hold some energy around the start and end of a day, since the use process requires

less energy than estimated. Thus, the information leakage around the day boundary

is reduced compared to the case without the estimation error. In the meantime,

we see in Figure 5.19(b) that the estimation error influences the cost saving more

significantly: the magnitude of the saving goes down with the estimation error.

Effects of the per-day usage flattening:

102

Figure 5.20 shows the information leakage after per-day usage flattening in the

same environment as Section 5.4.6. Although days 1, 2, and 4 are of type 1, and

others are of type 2, we see from Figure 5.20 that there is no significant difference

in the information leakage across days. Compared to Figure 5.15(c), we can see that

the per-day usage flattening of Privatus does not change the privacy protection

performance significantly at a similar condition.

5.6 Discussion

Battery cost: In Section 5.5, we showed that a 6.43kWh battery can achieve $16

saving per month, assuming 30kWh use in a day. People may argue that this is the

relatively small savings compared to the high battery cost. Indeed, initial costs for

residential batteries range from $80 to $200 per kWh [47], and thus the battery cost

of 6.43kWh may range from $514 to $1,280. However, note that people buy a hybrid

car to save the fuel-cost and the environment, although it requires a considerable

initial cost due to the battery. Even though the fuel saving of the hybrid cars does

not completely offset its high cost, the fuel saving serves as a significant incentive

for consumers (who may only be mildly environment-conscious) to buy hybrid cars.

Similarly, in our case, the cost savings will encourage privacy-conscious customers to

buy our solution. In addition, given a 6.43kWh battery and $16 saving per month,

the battery cost may be balanced out by the saving in 2.6 to 6.6 years. We think that

this is similar to the period to recover the additional cost of a hybrid car compared

to a normal car.

Energy loss in a battery: By multiplying coefficients (< 1) by X(n) and Y (n)

in (5.1), our model can be easily extended to include the energy loss in the battery

that occurs when charging and discharging.

More than two price zones: Once we know the rates of energy usage and

the boundaries of each price zone, we can calculate the desired pattern of battery

charge and discharge—akin to that in Figure 5.3. Namely, what we need to do is to

103

calculate to what level the battery can be charged or discharged in each zone. Then,

the solution approach outlined earlier applies directly to the case with more than two

price zones.

Interleaved low-price and high-price zones: This situation is equivalent to

the case where there are multiple price zones, one group of which have a low price,

and the other group have a high price. Thus, this case can be treated in the same

way as the above.

The amount of energy usage per day varying over days: This paper focuses

on hiding the energy consumption pattern within a day. Across days, the total usage

per day can still be revealed to the adversary (by which the adversary may know

whether you are home or not for a given day). The other part of Privatus, which is

not presented in this paper due to the page limit, handles this issue. At the high level,

the solution is to flatten the energy use across days, by charging more in days with

less usage and by using the saved energy in days with more usage. The solution does

not affect the current randomization framework within each day; it only modifies the

total use in each day, and requires larger capacity battery.

Complexity: We saw that Privatus may result in better privacy protection

than our basic approach. However, a tradeoff is that its computation complexity is

increased, mainly because of the increment in the size of the decision table for PY (n).

Let us compare the number of the decision table entries in the low-price zone. Basi-

cally, the number of entries in the decision table is the number of possible state vectors

(i.e., [n,B(n− 1)] for the basic approach and [n,B(n− 1), Be(n− 1), PY (n− 1)] for

Privatus). Thus, the decision table in the basic approach has nL(K + 1) entries.

Regarding the effective battery state, it can have its minimum value when B(n) = 0

for all the times in the zone. In this case, the penalty score is −β(M −1)(nL−2n0)u.

The maximum value of the effective battery state becomes αKu. On the other hand,

the possible choices for PY (n) in Privatus are the elements in the set ∪Kk=0Pk. De-

noting the number of elements in this set by Q, Privatus has nL(K+1)(αK+β(M−

1)(nL− 2n0) + 1)Q entries in the decision table. Note that the number of the entries

104

is proportional to O(nLK) in the basic approach, but O(n2
LK +nLK

2) in Privatus.

For example, with the parameters used in Sections 5.2.4 and 5.3.2, the decision tables

in the basic approach and Privatus have 672 and 3, 358, 656 entries, respectively.

Although Privatus’s decision table gets much larger, we think that, compared to

the cost saving, the memory cost to accommodate such a table is reasonable (see the

memory price trend in [48]: the per-Mbyte cost in 2010 is only $0.0122). Further, the

computation overhead to obtain the decision table is proportional to its size. How-

ever, the table calculation needs to be carried out infrequently, i.e., only when PX(n)

changes significantly. The computation overhead of Privatus in normal operations

(i.e., looking up the decision table) is very low.

105

6. CONCLUSION

We have presented a synchronization protocol called Harmonia targeted to low duty

cycle multi-hop wireless networks. The requirements for the synchronization protocol

come from a wastewater monitoring and actuation application called CSOnet, de-

ployed city-wide in South Bend, Indiana. CSOnet has been operational for over a

year now. CSOnet used to have a synchronization protocol which exchanges synchro-

nization messages once every day, but needs manual resynchronization at an average

rate of once every 30 days due to its coarse synchronization accuracy and lack of

failure handling mechanism. Based on experiments done by EmNet, LLC, in small

segments of the network, Harmonia is expected to eliminate the inconvenience of

manual synchronization and reduce the frequency of synchronization from once a day

to once every 5 days (recall the frequency of once every 13 hours calculated in Section

4.5.3 is the worst-case estimate).

The nodes in CSOnet stay awake for only 6 seconds in every 5-minute interval in

current deployment and use an external clock called the RTC, which has a low drift,

but a coarse 1 second resolution. The RTC is used for driving the sleep-wake periods

on the nodes. The radio used on the nodes does not allow MAC layer time-stamping,

a technique commonly used in synchronization protocols. The fundamental innova-

tion in Harmonia can be simply stated as follows - it uses a fine granularity clock

(MCC) with a relatively high drift rate to achieve synchronization of a coarse granu-

larity clock that runs even when the node is asleep. Additionally, this process is done

quickly so that in the common case, for reasonably sized networks (say, less than

17 hops in diameter) the process can be accomplished within 2 seconds, one-third of

one wake-up interval of the network. By this, the synchronization error is in the mi-

crosecond range despite the coarse granularity of the RTC. In case that some parts of

the network remain unsynchronized due to the time limit of the awake period, Har-

106

monia’s fast recovery mechanism attempts to synchronize them in the next slot, not

waiting for BS to initiate another synchronization round. The fast recovery can also

locally handle transient node- and link-failures, not overburdening the whole network

with synchronization-related messages. Experiment results show that Harmonia’s

synchronization error is higher than that of FTSP, but is still acceptable for CSOnet,

being in the range of tens of microseconds. However, Harmonia is significantly faster

than FTSP with respect to the network-wide synchronization time, making it a good

fit for low-duty cycle networks.

In event monitoring, a number of sensor nodes are deployed over a region where

some phenomenon is to be monitored. When an event is detected, the sensor nodes

report it to a base station, where a network operator can take appropriate action using

the event report. However, such an event reporting process can be easily attacked

by compromised nodes in the middle that drop, modify, or delay the report packet.

No prior work has been able to provide a security guarantee for timely and reliable

collection of event reports at a base station in the presence of Byzantine adversarial

nodes that are capable of colluding among themselves. To resolve this issue, we

have presented Sem, a secure event monitoring protocol. Sem can work in hostile

environments, where Byzantine adversary nodes want to disrupt the event reporting

procedures. As long as the compromised nodes do not want to be detected, Sem

enables a legitimate sensor node to report an event to the BS within a bounded time;

If the compromised nodes prevent the event from being reported to the BS within the

bounded time, Sem will be able to identify a small set of nodes that is guaranteed to

contain a malicious node.

In order to resolve the privacy issue in smart grid, we proposed Privatus to

de-correlate the meter reading information from user behavior. Privatus uses a

rechargeable battery to make the meter reading reported to the utilities look in-

dependent of the actual usage at any given measurement interval. The correlation

between the meter readings and the actual usage pattern over multiple measurement

intervals is also reduced by changing the probability distribution of charging the bat-

107

tery in each interval through careful design. Privatus is also geared to the future of

time-of-use pricing of electricity and it ensures that the battery is charged to achieve

the maximal savings in the energy cost. We formulate the problem rigorously and

use stochastic dynamic programming to devise our solution. The experiment results

show that Privatus is successfully able to hide the actual usage from what is drawn

from the grid, and achieves considerable amount of saving in the energy cost, subject

to the availability of a reasonable-sized battery. Compared to prior work, we achieve

much better privacy when there is a conspicuous low-frequency component in load

profile, and significantly higher cost savings. Privatus can also flatten the per-day

average usage across days at the expense of the decrement of cost saving.

108

7. FUTURE WORK

The research work presented in this thesis provides a foundation to explore several

future research avenues in embedded systems. Below, we summarize possible research

directions that we can further consider.

1. Tree topology creation in Harmonia and test in a real network.

2. Sem deployment into a testbed.

3. Handling practical issues in Privatus.

7.1 Tree topology creation in Harmonia

Currently, we are missing an algorithm that makes a tree topology in CSOnet.

For this reason, we are hardcoding the topology information at each node. This

requirement leads to unnecessary inconvenience to modify the topology information

at a node whenever the tree topology changes. To resolve this issue, we would design

a protocol that automatically makes the tree topology without human intervention.

7.2 Sem deployment into a testbed

We are planning to deploy Sem into a testbed. This work will involve implement-

ing packet fragmentation and reassembly between a sender and a receiver, combining

with TinyECC cryptography suite. For neighbor authentification, a mechanism for

sharing a symmetric key between neighbors should also be implemented. In case of

large-scale deployment, an automatic ECC formation algorithm would be considered.

109

7.3 Handling practical issues in Privatus

Our future work will focus on generalizing Privatus to handle various practical

issues, e.g., energy loss in a battery. Currently, we assume there is no loss when

charging and discharging the battery. However, this assumption does not hold in

practice. Appropriate loss modeling would be needed to figure out a more accurate

amount of cost saving. Further, we will incorporate the non-linear characteristic of

the battery into our model.

We will also collect real meter reading data from dynamic environment. This

would help us study further about user activity patterns, and come up with more

reasonable estimates for possible cost saving.

LIST OF REFERENCES

110

LIST OF REFERENCES

[1] D. Mills, “Internet time synchronization: The network time protocol,” IEEE
Transactions on Communications, vol. 39, no. 10, pp. 1482–1493, 1991.

[2] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks: A survey,”
IEEE network, vol. 18, no. 4, pp. 45–50, 2004.

[3] S. Ganeriwal, R. Kumar, and M. Srivastava, “Timing-sync protocol for sensor
networks,” in Proc. of 1st intl. conf. on Embedded networked sensor systems,
pp. 138–149, 2003.

[4] M. Maroti, B. Kusy, G. Simon, and Á. Lédeczi, “The flooding time synchro-
nization protocol,” in Proceedings of the 2nd intl. conf. on Embedded networked
sensor systems, pp. 39–49, 2004.

[5] B. Kusy, P. Dutta, P. Levis, M. Maroti, A. Ledeczi, and D. Culler, “Elapsed
time on arrival: A simple and versatile primitive for canonical time synchro-
nization services,” International Journal of Ad Hoc and Ubiquitous Computing
(IJAHUC), vol. 1, no. 4, pp. 239–251, 2006.

[6] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal, “Firefly-inspired
sensor network synchronicity with realistic radio effects,” in Proceedings of the
3rd intl. conf. on Embedded networked sensor systems, pp. 142–153, 2005.

[7] T. Schmid, Z. Charbiwala, J. Friedman, Y. H. Cho, and M. B. Srivastava, “Ex-
ploiting manufacturing variations for compensating environment-induced clock
drift in time synchronization,” SIGMETRICS Perform. Eval. Rev., vol. 36, no. 1,
pp. 97–108, 2008.

[8] T. Schmid, J. Friedman, Z. Charbiwala, Y. H. Cho, and M. B. Srivastava, “Low-
power high-accuracy timing systems for efficient duty cycling,” in ISLPED ’08:
Proceeding of the thirteenth intl. symposium on Low power electronics and design,
pp. 75–80, 2008.

[9] P. Sommer and R. Wattenhofer, “Gradient Clock Synchronization in Wire-
less Sensor Networks,” in Information Processing in Sensor Networks, 2009.
IPSN’09. Intl. Conf. on (To Appear), pp. 1–12, 2009.

[10] J. Carle and D. Simplot-Ryl, “Energy-efficient area monitoring for sensor net-
works,” Computer, vol. 37, pp. 40–46, February 2004.

[11] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru,
T. Yan, and L. Gu, “Energy-efficient surveillance system using wireless sensor
networks,” in In Mobisys, pp. 270–283, ACM Press, 2004.

111

[12] T. Yan, T. He, and J. A. Stankovic, “Differentiated surveillance for sensor net-
works,” in Proceedings of the 1st ACM Conference on Embedded Networked Sen-
sor Systems, SenSys’03, 2003.

[13] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient
communication protocol for wireless microsensor networks,” in Proceedings of the
33rd Hawaii International Conference on System Sciences-Volume 8 - Volume 8,
HICSS ’00, (Washington, DC, USA), pp. 8020–, IEEE Computer Society, 2000.

[14] P. Rothenpieler, D. Krger, D. Pfisterer, S. Fischer, D. Dudek, C. Haas, and
M. Zitterbart, “FleGSens - secure area monitoring using wireless sensor net-
works,” World Academy of Science, Engineering and Technology, August 2009.

[15] D. E. Robling Denning, Cryptography and data security. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1982.

[16] D. Agrawal and C. C. Aggarwal, “On the design and quantification of privacy
preserving data mining algorithms,” PODS ’01, (New York, NY, USA), pp. 247–
255, ACM, 2001.

[17] L. Sweeney, “k-anonymity: a model for protecting privacy,” Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., vol. 10, pp. 557–570, October 2002.

[18] R. Stallman, “Is digital inclusion a good thing? How can we make sure it is?,”
Comm. Mag., vol. 48, pp. 112–118, February 2010.

[19] NIST, “Nist framework and roadmap for smart grid interoperability standards,
release 1.0,” Nist Special Publication, vol. 0, pp. 1–90, 2009.

[20] H. Khurana, M. Hadley, N. Lu, and D. A. Frincke, “Smart-grid security issues,”
IEEE Security and Privacy, vol. 8, pp. 81–85, 2010.

[21] E. L. Quinn, “Privacy and the new energy infrastructure,” SSRN, 2009.

[22] A. Rial and G. Danezis, “Privacy-preserving smart metering,” in Proceedings of
the 10th annual ACM workshop on Privacy in the electronic society, WPES ’11,
ACM, 2011.

[23] G. Kalogridis, C. Efthymiou, S. Z. Denic, T. A. Lewis, and R. Cepeda, “Privacy
for smart meters: Towards undetectable appliance load signatures,” 2010 First
IEEE International Conference on Smart Grid Communications, 2010.

[24] S. McLaughlin, P. McDaniel, and W. Aiello, “Protecting consumer privacy from
electric load monitoring,” in Proceedings of the 18th ACM conference on Com-
puter and communications security, CCS ’11, 2011.

[25] D. P. Varodayan and A. Khisti, “Smart meter privacy using a rechargeable bat-
tery: Minimizing the rate of information leakage,” in ICASSP, 2011.

[26] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The Discrete-Time
Case. Athena Scientific, 2007.

[27] M. Schütze, A. Campisano, H. Colas, W. Schilling, and P. Vanrolleghem, “Real
time control of urban wastewater systems - where do we stand today?,” Journal
of Hydrology, vol. 299, no. 3-4, pp. 335–348, 2004.

112

[28] Tinyos-help, “FTSP on Tmotes.” http://www.mail-archive.com/tinyos-
help@millennium.berkeley.edu/msg07079.html.

[29] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh, “Fidelity and
yield in a volcano monitoring sensor network,” 7th Symposium on Operating
Systems Design and Implementation (OSDI ’06), pp. 381–396, 2006.

[30] Maxim Inc., “DS3231 Extremely Accurate I2C-
Integrated RTC/TCXO/Crystal.” http://www.maxim-
ic.com/quick view2.cfm/qv pk/4627.

[31] L. Montestruque and M. Lemmon, “Csonet: a metropolitan scale wireless sensor-
actuator network,” in MODUS ’08: International Workshop on Mobile Device
and Urban Sensing, 2008.

[32] Digi International Inc., “9XTend OEM RF Module.”
http://www.digi.com/products/wireless/long-range-multipoint/xtend-
module.jsp.

[33] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler, “Design of a wireless
sensor network platform for detecting rare, random, and ephemeral events,” in
Proceedings of the 4th international symposium on Information processing in
sensor networks, IPSN ’05, IEEE Press, 2005.

[34] S. Massoud Amin and B. Wollenberg, “Toward a smart grid: power delivery for
the 21st century,” Power and Energy Magazine, vol. 3, pp. 34–41, September
2005.

[35] “Perimeter security alarm system.” http://www.hkvstar.com.

[36] S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating routing misbehavior in
mobile ad hoc networks,” in MOBICOM, 2000.

[37] B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-Rotaru, and H. Rubens,
“ODSBR: An on-demand secure byzantine resilient routing protocol for wire-
less ad hoc networks,” ACM Trans. Inf. Syst. Secur., vol. 10, no. 4, pp. 1–35,
2008.

[38] X. Zhang, A. Jain, and A. Perrig, “Packet-dropping adversary identification for
data plane security,” in Proceedings of the 2008 ACM CoNEXT Conference,
CoNEXT ’08, 2008.

[39] A. Liu and P. Ning, “TinyECC: A configurable library for elliptic curve cryp-
tography in wireless sensor networks,” in Proceedings of the 7th International
Conference on Information Processing in Sensor Networks, IPSN’08, 2008.

[40] “TOSSIM tutorial.” http://docs.tinyos.net/index.php/TOSSIM.

[41] “TinyOS Documentation Wiki.” http://docs.tinyos.net/index.php.

[42] “Building a network topology for TOSSIM.” http://www.tinyos.net/tinyos-
2.x/doc/html/tutorial/usc-topologies.html.

[43] H. Beckman, “Lawsuit filed to stop installaton of smart meters.”
http://napervillesun.suntimes.com/news/9723766-418/lawsuit-filed-to-stop-
smart-meter-installation.html.

113

[44] B. Sullivan, “What will talking power meters say about you?.”
http://redtape.msnbc.msn.com.

[45] Tucson electric power, “Residential time-of-use pricing plan.”
http://https://www.tep.com/doc/customer/rates/R-21F.pdf.

[46] U. E. I. Administration, “Average electricity consumption for a us residential
customer.” http://www.eia.gov/tools/faqs/faq.cfm?id=97&t=3.

[47] U.S. Department of Energy, “Battery power for your residentialsolar electric
system.” http://www.nrel.gov/docs/fy02osti/31689.pdf.

[48] J. C. McCallum, “Memory prices (1957-2010).”
http://www.jcmit.com/memoryprice.htm.

VITA

114

VITA

Jin Kyu Koo received his B.E. degree in Electrical Engineering from Korea Uni-

versity, Seoul in August 2001. He obtained his M.S. degree in Electrical Engineering

from Korea Advanced Institute of Science and Technology (KAIST) in February 2004.

He joined Purdue University in the fall of 2007 as a Ph.D. student in Electrical and

Computer Engineering. He worked as a research assistant for Prof. Saurabh Bagchi

and Prof. Xiaojun Lin. His research interests include embedded systems, sensor net-

works, network security, optimization, and operating systems. He has worked as a

research engineer for 4G communication systems at Samsung Electronics for more

than 3 years. He spent a summer during his Ph.D. study at Bosch Research and

Technology Center in Palo Alto, CA to develop an embedded sensor platform.

