
RELIABLE AND SCALABLE CHECKPOINTING SYSTEMS

FOR DISTRIBUTED COMPUTING ENVIRONMENTS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Tanzima Zerin Islam

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2013

Purdue University

West Lafayette, Indiana

ii

To my parents and my husband.

iii

ACKNOWLEDGMENTS

First and foremost, I thank the Almighty for letting me come this far and for

all of the blessings on the way. I would like to express my sincere gratitude to my

advisor – professor Saurabh Bagchi, for his extraordinary guidance, understanding,

and support over these years. He has taught me, both consciously and unconsciously,

how good research is done. I appreciate all his contributions of time, ideas, and

feedback to make my Ph.D. experience productive and stimulating. The enthusiasm

he has for his research was contagious and motivational for me, even during tough

times in the Ph.D. pursuit. His advice both on research as well as on my career have

been invaluable.

A special thanks to my co-chair – professor Rudolf Eigenmann, for his valuable

input, guidance, and funding during the entire period of my Ph.D. experience.“They

no longer announce a winner at the Academic Awards (Oscar). Rather, it “goes” to

an individual. Being nominated is a win in itself.” – is what he would say after every

time I returned disheartened without the Best Paper Award. Over the course of my

graduate life, I made a number of different variants of this quote, preserving the basic

idea but tailoring to suite different rejection scenarios. The teaching never fails to

inspire me and I am sure, there will be ample opportunities for me to derive many

more variations in future.

I would like to thank my dissertation committee members, professor Jan P. Alle-

bach and Bronis R. de Supinski for serving as my committee members and letting my

defense be an enjoyable moment.

I cannot thank my stars more for the fateful encounter with Tony Baylis, who is

also known as – “he who makes everything happen”, amidst thousands of people in a

large career fair. Without Tony, I would not have gone for an internship at Lawrence

Livermore National Laboratory (LLNL) in the first place. Also, my special thanks to

iv

Bronis for giving me the opportunity to work with him during multiple summers at

the lab and continuing the collaboration afterwards. I am thankful for the consistent

access to the vast resources at LLNL, without which my research would not have

been possible. I would also like to acknowledge my colleagues Adam Moody and

Todd Gamblin for their input, time, and patience during our three years of remote

collaboration, and especially Kathryn Mohror, who I also look up to as a female

computer scientist. She has been my mentor for last three years and was always

there to encourage me, guide me, and show her support with her kind words. She has

been such an inspiration, and I would like to take this opportunity to say it again –

Kathryn, you are the best!

Thank you to my fellow students in the Dependable Computing Systems Labo-

ratory (DCSL) for sitting through numerous practice talks, and providing me with

your ideas to improve my presentation skill. Also, it will not be complete if I do not

acknowledge my NEES family – Gemez Marshall, Brian Rohler, and Dawn Weisman

for being such accommodating supervisors and providing me with the most flexible

work environment possible. The bar of my expectation has been raised.

My special thanks to the outstanding people of ECE Graduate Office and Purdue

ISS for ensuring seemless administrative experience for all at Purdue.

The list of people, without whom this journey would have been impossible, is just

too long. However, I would like to take this opportunity to name a few here. I have

been blessed with a family – my parents, Hasina Islam and Mohammad Sirajul Islam,

my brother Hasibul Islam, my sister-in-law Dr. Farhana Haque, my in-laws, Khaleda

Akhter and Nazmul Haque, and my brother-in-law Khaled Hassan – who were always

there to encourage me, cheer for me, and console me given the appropriate scenario.

My special thanks to my lifetime hero – my maternal grandfather Dr. Mohammad

Siddiqullah who has taught me to work with sincerity, to be persistent, and to pray for

whatever occassion that may arise in life. I have had ample opportunities to practice

all three during my graduate life, and appreciate the teaching much more than I did

5 years ago.

v

A big thanks to my Bangladeshi family here at Purdue for creating a home away

from home. I would especially like to thank my brother Asaduzzaman Mohammad for

being there through thick and thin. My sincere gratitude to the people of Bangladesh

for providing me with a world-class education for free, even though their living stan-

dard is not high enough.

Last, but certainly not least – I would like to take this opportunity to thank my

best friend in the whole wide world – my husband, Dr. Mohammad Sajjad Hossain,

without whom, simply put – I could not have done it. Your courage in leaving your

own Ph.D. in the middle to move to Purdue and continuing here instead, speaks

volume about how supportive you have been throughout my journey. Could I have

done the same for you? I am glad, I don’t have to find out. You are the rock of my

life.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABSTRACT . xii

1 INTRODUCTION . 1

1.1 Reliability in Distributed Computing Environments 3

1.2 Resilience Through Checkpoint/Recovery 5

1.2.1 Challenges in High-Throughput Systems 5

1.2.2 Challenges in High Performance Computing Clusters 6

1.2.3 Summary . 7

1.3 Dissertation Contributions . 7

1.3.1 Checkpointing System for Grid 7

1.3.2 Checkpointing System for Clusters 9

1.4 Dissertation Organization . 10

2 RELIABLE CHECKPOINTING SYSTEM FOR FINE-GRAINED CYCLE
SHARING SYSTEMS . 11

2.1 Background on Failure-Aware Checkpointing 13

2.2 Design for Robust Checkpointing 15

2.2.1 Novel Multi-state Failure Model for Storage Hosts 16

2.2.2 Failure-aware Storage Selection 18

2.2.3 Single-Threaded Method for Checkpoint Recovery 22

2.2.4 Data Parallelism and Parallel Architecture 23

2.2.5 Design of Parallel Checkpoint-Recovery Scheme 24

2.3 Structure of falcon . 25

2.3.1 Compute Host Component (CHC) 27

vii

Page

2.3.2 Storage Host Component (SHC) 28

2.3.3 History Server Component (HSC) 29

2.4 Evaluation . 29

2.4.1 Macro Benchmark Experiments 31

2.4.2 Micro Benchmark Experiments 35

2.4.3 Single-threaded vs Multi-threaded Architecture of falcon . 42

2.5 Related Work . 46

2.6 Summary . 47

3 SCALABLE CHECKPOINTING SYSTEM USING DATA-AWARE AG-
GREGATION AND COMPRESSION . 48

3.1 Background . 50

3.1.1 Application-level vs System-level Checkpointing 51

3.1.2 Checkpoint Writing . 51

3.1.3 Checkpoint File Format . 52

3.1.4 Checkpoint Data . 54

3.2 Data-Aware Checkpoint Aggregation & Compression 56

3.2.1 Identifying Similarity Across Checkpoints 58

3.2.2 Merging Schemes . 58

3.3 Structure of mcrEngine . 60

3.3.1 Checkpointing Phase . 60

3.3.2 Restart Phase . 63

3.4 Evaluation Methodology . 64

3.4.1 Applications . 64

3.4.2 Evaluation of Compression Schemes 66

3.5 Data-Aware Compression Effectiveness 66

3.5.1 Benefit of Multiple Passes of Compression 67

3.5.2 Change in Compression Ratio with Varying Group Size . . . 68

3.5.3 Impact of Interleaving Granularity on Compression Ratio . . 72

viii

Page

3.5.4 Change in Compression Ratio as Simulation Progresses . . . 72

3.5.5 Summary of Data-Aware Compression Effectiveness 73

3.6 Performance of mcrEngine . 73

3.6.1 Data-aware and Data-Agnostic I/O Performance 74

3.6.2 Benefit of Checkpoint Aggregation 75

3.6.3 Checkpoint and Restart Overheads 76

3.6.4 Discussion . 78

3.7 Related Work . 79

3.8 Summary . 80

4 BENEFIT-AWARE CLUSTERING FOR PARALLEL APPLICATIONS 82

4.1 Background . 83

4.2 Benefit-Aware Clustering . 84

4.2.1 Number of Groups . 85

4.2.2 New Similarity Metric . 85

4.2.3 Sampling Method . 87

4.3 Runtime Clustering . 87

4.3.1 Reduce Dimension of β . 87

4.3.2 Reduce Data to Cluster . 88

4.3.3 Centralized vs Distributed Clustering 89

4.4 Structure of mcrCluster . 89

4.4.1 Algorithm for Building Benefit-Matrix in Runtime 92

4.5 Evaluation of mcrCluster . 93

4.5.1 Effectiveness of Benefit Metric in Finding Clusters 94

4.5.2 Impact of Benefit-Aware Clustering on Compression Ratio . 96

4.6 Discussion . 96

5 Conclusion . 98

LIST OF REFERENCES . 100

VITA . 106

ix

LIST OF TABLES

Table Page

2.1 Checkpoint sizes of different applications. 29

2.2 Statistical analysis of the eviction characteristics in DiaGrid. 32

2.3 Breakdown of different schemes evaluated in Figure 2.9. 41

2.4 Input sizes to different algorithms of falcon and falcon-p. 45

3.1 Module interactions during a checkpointing phase 61

3.2 Module interactions during a restart phase 64

3.3 Checkpoint characteristics . 64

3.4 Relative improvement over Agnostic . 73

3.5 Checkpoint/restart system configurations 74

4.1 Comparison of compression ratios for different clustering schemes. . . . 96

x

LIST OF FIGURES

Figure Page

1.1 Statistics based on DiaGrid. 2

1.2 Figure (a) shows how computing power is projected to grow; Figure (b)
shows how processor count has increased over the years for the number 1
supercomputer since 1993 on the Top500 list. 4

2.1 New multi-state storage host failure model. 17

2.2 System level block diagram of our system. 26

2.3 Average job makespan of different applications. 33

2.4 Recovery overhead of four different checkpoint sizes. 34

2.5 Average execution time vs the number of concurrent clients. 36

2.6 Average checkpointing overhead vs the number of unavailable storage
hosts. 38

2.7 Average checkpoint storing overhead of different schemes. 39

2.8 Parallel vs sequential retrieval during restart. 40

2.9 Contributions of compression, load balancing, and parallel network trans-
fer during restart. 41

2.10 Improvement in compression overhead from using multiple cores. 43

2.11 Comparison of the checkpointing and the recovery overheads of falcon
and falcon-p. 44

3.1 Two types of input data distribution 52

3.2 Different metadata annotations of checkpoint data 53

3.3 Volume rendering of the 3D variable: “Density” 54

3.4 Refined nested computation . 55

3.5 Projections of Temperature, Pressure, and Density variables along X axis
for Timestep 8. 56

3.6 Variable matching . 57

3.7 Data-aware merging schemes . 59

xi

Figure Page

3.8 System-level interactions . 62

3.9 Double compression vs single compression 68

3.10 Compression ratio vs group size. 70

3.11 ALE3D compression ratio (Group Size = 32) 70

3.12 Compression ratio over time . 71

3.13 I/O performance with different compression schemes 75

3.14 Benefit of aggregation for I/O performance 76

3.15 End-to-end checkpointing overhead . 77

3.16 End-to-end restart overhead . 78

4.1 Benefit matrices of the application Cactus. 88

4.2 Overall structure of benefit-aware clustering and data-aware compression. 91

4.3 Benefit matrix and silhouette plot of 32 checkpoints from Cactus 95

xii

ABSTRACT

Islam, Tanzima Zerin Ph.D., Purdue University, May 2013. Reliable and Scalable
Checkpointing Systems for Distributed Computing Environments. Major Professor:
Saurabh Bagchi.

By leveraging the enormous amount of computational capabilities, scientists to-

day are being able to make significant progress in solving problems, ranging from

finding cure to cancer – to using fusion in solving world’s clean energy crisis. The

number of computational components in extreme scale computing environments is

growing exponentially. Since the failure rate of each component starts factoring in,

the reliability of overall systems decreases proportionately. Hence, in spite of having

enormous computational capabilities, these ground breaking simulations may never

run to completion. The only way to ensure their timely completion, is by making

these systems reliable, so that no failure can hinder the progress of science.

On such systems, long running scientific applications periodically store their execu-

tion states in checkpoint files on stable storage, and recover from a failure by restarting

from the last saved checkpoint file. Resilient high-throughput and high-performance

systems enable applications to simulate scientific problems at granularities finer than

ever thought possible. Unfortunately, this explosion in scientific computing capa-

bilities generates large amounts of state. As a result, todays checkpointing systems

crumble under the increased amount of checkpoint data. Additionally, the network

I/O bandwidth is not growing nearly as fast as the compute cycles. These two factors

have caused scalability challenges for checkpointing systems. The focus of this thesis

is to develop scalable checkpointing systems for two different execution environments

– high-throughput grids and high-performance clusters.

xiii

In grid environment, machine owners voluntarily share their idle CPU cycles with

other users of the system, as long as the performance degradation of host processes

remain under certain threshold. The challenge of such an environment is to ensure

end-to-end application performance given the high-rate of unavailability of machines

and that of guest-job eviction. Today’s systems often use expensive, high-performance

dedicated checkpoint servers. In this thesis, we present a system, falcon, that uses

available disk resources of the grid machines as shared checkpoint repositories. How-

ever, an unavailable storage host may lead to loss of checkpoint data. Therefore, we

model the failures of storage hosts and predict the availability of checkpoint reposi-

tories. Experiments run on production high-throughput system – DiaGrid show that

falcon improves the overall performance of benchmark applications, that write giga-

bytes of checkpoint data, between 11% and 44% compared to the widely used Condor

checkpointing solutions.

In high-performance computing (HPC) systems, applications store their states

in checkpoints on a parallel file system (PFS). As applications scale up, checkpoint-

restart incurs high overheads due to contention for PFS resources. The high overheads

force large-scale applications to reduce checkpoint frequency, which means more com-

pute time is lost in the event of failure. We alleviate this problem by developing

a scalable checkpoint-restart system, mcrEngine. mcrEngine aggregates check-

points from multiple application processes with knowledge of the data semantics

available through widely-used I/O libraries, e.g., HDF5 and netCDF, and compresses

them. Our novel scheme improves compressibility of checkpoints up to 115% over

simple concatenation and compression. Our evaluation with large-scale application

checkpoints show that mcrEngine reduces checkpointing overhead by up to 87% and

restart overhead by up to 62% over a baseline with no aggregation or compression.

We believe that the contributions made in this thesis serve as a good foundation

for further research in improving scalability of checkpointing systems in large-scale,

distributed computing environments.

1

1. INTRODUCTION

"...You know you have a distributed system when the crash of a

computer you have never heard of stops you from getting any work

done..."

-- Leslie Lamport

With the explosion in the number of computational resources in large-scale dis-

tributed systems – failures will be continuous rather than exceptional events. The

growth of high-performance computing (HPC) clusters and the recent paradigm shift

towards harvesting idle cycles of hosts connected to the Internet (cycle sharing sys-

tems), made possible a lot of scientific applications. These applications vary from

decoding the physics of universe to delivering the next break through in medicine.

A couple of well known applications that use high-performance and high-throughput

computing are – fusion reaction to generate clean energy for lighting up a star by

National Ignition Facility at Lawrence Livermore National Lab (high-performance

computing), and designing new proteins to fight against cancer by Rosetta@Home

(high-throughput computing). These long running scientific applications use hun-

dreds of thousands of hours of distributed computing to finish. Resources in cycle

sharing systems have highly fluctuating availability since they are often owned by in-

dividuals who share their idle resources voluntarily. On the other hand, HPC clusters

are much more reliable since these resources are owned and maintained by an orga-

nization whose mission is to provide uninterrupted computing environment to long

running applications. However, related research shows that with exascale in the hori-

zon, computational technology is approaching failure rates in the order of minutes.

Due of their scale and complexity, the mean time between failure (MTBF) of today’s

2

 - 	

 10,000 	

 20,000 	

 30,000 	

 40,000 	

 50,000 	

 60,000 	

2004	

 2005	

 2006	

 2007	

 2008	

 2009	

 2010	

 2011	

N
um

be
r o

f C
or

es
	

Year	

(a) Number of cores over years

0	

50	

100	

150	

200	

250	

300	

2005	

 2006	

 2007	

 2008	

 2009	

 2010	

 2011	

N
um

be
r o

f U
se

rs
	

Year	

Unique users	

 Unique PIs	

Unique PI depts	

 Fields of Science	

(b) Number of users over years

0	

5	

10	

15	

20	

25	

2004	

 2005	

 2006	

 2007	

 2008	

 2009	

 2010	

 2011	

N
um

be
r o

f E
ve

nt
s i

n
M

ill
io

ns
	

Year	

Jobs	

 Hours	

(c) Usage over years

Fig. 1.1.: Statistics based on DiaGrid.

large-scale distributed systems is decreasing, making resilience and fault-tolerance in

these environments a major challenge to be overcome.

Grid computing is the federation of computer resources from multiple locations to

reach a common goal. The grid can be thought of as a distributed system with non-

interactive workloads that involve a large number of files. What distinguishes grid

computing from conventional high performance computing systems such as cluster

computing is that grids tend to be more loosely coupled, heterogeneous, and geograph-

ically dispersed. Grids are a form of distributed computing whereby a “super virtual

computer” is composed of many networked loosely coupled computers acting together

to perform large tasks. DiaGrid is an example of such a large, multi-university, high-

throughput computing environment that is centered at Purdue University. In 2012,

it included nearly 43,000 processors representing 301 teraflops of computing power.

DiaGrid spans 10 different university campuses in the midwest. DiaGrid uses a pop-

ular middleware, called Condor, for managing resources and scheduling jobs. Grid

resources can be configured so that foreign jobs can coexist with local jobs that are

owned by the machine owner. In this environment, resources can become unavail-

able if slowdown of local jobs is observable. This type of system is also known as

Fine-Grained Cycle Sharing System (FGCS).

3

1.1 Reliability in Distributed Computing Environments

On one end of the spectrum, we have FGCS systems, where machine owners share

their idle CPU cycles voluntarily with guest jobs. Recent paradigm shift towards vol-

unteering computing has made grid computing quite popular. For example, Figure 1.1

shows the growth of DiaGrid, in terms of the number of cores, the number of users,

and the number of hours spent by applications on these resources between 2004 and

2011. Given that more number of scientific applications are utilizing these virtually

infinite resources for free, ensuring their reliable execution has become more challeng-

ing than ever. However, since these resources are mostly voluntarily shared, they can

and often do become unavailable any time, due to reasons ranging from unexpected

software, hardware failures to users unexpectedly turning off their machines. Without

proper reliability measures, these guest jobs will never be able to run to completion,

which beats the whole purpose of having such an environment in the first place. In

Fine-Grained Cycle Sharing (FGCS) systems, machine owners voluntarily share their

idle CPU cycles with guest jobs, as long as their (host processes) performance degra-

dation is below certain threshold. However, for guest users, free resources come at the

cost of highly fluctuating availability. Such unpredictable but frequent evictions from

host machines lead to unpredictable completion times for guest applications. In this

environment, checkpoint-recovery is a widely used technique for recovering from such

“failures”. Evictions may occur due to software or hardware failure, host work load

increasing beyond a threshold or simply because owner of the machine has returned.

On the other hand, computational power of HPC systems is growing exponentially,
which enables finer-grained scientific simulations. For example, Figure 1.2a, shows

how aggregated computation power has increased since the first Top500 list came out

in 1993. Since then, the number of components has grown leaps and bounds as well.

For example, Figure 1.2b, shows the number of processors reported by the number 1

supercomputer of the corresponding year. The trend shows these systems to gather

several millions of CPU cores, not including other hardware components. As software

and hardware component counts in high performance computing (HPC) systems scale

4

(a) Projected performance development over time

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

800000	

900000	

1000000	

19
93
	

19
94
	

19
94
	

19
96
	

19
94
	

19
96
-19
97
	

19
97
-20
00
	

20
00
-20
02
	

20
02
-20
04
	

20
04
-20
08
	

20
08
-20
09
	

20
09
-20
10
	

20
10
-20
11
	

20
11
-20
12
	

20
12
-20
12
	

20
12
-pr
ese
nt	

N
um

be
r o

f P
ro

ce
ss

or
s	

Year	

(b) Number of processors over time

Fig. 1.2.: Figure (a) shows how computing power is projected to grow; Figure (b)
shows how processor count has increased over the years for the number 1 supercom-
puter since 1993 on the Top500 list.

up, the likelihood grows of one failing while an application executes. For example,

the 100,000 node BlueGene/L system at Lawrence Livermore National Laboratory

(LLNL) experiences an L1 cache parity error every 8 hours [1] and a hard failure

every 7 − 10 days. According to Schroeder et al., exascale systems are projected to

fail every 3 − 26 minutes [2, 3]. Also, according to Sato et al., in the year and a

half from November 1st 2010 to April 6th 2012, TSUBAME2.0, ranking 5th in the

Top500 list [4] (November 2011), experienced 962 node failures ranging from memory

errors to whole rack failures. Thus, a failure occurred every 13.0 hours on average.

5

Furthermore, the MTBF (mean time between failure) of future systems is projected

to shrink to tens of minutes [2]. Without a viable resilience strategy, applications will

be unable to run for even one day on such a large machine. Thus, resilience in HPC

has become more important than ever as we plan for future systems.

1.2 Resilience Through Checkpoint/Recovery

To achieve high performance in the presence of failures and resource volatility,

applications use checkpointing and rollback [5, 6], which periodically saves applica-

tion state in checkpoint files on stable storage. If a failure occurs, the application is

restarted from the latest checkpoint, thus reducing repeated computation. To sim-

plify checkpoint-restart implementations, many applications have all processes take

checkpoints simultaneously [7]. This strategy avoids the complexities of message log-

ging that uncoordinated checkpointing requires, as well as its possibility of cascading

rollback.

1.2.1 Challenges in High-Throughput Systems

Most production FGCS systems, such as Condor, store checkpoints on dedicated

checkpoint servers. These are few in number, well-provisioned, and maintained such

that 24 × 7 availability is achieved. This solution works well when a cluster only

belongs to a small administrative domain. However, storing checkpoints on a dedi-

cated pool of servers will not scale with the growing size of grids having thousands

of home users, multiple university campuses, and research labs as participants across

the whole nation. A number of performance and feasibility issues must be considered.

• FGCS systems do not include a dedicated network that can efficiently handle

the load of transferring potentially gigabytes of checkpoints between a compute

host or execution host (the host on which the guest process is executing) or

the storage hosts (hosts that have contributed storage). Moreover, for multi-

university grids, current mechanism for storing checkpoints in dedicated servers

6

is inefficient. This is because the compute and storage hosts may be located at

distant places.

• A mechanism based on round trip time (RTT) to choose the closest storage host

for saving checkpoint files may result in huge network traffic during network

transfer, making it less preferable than a distant one.

Real users using DiaGrid complained about poor performance of their applications

due to the stated reasons.

1.2.2 Challenges in High Performance Computing Clusters

In HPC clusters, a large number of computing resources are generally connected

to each other via high speed local area networks and a parallel file system (PFS)

where generated output files such as visualization and restart dumps get stored.

The major problem that threatens to make today’s checkpointing systems unscal-

able is the increase in the amount of data being generated. For example, pF3D, an

application for studying laser-plasma instabilities [8], generates 2.15TB of checkpoint

data for 4096 processes on 512 nodes [9]. The increase in computation capability in

terms of CPU and memory enables applications to solve much more complex and

intricate problems faster and at finer resolutions. Thanks to today’s supercomput-

ers, settling for a coarse granularity is a distant past. The underlying implication of

large-scale computing is that these applications generate progressively larger volume

of output files. These files could potentially be output files in the form of visual-

ization dumps or memory snapshots, also known as “checkpoint files”, that are used

to recovery from failures. Related literature [10, 11] has already established that the

increase in component count in large-scale clusters reduces the mean time between

failure. Hence, failures and the need to recover the already completed computation

is a common case.

However, since network bandwidth is not growing proportionately with the in-

crease in the computational resources, this also indicates that with the increase in

7

the volume of data, any system with large volume of data transfer between different

parts of a network will not scale as well. For example, visualization files for a climate

modeling application can be several peta bytes depending on the resolution of the

problem [12].

The implications of disproportionate growth of the volume of data and network

bandwidth are two fold – (i) reduced checkpointing frequency – since it takes longer

to store them on PFS, and (ii) increased overall application completion times since

restarts, that take place in the critical path of applications, are becoming progressively

more expensive.

1.2.3 Summary

Given that reliability is a big challenge for ever growing large-scale computing

environments and the current solutions for providing fault-tolerance to applications

will not scale, in this thesis we focus on developing scalable checkpointing systems for

these computing environments. We propose analytical solutions to improve reliability

and availability of checkpointing systems, designed and developed scalable systems

to handle large volume of checkpoint data, and demonstrated the effectiveness of our

solutions on production systems.

1.3 Dissertation Contributions

In this section, we summarize the contributions of this thesis for the projects we

worked on so far.

1.3.1 Checkpointing System for Grid

We store checkpoints in a distributed manner on grid resources. This is different

from the state-of-the-art checkpointing systems in grid since production systems such

as Condor [13] store them on dedicated checkpoint servers. Checkpointing systems

8

with dedicated checkpoint storage will not scale well with the growing sizes of grids

having machines in geographically distributed locations. However, since grid resources

have high fluctuating availability, checkpoints stored on them may not be available

when needed. To ensure reliable execution of applications, we develop a multi-state

failure model for predicting availability and load on storage hosts. Previous work

has only considered a failure model for compute hosts [14]. These two models are

different since they consider two different types of resources – computational (CPU

and memory) and storage (disk I/O).

Another mechanism available in Condor is to use multiple storage servers provi-

sioned throughout the grid, selecting the closest storage server based on round trip

time (RTT) for saving data. However, this solution will not work well since a phys-

ically close node may observe huge network traffic during checkpointing intervals,

making it less preferable than a distant one. In contrast, we develop a failure-aware

storage selection technique that selects a set of reliable and lightly loaded storage

hosts for a compute host, based on their history of availability and load. Previous

work has not considered the multiplicity of factors related to storage hosts that affect

the performance of checkpointing and recovery [14,15].

Grids do not include dedicated networks that can efficiently handle the load of

transferring potentially gigabytes of data between compute hosts and storage servers.

In contrast, our scheme selects a set of storage hosts based on their availability and

available bandwidth between the compute machine and the storage hosts. Also, we

develop an efficient method that provides fault-tolerance to the process of check-

pointing data as well as uses parallelism offered by multiple fragments being stored

on multiple storage hosts to reduce checkpoint and recovery overheads. This ap-

proach leverages prior work in erasure coding for fault-tolerance [16] while using it in

a different context (shared grid environments) and using the parallelism afforded by

it.

We have implemented and evaluated falcon on the production Condor testbed

of Purdue University – DiaGrid. The experiments ran on DiaGrid show that perfor-

9

mance of an application with falcon improves between 11% and 44%, depending

on the size of checkpoints and whether the storage server for Condor’s solution was

located close to the compute host. Also, we show that the performance of falcon

scales as the checkpoint sizes of different scientific applications increase.

Section 2.5 discusses studies that apply the knowledge of failure awareness in

resource scheduling. However, none of them address the problem of selecting reliable

checkpoint repositories in shared storage environment and balance load across them.

In contrast, falcon employs some well-known techniques, to improve fault-tolerance

of data and to improve performance of guest processes. Distinct from prior work, we

try to address the unanswered issues of choosing reliable storage nodes in a shared

grid environment, balancing load across them, and finally using them for storing and

retrieving checkpoints.

1.3.2 Checkpointing System for Clusters

On the other hand, for checkpointing systems in HPC, the problem is twofold:

first, the increase in aggregate volume of data; second, the increase in contention due

to a large-number of concurrent transfers. Since checkpoints are the primary source of

today’s large volume of data, we looked at the scalability issue of today’s checkpoint-

ing systems as a case study. In order to achieve tolerable performance, applications

may need to reduce their checkpointing frequency, which means more compute time

is lost in the event of a failure. To address these challenges, we designed a novel tech-

nique, called “Data-Aware Compression”, and developed and deployed our system,

mcrEngine, on a supercomputer at Lawrence Livermore National Laboratory. Other

researchers have investigated reducing the size of checkpoints by writing less data in

the checkpoints or by compressing the checkpoint files. Incremental checkpointing

reduces the size of checkpoints by writing changes in application data between full

checkpoints [17–20]. These approaches are orthogonal to our work, as incremental

checkpoints can be compressed for further savings [21].

10

The state-of-practice in writing checkpoint is either N → 1 (one process collects all

checkpoints and writes to stable storage) orN → N (each process transfers checkpoint

directly to stable storage). The best compromise is to implement N → M (where

M << N) checkpoint transfer. However, this scheme is significantly complex for

application developers to implement. Our solution is a checkpointing system that

implements N →M scheme transparently to application developers.

To summarize, the major contributions of mcrEngine are–

• transparently aggregate checkpoints across processes in a data-aware manner,

• applies data-aware compression to gain the most reduction possible,

• stores aggregated and compressed data in a buffered manner to the PFS.

Our solution tackels both of the problems by reducing the number of concurrent

transfers and the total size of data transferred between compute nodes and the PFS.

Section 3.7 discusses a number of related work that looks at system-level checkpoint

compression. These approaches all use data-agnostic compression while we investigate

data-aware techniques. To the best of our knowledge, we are the first to investigate

a data-aware compression approach and cross-process merge and compression for

parallel applications with many processes.

1.4 Dissertation Organization

We present our solution to making checkpointing systems reliable and efficient in

Chapter 2.6. Chapter 3.8 presents a novel technique of data semantic-aware aggrega-

tion and compression. In Chapter 4.6 we present preliminary results of benefit-aware

clustering of checkpoints to improve overall compression ratio. Finally, we conclude

in Chapter 5.

11

2. RELIABLE CHECKPOINTING SYSTEM FOR

FINE-GRAINED CYCLE SHARING SYSTEMS

A Fine-Grained Cycle Sharing (FGCS) system [22] aims at utilizing the large amount

of idle computational resources available on the Internet. In such a cycle sharing

system, PC owners voluntarily make their CPU cycles available as part of a shared

computing environment, but only if they incur no significant inconvenience from let-

ting a foreign job (guest process) run on their own machines. To exploit available idle

cycles under this restriction, an FGCS system allows a guest process to run concur-

rently with jobs belonging to the machine owner (host processes). However, for guest

users, these free computation resources come at the cost of fluctuating availability

due to “failures”. Here we define failures to be due either to the eviction of a guest

process from machines due to resource contention, or due to conventional hardware

and software failures of machines. The primary victims of such resource volatility are

large compute-bound guest applications, whose completion times fluctuate widely due

to this effect. Most of these applications are either sequential or composed of several

coarse-grained tasks with little communication in between.

To achieve high performance in the presence of resource volatility, checkpointing

and rollback have been widely applied [5]. These techniques enable applications to

periodically save checkpoints - snapshots of applications’ states - onto stable storage

that is connected to the computation node(s) through network. A job may get evicted

from its execution machine any time and can recover from this failure by rolling back

to the latest checkpoint. Evictions may occur due to software or hardware failure,

host work load increasing beyond a threshold or simply owner of the machine has

returned.

Most production FGCS systems, such as Condor, store checkpoints to dedicated

storage servers. These are few in number, are well-provisioned, and maintained such

12

that 24×7 availability is achieved. This solution works well when a cluster only

belongs to a small administrative domain or there is a large number of storage servers.

However, it does not scale well with the growing sizes of grids having thousands

of home users, geographically separated university campuses, and research labs as

participants. For example, the production Condor pool at Purdue University (PU),

called “DiaGrid” [23], is one of the largest such pools in the country with 36,000

processors. It has machines “flocking” from Indiana University (IU), University of

Notre Dame (ND), and Purdue University Calumet (PUC). A number of performance

and feasibility issues have been encountered by researchers running jobs on DiaGrid.

First, FGCS systems do not include dedicated networks that can efficiently handle

the load of transferring potentially gigabytes of checkpoints between compute hosts

(CH) (hosts on which guest processes execute) and storage hosts (SH) (hosts that

contribute storage space). Moreover, for multi-university grids, the current mecha-

nism for storing checkpoints on dedicated servers may cause large network latencies

since the compute and storage hosts may be located at large network distances. We

collected traces that show 12% of jobs submitted to DiaGrid between March 5th,

2009 and March 12th, 2009 from PU actually ran on ND’s machines.

Second, even if multiple storage servers could be provisioned and made available

throughout the grid, selecting the closest storage hosts based on round trip time

(RTT) for saving data, may not perform well. The reason is that a physically close

node may observe huge network traffic during checkpointing intervals, making it less

preferable than a distant one. This mechanism is also available in Condor.

Third, a dedicated storage server becomes loaded as the number of concurrent

transfers increases—which ultimately causes degradation in the performance of these

guest applications.

Our work is motivated by these issues reported by scientists using DiaGrid for

running their compute-intensive jobs with checkpoint-recovery. In this work, we have

developed a framework for reliable execution of applications in a shared storage en-

vironment—an environment where a host can serve as both an execution node for a

13

guest job as well as a storage host for saving checkpoints of others—as opposed to

dedicated checkpoint servers. For this, we first propose a novel multi-state failure

model for the shared storage hosts. Then, we propose a failure prediction scheme and

apply this to the multi-state failure model to choose reliable and less loaded storage

nodes to serve as checkpoint repositories. Finally, we propose an algorithm for effi-

cient checkpoint storage and recovery. This algorithm uses erasure encoding [16] to

break checkpoint data into multiple fragments, such that the checkpoint data can be

reconstructed from a subset of the fragments. We realize our algorithms in a practical

system called falcon.

The rest of the paper is organized as follows. Section 2.1 presents a comprehensive

summary of our previous work on failure-aware checkpointing and resource availabil-

ity prediction. Our major contributions and system designs for both falcon and

falcon-p are described in detail in Section 2.2. Section 2.3 presents implementa-

tion details of falcon. Then, experimental approaches and results are discussed in

Section 2.4. Section 2.5 reviews the relevant literature.

2.1 Background on Failure-Aware Checkpointing

Failure-aware checkpointing builds on mechanisms that predict the availability of

the involved compute and storage hosts. In our previously developed prediction tech-

niques [24], we applied a multi-state failure model to predict the Temporal Reliability,

TR, of compute hosts. TR is the probability that a host will be available throughout

a given future time window. Quantitatively, TR(x) is the probability that there will

be no failure between now and time x in the future. To compute TR, we applied a

Semi Markov Process (SMP) model, where the probability of transitioning to a state

in the future depends on the current state and the time spent in this state. The pa-

rameters of this model are calculated from the host resource usages during the same

time window on previous days, since in many environments, the daily pattern of host

workloads are comparable to those in the most recent days [25].

14

In other work [14], we proposed two algorithms for selecting reliable storage hosts

in an FGCS system, where non-dedicated host machines provide disk storage for

saving checkpoint data. A checkpoint is taken periodically and contains the entire

memory state of an application. A checkpoint is used by a job for recovery when it

gets rescheduled to another machine after the current host fails. For reliable storage

in an FGCS system, we considered two criteria: the network overhead due to saving

and recovery of checkpoints, and the availability of the storage hosts. This work [14]

applied the knowledge of network connectivity and of resource availability to predict

reliability of a checkpoint repository from a set of storage hosts. This work also

proposed a one-step look ahead heuristic to determine the optimal checkpoint interval.

It compares the cost of checkpointing immediately with the cost of delaying that to

a later time and uses that to adjusted checkpoint intervals.

Our prior work left some questions unanswered. First, it applied the failure-

model for compute hosts to predict the availability of storage hosts. These two kinds

of hosts offer resources with different characteristics; hence they will have different

failure models. Second, there was no notion of load-balancing for storage hosts. Thus,

a storage host that is predicted to have high availability in the near future will see

a flash crowd of large checkpoints from several concurrently executing jobs. The

checkpoints are often large in size (e.g., with the mcf benchmark application that

we experiment with, the size is about 1.7 GB), and this load disbalance can cause

significant perturbation to the FGCS system. For example, the machine owner can see

slow I/O for his own jobs during such flash crowds. Third, for predicting reliability of

a storage host, we used absolute temporal reliability even though correlated temporal

reliability is the important criterion. By correlated temporal reliability, we mean

what is the likelihood of the storage host being available, when needed, i.e., when

the compute host has a failure. It is at that time that the checkpoint is needed for

recovering the guest process on a different machine. Fourth, our prior work used a

static bandwidth measure, given by the network specification, to estimate the network

overhead. We find that the actual bandwidth available for a large checkpoint transfer

15

may vary significantly from the static measure. Finally, and most significantly from

an implementation and deployment effort, our prior work performed a simulation of

the checkpoint-based recovery scheme, using the GridSim toolkit. In this paper, we

present a fully functional system executing on Purdue’s DiaGrid.

We compare the performance of falcon with two other checkpoint repository

selection schemes:

• Dedicated: This scheme uses a pre-configured checkpoint server to store check-

points. These are generally powerful machines with very high availability. This

is a supported current mode of usage for checkpointing in DiaGrid, as in many

other production Condor systems.

• Random: This scheme selects storage hosts randomly. Here, we assume that

this scheme employs the same checkpoint store and retrieve methods as fal-

con, except that it chooses storage hosts randomly at the beginning of each

checkpoint interval.

2.2 Design for Robust Checkpointing

In this section, first we discuss our proposed novel multi-state failure model for

storage hosts. The roles that a host assumes exhibit different characteristics - com-

putation nodes execute guest jobs requiring CPU and memory resources whereas

storage hosts handle I/O load. Therefore, failure models for these two types of re-

sources are different. We propose a failure model specialized to storage nodes in a

shared computing environment.

Second, we propose a new failure prediction technique to select reliable check-

point repositories by considering correlation of failures between compute and storage

hosts. Third, we present an algorithm that fragments checkpoints using erasure cod-

ing and concurrently saves them to multiple storage nodes. The coding introduces

redundancy such that a subset of the fragments can be used for the recovery of the

application. This section discusses the single-threaded design of the compression and

16

the erasure encoding algorithms. Section 2.2.5 presents the multi-threaded architec-

ture of falcon.

2.2.1 Novel Multi-state Failure Model for Storage Hosts

In an FGCS system, storage hosts are often non-dedicated, shared nodes contribut-

ing their unused disk spaces. Checkpoint data saved by guest jobs in these storage

nodes may get lost when the storage nodes become unavailable due to resource con-

tention or resource revocation. This is of particular concern for long-running compute-

intensive applications. The model for recovering a guest job when it is evicted from a

machine is that the guest process migrates to another compute host and uses the last

checkpoint fragments to recover and re-execute from the checkpoint. In this situation,

it is clearly advantageous to choose a storage host that:

• is going to be available with high probability when a compute host becomes

unavailable.

• is less likely to have high I/O load. This ensures load-balancing across storage

hosts and is crucial for an FGCS system, since creating load on an already busy

node will reduce the performance of host and guest jobs.

• has large available bandwidth to the computation node so that the transfer of

checkpoint fragments incurs lower network latency.

To predict failures of storage hosts, we propose a novel multi-state failure model. In

our previous work [14], we developed a failure model for compute hosts and applied it

to storage hosts. Since the underlying availability models of the two types of resources

- CPU cycles and disk storage - are different, applying the same failure model to both

these resources is inadequate.

Figure 2.1 presents our new five-state failure model for storage hosts. The states

are defined as follows:

17

[τ1, τ2)

[τ2, 100]

[τ2, 100]

[τ2, 100]

[τ1, τ2)

%io−util ~

%io−util ~

%io−util ~

%io−util ~

%io−util ~

#of C
H currently

sending data ==

S

S S
2 3

S’

S

1

M
AX−CLIE

NTS

0

0

Fig. 2.1.: New multi-state storage host failure model.

(i) S0: storage host is running with I/O load < τ1 and number of compute hosts

sending checkpoint data concurrently is < MAX-CLIENTS, (ii) S ′0: number of com-

pute hosts sending checkpoint data concurrently is = MAX-CLIENTS, (iii) S1: I/O

load of storage host is between [τ1, τ2), (iv) S2: I/O load of storage host is between

[τ2, 100%] (v) S3: storage host is not available due to resource revocation.

Here, the states S ′0 and S2 ensure load-balancing since storage hosts in either of

these states do not accept any more request for storing checkpoint data. Knowledge

about states S1 and S2 is used during storage selection to rank storage hosts according

to their likelihood of becoming loaded in the future. Note that, state S ′0 has been

separated from state S1 and S2 because this state represents a transient state of a

storage host. A compute host only uses the knowledge of states running, loaded and

temporarily unavailable to predict load on a storage host machine. The knowledge

of S ′0 is only used by the storage host to reject requests from new compute hosts for

storing checkpoint and thus enforce load balancing. State S3 is an absorbing state

because we assume the failures are irrecoverable. Even if in practice the failure can be

recovered, the time to recover is large enough and unpredictable enough to be useless

for the current guest job.

18

CRLS(SHk, CHl) =

{
LI(SHk, CHl) + γ, if CR(SHk, CHl) ≥ γ;

CR(SHk, CHl), otherwise.
(2.1)

where,

PrCHl
(i) = Pr{CHl in state i}

PrSHk,CHl
(i|j) = Pr{SHk in state i|CHl in state j}

CR(SHk, CHl) =


PrSHk,CHl

(S0|down)

+PrSHk,CHl
(S1|down)

+PrSHk,CHl
(S2|down), if PrCHl

(down) > 0;

γ, otherwise.

LI(SHk, CHl) =


α× PrSHk,CHl

(S0|up)
+(1− α)× PrSHk,CHl

(S1|up), if PrCHl
(up) > 0;

0, otherwise.

When a compute host requests a storage host to save checkpoint data, depending

on which state the storage host is in, it replies back. When the storage host is in

either S0 or S1, it replies “ok”, and the compute host continues with sending data.

Otherwise, if it is in either S ′0 or S2, it does not accept any new request.

2.2.2 Failure-aware Storage Selection

Temporal Availability

Similar to other resources in FGCS systems, checkpoint repositories are volatile.

To predict availability of a storage host SHk in a given time window with respect to

a compute host CHl, we define Correlated Reliability Load Score (CRLS) as:

19

In Equation 2.1, PrCHl
(down) and PrCHl

(up) denote the probability that the com-

pute host CHl is down (state S0) and up (state S1) respectively. Here, CR(SHk, CHl)

and LI(SHk, CHl) denote the correlated reliability and the load indicator between

SHk and CHl respectively. CR(SHk, CHl) and I(SHk, CHl) are probabilities while

CRLS is not—it is a score ∈ [0, 2]. In Equation 2.1, we first calculate CR(SHk, CHl)

as the total probability that the storage host SHk remains up when the compute host

CHl is down. Note that, here we are adding up the probabilities corresponding to

storge host SHk being running, loaded, or temporarily unavailable. The intuition is

that if the checkpoint data is needed (since the compute host has gone down), then

the storage host will allow the read of the data, even if it is loaded. We consider

storage hosts having CR(SHk, CHl) ≥ γ (γ is a configurable parameter, we chose

γ = 0.95 for our experiments) as very reliable. The equation rounds the reliability

component of CRLS to γ since we consider that reliability scores greater than γ are

high enough to be considered equivalent and also may be statistically indistinguish-

able due to the inherent noisiness of the measurements. Beyond this point, we would

want to give weightage to the less loaded storage hosts and therefore add their load

indicators to γ to make less loaded machines have high CRLS value. For storage

hosts having reliability ¡ γ, we do not consider their load because we want to ensure

that the most reliable storage nodes get chosen first. We calculate the load indicator

LI(SHk, CHl) as a weighted probability of SHk being in the two tolerably loaded

states, namely, S0 and S1. The weight α is chosen as 0.75 in our experiments.

Available Bandwidth

In addition to failure-prediction, checkpoint transfer overhead is one of the key

factors in storage repository selection. Our previous work [14] used effective band-

width between a compute and a storage host to calculate network overhead. Effective

bandwidth is the maximum possible bandwidth that a link can deliver. But the actual

bandwidth available between a compute host and a storage host may be far less than

20

this quantity. So, it is more accurate to use available bandwidth between two hosts to

access the overhead of transferring data between them. Available bandwidth (ABw)

is the unused capacity of a link or end-to-end path in a network and is a time-varying

metric. We define network overhead of transferring a checkpoint of size n with erasure

coding parameters (m, k) from compute host CHj to storage host SHi in Equation

2.2. The parameters (m, k) mean that a total of m + k checkpoint fragments are

stored and any m of them may be used to recover the entire checkpoint.

network overhead, Ni,j =
n/m

ABw(SHi,CHj)
(2.2)

In Equation 2.2, Ni,j represents the network overhead of sending a checkpoint from

compute host CHj to storage host SHi. ABwSHi,CHj
is the available bandwidth

between storage host SHi and compute host CHj.

Objective Function

We define an objective function in Equation 2.3 that tries to balance the check-

point storing overhead with the re-execution cost if that checkpoint had not been

taken. An application incurs overhead during a checkpoint storing phase while bene-

fits from the fact that it does not have to re-execute from the very beginning and can

easily restart from the state saved in the latest checkpoint. The difference of these

two quantities is the ultimate price that the application pays. Clearly, a lower value

is desirable. falcon selects storage nodes such that they minimize this objective

function. For a particular compute host CHj, m + k storage hosts are selected for

storing that many erasure coded checkpoint fragments.

F =
MTTFcmp

CI
×

V∑
i=1

(Ci×Ni,j)− (Tcurr +MTTFcmp)×
V∏
i=1

CRLS ′(SHi, CHj) (2.3)

V∑
i=1

Ci = (m + k) (2.4)

21

CRLS ′(SHi, CHj) = max[1− Ci, CRLS(SHi, CHj)] (2.5)

Here, MTTFcmp is the mean time to failure of a compute host, CI is the length of a

checkpoint interval and Tcurr is the time units spent on performing useful computation

for the job so far. V is the total number of storage hosts. The variable Ci is an

indicator variable, set to 1 for the storage host that is selected and 0 for the one that

is not. Our goal is to pick the m + k storage hosts so as to minimize the objective

function F . The first term corresponds to the overhead of storing the checkpints. The

term MTTFcmp

CI
approximates the number of checkpoints generated within MTTFcmp.

The second term corresponds to the re-execution cost—a larger value means lower

re-execution cost. Equation 2.5 forces the formulation to only consider the storage

hosts that will be selected. We developed a similar objective function in our previous

work [14]. However, Equation 2.3 uses different measures of network overhead and

reliability score.

Storage Selection Algorithm

To choose storage nodes that minimize the objective function in Equation 2.3, we

devise a greedy algorithm. Consider again that the storage selection is being done by

compute host CHj.

We first sort the storage hosts in decreasing order of CRLS(SHi, CHj) and in-

creasing order of Ni,j. If a storage host appears in the first m + k elements of both

the sorted lists, it is selected. Then, the value of F is calculated with Ci = 1 for

the chosen hosts and 0 for others. This will be used as the baseline value of F when

considering further nodes to add.

If the number of selected storage hosts is less than m+k, the objective function is

calculated by including one unselected host at a time. The host causing the minimum

increase to the objective function is selected. When the number of selected hosts is

m+k, the algorithm terminates; otherwise the algorithm continues adding one storage

host in each iteration. The relative ordering of the different hosts may change from

22

one iteration to the next and therefore the objective function has to be evaluated for

all the unselected hosts at each iteration.

When a storage host becomes unavailable later during a checkpoint interval, the

compute host needs to re-choose a new one to replace it. Re-choosing another host

from previously unselected ones is also done based on minimizing the same objective

function. Our system design is such that this storage selection process occurs in par-

allel to the actual application and to the algorithm that uses this decision to send

checkpoint fragments to the selected repositories. Since checkpoint repository selec-

tion occurs out of the algorithm’s critical path, this speeds up the checkpoint storing

algorithm. But the tradeoff of this design choice is that there may be stale informa-

tion being used to choose the storage hosts. This can be addressed by configuring

the periodicity with which these measurements and list updates take place. Greater

is the volatility in the underlying grid environment, smaller should be the setting of

the period. The statistical analysis of the eviction characteristics in DiaGrid (as

represented in Table 2.2) shows that on average 1.3 evictions occur per hour. For

all our experiments, we have configured this periodicity of calculating the objective

function to once every 10 seconds.

2.2.3 Single-Threaded Method for Checkpoint Recovery

In our previous work [14] we proposed two algorithms - Optimistic and Pessimistic

for selection of storage repositories. The Optimistic scheme selects a set of storage

hosts at the very beginning of a job’s execution and uses this set to save checkpoint

data during each checkpoint interval. This set is updated only when a job migrates

to a different execution machine. On the other hand, the Pessimistic scheme selects a

new set of storage hosts at the beginning of each checkpoint interval. While Optimistic

ignores inherent dynamism that is present in resource availability, Pessimistic results

in unnecessary overhead [14]. Here, we develop a new algorithm that chooses storage

hosts on an as-needed basis, always keeping m+k fragments. It releases the resource

23

availability assumptions from our prior work and updates the selection of storage

hosts on an as-needed basis. It takes into account the changing load and fluctuating

resource availability. Our algorithm for storing checkpoint data has the following

steps:

1. Read chosen storage host list generated by algorithm described in Section 2.2.2

2. Read checkpoint from disk

3. Compress the checkpoint

4. Erasure encode the checkpoint into m + k fragments (erasure coding with pa-

rameters (m, k))

5. Send fragments concurrently to storage hosts

6. If any of the chosen storage hosts is in state S2 or S3, re-choose another node

from the list of unselected ones. The same greedy algorithm, described in

Section 2.2.2, is used to rechoose. Send the remaining fragments concurrently.

7. Repeat step 6 until all the fragments are sent or a new checkpoint is generated. If

a new checkpoint is generated then start from step 1 and abandon the remaining

checkpoint fragments.

2.2.4 Data Parallelism and Parallel Architecture

Since checkpoint sizes of the biology applications can potentially range from couple

of megabytes to the order of gigabytes, processing them in their entirety may take

a long time. But, by dividing a checkpoint data into a number of blocks and then

processing each block in parallel may speed up the processing of the checkpoints

in a computation host. Most of the commodity machines that are part of a grid,

are multi-core machines. So, by taking advantage of thread level parallelism (TLP)

to process the large sized checkpoint data, the processing overhead can be reduced

24

significantly. In this paper, we have redesigned the checkpoint storing and retrieving

process of falcon [26] to do exactly that. In the evaluation section, we will refer to

this architecture as falcon-p, differentiated from the falcon architecture presented

so far in the paper.

2.2.5 Design of Parallel Checkpoint-Recovery Scheme

Parallel Checkpointing

To take advantage of TLP, we divide a checkpoint into b blocks where b is a

configurable parameter. The value of b should not be more than the number of

cores available on that particular computation host. Then we spawn b number of

threads where the ith of these reads from index i × dn/be to (i + 1) × dn/be − 1.

Since multiple threads can read a file concurrently, the overhead of reading a file

decreases. In addition to that, now each thread has to deal with a smaller sized data

set. After reading a mutually exclusive block, each thread then goes on to compress

the data, erasure encode each block into m + k fragments and transfer them to the

chosen storage hosts. We send the ith fragment of each block to the ith storage host

chosen by our storage selection technique 2.2.2. The rationale behind storing one

fragment from each block on a storage host is that an available storage host implies

the availability of 1 fragment per block for each of the blocks. In this way, our analysis

for selecting a set of reliable and efficient storage hosts still holds true.

Parallel Recovery

During the recovery phase, a number of threads equal to the number of blocks a

checkpoint was divided into during the checkpoint storing phase, work in parallel to

reconstruct the blocks. The ith thread does the following:

• fetch the m+ k fragments of the ith block in parallel

• erasure decode these fragments to build the compressed ith block

25

• decompress the ith block and write to a file

While, the network transfer, decoding and decompression phases take the advantage

of TLP, writing the blocks to the disk is a serial operation.

2.3 Structure of falcon

Figure 2.2 presents the system level block diagram of falcon. In this figure,

each large box represents one component and each small box represents a module.

We have designed our system such that some modules run off the critical path of our

checkpoint-recovery schemes.

26

R
et

ri
ev

e
ch

ec
k
p
o
in

t
fr

ag
m

en
ts

 d
u
ri

n
g
 r

es
ta

rt

C
h
ec

k
p
o
in

t
re

co
v
er

y
:

D
is

k

M
ea

su
re

 A
B

w

se
n
d
in

g
 c

h
ec

k
p
o
in

t
S

er
v
er

 r
ec

ei
v
in

g
 a

n
d

fr
ag

m
en

ts

D
is

k
L

o
ad

 m
ea

su
re

m
en

t
D

is
k
 I

/O

R
es

p
o
n
d
s

to
 p

er
io

d
ic

q
u
er

ey
 o

f
H

is
to

ry
 S

er
v
er

ab
o
u
t

cu
rr

en
t

st
at

e
o
f

S
H

S
to

ra
g
e

H
o
st

 C
o
m

p
o
n
en

t

th
e

cr
it

ic
al

 p
at

h

C
o
m

p
u
te

 H
o
st

 C
o
m

p
o
n
en

t
H

is
to

ry
 S

er
v
er

R
an

k
 s

to
ra

g
e

n
o
d
es

b
as

ed
 o

n
 C

T
R

S
 a

n
d
 A

B
w

N
et

w
o
rk

co
m

m
u
n
ic

at
io

n

F
il

e

co
m

m
u
n
ic

at
io

n
B

o
th

 w
ay

co
m

m
u
n
ic

at
io

n

O
n
e

w
ay

th
e

cr
it

ic
al

 p
at

h

M
o
d
u
le

s
in

M
o
d
u
le

s
o
u
t

o
f

co
m

m
u
n
ic

at
io

n

R
an

k

S
en

d

fr
ag

m
en

ts
 i

n
 p

ar
al

le
l

to

C
o
m

p
re

ss
,
en

co
d
e

an
d
 s

en
d

C
h
ec

k
p
o
in

t
st

o
re

:

se
rv

er

R
ec

o
v
er

M
A

B
w

L
o
ad

Q
ry

H
is

t

S
rv

r

F
ig

.
2.

2.
:

S
y
st

em
le

ve
l

b
lo

ck
d
ia

gr
am

of
ou

r
sy

st
em

.

27

falcon consists of three major components:

• Compute host component (CHC) takes care of failure-aware checkpointing and

is submitted along with the guest process to the compute host.

• Storage host component (SHC) is a user application that runs in storage hosts.

This component implements the multi-state failure model explained in Section

2.2.1.

• History server component (HSC) runs on any machine and periodically col-

lects states of compute and storage hosts. Modules in the CHC and the SHC

communicate with this component to calculate CRLS.

falcon is integrated with Condor and some of the design decisions were driven

by the design of Condor. For example, all the modules are implemented as user-level

processes. Detailed description of each module in each component is given in the

following subsections.

2.3.1 Compute Host Component (CHC)

Compute host component is the part of falcon that runs on a computation host.

The CHC consists of four modules:

• Module MABw is a process that periodically measures available bandwidth be-

tween this computation host to all the storage hosts and appends them to a file.

For available bandwidth measurement, we have used Spruce [27], a light-weight

available bandwidth measurement tool. Spruce provides a server module that

runs as a part of the CHC and a client module that runs as a part of the SHC.

For our experiments, we have used a period of 10 seconds for measuring the

available bandwidth.

• Module Rank is a process that implements the greedy algorithm described in

Section 2.2.2. It iteratively ranks the storage hosts and produces an ordered

list of storage hosts.

28

• Module Send implements an algorithm that is responsible for storing and re-

trieving the checkpoints. In the single threaded architecture of falcon [26],

this module reads the checkpoint data from disk, compresses it and then uses

erasure coding to break the compressed checkpoint data into m + k fragments

where m and k are parameters of erasure coding. For erasure coding, we mod-

ified the zfec implementation [28] to convert it to use only C so that we can

run on all the machines of DiaGrid. These checkpoint fragments are sent in

parallel to storage host module Srvr. In the multi-threaded architecture, the

checkpoint reading, compression and encoding schemes are conducted in blocks

by parallel threads.

• Module Recover is responsible for retrieving checkpoint fragments during a

rollback phase from storage repositories, then decoding the fragments to one

compressed data and then uncompressing it to produce original checkpoint data

- that a guest process uses to restart. Checkpoint fragments are fetched from

storage hosts in parallel.

The modules are light-weight, requiring little CPU and memory resources.

2.3.2 Storage Host Component (SHC)

The SHC consists of three modules:

• Module Load measures disk I/O load periodically. This process runs in parallel

to the actual server module Srvr and generates required load information that

module Srvr uses to determine which state the storage server is in according to

Figure 2.1.

• Module Srvr implements the server logic for receiving and sending checkpoint

data to variable number of compute hosts. It updates the variable current-state

at the beginning of each request received from Module Send of the CHC.

29

Table 2.1: Checkpoint sizes of different applications.

Applications mcf TIGR-
I

TIGR-
II

TIGR-
III

Original Checkpoint Size
(MB)

1677 946 500 170

Compressed Checkpoint
Size (MB)

241 201 153 129

Compression Ratio 85.63% 78.75% 69.4% 24.12%

• Module Qry is a parallel process that responds to the history server’s query

about which state the storage host is currently in. It receives values of the

state variables from module Load (I/O load) and module Srvr (the number of

compute hosts currently being served).

2.3.3 History Server Component (HSC)

This can be run as a user process on any machine. This component pings each

compute host to note if that machine is up or down and communicates with storage

hosts to receive their current status. Note that, the HSC only takes 4 states of the

storage hosts into account based on load - namely, S0, S1, S2 and S3. This information

then is stored in log files as a {current time stamp, current state} tuple. The HSC

computes CRLS using Equation 2.1. Our current implementation uses a central

server approach. This design can be extended to a distributed implementation.

2.4 Evaluation

We have developed a complete system, as described in Section 2.3. We ran ex-

periments on a production Condor testbed—DiaGrid by integrating our work with

standard benchmark applications. These applications were chosen from SPEC CPU

2006 and BioBench [29] benchmark suites. SPEC CPU 2006 is widely used for bench-

marking CPU-intensive programs while BioBench consists of well known biomedical

30

applications. This section presents the experiments for evaluating the system in terms

of its checkpoint recovery overheads and its effectiveness in improving job makespan.

In Sections 2.4.1 and 2.4.2, we present the evaluation of falcon (the single-core

version) and in Section 2.4.3, we present the evaluation of falcon-p (the multi-

core version). Table 2.1 shows checkpoint sizes generated by different benchmark

applications. MCF and TIGR are benchmark applications part of SPEC CPU 2006

and BioBench respectively. TIGR-I, TIGR-II and TIGR-III are runs of TIGR with

different input sizes.

We have organized our experiments to measure both fine-grain (micro benchmark

experiments) and coarse-grain (macro benchmark experiments) metrics. While the

micro benchmark experiments compare overheads of different checkpoint-recovery

schemes under controlled experimental conditions, the macro benchmark experiments

evaluate the effectiveness in improving job makespan running on Purdue’s condor

environment, the DiaGrid. Schemes that we compare with are:

• Dedicated: Condor’s scheme where a dedicated storage server is used for saving

checkpoint data.

• Random: A scheme where the storage hosts for saving the erasure encoded

checkpoints are randomly chosen from among all available storage hosts.

• Pessimistic: A scheme presented in [14] that assumes that resource fluctuation

is very common and re-chooses all the storage hosts at the beginning of each

checkpoint interval.

Note that, the default scheme of Condor is to send checkpoint back to the sub-

mitter machine (the machine from which the job was submitted). This scheme is

similar to that of using a dedicated server and hence performs no better than our

reference Dedicated algorithm (in fact, it can be significantly worse, if the submit-

ter sits behind a low-bandwidth connection). We do not compare falcon with the

Optimistic scheme because the assumption of not having any fluctuation in the grid

31

environment by the Optimistic scheme does not hold in practice due to the volatility

of the environment.

Checkpoint storing overhead includes time:

• for falcon to: (i) Read chosen storage host list from disk (ii) Read checkpoint

from disk (iii) Compress (iv) Erasure encode and write fragments to disk (v)

Read fragments from disk (vi) Send checkpoint fragments in parallel to storage

hosts

• for Dedicated to: (i) Read checkpoint from disk (ii) Send checkpoint to storage

server

• for Random to: (i) Choose storage nodes randomly (ii) Follow steps (ii) - (vi)

of falcon

Recovery overhead includes time:

• for falcon to: (i) Fetch the minimum required fragments from storage hosts.

This time includes reading checkpoint at the storage host end, network transfer

and writing to disk at the compute host end (ii) Erasure decode and write

compressed checkpoint data to disk (iii) Decompress and write to disk

• for Dedicated to: (i) Fetch checkpoint data from storage server. This time in-

cludes reading checkpoint at the storage host end, network transfer and writing

to disk at the compute host end

• For Random to: (i) Follow steps (i) - (iii) of falcon

For all our macro and micro benchmark experiments, we set erasure coding pa-

rameters to (3, 2) - meaning 3 fragments are required and 2 are redundant.

2.4.1 Macro Benchmark Experiments

This section presents results of our macro benchmark experiments - experiments

that we ran by submitting scientific applications to DiaGrid and measuring their

32

Table 2.2: Statistical analysis of the eviction characteristics in DiaGrid.

N µ σ Range
116 1.3130 0.2172 [1.0298,2.3931]

average makespan — the time difference between submission and completion of the

job minus the time it spent in the idle or the suspended states. A job submitted to

Condor remains idle until it gets scheduled to a suitable machine. Condor jobs can

specify their requirements for disk space, memory, machine architecture, operating

system etc. in a submission script and a scheduler matches these requirements with

machines that are available for running Condor jobs. Since this idle time is in no way

related to checkpoint-recovery scheme, we exclude it from calculating makespan.

Checkpointing in Condor is non-blocking for the applications - the only blocking

part is till the checkpoint is locally stored. Condor then transfers this checkpoint to

appropriate storage repository as configured. This non-blocking technique efficiently

hides checkpoint transfer overhead from makespan of applications. It is during restart

when applications need to fetch checkpoints to the execution machine and restart.

This recovery overhead directly adds up to an application’s makespan.

The recovery overhead is incurred as many times as there are evictions of the

applications from the compute hosts. We empirically measured this in DiaGrid and

present the failure characteristics in Table 2.2. We used 1.3 evictions per hour per job

as the rate of eviction for our experiments in Section 2.4.1. The table shows number

of jobs for which we collected data (N), average number of evictions per hour (µ),

standard deviation (σ) and range.

In Section 2.4.1 we compare average job makespan of applications using different

checkpoint repository techniques. The decompositions of checkpoint storing and re-

covery overheads are shown in Section 2.4.1 and Section 2.4.1 respectively. For all the

macro benchmark experiments we have used the sequential checkpoint storing and

recovery schemes of falcon.

33

0	

20	

40	

60	

80	

100	

120	

140	

160	

mcf	

 tigr	

Av
er

ag
e

Jo
b

M
ak

es
pa

n
(m

in
)	

Benchmark applications	

Falcon	

 Dedicated-Local	

 Dedicated-Remote	

Fig. 2.3.: Average job makespan of different applications.

Overall Evaluation

For overall evaluation of different schemes, we collected average job makespan of

two benchmark applications. We integrated three checkpoint schemes: falcon, Ded-

icated with a local checkpoint server (lab machine connected to the campus-wide LAN

at Purdue) and Dedicated with a remote checkpoint server (machine at University

of Notre Dame connected to Internet) with these applications and submitted jobs in

DiaGrid. Note that, University of Notre Dame is a part of this multi-university grid.

For all cases, these applications took checkpoint once every 5 minutes. Here, using

the Dedicated-Remote scheme represents the situation when jobs submitted from one

university go to run at another university but the checkpoint server is at the first

university. This is exactly the situation in Boiler-Grid for applications that run on

other university machines.

From Figure 2.3, we see that falcon outperforms Dedicated-Local and Dedicated-

Remote in actual application runs. In actual runs on DiaGrid, applications on an

average will see performance that lies between that of Dedicated-local and Dedicated-

34

��
��
��
��
��
��

��
��
��
��
��
��

Erasure Encode

Compress

Disk Read & Network Transfer

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

������

����

��
��
��
��

Checkpoint size in MB

 180

 160

 140

 120

 100

 80

 60

 40

 20

 0

C
h

ec
k

p
o
in

t
S

to
ri

n
g
 O

v
er

h
ea

d
 (

se
c)

F
al

co
n

D
ed

ic
at

ed

F
al

co
n

D
ed

ic
at

ed

F
al

co
n

D
ed

ic
at

ed

F
al

co
n

D
ed

ic
at

ed

170MB 500MB 946MB 1677MB

(a) Average checkpoint storing overhead

Decompress

Erasure Decode

Network Transfer & Disk Write

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��
��

������ ���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���

���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

����

��
��
��
��

F
al

co
n

D
ed

ic
at

ed

F
al

co
n

D
ed

ic
at

ed

F
al

co
n

D
ed

ic
at

ed

F
al

co
n

D
ed

ic
at

ed

 180

 160

 140

 120

 100

 80

 60

 40

 20

 0

170MB 500MB 946MB 1677MB

Checkpoint size in MB

R
ec

o
v

er
y

 O
v

er
h

ea
d

 (
se

c)

(b) Average recovery overhead

Fig. 2.4.: Recovery overhead of four different checkpoint sizes.

Remote since applications do go to run on machines at other campuses. The reasons

for performance improvement of falcon are many-fold — (i) falcon chooses stor-

age repositories that are more efficient to access (ii) checkpoint fragments saved by

falcon are much smaller in size due to compression and encoding, compared to the

checkpoint size that Dedicated schemes store. Section 2.4.1 explains that smaller

checkpoint size results in lower recovery overhead and hence improved job makespan

and (iii) the fragments are retrieved in parallel from the chosen storage hosts. More

about the contribution of each of the techniques (compression, load balancing and

parallel network transfer) in improving the recovery overhead is discussed in Section

2.4.2.

Checkpoint Storing Overhead

Figure 3.15 shows decomposition of overhead of falcon and Dedicated for a single

store operation. Dedicated scheme uses a remote checkpoint server.

One observation that can be drawn from Figure 3.15 is that as checkpoint size

increases, increase in checkpoint storing overhead of Dedicated becomes much higher

than falcon. The overhead is dominated by the disk read and network transfer time,

which increases with increasing checkpoint sizes. However, the design of compressing

35

the checkpoints and transferring the smaller checkpoint fragments in parallel speeds

this up.

Recovery Overhead

In Figure 2.4b we plot recovery overhead incurred by falcon and Dedicated

schemes for a single recovery operation.

One observation that can be made from Figure 2.4b is that as checkpoint size

increases, Dedicated scheme suffers due to large network transfer overhead. Com-

pression by falcon results in smaller checkpoint data and hence reduced network

transfer overhead. As Table 2.1 shows, compression ratio increases as size of check-

point data increases. This justifies our approach of incurring a little overhead at

the compute host side for compression with the benefit of significant improvement in

recovery overhead. Note that, lower recovery overheads directly translate to better

performance for an application.

2.4.2 Micro Benchmark Experiments

The objective of the micro benchmark experiments is to show off specific features

of falcon under controlled experimental conditions. We conducted three sets of

experiments to compare: (i) efficiency of different schemes in handling concurrent

clients, (ii) efficiency in handling storage failures and (iii) performance improvement

due to load balancing. For these experiments, we used checkpoint data of 500MB

generated by application TIGR. As storage hosts for falcon we used 11 - 1.86 GHz

Intel Core 2 Duo machines with 80GB of hard disk connected to the campus-wide 100

Mbps LAN and 1 - 2.00 GHz laptop with 160GB of hard disk connected to a DSL

modem. As dedicated storage server we used another lab machine with configuration

2.66 GHz Intel Core 2 Duo with 80GB of hard disk space and connected to the

campus-wide LAN. This machine was always available.

36

0	

50	

100	

150	

200	

250	

300	

350	

1	

 2	

 3	

 4	

 5	

C
he

ck
po

in
t s

to
ri

ng
 o

ve
rh

ea
d

(s
ec

)	

# of clients simultaneously sending data	

Falcon	

 Random	

 Dedicated	

Fig. 2.5.: Average execution time vs the number of concurrent clients.

Efficiency in Handling Simultaneous Clients

The objective of this experiment is to show how the performance of different

schemes scale with load imposed by multiple concurrent clients. In this experiment,

the checkpoint storing overheads of different schemes, in addition to the factors de-

scribed in Section 2.4, include time to write the checkpoint data to disk at the storage

host end. We vary the number of compute hosts simultaneously sending data and

measure the overhead for storing checkpoints.

Two observations that can be drawn from Figure 2.5 are:

1. As the number of clients simultaneously sending data increases, the checkpoint

scheme with a dedicated server suffers more than falcon. Even though with

erasure coding falcon introduces 40% more data, due to compression the total

37

amount actually sent by falcon is less than that of Dedicated. Total amount

of data sent by falcon with compression and erasure coding is:

datasent = 5× 153

3
MB = 255MB < 500MB

2. Checkpoint storing overhead of Random is larger than that of falcon because

Random chose the laptop behind the slow network connection 8% of the time.

Because of low available bandwidth between compute host and this laptop,

falcon never chose it.

Efficiency in Handling Storage Failures

Since storage hosts in FGCS are non-dedicated resources, a protocol must be able

to handle unavailability of storage nodes efficiently. The objective of this experiment

is to compare the added overhead of re-choosing storage nodes by falcon with that of

Random and the more conservative approach of Pessimistic [14]. For this experiment,

we killed the storage daemons running in those storage hosts to make them appear

unavailable.

One observation that can be drawn from Figure 2.6 is that the overhead of re-

choosing storage hosts using history and available bandwidth is no worse than that of

choosing them randomly. This shows that the design choice of measuring history and

available bandwidth out of the critical path yields robustness at no extra cost. But

it is clear from Section 2.4.2 that the scheme employed by falcon chooses storage

nodes wisely. Pessimistic however incurs large overhead due to measuring bandwidth

between compute and storage hosts at the beginning of every checkpoint storing

instance.

38

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

0	

 1	

 2	

 3	

 4	

C
he

ck
po

in
t s

to
ri

ng
 o

ve
rh

ea
d

(s
ec

)	

# of storage hosts failed	

Falcon	

 Random	

 Pessimistic	

Fig. 2.6.: Average checkpointing overhead vs the number of unavailable storage hosts.

Load Balancing vs Checkpointing Overhead

In this experiment, we compare the overheads of storing checkpoints when the

workload in storage hosts varies. The objective of this experiment is to evaluate the

effectiveness of the load balancing technique of falcon. For this experiment, we

generated background I/O load in a single storage host out of the 5 chosen ones using

a file system benchmark application Bonnie [30]. The checkpointing overheads of

both the techniques, in addition to the factors described in Section 2.4, include the

time for the storage hosts to write data to disk. Additionally, the overhead of the

scheme with load balancing includes time to rechoose a storage host to replace the

overloaded one.

Since τ2 is set as 80%, in Figure 2.7, the difference between the load balancing and

no load balancing cases comes up when load on a storage host becomes ≥ 80% and

falcon with load balancing scheme re-chooses. As high I/O load may imply high

CPU utilization as well, the model with load balancing benefits by not sending data

to this host. Ensuring balanced load among the shared storage resources is utterly

39

110	

115	

120	

125	

130	

135	

140	

145	

150	

40%	

 50%	

 60%	

 70%	

 80%	

 90%	

 100%	

C
he

ck
po

in
t s

to
ri

ng
 o

ve
rh

ea
d

(s
ec

)	

% Load on one storage host	

Falcon with Load-balancing	

Falcon without Load-balancing	

Fig. 2.7.: Average checkpoint storing overhead of different schemes.

important because these resources are shared by the owners voluntarily. Hence, taking

advantage of these resources in a way so that the actual host’s performance does not

degrade beyond a threshold is as crucial a parameter as the performance benefit

gained.

Parallel vs Sequential Retrieval of Checkpoints

In this experiment, we compare the network transfer overheads incurred by retriev-

ing the checkpoint fragments sequentially with that of retrieving them in parallel. The

size of the checkpoint fragments was 940MB each and we generated 100% I/O load

on the loaded storage nodes using Bonnie [30]. There were 5 storage nodes (m = 5)

including 1 that was loaded.

The objective of this experiment is to evaluate the effectiveness of the parallel

data retrieval technique of falcon when a subset of the storage nodes containing

40

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

0	

 1	

 3	

 5	

N
et

w
or

k
Tr

an
sf

er
 T

im
e

(s
ec

)	

# of Storage Nodes Loaded	

Parallel Transfer	

 Sequential Transfer	

Fig. 2.8.: Parallel vs sequential retrieval during restart.

the checkpoint fragments becomes loaded. Here, the sequential scheme retrieves frag-

ments from m storage nodes including all the loaded ones.

Figure 2.8 demonstrates the advantage of employing parallelism in retrieving the

fragments from storage nodes. The sequential scheme performs poorly because it

fetches the checkpoint fragments from the loaded nodes and can only complete after

all the m fragments are fetched. So if even any one of the nodes is busy and the

sequential scheme starts retrieving data from that node, it has to finish the transfer.

In contrast, the parallel scheme is done as soon as any m of the fragments arrive.

So, it often happens that there are m not so loaded nodes and the retrieval process

finishes early.

41

Table 2.3: Breakdown of different schemes evaluated in Figure 2.9.

Scheme Server Loaded Parallel Net-
work Transfer

Erasure De-
coding

Decompress

I 7 3 3 3

II 7 7(Sequential) 3 3

III 7 3 3 7

IV 3 3 3 3

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

I	

 II	

 III	

 IV	

R
ec

ov
er

y
O

ve
rh

ea
d

(s
ec

)	

Different Schemes	

Decompress	

 Erasure Decoding	

 Network Transfer	

Fig. 2.9.: Contributions of compression, load balancing, and parallel network transfer
during restart.

Contributions of Compression, Load balancing, and Network level Paral-

lelism

In this experiment, we compare the contributions of each of the three schemes—

compression, load balancing, and parallel retrieval of checkpoint fragments—in im-

proving the recovery overhead and in turn, in improving the performance of the

applications. For this, we successively remove one of the schemes from falcon while

keeping the other two schemes. The checkpoint used to run this experiment is that

of the application TIGR-I (Table 2.1).

Figure 2.9 shows breakdown of schemes listed in Table 2.3. The first observa-

tion from Figure 2.9 is that the largest contribution in improving recovery overhead

comes from compressing the checkpoint data. The highly compressible nature of

42

these checkpoint data can result in a compression factor as large as 86% (for mcf)

and 79% for this application (Table 2.1). This in turn reduces the network transfer

overhead. Also, if the checkpoint is not compressed, the decoding overhead increases.

An important point to note is that even though the decompression overhead is the

most dominating component in the recovery overhead, it is worthwhile to compress

and decompress. Otherwise encoding very large checkpoints (≥ 1GB) incurs very

high memory cost and requires very long time, if at all possible. Second, due to small

number of checkpoint fragments ((m,k) being (3, 2)), network transfer overhead of

both the parallel and the sequential schemes are comparable. The advantage of using

the parallel scheme over the sequential one in retrieving the checkpoint fragments is

discussed in Section 2.4.2. Third, due to the smaller sizes of the checkpoint fragments,

the overhead of retrieving the m fragments from storage nodes with 100% I/O load is

comparable to that of retrieving them from non-loaded ones. But the point to note is

that load-balancing while it does not have a very prominent contribution in lowering

the recovery overhead in this experiment, it has an impact on the checkpoint transfer

overhead (Section 2.4.2). Load balancing is also crucial because the storage nodes are

shared resources. So, during the checkpoint storing phase, if compute hosts disregard

the fact that a storage node is loaded and put more load on it by sending the bulk

of checkpoint data, then the performance of the host jobs on that storage node may

degrade considerably. This may cause the owner to remove his resource from the

pool.

2.4.3 Single-threaded vs Multi-threaded Architecture of falcon

In this section, we discuss the experiments that we ran to compare the check-

point storing and recovery overheads of the two different architectures of falcon.

At first, we ran an experiment to find out the value of b, the number of blocks that the

checkpoint should be decomposed into, that should be used to get high overall per-

formance improvement. Then, we used this value of b to run experiments by varying

43

0	

20	

40	

60	

80	

100	

120	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

C

om
pr

es
sio

n
O

ve
rh

ea
d

(s
ec

)	

Number of Cores Used	

Size=500MB	

 Size=946MB	

 Size=1.7GB	

Fig. 2.10.: Improvement in compression overhead from using multiple cores.

the checkpoint sizes. The goal of these experiments is to compare the performance

of falcon architectures with and without the TLP option turned on. This new

multi-threaded architecture works by breaking up the checkpoint data, compressing

and creating m+ k fragments for each block in parallel. Transferring the checkpoint

blocks in parallel over the network was already part of the single threaded architecture

of falcon. So, we only compare the overheads of parallel compression and encoding

during the checkpoint storing phase and parallel decoding and decompression during

the recovery phases of the two schemes. Lower compression and encoding overheads

translate into lower overall checkpoint storing and recovery overheads.

Determine the Degree of Parallelism

In this experiment, for each size of checkpoint, we varied the number of threads

working concurrently on the data. The machine that we used to run this experiment

was an 8 core SMP (Symmetric Multi-processor) machine.

The observation that can be made from Figure 2.10 is that the decrease in com-

pression overhead levels off as the number of cores concurrently used increases. In

addition to that, the ability of a parallel program’s performance to scale with the num-

ber of cores is the result of a number of interrelated factors. Some of the hardware

44

Erasure Encode

Compress

 10

 30

 40

 50

 60

 70

C
h
ec

k
p
o
in

t
S

to
ri

n
g
 O

v
er

h
ea

d
 (

se
c)

946MB 1677MB

Checkpoint size in MB

F
A

L
C

O
N

−
P

F
A

L
C

O
N

 90

 80

500MB

F
A

L
C

O
N

F
A

L
C

O
N

−
P

F
A

L
C

O
N

−
P

F
A

L
C

O
N

 0

 20

(a) Checkpointing phase

Erasure Decode

Decompress

 0

 15

 20

 25

 30

F
A

L
C

O
N

F
A

L
C

O
N

−
P

F
A

L
C

O
N

R
ec

o
v
er

y
 O

v
er

h
ea

d
 (

se
c)

946MB500MB 1677MB

F
A

L
C

O
N

−
P

F
A

L
C

O
N

−
P

F
A

L
C

O
N

Checkpoint size in MB

 5

 10

(b) Restart phase

Fig. 2.11.: Comparison of the checkpointing and the recovery overheads of falcon
and falcon-p.

related limiting factors are memory-cpu bus bandwidth and the amount of memory

available per core on a shared memory machine. As the number of cores used in-

creases, the amount of memory available to each of the cores decreases and hence

results in memory contention when more than 50% of the cores start being used.

Based on this experiment we set the configurable parameter b to half of the total

number of cores, i.e., 4 for the rest of the experiments.

Comparison of Checkpointing Overheads

In this experiment, we compare the overheads of compressing a checkpoint data

and then encoding it into m + k fragments with that of breaking up a checkpoint

data into b blocks and then compressing and encoding each block in parallel. For this

experiment, we set (m, k) to (3, 2) and b = 4. In the figure, the scheme “falcon”

represents the single threaded architecture where as “falcon-p” represents the multi-

threaded one. The checkpoints were all generated by using different inputs to the same

benchmark application TIGR.

45

Table 2.4: Input sizes to different algorithms of falcon and falcon-p.

Application
To Compression Algorithm(MB) To Encoding Algorithm(MB)
falcon falcon-p falcon falcon-p

mcf 1677 419.25 241 (65,64,62,62)
TIGR-I 946 236.5 201 (83,49,36,34)
TIGR-II 500 125 153 (40,40,39,34)

One observation that can be made from Figure 2.11a is that by breaking a large

checkpoint up into multiple blocks and then working on each block in parallel reduces

the overhead significantly. Table 2.4 shows a complete break down of the amount

of data that each core had to deal with. The multi-core architecture of falcon

improves the compression overhead by up to 67% (higher gains for larger checkpoint

sizes). Also, the encoding overhead reduces since now the size of the input data to

each invocation of the erasure encoding algorithm is reduced by more than 50%.

Comparison of Recovery Overheads

This experiment compares the recovery overheads incurred by the two architec-

tures.

The observations that can be made from Figure 2.11b are that:

• decoding overhead decreases since the fragment sizes to work with are smaller

• as checkpoint size increases, the difference between the decompression overheads

decreases. The reason is that all the threads write to the same file and disk

writes cannot be made in parallel. Hence with the increase in the size of a

checkpoint data, there is not much improvement in decompression overhead.

Even though the improvement in the recovery overhead diminishes as checkpoint sizes

increase, the reduction in the checkpoint storing overhead is significant. This justifies

the use of thread level parallelism in the new architecture of falcon (i.e., falcon-p).

46

2.5 Related Work

Checkpoint-recovery is a widely used technique for providing fault-tolerance in

high-performance parallel computing and distributed systems [5]. Related contribu-

tions include checkpointing facilities provided in production systems for MPI appli-

cations [31] and improving checkpointing performance. Production grid systems such

as Condor [13], take checkpoints of applications periodically and store them in dedi-

cated servers. However, relying on such dedicated servers does not leverage the idle

storage resources in grid environment. Moreover, recent research [32] has shown that

using non-dedicated storage can actually result in improved performance of guest ap-

plications if a reliable set of such resources can be chosen. These results motivate

our work of applying resource availability prediction to select reliable, non-dedicated

checkpoint repositories.

Erasure encoding for storing data in a distributed manner to tolerate failure is a

well-known technique. Related work such as [16] discusses in detail a fault-tolerant

method of checkpointing and recovery using erasure coding. On the other hand, [15]

compares different techniques of introducing redundancy in checkpoint data to im-

prove fault-tolerance of applications in a shared storage environment. Erasure coding

is also a popular technique for providing reliable access to data in peer-to-peer net-

works [33]. The OceanStore project [34] creates massive scale redundant copies of

data using (among other techniques) erasure coding. The work makes contributions

in efficient read operation and Byzantine fault-aware replication. The model is not

that of FGCS systems and therefore the notion of guest jobs and their evictions due

to resource contention is not significant.

[35] is an empirical study based on actual Condor trace. It characterizes the

reasons of resource unavailability in Condor and proposes a multi-state grid resource

availability characterization. A few other studies use failure modeling of compute

hosts for scheduling jobs on a grid [36].

47

2.6 Summary

We have designed, developed and evaluated falcon, a system that provides fault-

tolerant execution of applications in FGCS systems without any dedicated storage

server. We present a load-balancing multi-state failure model for these shared stor-

age resources and apply knowledge of this model to predict reliability. We present a

new checkpoint store and retrieve technique that efficiently handles large-sized check-

point data, of the order of gigabytes. Finally, we run experiments in DiaGrid, a

multi-university production Condor system at Purdue University. Experiments show

that falcon provides consistency in running times and improves overall performance

of jobs by 11% to 44% over the mechanisms of using dedicated checkpoint servers or

choosing storage hosts randomly. We have also looked into the idea of utilizing mul-

tiple cores available on the computation hosts to reduce the checkpointing overhead.

For this, we identify the most computationally expensive step of the whole check-

pointing process (i.e. compression of the checkpoints) and parallelize this step by

exploiting the data parallelism inherent to these checkpoints. In future, we would

also like to explore the avenue of developing a compression technique for these check-

points to improve the performance of the guest applications by reducing the overall

checkpoint storing overhead.

falcon demonstrates that the idea of compressing system-level checkpoints is

beneficial. However, in high-performance computing (HPC) environments, applica-

tions use application-level checkpoints since the size of memory on those machines

is orders of magnitude larger than the amount of state necessary to recover from a

failure. Also, checkpointing systems in HPC environments store checkpoints on par-

allel file systems. So, in HPC environment, we focus on making checkpoint storing a

scalable process since with the scale of these machines and the proportional growth of

the amount of state, the network bandwidth between computation components and

stable storage will become the key bottleneck.

48

3. SCALABLE CHECKPOINTING SYSTEM USING

DATA-AWARE AGGREGATION AND COMPRESSION

As software and hardware component counts in high performance computing (HPC)

systems scale up, the likelihood grows of one failing while an application executes.

For example, the 100,000 node BlueGene/L system at Lawrence Livermore National

Laboratory (LLNL) experiences an L1 cache parity error every 8 hours [1] and a hard

failure every 7-10 days. Exascale systems are projected to fail every 3-26 minutes [2,3].

Many applications tolerate failures through checkpoint-restart [6, 37], which periodi-

cally saves application state in checkpoint files on stable storage, such as a parallel file

system (PFS). If a failure occurs, the application is restarted from the latest check-

point, thus reducing repeated computation. To simplify checkpoint-restart imple-

mentations, many applications have all processes take checkpoints simultaneously [7].

This strategy avoids the complexities of message logging that uncoordinated check-

pointing requires, as well as its possibility of cascading rollback.

Checkpointing causes 75-80% of the I/O traffic on current HPC systems [38, 39].

On future systems, checkpointing activities will dominate compute time and over-

whelm file system resources [6, 11]. Checkpointing to a PFS is expensive at large

scale: a checkpoint can take tens of minutes due to network bandwidth and PFS

resource contention [40, 41]. Further, HPC computational capabilities are increas-

ing more quickly than their I/O bandwidths. For example, BlueGene/L at LLNL

and BlueGene/P at Argonne National Laboratory achieve less than 0.1 GB/s of I/O

bandwidth per TeraFLOP of computational capability [40–42]. This high overhead

leads to reduced checkpointing frequency, which implies more computation is lost in

the event of failure.

We face two key challenges to checkpointing scalability: the number of checkpoint

files written and their size. As application process counts grow, the number of check-

49

point files usually increases proportionally. Large counts of file writers degrades PFS

performance and reliability due to contention [42–44]. Thus, application program-

mers are exploring techniques to combine checkpoints of multiple processes at the

cost of application complexity. Further, the size of each file grows with process count

under naive combining schemes; in any event, the size of the checkpoint files usually

grows as processes compute larger sub-problems.

The challenges of checkpointing systems in grid and HPC environments are dif-

ferent. For a checkpointing system in grid, the challenge is to ensure reliable storage

of checkpoints on grid resources that can become unavailable any time. These are

often sequential applications taking system-level checkpoints. So, falcon enables ap-

plications to achieve consistent performance by compressing these checkpoints using

general-purpose compression algorithm and selecting reliable and lightly loaded grid

machines to store them. On the other hand, applications run in HPC environment

are MPI applications with a large number of processes working on different parts of a

large input space. These processes generate scientific data in application-level check-

points that are known to be hard to compress. The issues that checkpointing systems

in HPC environment struggle with are – how to effectively reduce the amount of data

and efficiently transfer it from compute nodes to stable storage.

We address these challenges unique to HPC environments through mcrEngine,

a library that aggregates multiple checkpoint files from different processes and com-

presses them. Further, we extract application-specific data semantics by analyzing the

metadata contained in the checkpoint files. This knowledge enables us to merge the

checkpoint fragments from the different processes intelligently, increasing the com-

pressibility of the aggregated checkpoint, particularly when we apply data-specific

compression algorithms (e.g., targeted to floating point data). These benefits also

apply during restart, when all application processes must read the checkpoint frag-

ments from the PFS, often within a short time window. We must keep this extra

work small since restart is always on the application’s critical path. We make the

following major contributions:

50

• The concept of data-aware checkpoint compression, which significantly increases

the compressibility of checkpoints;

• A thorough investigation of the application-specific impact of different aggre-

gation schemes on compression ratio;

• The design, development, and thorough evaluation of an end-to-end checkpoint-

restart system and its demonstration with three real-world, complex, and diverse

applications.

Our evaluation uses ALE3D, Cactus, and Enzo. ALE3D is an arbitrary Lagrangian-

Eulerian (ALE) multi-physics code. Cactus [45,46] solves Einstein’s Equations. Enzo

is a grid-based code that simulates cosmological structure formation [47]. Our sig-

nificant results include: 1) data-aware compression improves compression ratios be-

tween 27.72% and 115% on average over simple concatenation and compression; 2)

mcrEngine can reduce checkpointing intervals by up to 87%; 3) mcrEngine de-

creases restart overhead by 62% compared to using uncompressed checkpoints; 4)

data-aware compression alone reduces the latency to write checkpoints to the PFS

up to 92% and to read checkpoints up to 71%.

The paper is organized as follows. Section 3.1 provides background. Section 3.2

describes our solution and rationale. Section 3.3 details the structure of the implemen-

tation of mcrEngine. Section 3.4 presents our evaluation methodology. Sections 3.5

and 3.6 present key results.

3.1 Background

In this section, we discuss related background information on different checkpoint

types, how checkpoints are written and the different file formats in which they are

written.

51

3.1.1 Application-level vs System-level Checkpointing

HPC applications commonly take coordinated, application-level checkpoints. Co-

ordination implies that all application processes agree when they will take the check-

point, typically periodically. Application-level checkpointing uses application rou-

tines to save specific data structures in the checkpoint files. In contrast, system-level

checkpoints are system-initiated snapshots that include the entire system memory.

Application-level checkpointing provides several benefits. Application knowledge of

the state needed to restart can significantly reduce checkpoint sizes. For example,

for protein-folding applications on IBM Blue Gene, the size of an application-level

checkpoint set is a few megabytes compared to terabytes for full system-level check-

points [48]. Application-level checkpoints also increase portability.

3.1.2 Checkpoint Writing

Applications vary in how many processes write checkpoints. If an MPI application

uses N processes, then each process writes its own state to a checkpoint file in the

N→N pattern. This strategy performs poorly at large scales due to contention from

the large number of writers. At the other extreme (N→ 1 checkpointing), a single

process writes one large checkpoint that contains data from all processes, which cre-

ates a serialization bottleneck that also inhibits scaling. Thus, N→M checkpointing,

in which a set of M processes write aggregated data for N processes (M<N), at-

tempts to balance metadata costs and contention with the bandwidth advantages of

multiple writers. However, N→M checkpointing increases application complexity, a

trend that further optimizations continue. Thus, application developers need a strat-

egy that provides the benefits of N→M checkpointing while hiding that complexity.

mcrEngine is such a strategy.

Applications also vary in how they distribute input data across processes. One

approach is segmented input distribution (Figure 3.1a), in which data is naturally

composed of segments that exhibit similarity. One segment of the input data is

52

P0	

 P1	

 P2	

 P3	

 P0	

 P1	

Ckpt_P0	

 Ckpt_P1	

 Ckpt_P2	

 Ckpt_P3	

P2	

 P3	

Ckpt_P0	

 Ckpt_P1	

 Ckpt_P2	

 Ckpt_P3	

Input	

 Input	

(a) Segmented Input Distribution	

 (b) Strided Input Distribution	

Fig. 3.1.: Two types of input data distribution

processed by one process. The second approach is strided input distribution (Figure

3.1b), in which one segment of the data is split into stripes and these stripes are

distributed (or “strided”) to different application processes.

3.1.3 Checkpoint File Format

Application-level checkpointing often builds on I/O libraries such as MPI-IO,

POSIX, HDF5, netCDF, or Parallel-netCDF [49, 50]. While some applications write

checkpoints in an application-specific format, using standard I/O libraries, such as

POSIX or MPI-IO, many large-scale applications use standard self-describing I/O

formats (e.g., HDF5 or netCDF). While the initial time to deploy POSIX or MPI-

IO solutions can be low, it reduces portability due to issues such as endianness and

thus increases maintenance cost. Using a descriptive data format to write structured

checkpoints ensures portability across users, tools (such as visualizers), and systems.

53

Application	

Checkpointing Library (SCR/SILO)	

I/O Library (Adios/MPI-IO/POSIX)	

Data-Format API 	

Struct ToyGrp{	

1. float Temperature[1024];	

2. short Pressure[20][30];	

};	

1. Name: “ToyGrp.Temperature” Type: Float Data: …	

// 1D array of 1024 floats	

2. Name: “ToyGrp.Pressure” Type: Short Data: … 	

// 2D array of 20x30 shorts	

N
etCD

F	

H
D

F5	

Binary	

1.  netcdf ckpt{	

2.  dimensions:	

X = 1024; Y = 20; Z = 30;	

3.  variables:	

float var1(X);	

 	

var1:long_name =
“ToyGrp.Temperature”;	

short var2(Y,Z);	

	

var2:long_name =
“ToyGrp.Pressure”; 	

}	

1.  HDF5 ckpt{	

2.  Group “/”{	

3.  Group “ToyGrp”{	

DATASET “Temperature”{	

DATATYPE H5T_IEEE_F32LE	

DATASPACE SIMPLE {(1024) / (1024)}	

}	

DATASET “Pressure” {	

DATATYPE H5T_STD_U8LE	

DATASPACE SIMPLE {(20,30) / {20,30}}	

}}}}	

(b) netCDF Representation	

(c) HDF5 Representation	

(a) ASCII/Binary Representation	

Fig. 3.2.: Different metadata annotations of checkpoint data

Thus, self-describing I/O formats are popular among large-scale applications, such as

HDF5 [49] with its long list of users.

As Figure 3.2 shows, data structures in application-level checkpoints are described

differently depending on the data format. Also checkpoint files are often used for visu-

alization. Although the file format structure varies, the key point is that application

data is annotated with descriptive metadata. The application (Figure 3.2a) or the

data format library (Figure 3.2b and c) can provide the metadata.

mcrEngine uses data from application-level, globally coordinated checkpoints to

implement an N → M scheme. To demonstrate our approach, we use HDF5 check-

points. However, the design of mcrEngine provides the flexibility to use other data

formats easily. Using the example in Figure 3.2, data with the name Temperature

has the same meaning across all processes in an Single Program Multiple Data appli-

cation (we may require additional information for a Multiple Program Multiple Data

application to capture data relationships across processes). We refer to an individual

54

(a) Timestep 2 (b) Timestep 4 (c) Timestep 6

Fig. 3.3.: Volume rendering of the 3D variable: “Density”

file that a single process writes as a checkpoint and to a group of checkpoints that

multiple processes write concurrently as a checkpoint set.

3.1.4 Checkpoint Data

To understand the characteristics of data that is written in application-level check-

points, we visualized checkpoints from an application Enzo [47] that simulates cosmo-

logical formation using dark matter and hydro cosmology calculation. This particular

simulation [51] zooms in on a large halo to simulate dark matter density at finer res-

olution. This simulation only refines in a small subvolume of the calculation, and

includes radiative cooling, six species primordial chemistry, a uniform metagalactic

radiation background, and prescriptions for star formation and feedback. Figure 3.3

shows the volume rendering of the density variable in these checkpoints representing

density of particles during a cosmology simulation. This figure also shows that value

of this variable changes as simulation progresses. Figure 3.4 shows the projection of

the 3D variable density along X axis. The square in the middle shows the area where

the simulation zooms in for higher precision. The primary observation from these

figures is that, there is enough similarity within density variable across processes to

gain good compression by arranging them together.

55

(a) Timestep 7 (b) Timestep 8

(c) Timestep 9 (d) Timestep 10

Fig. 3.4.: Refined nested computation

Figure 3.5 shows the projection of the 3D variables Temperature, Pressure, and

Density along X axis. Different processes compute different parts of each of the

variables. This figure shows that values in different variables (Temperature, Pressure,

and Density) can be significantly different and it will be beneficial to rearrange these

56

(a) Temperature (b) Pressure (c) Density

Fig. 3.5.: Projections of Temperature, Pressure, and Density variables along X axis
for Timestep 8.

variables so that all variables with the same meaning remain close together during

compression.

3.2 Data-Aware Checkpoint Aggregation & Compression

Most parallel scientific applications distribute simulation data across multiple pro-

cesses. These processes generally coordinate globally to take a consistent checkpoint.

During an asynchronous checkpointing phase, once a process finishes checkpointing, it

resumes its computation. Currently, with most checkpointing systems, the processes

send their checkpoints directly to the PFS, although checkpointing libraries such as

SCR [11] can store checkpoints locally instead.

In order to analyze the issues that will prevent scaling of current checkpointing

systems, we conducted an experiment on a large Linux cluster. We present a complete

discussion of the experiment in Section 3.6.2. Our key findings are:

• The average performance of operations (read and write) scales much better with

fewer concurrent processes;

• Transfer overhead is lower with the same number of writers when the data

volume is less.

57

Group ToyGrp{	

 float Temperature[1024];	

 short Pressure[20][30];	

 int Humidity;	

};	

Group ToyGrp{	

 float Temperature[50];	

 short Pressure[2][6];	

 double Unit;	

 int Humidity;	

};	

P0	

P1	

Var: “ToyGrp/Temperature”	

Type: F32LE, Array1[1024]	

Var: “ToyGrp/Pressure”	

Type: S8LE, Array2D [20][30]	

Var: “ToyGrp/Temperature”	

Type: F32LE, Array1D [50]	

Var: “ToyGrp/Pressure”	

Type: S8LE, Array2D [2][6]	

Inside a checkpoint: Variables
annotated with metadata	

Inside source code: Variables
represented as members of a
group in actual source code. A
group can be thought of the
construct “Struct” in C	

Generated hash key for matching	

Var: “ToyGrp/Unit”	

Type: F64LE, Atomic	

Var: “ToyGrp/Humidity”	

Type: I32LE, Atomic	

ToyGrp/Temperature_F32LE_Array1D	

ToyGrp/Pressure_S8LE_Array2D	

ToyGrp/Humidity_I32LE_Atomic	

ToyGrp/Temperature_F32LE_Array1D	

ToyGrp/Pressure_S8LE_Array2D	

ToyGrp/Unit_F64LE_Atomic	

Var: “ToyGrp/Humidity”	

Type I32LE, Atomic	

 ToyGrp/Humidity_I32LE_Atomic	

No match	

Fig. 3.6.: Variable matching

Thus, checkpointing systems should aggregate checkpoints to reduce the number of

concurrent processes. Compressing checkpoints could provide additional benefits. We

define data-aware aggregation as aggregating across process checkpoints such that

data with similar meaning remain together in the merged checkpoint. mcrEngine

uses data-aware compression, which dynamically selects from a set of compression

algorithms and applies the best one for each similar data group. Data-aware aggre-

gation and compression is the entire process of interleaving semantically similar data

and using a dynamically selected compression algorithm.

All popular compression utilities use a finite window in which they look to find

similarities between two data items. The window is kept reasonably small by default

(e.g., 32KB for gzip) to keep the memory utilization of the compression utility low.

By using data-aware aggregation, mcrEngine increases the likelihood that similar

data appears in the same window, which increases compression and decreases the

number of concurrent files written to the PFS.

58

3.2.1 Identifying Similarity Across Checkpoints

Intuitively, finding similarity across checkpoints is simple. Two variables with the

same name and data type are likely to have the same meaning. mcrEngine uses

metadata to locate checkpoint data that represent the same variables. mcrEngine

interprets two variables in different checkpoints as similar if their names agree and

their data representation is identical (same data type).

Figure 3.6 provides a step-by-step example. Processes P0 and P1 have groups of

variables. To be general, the example shows different structures for the same group

in the two checkpoints although in practice, two processes of the same application

are unlikely to have different structures for the same group.

In our similarity detection, variables can be of any standard data type and can be

of atomic or array class. We consider variables with the same name, data type and

class to be similar even if they have different numbers of elements. Variable names

can match either exactly or according to a regular expression; application developers

can specify the regular expression as a configuration parameter. We locate similarity

as follows:

• Match every element of a group separately;

• Annotate variables with their names, data types, array sizes, and classes in the

checkpoints;

• Convert variable metadata into hash keys of type:

Group-name/Variable-name Datatype Class.

For example, mcrEngine generates ToyGrp/Temperature F32LE Array1D as the

hash key for the variable Temperature in P0. While Figure 3.6 illustrates our termi-

nology, real application checkpoints have more complex structures.

3.2.2 Merging Schemes

We consider four schemes to aggregate checkpoints:

59

C3.T	
 C3.P	

C2.T	
 C2.P	

C1.T	
 C1.P	

C1.T	

C1.P	

C2.T	

C2.P	

C3.T	

C3.P	

(a) Variable Concatenation

C3.T	
 C3.P	

C2.T	
 C2.P	

C1.T	
 C1.P	

C1.T	

[1-­‐B]	

C1.P	

[1-­‐B]	

C2.T	

[1-­‐B]	

C2.P	

[1-­‐B]	

C3.T	

[1-­‐B]	

C3.P	

[1-­‐B]	

C1.T	

[B+1-­‐N]	

C2.T	

[B+1-­‐N]	

C3.T	

[B+1-­‐N]	

C1.P	

[B+1-­‐N]	

C2.P	

[B+1-­‐N]	

C3.P	

[B+1-­‐N]	

(b) Variable Blocking

Fig. 3.7.: Data-aware merging schemes

• Checkpoint Concatenation The simple Agnostic scheme concatenates entire

checkpoints before compressing them;

• Checkpoint Blocking Agnostic-Block interleaves fixed-size data blocks in-

stead of concatenating entire checkpoints;

• Variable Concatenation As Figure 3.7a shows (Cx.T denotes the tempera-

ture array of the checkpoint of rank x and Cx.P its pressure array), the Data-

Aware or simply Aware scheme concatenates individual variables before com-

pressing them;

• Variable Blocking As Figure 3.7b shows, the Aware-Block scheme interleaves

variables in blocks of configurable sizes, instead of simply concatenating them.

The Aware and Aware-block schemes aim to increase compression ratios by grouping

similar data.

60

3.3 Structure of mcrEngine

Figures 3.8a and 3.8b present the system level interactions among different mod-

ules of mcrEngine during the checkpoint and restart phases. In these figures, each

large dotted box represents a component and each small box represents a module. A

solid module indicates that it is on the critical path; a dotted one indicates it avoids

the critical path by using a parallel thread. Finally, arrows represent different inter-

module communication: a dashed arrow indicates network communication while a

dotted one corresponds to a wake up signal to a thread. mcrEngine has two major

components:

• Compute node component (CNC) offloads checkpoint processing from the com-

pute nodes by sending checkpoints to the aggregator node component during

checkpointing; restores checkpoints to the local disk during restart.

• Aggregator node component (ANC) processes (e.g., concatenates and com-

presses) checkpoints; stores and retrieves checkpoints from the PFS during

restart.

We now discuss interactions between CNC and ANC modules during the checkpoint-

ing and restart phases.

3.3.1 Checkpointing Phase

Table 3.1 summarizes the interactions between the CNC and ANC components.

CNCs responsible for application processes in the same group (according to their

rank) send data to the same ANC. Each CNC notifies the assigned ANC that a

checkpoint is ready and transfers the data to it. The ANC concatenates and merges

checkpoints based on the scheme in use and writes to the PFS. The message queue

is a memory buffer in which each element points to a data block in memory. These

lightweight modules require little CPU and memory resources. The CNC uses the

Inotify blocking wait to reduce interference with the application.

61

Table 3.1: Module interactions during a checkpointing phase

ID Communication Description

1 Inotify Library notifies the Controller of checkpoint creation
2 Controller initiates checkpoint reading through CNC interfaces
3 CNC Ckpt Library reads the checkpoints, written in application-specific for-

mats, into memory (3a); returns header and data to the Controller (3b)
4 Controller passes reference to header/data buffer to Network Transceiver
5 Network Transceiver sends information about variables to Header Receiver
6 Header Receiver sends group name, variable name, data type, and class infor-

mation to Similarity Classifier, which inserts them into a hash table, chaining
variables with the same hash key in process rank order (6a); Header Receiver
invokes Fetch & Merge Handler after all checkpoint headers of a group are
classified (6b)

7 Fetch & Merge Handler signals Compressor to compress variables, if available
(7a); traverses hash table to send data requests to Network Transceiver and
fetches data for a pool of variables (7b); merges similar variables and enqueues
them in a message queue (7c)

8 Compressor signals the Post-Processor thread to start buffering processed
data, if available (8a); reads from the message queue; compresses merged
variables according to data types (current implementation uses FPC [52],
fpzip [53] and LZ [54] to compress doubles, floats, and other data types,
respectively) and writes back to the message queue (8b)

9 Post-Processor flushes accumulated data to local disk (9a); applies Parallel-
Gzip [55] after all variables across processes in the same group are merged
and compressed; sends the final data to PFS (9b)

62

U
se

r 	

A

pp
lic

at
io

n	

Lo
ca

l
D

isk
	

IN
ot

ifi
er

Li

br
ar

y	

Co
nt

ro
lle

r	

H

ea
de

r
Re

ce
iv

er
	

Si
m

ila
rit

y
Cl

as
sifi

er
	

N
et

w
or

k
Tr

an
sc

ei
ve

r	

Fe
tc

h
&

 M
er

ge

H
an

dl
er
	

M
es

sa
ge

 Q
ue

ue
 	

Co
m

pr
es

so
r	

C
om

pu
te

 N
od

e
C

om
po

ne
nt

 (C
N

C
)	

A
gg

re
ga

to
r N

od
e

C
om

po
ne

nt
 (A

N
C

)	

 C
om

pr
es

sio
n

Li
br

ar
ie

s	

PF

S	

 6
b	

3a
	

4	

5	

6a
	

7b
	

8b
	

7c
	

9b
	

Po
st-

Pr
oc

es
so

r	

Lo
ca

l
D

isk
	

9a
	

 C
N

C
Ck

pt
 L

ib
ra

ry
	

1	

2	

3b
	

7a
	

8a
	

(a
)
m
c
r
E
n
g
in
e

ch
ec

k
p

o
in

t
p

h
a
se

in
te

ra
ct

io
n

s

Lo
ca

l
D

isk
	

Co
nt

ro
lle

r	

 C
N

C
Ck

pt
 L

ib
ra

ry
	

N
et

w
or

k
Tr

an
sc

ei
ve

r	

C
om

pu
te

 N
od

e
C

om
po

ne
nt

 (C
N

C
)	

M
es

sa
ge

 Q
ue

ue
 	

D
ec

om
pr

es
so

r	

 D
ec

om
pr

es
sio

n
Li

br
ar

ie
s	

A
gg

re
ga

to
r N

od
e

C
om

po
ne

nt
 (A

N
C

)	

Sp
lit

te
r	

Sp
lit

te
r	

Pr
e-

Pr
oc

es
so

r	

Lo
ca

l
D

isk
	

1a
	

1b
	

1c
	

2a
	

3a
	

3b
	

4	

 5	

 6	

U
se

r 	

A

pp
lic

at
io

n	

PF

S	

2b
	

N
et

w
or

k
co

m
m

.	

Pr

ee
m

pt

sig
na

l	

Th

re
ad
	

M
od

ul
e	

O
ne

 w
ay

co

m
m

.	

Bo

th
 w

ay

co
m

m
.	

(b
)
m
c
r
E
n
g
in
e

re
st

a
rt

p
h

a
se

in
te

ra
ct

io
n

s

F
ig

.
3.

8.
:

S
y
st

em
-l

ev
el

in
te

ra
ct

io
n
s

63

We design mcrEngine such that its aggregators fetch variables as needed in order

to avoid requiring excessive aggregator disk space. By pulling data as needed, the

ANC can limit the variables per process present at any time. We also exploit the

inherent parallelism of accessing three kinds of resources (CPU, disk, and network)

by using separate threads to transfer data between the CNC and ANC modules, to

compress it and to write it to disk. Thus, when the ANC Fetch & Merge module

starts a network transfer (fetch operation), it schedules the Compressor thread to use

the CPU and the Post-Processor thread to finish disk I/O. Our results show that

the network transfer time largely offsets the overheads of compression and local disk

accesses.

The CNC also produces a metadata file that stores information about the last

checkpoint set. The restart phase uses the information about the last set of check-

points stored. An empty file indicates a new application run.

3.3.2 Restart Phase

As Figure 3.8b shows, during restart, the Controller module sends a request

to the Pre-Processor module of the corresponding ANC to read a checkpoint file

from the PFS. The Pre-Processor module then reads the checkpoint from the PFS,

decompresses and separates the variables, and sends them to the Controller. Each

Splitter thread communicates in parallel with a separate Controller, which must

generate the original checkpoints for the application processes. Table 3.2 summarizes

the communications between CNC and ANC modules during this phase.

The design of mcrEngine does not require node-local persistent storage on com-

pute or aggregator nodes. This design feature allows mcrEngine to work on current

large-scale systems (e.g., BG/L). On diskless nodes, the CNC uses in-memory buffer-

ing before streaming them to the ANC next stop without any intermediate storage

(checkpoint streaming). However, upcoming technologies such as SSDs will replace

the in-memory buffer. Our future work will implement variable streaming, in which

64

Table 3.2: Module interactions during a restart phase

ID Communication Description

1 Pre-Processor reads processed checkpoint and metadata file from PFS (1a);
applies Parallel-unzip and writes to the local disk (1b); invokes Decompressor
on merged-compressed variables

2 Decompressor applies appropriate decompression algorithm to each variable;
enqueues decompressed merged variables in the message queue (2a); signals
Splitter threads to split variables, if available (2b)

3 Splitter reads and separates variables from message queue them (3a); uses a
separate thread per process to send data to the Network Transceivers (3b)

4 Network Transceiver invokes the Controller module with received data
5 Controller invokes interfaces to write variables to checkpoint file
6 CNC writes variables to checkpoint file in application-specific format

Table 3.3: Checkpoint characteristics

ALE3D Cactus Cosmology Implosion

Write Pattern N→M N→N N→N N→N
Number of Checkpoints 32 32 128 64
Total Size (GB) 4.8 2.41 1.1 0.013
Individual Size: [Range] Average (MB) [154.1, 154.5] 154.2 [58, 90] 77.15 [4.7, 13.4] 8.4 [0.07, 4] 0.2
Total Variables 56820 284800 33562 9996
Variable Count: [Range] Average [1760, 1835] 1776 [8900, 8900] 8900 [76, 1090] 262 [28, 832] 156
Double Precision Floats (%) 88.8 33.94 24.3 0
Single Precision Floats (%) 2e-5 0 67.2 74.1
Other Data Types (%) 11.2 66.06 8.5 25.9

we buffer and stream large variables individually. That work will address issues such

as synchronizing similar variable writes.

3.4 Evaluation Methodology

This section describes our methodology for evaluating mcrEngine with the

schemes introduced in Section 3.2.2. We evaluate mcrEngine with checkpoints from

four computational simulations of three real-world applications. Our evaluation cri-

teria are the amount of compression, and checkpoint-restart end-to-end overhead.

3.4.1 Applications

We evaluate mcrEngine on ALE3D, Cactus, and Enzo (with two distinct inputs:

Cosmology and Implosion). The simulations produce checkpoints with varying char-

65

acteristics. Table 3.3 summarizes our ALE3D checkpoint set and a checkpoint set

from the midpoint of the Cactus and Enzo simulations. The write pattern indicates

how the checkpoints are written. The number of checkpoints indicates how many

individual checkpoints are in each set. For ALE3D, 1024 computation processes were

run to generate 32 checkpoints. For the other applications, the number of check-

points generated equals the number of computation processes. The total size is the

sum of the individual checkpoint sizes. The individual size row shows the range and

average size of the individual checkpoints. We report the total number of variables

across a checkpoint set and the range and average of variable counts in the individual

checkpoints. We also provide percentage breakdowns of variable data types.

ALE3D is a multiphysics numerical simulation that uses arbitrary Lagrangian-

Eulerian (ALE) techniques. We do not have access to the ALE3D source code so we

do not have information on its input distribution.

Cactus [45, 46] is a framework that numerically solves Einstein’s equations [56].

It uses adaptive mesh refinement (AMR). During initialization, it divides input data

among N processes (top-level roots). Each process then recursively divides its pieces

among sub-grids. Each top-level root collects computation from sub-grid elements

and writes a checkpoint. So, this application writes N checkpoints, while the number

of sub-processes that perform actual computation is larger.

Enzo, an AMR, grid-based hybrid code (hydro + N-Body), simulates cosmological

structure formation [47]. It uses the particle-mesh technique to solve dark matter N-

body dynamics. Cosmology is a 3D Eulerian block-structured AMR simulation [57].

Implosion is a 2D converging shock problem in which a shock wave interacts with

reflecting walls, undergoing a double Mach reflection [58]. While we generate both

from the same code base, the nature of the execution and, thus, the checkpoints are

significantly different.

66

3.4.2 Evaluation of Compression Schemes

Two metrics measure how well data-aware compression techniques reduce data

size. Compression ratio is the ratio of the size of the (checkpoint’s) uncompressed

data to the size of the compressed data, including metadata. A compression ratio of

2 indicates that the uncompressed file is 2× larger than the compressed file. In Equa-

tion 3.1, us(ckpt) is the uncompressed checkpoint size. For a scheme X, csx(ckpt) is

its compressed checkpoint size and cr(X) is its compression ratio.

cr(X) =
us(ckpt)

csx(ckpt)
(3.1)

Relative improvement compares the effectiveness of compression schemes as the com-

pression ratio of schemes A and B:

relative improvement =
cr(A)− cr(B)

cr(B)
× 100% (3.2)

Finally, we evaluate the performance of the different schemes, which we measure in

terms of the time to complete the checkpointing and restart phases.

3.5 Data-Aware Compression Effectiveness

We now evaluate the effectiveness of our novel data-aware compression techniques.

In particular, we explore:

• The benefit of multiple compression passes;

• The change in compression ratio with varying group size;

• The impact of interleaving granularity on compression ratio;

• The change in compression ratio as a simulation progresses.

67

We ran our experiments on LLNL’s Sierra system [59], which is a 261.3 TFLOP/s

Linux cluster running the CHAOS 4.4 operating system with an InfiniBand QDR

interconnect. It has 1,944 nodes, each with 12 2.8 GHz cores and 24 GB of mem-

ory. Sierra is connected to a 1.3 PB Lustre file system with a maximum aggregate

bandwidth of 30 GB/s.

To determine parameters that provide a high compression ratio with low time over-

head we evaluated the compression libraries that we used. For each library, we choose

settings for each algorithm that realize most of the possible compression without in-

curring significant overhead. Throughout the experiments, we set the compression

levels of Parallel-Gzip to 6 (the default value), of FPC to 2, of fpzip to 1-dimensional,

and of QuickLZ to 1 (the minimum value).

For this evaluation, we group application processes according to their rank order.

For example, processes 1 to 32 and 33 to 64 are aggregated for a GROUP SIZE of 32.

We run one application process per core on each compute node, and use all cores on

each aggregator node for our experiments. Each aggregator process on a core handles

checkpoints from GROUP SIZE computation processes. We use Equation 3.3 to

determine the aggregator node count:

of Agg-Node =
cp

ac×GROUP SIZE
(3.3)

where cp is the number of computation processes and ac is the number of cores on

each aggregator node.

3.5.1 Benefit of Multiple Passes of Compression

We first study the impact of multiple compression passes. We experiment with

one and two compression passes, to which we refer as single (SC) and double (DC)

compression. SC applies one pass, either with Gzip or data-aware compression. DC

always applies Gzip in the second pass. Figure 3.9 shows the results for Agnostic,

Aware, and Aware-Block. We do not show Agnostic-Block in Figure 3.9 because it

68

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

Aw
ar

e-
Bl

oc
k-

SC
	

Aw
ar

e-
Bl

oc
k-

D
C	

Aw
ar

e-
SC
	

Aw
ar

e-
D

C	

A

gn
os

tic
-S

C	

A

gn
os

tic
-D

C	

Aw

ar
e-

Bl
oc

k-
SC
	

Aw
ar

e-
Bl

oc
k-

D
C	

Aw
ar

e-
SC
	

Aw
ar

e-
D

C	

A

gn
os

tic
-S

C	

A

gn
os

tic
-D

C	

Aw

ar
e-

Bl
oc

k-
SC
	

Aw
ar

e-
Bl

oc
k-

D
C	

Aw
ar

e-
SC
	

Aw
ar

e-
D

C	

A

gn
os

tic
-S

C	

A

gn
os

tic
-D

C	

Aw

ar
e-

Bl
oc

k-
SC
	

Aw
ar

e-
Bl

oc
k-

D
C	

Aw
ar

e-
SC
	

Aw
ar

e-
D

C	

A

gn
os

tic
-S

C	

A

gn
os

tic
-D

C	

ALE3D	

 Cactus	

 Cosmology	

 Implosion	

Co
m

pr
es

sio
n

Ra
tio
	

Fig. 3.9.: Double compression vs single compression

performs similarly to Agnostic for DC. DC never benefits the data-agnostic schemes.

Alternatively, DC improves the compression ratio of the data-aware schemes consid-

erably because the compression libraries that we use in the first pass convert the data

to a more compressible format, which the second pass exploits. For example, FPC

applies an XOR operation to a predicted value and the actual value. It encodes the

resulting number of zeros, an integer, into the output, which can inflate the size of the

output but enables Gzip to compress the transformed data better. In our remaining

results, we use double compression for Aware and Aware-Block ; single compression

for Agnostic.

3.5.2 Change in Compression Ratio with Varying Group Size

In this section, we evaluate the impact of group size on the compression ratios of

the different schemes. We make several observations from Figure 3.10 (Aware and

69

Aware-Block overlap in b, c, and d). Overall, we find that Aware obtains significant

compression for all four simulations. It reduces the total data to about half or even to

one-third of the amount compared with the uncompressed checkpoint. Additionally,

we see that data-aware compression achieves higher compression ratios than data-

agnostic compression. The most dramatic case is for Cactus in Figure 3.10b for which

the gain is 115% by Aware compared to Agnostic. We also find that changing group

size impacts the simulation that benefits most from the Aware-Block scheme (ALE3D)

more than those that benefit most from the Aware schemes (Cactus, Cosmology,

Implosion). For ALE3D, the Aware-Block scheme achieves an 8% improvement in

compression ratio from group size 2 to 32.

We also observe that the best compression scheme varies across applications. For

ALE3D, Aware-Block is the best, while Aware is the best for Cactus. Both data-

aware schemes perform well for Cosmology and Implosion. The segmented data dis-

tribution and collection in Cactus, Cosmology and Implosion apparently emulates

blocking for these simulations. To determine which scheme to apply to a given appli-

cation, one could try all schemes offline on a sample checkpoint set and then configure

mcrEngine to use the best option.

Our results for Aware-Block and Agnostic-Block use the best block size from our

tests for each simulation. While Agnostic-block could emulate data-aware compression

if variable layouts are similar across checkpoints, our results for Cactus, Cosmology

and Implosion disprove this theory. Further, while Agnostic-Block achieves similar

compression ratios to Aware for ALE3D, blocking the interleaved variables, as with

Aware-Block, provides significant additional benefit.

70

2.5	

3.5	

4.5	

1	

 2	

 4	

 8	

 16	

 32	

C
om

pr
es

sio
n

R
at

io
	

Group Size	

Aware-Block	

 Aware	

Agnostic-Block	

 Agnostic	

(a) ALE3D - Block Size 8192B

0.5	

1.5	

2.5	

1	

 2	

 4	

 8	

 16	

 32	

C
om

pr
es

sio
n

R
at

io
	

Group Size	

Aware-Block	

 Aware	

Agnostic-Block	

 Agnostic	

(b) Cactus - Block Size 1024B

1	

1.5	

2	

1	

 2	

 4	

 8	

 16	

 32	

 64	

 128	

C
om

pr
es

sio
n

R
at

io
	

Group Size	

Aware-Block	

 Aware	

Agnostic-Block	

 Agnostic	

(c) Cosmology - Block Size 4096B

1.7	

2.7	

3.7	

1	

 2	

 4	

 8	

 16	

 32	

 64	

C
om

pr
es

sio
n

R
at

io
	

Group Size	

Aware-Block	

 Aware	

Agnostic-Block	

 Agnostic	

(d) Implosion - Block Size 4096B

Fig. 3.10.: Compression ratio vs group size.

2.8	

3	

3.2	

3.4	

3.6	

3.8	

4	

1024	

 2048	

 4096	

 8192	

 16384	

Co
m

pr
es

sio
n

Ra
tio
	

Block Size (Byte)	

Aware-Block	

 Agnostic-Block	

Fig. 3.11.: ALE3D compression ratio (Group Size = 32)

71

0.
8	

1	

1.
2	

1.
4	

1.
6	

1.
8	

2	

2.
2	

DD0000	

DD0001	

DD0002	

DD0003	

DD0004	

DD0005	

DD0006	

DD0007	

DD0008	

DD0009	

DD0010	

DD0011	

DD0012	

DD0013	

DD0014	

DD0015	

DD0016	

DD0017	

DD0018	

DD0019	

Compression Ratio	

Ti
m

e
St

ep
	

Aw
ar

e-
B

lo
ck
	

Aw
ar

e	

A

gn
os

tic
-B

lo
ck
	

A
gn

os
tic
	

(a
)

C
ac

tu
s:

B
lo

ck
S

iz
e

10
24

B
,

G
ro

u
p

S
iz

e
32

1.
3	

1.
5	

1.
7	

1.
9	

2.
1	

2.
3	

 DD00

00
	

 DD00

01
	

 DD00

02
	

 DD00

03
	

 DD00

04
	

 DD00

05
	

 DD00

06
	

 DD00

07
	

 DD00

08
	

 DD00

09
	

 DD00

10
	

 DD00

11
	

Compression Ratio	

Ti

m
e

St
ep
	

Aw
ar

e-
B

lo
ck
	

Aw
ar

e	

A

gn
os

tic
-B

lo
ck
	

A
gn

os
tic
	

(b
)

C
o
sm

o
lo

g
y
:

B
lo

ck
S

iz
e

4
0
9
6
B

,
G

ro
u

p
S

iz
e

6
4

1.
0	

2.
0	

3.
0	

4.
0	

5.
0	

6.
0	

DD0001	

DD0002	

DD0003	

DD0004	

DD0005	

DD0006	

DD0007	

Compression Ratio	

Ti
m

e
ste

p	

Aw
ar

e-
B

lo
ck
	

Aw
ar

e	

A

gn
os

tic
-B

lo
ck
	

A
gn

os
tic
	

(c
)

Im
p

lo
si

o
n

:
B

lo
ck

S
iz

e
1
0
2
4
B

,
G

ro
u

p
S

iz
e

6
4

F
ig

.
3.

12
.:

C
om

p
re

ss
io

n
ra

ti
o

ov
er

ti
m

e

72

3.5.3 Impact of Interleaving Granularity on Compression Ratio

ALE3D We now discuss the impact of varying block size on the compression ratios

that the blocking schemes achieve. In this experiment, we only use checkpoints from

ALE3D, since we observed in Figure 3.10, that only its checkpoints benefit from

merging in blocks. Figure 3.11 shows that the compression ratio increases steadily

with Agnostic-Block, while with Aware-Block it is fairly steady with a small initial

increase.

3.5.4 Change in Compression Ratio as Simulation Progresses

To evaluate how the compression schemes fare as the simulation progresses through

time, we plot the compression ratio for a series of consecutive checkpoint sets in

Figure 3.12, which shows the results for the Cactus, Cosmology, and Implosion sim-

ulations. Cactus wrote 21 checkpoint sets, each 5 minutes apart. The Cosmology

simulation wrote 12 checkpoint sets each 5 minutes apart. The Implosion simulation

wrote 8 checkpoint sets, each 0.05 seconds apart. In all three simulations, we label

the checkpoints as “DD00XX”, where “XX” records the simulation time step.

We make three observations from Figure 3.12. First, the Aware and Aware-Block

schemes yield higher compression ratios than Agnostic or Agnostic-Block. For exam-

ple, the relative improvement in compression ratio of Cactus in Figure 3.12a is about

98%. Second, for both Enzo simulations, the compression ratio of the first checkpoint

set is higher than for subsequent ones. The maximum compression ratio for Cosmol-

ogy drops around 20% (from 2.15 to 1.78) after the first time step. For Implosion,

it drops about 50% (from 5.4 to 3.6). These drops occur because Enzo initializes

data structures with the same default values so the data is highly compressible across

processes while Cactus does not always initialize data structures with default values.

Third, the compression ratio quickly levels out as simulations progress. For Cosmol-

ogy, the compression ratio only has a slight downward slope after the initial drop.

Similarly, for Implosion, the compression ratio drops, levels out, and then begins to

73

Table 3.4: Relative improvement over Agnostic

Application Measure Aware-Block Aware

ALE3D
Best 27.72% (32) 12.7% (32)
Worst 6.6% (1) 6.6% (1)

Cactus
Best 11.85% (32) 115% (1)
Worst 10.69% (2) 98% (32)

Cosmology
Best 20.59% (1) 21.14% (32)
Worst 20.13% (32) 20.59% (1)

Implosion
Best 38.43% (32) 38.83% (32)
Worst 36.26% (1) 36.26% (1)

edge higher as the Implosion simulation runs. We expect the compression ratios to

behave in this manner for applications that converge to a result.

3.5.5 Summary of Data-Aware Compression Effectiveness

We summarize our evaluation of Aware and Aware-Block compared to Agnostic in

Table 3.4, which shows the largest and smallest relative improvements, which occur

with the group size specified in parentheses. While the group size that provides the

greatest benefit varies, data-awareness always results in higher compression ratios.

We observe that applications with higher interprocess checkpoint similarity gain more

compression by interleaving variables in blocks (Aware-Block), while applications with

higher intraprocess checkpoint similarity gain more by concatenating variables before

compressing (Aware).

3.6 Performance of mcrEngine

This section evaluates mcrEngine overall performance. For checkpointing,

mcrEngine merges and compresses checkpoints and then transfers them to the PFS.

For restart, it reads checkpoints from the PFS and then decompresses and splits them

into their original format. We demonstrate the efficiency of mcrEngine for the two

largest checkpoint sets, ALE3D and Cactus. For each application, we use a group size

74

Table 3.5: Checkpoint/restart system configurations

Name Description

NoC+NoAgg No compression, no aggregation
C+NoAgg Individual compression, no aggregation
NoC+Agg No compression, aggregation
Agnostic+Agg mcrEngine aggregation, data-agnostic compres-

sion
Aware+Agg mcrEngine aggregation, data-aware compres-

sion

of 32, and the data-aware merging scheme from Table 3.4 that provides the best com-

pression ratio (Aware-Block for ALE3D and Aware for Cactus). Table 3.5 describes

the different merging and compression schemes that we compare in this section.

The first compression pass yields little benefit for small but compressible variables

so we omit them from it. In our framework, the minimum size is configurable; our

experiments omit variables < 100B. Easily compressed data types include integers

and characters. This choice reduces compression ratios by less than 1%, and improves

performance.

We measure the times to transfer checkpoints to the parallel file system using

IOR [44, 60], a benchmark that characterizes HPC I/O performance. We use the

average respective file sizes for each of the compressed or uncompressed checkpoints.

3.6.1 Data-aware and Data-Agnostic I/O Performance

We compare the performance of data-aware and data-agnostic compression in

terms of time to transfer checkpoints to the PFS. The objective is to study the ben-

efit of having data-aware compression on I/O performance. Data-aware compression

results in smaller files and thus requires less time to write the checkpoints to the PFS.

The merged and compressed checkpoint sizes per writer for ALE3D were 1.3 GB and

1.5 GB for data-aware and data-agnostic compression respectively. For Cactus, the

sizes per writer were 1.2 GB and 2.4 GB.

We show the results for Cactus in Figure 3.13. In the figure, because the group

size is 32, the number of writers is N/32, where N is the number of processes in the

75

0	

50	

100	

150	

200	

250	

300	

350	

400	

12
8	

25
6	

51
2	

10
24
	

20
48
	

40
96
	

81
92
	

15
42
4	

16
38
4	

20
48
0	

24
57
6	

28
67
2	

Av
er

ag
e T

ot
al

 T
im

e
 (s

ec
)	

# of Processes (N)	

Agnostic+Agg-Write	

 Aware+Agg-Write	

Agnostic+Agg-Read	

 Aware+Agg-Read	

Fig. 3.13.: I/O performance with different compression schemes

job. mcrEngine with data-aware compression reduces the data transfer overhead

compared to data-agnostic compression for both reading and writing checkpoints.

3.6.2 Benefit of Checkpoint Aggregation

This experiment shows the PFS I/O performance impact of aggregation as we

scale up the application. Figure 3.14 shows the average measurements and 95%

confidence intervals for the time to write to the PFS using IOR for the Cactus check-

points. For the schemes that aggregate, the number of writers is N/32 and the data

transferred per reader/writer is 1.2 GB; for the schemes that do not aggregate, the

number of writers is N and the data transferred is 87 MB per reader/writer. We

find that aggregating the checkpoints in mcrEngine results in better I/O scalability

and reduces performance variability compared to non-aggregated I/O, particularly for

read (i.e., restart) operations. Although unclear due to the overhead increase with

76

0	

200	

400	

600	

800	

1000	

1200	

1400	

12
8	

25
6	

51
2	

10
24
	

20
48
	

40
96
	

81
92
	

Av
er

ag
e T

ot
al

 T
im

e
(s

ec
)	

# of Processes (N)	

C+NoAgg-write	

 Agnostic+Agg-write	

C+NoAgg-read	

 Agnostic+Agg-read	

Fig. 3.14.: Benefit of aggregation for I/O performance

C+NoAgg-read, Figure 3.14 shows that aggregation improves write performance up

to 26%.

3.6.3 Checkpoint and Restart Overheads

We now compare processing and transfer overhead using the mcrEngine check-

point and restart schemes. Figures 3.15 and 3.16 show the best case average of the

measured values of IOR for an application run with 15,408 processes, collected over

several days at different times. The numbers beside each step correspond to the steps

in Table 3.1 and 3.2.

We make several observations for checkpointing. First, data-aware compression

takes more computation time than data-agnostic and the schemes that only use Gzip

or do not compress. However, the checkpoint phase does not occur in the appliation’s

critical path so that overhead does not affect performance. Second, fetch time for

77

0	

50	

100	

150	

200	

250	

300	

350	

N
oC
+N
oA
gg
	

C+
N
oA
gg
	

N
oC
+A
gg
	

A
gn
os
tic
+A
gg
	

Aw
ar
e+
A
gg
	

N
oC
+N
oA
gg
	

C+
N
oA
gg
	

N
oC
+A
gg
	

A
gn
os
tic
+A
gg
	

Aw
ar
e+
A
gg
	

ALE3D	

 Cactus	

Av
er

ag
e

C
he

ck
po

in
t S

to
ri

ng
 O

ve
rh

ea
d

(s
ec

)	

Local_read(3a)	

 Collect_header(5)	

 Classify_similarity(6a)	

Fetch(7b)	

 Merge(7c)	

 Variable_compress	

Local_write(9a)	

 Parallel_Gzip	

 PFS_write(9b)	

Fig. 3.15.: End-to-end checkpointing overhead

Cactus is higher than ALE3D because it has 5× more variables. Third, the smaller

file sizes that result from data-aware compression mean that mcrEngine uses far

less network resources when transferring these checkpoints. Data-aware compres-

sion reduces the I/O time by 92% and 86% over data-agnostic (Agnostic+Agg vs

Aware+Agg) for ALE3D and Cactus. Finally, mcrEngine reduces checkpointing

overhead by up to 87% over cases without aggregation (NoC+NoAgg vs Aware+Agg

for ALE3D), and up to 32% for cases without compression (NoC+Agg vs Aware+Agg

for Cactus). This reduction allows applications to checkpoint more frequently, which

improves fault-tolerance.

Figure 3.16 shows the restart overhead results. Since restarts are on the appli-

cation’s critical path, lower overhead implies better end-to-end performance. We

again make several observations. Data-aware compression reduces restart overhead

by more than 62% compared to the current state of the practice (NoC+NoAgg vs,

Aware+Agg) for ALE3D. It reduces overhead by more than 80% compared to only

compressing individual checkpoints (C+NoAgg vs Aware+Agg). Second, network

78

0	

100	

200	

300	

400	

500	

600	

N
oC
+N
oA
gg
	

C+
N
oA
gg
	

N
oC
+A
gg
	

A
gn
os
tic
+A
gg
	

Aw
ar
e+
A
gg
	

N
oC
+N
oA
gg
	

C+
N
oA
gg
	

N
oC
+A
gg
	

A
gn
os
tic
+A
gg
	

Aw
ar
e+
A
gg
	

ALE3D	

 Cactus	

Av
er

ag
e

R
es

ta
rt

 O
ve

rh
ea

d
(s

ec
)	

PFS_read(1a)	

 Parallel_Gunzip	

 Local_read(1b)	

Variable_decompress	

 Send_to_CNC(3)	

 Local_write(6)	

Fig. 3.16.: End-to-end restart overhead

transfer time dominates restart overhead for cases without aggregation, compared

to CPU time for the mcrEngine data-aware scheme. Converting a network-bound

problem to a CPU-bound problem improves scalability. Finally, data-aware compres-

sion significantly reduces network load by reading less data from the PFS compared

with the data-agnostic case. The network I/O time for data-aware compression is 43%

and 71% less than that of data-agnostic (Agnostic+Agg vs Aware+Agg) compression

for ALE3D and Cactus.

3.6.4 Discussion

We observe writing to the PFS incurs the largest portion of the total overhead.

Thus, our selection of the scheme that provides the highest compression ratio results

in the least write time, which makes our scheme selection independent of system

characteristics for large checkpoint files. However, system specifications such as I/O,

network, and CPU characteristics, will affect the scheme’s performance with smaller

79

checkpoint files when computation overhead dominates network overhead. In that

case, another selection metric could be the ratio between compression and operation

time overhead.

mcrEngine could be made adaptive by evaluating schemes periodically and se-

lecting the best one for that checkpoint set. Also, mcrEngine currently selects the

compression algorithm for each data type based on published results. An adaptive

mcrEngine could sample their compression ratios to select these algorithms dynam-

ically.

We used checkpoints from a variety of runs – both large and small. The ALE3D

checkpoint set (the largest set), in particular, is from a production run and shows that

the benefits of mcrEngine increase with checkpoint size. The smaller checkpoints

(from Cosmology and Implosion) show less benefit. Currently, we use input sets

provided by the community. Configuring these applications to run longer and to take

larger checkpoints requires application-specific knowledge.

3.7 Related Work

Other researchers have investigated reducing the size of checkpoints by writing

less data in the checkpoints or by compressing the checkpoint files. Incremental

checkpointing reduces the size of checkpoints by writing changes in application data

between full checkpoints [17–20]. These approaches are orthogonal to our work, as

incremental checkpoints can be compressed for further savings [21].

Plank and Li compressed checkpoints to fit them in main memory [61], using a

variation of Algorithm 1 [62]. They reported compression factors of 10 to 96 per-

cent. They found that compression was beneficial with large and highly compressible

checkpoints and when the compression factor exceeded the ratio of the disk write

speed to compression speed. Li and Fuchs did not find any advantage in compress-

ing checkpoints with an LZW algorithm on a uniprocessor system despite observ-

ing good compression factors since compression time exceeded uncompressed write

80

time [63]. Islam et. al. [64] found that compression and decompression overheads

dominated checkpointing and restart times but the decreased network transfer time

of the smaller files outweighed the higher overheads, especially with increasing check-

point size. Ansel et. al. [65] also found that the time to compress checkpoints resulted

in longer checkpoint times when writing to node-local disks although the disparity

in restart times was smaller. These approaches all use data-agnostic compression

while we investigate data-aware techniques. To the best of our knowledge, we are the

first to investigate a data-aware compression approach and cross-process merge and

compression for parallel applications with many processes.

Bautista-Gomez et. al. [66] developed a topology-aware reliable checkpointing

library that provides reliability in cluster environments, which is different from the

scalability challenge that we address. Wu et. al. [67] developed a compression scheme

for bitmaps and demonstrated that it reduces bitmap index sizes and database query

response time.

Several researchers have explored reducing the cost of checkpointing and writing

to the file system. To reduce the number of writes to the file system, and ultimately

to reduce checkpoint writing cost, Ouyang et. al. [68] cache writes of small and

medium sizes within a node in order to aggregate them. Bautista-Gomez et. al. [69]

avoid the I/O bottleneck of disk-based checkpointing and the issues of classic diskless

checkpointing. These approaches are complementary to ours. They reduce the cost

of writing data while our work reduces the amount of data written.

3.8 Summary

We presented mcrEngine, a novel scheme to compress checkpoints across pro-

cesses. mcrEngine exploits semantic information in checkpoints to put similar data,

i.e., with the same data type and name, close together to improve compression. We

implemented several different schemes to interleave data from multiple checkpoints

and found that different schemes provide the best results for different applications.

81

We evaluated mcrEngine and the different interleaving schemes through four

real-world computational simulations in terms of the compression ratio and overhead.

We found that the amount of compression gained from each scheme varied depending

upon how the data was laid out across multiple processes. For some applications,

similar data occur in the checkpoint from a single process, while for others, the similar

data are striped in blocks and distributed across multiple processes. Thus, the best

approach varies. Our compression schemes are as much as 115% better in reducing

checkpoint size than simply applying Gzip compression to concatenated checkpoints.

As expected, mcrEngine spends more computational time than simply applying

compression; however, transferring less data overall with fewer concurrent writers

reduced the overhead of writing to the parallel file system. mcrEngine converts

network load to computational load; a fact that is crucial for making mcrEngine

scale well with increasing application size. Since the parallel file system is often

the bottleneck, this method reduces checkpointing overhead by up to 87%. Further,

smaller files reduce restart times by up to 62%, a benefit that is particularly important

since they occur on the application’s critical path. In conclusion, by reducing the

time to store and retrieve checkpoints, mcrEngine makes checkpointing-based fault-

tolerance in large systems practical.

However, mcrEngine groups checkpoints according to their ranks. The question

that we address in the next chapter is whether grouping checkpoints in a data-aware

manner before compressing them, improves compressibility or not.

82

4. BENEFIT-AWARE CLUSTERING FOR PARALLEL

APPLICATIONS

Writing to the Parallel File System (PFS) is very expensive. Specifically, if every

single process writes directly to the PFS. This results in high contention on shared

PFS and network resources. Parallel file systems, such as Lustre, are optimized

for a small number of reads and writes of large amount of data, and perform poorly

otherwise. In order to exploit this design of PFS, Islam et. al [70] proposed checkpoint

aggregation on a set of nodes before transferring data to and from stable storage. Also,

in order to achieve better compression, authors utilize semantic information written

in checkpoints to align data so that the aggregated output compresses better. One

question that still remains is, how should these processes be grouped. Our earlier

work in [70] compresses members of each group in rank-wise order for demonstrating

the benefit of data-aware aggregation and compression. However, applications that

have separate groups of processes working on different parts of the input data, may

not have such a straight forward mapping of rank to group. For example, applications

that organize processes in a mesh, will have processes with non-contiguous ranks on

the border computing similar tasks than processes in the middle. This may result in

similarity in checkpoints from non-contiguous ranks. Thus, clustering them in groups

with similar checkpoints will help such a system achieve better compression ratio.

The contributions of this work is to present preliminary results on synthetic data

to support that clustering checkpoints based on benefit improves overall compres-

sion ratio. Our experimental results on synthetic data shows a 30% improvement in

compression ratio compared to compressing checkpoints in rank-wise order.

The paper is organized as follows. Section 4.1 provides background. Section 4.2

describes benefit-aware clustering technique. Section 4.4 details the structure of the

83

implementation of mcrCluster. Section 4.5 presents our evaluation methodology

and preliminary results.

4.1 Background

In this section, we discuss the related background information on different check-

point types, how checkpoints are written, checkpoint data format, and data-aware

compression technique developed in [70], named mcrEngine.

Most parallel scientific applications distribute simulation data across multiple pro-

cesses. These processes generally coordinate globally to take a consistent checkpoint.

During an asynchronous checkpointing phase, once a process finishes checkpointing, it

resumes its computation. Currently, with most checkpointing systems, the processes

send their checkpoints directly to the PFS, although checkpointing libraries such as

SCR [11] can store checkpoints locally instead.

We define data-aware aggregation as aggregating across process checkpoints

such that data with similar meaning remain together in the merged checkpoint.

mcrEngine uses data-aware compression, which dynamically selects from a set of

compression algorithms and applies the best one for each similar data group. Data-

aware aggregation and compression is the entire process of interleaving semantically

similar data and using a dynamically selected compression algorithm.

mcrEngine interprets two variables in different checkpoints as similar if their

names agree and their data representation is identical (same data type). It uses

metadata to locate checkpoint data that represent the same variables.

mcrEngine then merges similar variables in one of the following two ways:

• Variable Concatenation As Figure 3.7a shows (Cx.T denotes the tempera-

ture array of the checkpoint of rank x and Cx.P its pressure array), the Data-

Aware or simply Aware scheme concatenates individual variables before com-

pressing them;

84

• Variable Blocking As Figure 3.7b shows, the Aware-Block scheme interleaves

variables in blocks of configurable sizes, instead of simply concatenating them.

In our previous work, we found that compressing variables with data-type specific

algorithm converts non-uniform, not so compressible data to a more uniform format.

Also, different merging schemes work well for different applications depending on their

input distribution pattern. mcrCluster builds on top of our data-aware checkpoint

aggregation and compression technique and improves compression ratio further by

combining checkpoints from processes depending on a novel “similarity” metric that

we present in this paper.

4.2 Benefit-Aware Clustering

As applications grow in scale, sending checkpoint data directly to the PFS will

hinder the scalability of future checkpointing systems. Also, to play along the strength

of PFS in handling small number of large data transfers, aggregation and compression

has been shown to be a beneficial method in reducting the number of checkpoint files

and overall data. Further investigation shows that grouping checkpoints randomly

has impact on overall compression ratio. The goal is to break checkpoints in multiple

groups in order to balance load on aggregator nodes and do so without impacting

compression ratio.

Some additional design questions that we address are:

• how many groups and members per group to select?

• what should be the metric for deciding “similarity” or “distance”?

• how to make clustering practical for using in an online checkpointing system?

The following sections discuss our design and some other alternate choices.

85

4.2.1 Number of Groups

Typical clusters consist of compute nodes and gateway or I/O nodes. I/O nodes

are the interface to disk resources. All I/O performed on compute nodes is routed

to the I/O nodes over the internal switch network (such as InfiniBand). Individual

files are stored as a series of “blocks” that are striped across the disks of different

I/O nodes. This permits concurrent access by a multi-task application when tasks

read/write to different segments of a common file. Data transfer through these gate-

way nodes can achieve the best parallelism if the number of aggregator nodes equals

the number of gateway nodes. Each aggregator handles 1 group. So, the number of

groups should equal to the number of aggregator nodes in turn.

The naive way of grouping is to equally (if possible) divide these checkpoints in

rank-wise order. However, for applications that have subgroups of processes doing

separate things and processes in the same group not necessarily having consecutive

ranks – this method will not work well.

Our idea of grouping checkpoints is to utilize the knowledge of how beneficial it is

to pair up two processes, and based on that knowledge create a group. The ultimate

goal is to gain the most compression possible out of these groups.

4.2.2 New Similarity Metric

The ultimate goal of clustering checkpoints is to minimize the total size of com-

pressed data. To do that, we want to pick the pairings of checkpoint files that give the

most improvement in compression ratio. That is, we want to pick files that compress

better together than they do by themselves or with other files.

We define the benefit of compressing two checkpoints together as the percentage

improvement in size reduction over their individual compression ratios.

86

α(i) =
||i||

||compress(i)||
(4.1)

α(j) =
||j||

||compress(j)||
(4.2)

αAwareBlock(i, j) =
||i||+ ||j||

||AwareBlock(i, j)||
(4.3)

Similarly, (4.4)

αAware(i, j) =
||i||+ ||j||
||Aware(i, j)||

(4.5)

Benefit matrix, β is an N × N matrix, where N is the number of processes and

βScheme(i, j) is the benefit of compressing checkpoint i with j using Scheme as the

merging scheme. Scheme can be either Aware or AwareBlock as presented in Sec-

tion 3.2.2. Equation 4.6 gives us the % of reduction in size if we pair checkpoint i

and j together, instead of compressing them separately and then concatenating.

βScheme(i, j) = [1− ||Scheme(i, j)||
||Scheme(i)||+ ||Scheme(j)||

]× 100% (4.6)

where, βScheme(i, j) =



−ve, Pairing these two checkpoints

is not advantageous

0, Pairing these two checkpoint

is not better than compressing

each individually

+ve, There is similarity across

these two checkpoints and

pairing them reduces total size

Given a set of N checkpoint files C, c0...cn−1εC, we can define a benefit matrix

βT imestep
Scheme such that βT

Scheme(i, j) represents the benefit matrix computed by applying

a scheme Scheme ∈ (AwareBlock, Aware) on the checkpoints i and j at time step

T .

87

If there is a wide range of values in the benefit matrix, then we can reasonably

expect that choosing the best pairings from this matrix to guide groupings of check-

point files will come close to minimizing the total compressed size of C. If there is not

much variability here, then we know that there is no “best” grouping of checkpoints

and it does not really matter how we group things when we ship them off to the

intermediate compression nodes.

4.2.3 Sampling Method

Variables can be sampled in one of four different ways:

• Random sampling: sampling s elements from random positions of a variable

• Chunking: using the first s elements of a variable

• Wavelet: applying Wavelet compression to reduce data. The level of compres-

sion can be determined based on the configurable parameter s.

• Complete: use the entire variable for computing benefit.

4.3 Runtime Clustering

Ideally, for any checkpoint file Ci, Si be the set of similar checkpoints to Ci, where

similar means that the benefit of compressing the two checkpoints is high. That is,

Si contains all values of k such that β(i, k) is beyond certain threshold. The most

important point in designing a practical runtime clustering system is to ensure that

we can approximate the correct benefit by only sampling a fraction of the entire data.

We do the following to ensure this goal is met.

4.3.1 Reduce Dimension of β

One way to keep clustering practical is by reducing the dimension of the benefit

matrix for each application. In order to see if pair-wise benefit is sufficient, we

88

(a) β (b) β3D (View 1) (c) β3D (View 2)

Fig. 4.1.: Benefit matrices of the application Cactus.

generated a 2D benefit matrix using pair-wise benefit values and a 3D benefit matrix

using three-way benefit values. In 3D, Si is the set of all unique j, k for which

β3D(i, j, k) is high. Figures 4.1b and 4.1c show two different views of the benefit

matrix computed using three-way compression on checkpoints from a real application,

Cactus. Figure 4.1a shows that Si in 2D is the same as Si in 3D, at least for the Cactus

application. This means that if checkpoints are clustered using their 2D benefit, the

same group membership will be observed.

4.3.2 Reduce Data to Cluster

Computing an N × N benefit matrix includes O(N2) compressions. If not done

in an efficient manner, computing clusters will not scale for even a small set of check-

points. We reduce the data to cluster by:

• reducing the number of variables to cluster on

• reducing the amount of data to compress

From Table 3.3, we can observe that applications tend to have certain data-types

that dominate over others. From our observations, actual computed values are either

of single- or double-precision floats. We can configure our variable selection filter to

only consider those variables that are of certain data types, larger than certain size,

89

and until a certain percentage of data is considered. For example, in our experi-

ments, we selected 100 double-precision floating point variables with more than 1024

elements to be the variables to consider, and it covered 88% of actual data written in

these checkpoints. The rationale is that certain data-types are less compressible but

dominate the actual data space. If we can stage them in such a way that we can gain

the most compression, then it will actually improve the overall compression ratio.

4.3.3 Centralized vs Distributed Clustering

We find the “distance” between checkpoints i and j by looking at their “similarity”

relationships. The assumption is, if i and j result in better compression, and k does

not compress well with any one of i or j, it is better to keep k separate. In other

words, k will have a larger distance from i and j. Based on the benefit matrix, β,

clustering algorithms compute Euclidean distance between row i and row j of β, in

order to compute their “distance”. The rationale is that checkpoint i and j will be

grouped together if their benefit profiles are similar.

4.4 Structure of mcrCluster

We have designed a system, mcrCluster, in order to study the benefit of cluster-

ing on application checkpoints. Figure 4.2 shows the overall structure of how the entire

system works. The system has two components, Compute Node Component and Ag-

gregator Node Component. Clustering modules in the Compute Node Components

of application processes collaborate to determine which cluster each of the processes

belong to, and then send data to the respective Aggregator Node Component with

rank equal to the cluster id. The Aggregator Node Component applies data-aware

compression described in our previous work in [70] and in Sections 3.2 and 3.3.

Figure 4.2 shows that mcrCluster is a small component within the larger

Compute Node Component. The mcrCluster component consists of the following

four modules:

90

Algorithm 1: mcrCluster building benefit matrix for realizing clusters
among checkpoints.

Data: Checkpoint taken by process with rank r
Result: Cluster assignment, produced by Rank 0

1 initialization;
2 loadConfigurations; /* Defines properties of variables that should be

selected */

3 read variables that match defined properties from local checkpoint file;
4 Compute keys with <variable names,types,sizes>;; /* O(N × V × s) */

5 Perform distributed sort on keys ;
6 MPI Allgather to exchange sampled data from filtered variables;
/* O(log(N) + (N − 1)× V × s) */

7 for i = 1→ V do
8 Merge and compress ith variable from rank r through N using data-type

specific compression algorithm; /* fpc,fpzip */

9 end
10 Compress merged-compressed data using general purpose compression

algorithm; /* Parallel Gzip, O(V + 1) compression */

11 Compute β(r, p) by using Equation 4.6;
12 MPI Allgather to collect the entire benefit matrix β at every process;

/* O(log(N) */

13 for p = 1→ N do
14 for i = 1→ N do

15 δ(r, p)
+
= (β(r, i)− β(p, i))2

16 end

17 δ(r, p) =
√
δ(r, p); /* O(N2) */

18 end
19 MPI Allgather to distribute entire distance matrix δ among all processes;

/* O(log(N) */

• the Filter module selects variables that are of certain types and larger than

a threshold size. If the configuration file does not specify any type, then all

data-types are considered. It is important to note that our design decision of

selecting a small number of variables is based on our observation with 4 different

real world applications that less than 10% of variables constitute more than 80%

of data.

91

Algorithm 2: mcrCluster building benefit matrix for realizing clusters
among checkpoints.

Data: Checkpoint taken by process with rank r
Result: Cluster assignment, produced by Rank 0

1 initialization;
2 loadConfigurations; /* Defines properties of variables that should be

selected */

3 read variables that match defined properties from local checkpoint file;
4 Compute keys with <variable names,types,sizes>;
5 Perform distributed sort on keys ;
6 MPI Allgather to exchange sampled data from filtered variables;
/* O(log(N) + (N − 1)× V × s) */

7 for i = 1→ V do
8 Merge and compress ith variable from rank r through N using data-type

specific compression algorithm; /* fpc,fpzip */

9 end
10 Compress merged-compressed data using general purpose compression

algorithm; /* Parallel Gzip, O(V + 1) compression */

11 Compute β(r, p) by using Equation 4.6;
12 Call CAPEK [71] to cluster data in a distributed manner in O(logN) (since

V s = N); /* O(log(N)) */

ANC	

ANC	

Benefit-aware clustering 	

by mcrCluster	

P3	

P2	

P1	

P0	

P2	

P1	

P3	

P0	

PFS	

After determining cluster,
send data to appropriate
ANC	

ANC applies data-
aware compression	

CNC	

CNC	

CNC	

CNC	

mcrCluster	

Filter	

 Order	

 Similarity	

 Cluster	

CNC	

CNC	

CNC	

CNC	

Fig. 4.2.: Overall structure of benefit-aware clustering and data-aware compression.

• the Order module sorts selected variables in a distributed manner, according

to their names and data-types. The idea is to order variables such that the ith

variable for each process has the matching name and data-type to be considered

92

“similar”. This module also samples data based on one of random sampling,

chunking, or wavelet transform methods to reduce the amount of data to send,

and then performs an MPI collective communication to send data to the other

processes.

• the Similarity module of process i builds the ith row of the entire benefit

matrix, β(i).

• the Cluster module either implements a centralized or a distributed clustering

algorithm, depending on a configuration parameter. In our current implementa-

tions, we made PAM and CLARA available as centralized clustering algorithms

and CAPEK [71] as the distributed clustering algorithm. Implementations of

these algorithms have been taken from the library Muster [72].

4.4.1 Algorithm for Building Benefit-Matrix in Runtime

Algorithm 1 summarizes the steps that mcrCluster takes in implementing run-

time clustering. Lines 1 through 4 denotes tasks that the Filter module on each

process performs locally, namely – initializing variables, reading configuration file,

filter variables and create hash key for distributed ordering of variables. Lines 5 and

6 are performed by the Order module to arrange variables in a particular order and

distribute data among processes. The Similarity module performs tasks listed from

line 7 to 19. Lines 7 through 11 are performed by each process locally in parallel.

Line 12 is another MPI collective communication. Lines 13 through 19 calculates and

distributes the Euclidean distance for each process in parallel so that the clustering

algorithm can access distance between rank r and any other process in O(1) time.

This goes a long way in improving scalability of the clustering step.

The worst-case runtime complexity of Algorithm 1 can be determined by com-

puting the cost of the dominating operations in this algorithm. The most expensive

steps are:

93

• line 6: if the configuration parameter for the size of sample is s, then the total

amount of data exchanged in this step for all processes is N × V × s.

• For N number of processes, the complexity of the MPI Allgather operation

is lgN + (N − 1)V s [73], where V × s >> N . So, the overall complexity is

O(NV s).

• lines 7 to 12: the empirical overhead is proportional to the cost of V +1 number

of compressions.

• line 12: O(N + lgN), since the amount of data is O(N) benefit values.

• lines 13 - 17: O(N2) complexity of line 19 is O(lgN +N).

Since, the overall complexity of Algorithm 1 is O(N2), it will not scale well as

the number of checkpoints and the amount of data increases. However, Algorithm 1

is a good choice to study the benefit of clustering on applications at small scale.

Algorithm 2 shows another scalable approach that uses CAPEK instead of PAM or

CLARA to cluster on benefit values. Each process contributes N number of benefit

pairs and this makes the overall complexity of CAPEK to be O(log(N)). CAPEK

samples processes and uses Euclidean distance to compute the distance between ben-

efit values of pairs of processes.

To make mcrCluster scale up to large-scale applications, Algorithm 3 lists the

steps for clustering checkpoints in O(V s
N
log(N)) using CAPEK. Here, V is the number

of variables to sample and s is the number of elements from each variable to use for

clustering. Both of these parameters are configurable and can be changed to adjust

the amount of data to cluster on.

4.5 Evaluation of mcrCluster

To evaluate the effectiveness of grouping checkpoints correctly, we conducted sev-

eral experiments on synthetic data and real application checkpoint sets.

94

Algorithm 3: mcrCluster using distributed clustering for large-scale appli-
cations.

Data: Checkpoint taken by process with rank r
Result: Cluster assignment, produced by Rank 0

1 initialization;
2 loadConfigurations; /* Defines properties of variables that should be

selected */

3 read variables that match defined properties from local checkpoint file;
4 Compute keys with <variable names,types,sizes>;
5 Perform distributed sort on keys ;
6 Sample variables to create data to cluster on using one of the sampling

methods described in 4.2.3.
7 Call CAPEK [71] to cluster data in a distributed manner in V s

N
O(logN).

For proof of concept, we generated 32 checkpoints where processes with even ranks

wrote 0s and those with odd ranks wrote rank|1234567 as double-precision floating

point values. For generating these checkpoints, we used the file system benchmark

IOR [44]. Each of these checkpoints contained 1 variable each. We also applied

benefit-aware clustering on checkpoint sets for multiple simulation steps of the AMR

application Cactus.

We evaluate the effectiveness of our novel benefit-aware clustering technique. In

particular, we explore:

• Effectiveness of benefit metric in finding clusters

• The impact of benefit-aware clustering on compression ratio

For our experiments, we used the entire variable to build the benefit matrix.

4.5.1 Effectiveness of Benefit Metric in Finding Clusters

Figure 4.3a and Figure 4.3b are the visual representations of how benefit values

vary for a time step in the middle of a simulation for two applications IOR and Cactus.

The observations that can be made from Figure 4.3 are:

95

Distance−matrix

V1 V3 V5 V7 V9 V12 V15 V18 V21 V24 V27 V30 V33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

(a) Benefit matrix of IOR (synthetic data)

Benefit−matrix

V1 V3 V5 V7 V9 V12 V15 V18 V21 V24 V27 V30 V33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1.
08

1.
09

1.
10

1.
11

1.
12

1.
13

1.
14

1.
15

(b) Benefit matrix of Cactus (AMR)

14
12
10
6
4
2

18
8

24
32
30
28
26
22
20
16
31
29
27
25
23
21
19
17
15
13
11
9
7
5
3
1

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of pam(x = distance_matrix, k = num_cluster, diss = FALSE, metric = "euclidean",
Silhouette plot of stand = FALSE)

Average silhouette width : 0.82

n = 32 2 clusters Cj

j : nj | avei∈Cj si

1 : 16 | 1.00

2 : 16 | 0.64

(c) Silhouette plot showing natural clus-
tering in benefit values of IOR checkpoints

Fig. 4.3.: Benefit matrix and silhouette plot of 32 checkpoints from Cactus

• the range of benefit values is really close for AMR applications in 4.3b. This

indicates that using benefit-aware clustering may not be beneficial for these

checkpoint sets. Table 4.1 summarizes that benefit-aware clustering results in

the same compression ratio as grouping them in rank-wise order.

• since the synthetic data from IOR had distinct groups in data, the benefit

matrix clearly shows that. This indicates that if checkpoint sets have distinct

96

Table 4.1: Comparison of compression ratios for different clustering schemes.

Applications Number of Clusters Number of checkpoints Random Rank-wise Benefit-aware

IOR 2 32 509 509 665
Cactus 4 128 1.25 1.29 1.29

inherent clusters in them, then our novel benefit metric will be able to realize

them.

4.5.2 Impact of Benefit-Aware Clustering on Compression Ratio

To study the impact of benefit-aware clustering on the overall compression ratio,

we applied mcrCluster on the synthetic checkpoint set generated from IOR. Fig-

ure 4.3c shows the silhouette plot of the benefit matrix computed by mcrCluster

and realized by the statistical software R. Figure 4.3c shows that our novel benefit

metric does a good job in realizing the natural clustering among checkpoints, if there

exists any. Table 4.1 summarizes compression ratios of applications and shows that

with data-aware clustering, compression ratio improves by X% compared to random

ordering, and 30% compared to rank-wise grouping. This improvement is significant

enough to make us excited about finding real applications with significant variation

in data.

4.6 Discussion

In this paper, we developed a new technique for grouping checkpoints from dif-

ferent processes of an application depending on their data in order to improve the

overall compression ratio. To quantify benefit of clustering checkpoints together, we

developed a new metric for measuring “similarity” between checkpoints. To study

the impact of our new clustering mechanism, we design and develop mcrCluster, a

system that uses data-aware compression technique for computing “similarity”. Ex-

periments with mcrCluster and mcrEngine on synthetic data shows that signifi-

97

cant benefit can be obtained by clustering checkpoints with diverse data. Visualizing

the generated benefit matrices give us a good idea about when clustering is beneficial

and when simple rank-wise ordering is sufficient. We are looking for real applications

with groups of processes responsible for distinctly different computation to apply our

technique and study its benefit.

98

5. CONCLUSION

Checkpoint-restart is the most widely used technique for making large-scale dis-

tributed systems resilient and fault-tolerant in the face of increasing failure rate.

As applications scale with the ever increasing amount of computational resources,

the amount of data produced by them increases proportionately. More than 80% of

data transferred between compute nodes and stable storage is checkpoint data. To-

day’s checkpointing systems will not be able to handle such insurgency in data since

network bandwidth is not scaling proportionately with the amount of computational

resources. To solve this problem, in this thesis we focus on checkpointing systems

in two different types of computational environments – high-through systems such as

grids and high-performance clusters such as supercomputers.

Todays grid systems often use expensive, high-performance dedicated checkpoint

servers. However, in a geographically distributed environment, this solution incurs

high checkpoint transfer latency. Additionally, transferring gigabytes of checkpoint

data to distant locations through shared network adversely impacts the utilization

of the network as well as the performance of users of the entire system. To solve

this problem, in this thesis, we present a novel failure-model and fault-tolerant tech-

nique for storing checkpoints in a distributed manner on shared grid resources. Our

system, falcon, selects storage resources periodically based on their predicted relia-

bility and load, and stores them using fault-tolerant techniques. Our experiments on

DiaGrid shows that falcon improves application performance between 11% and 44%

compared to Condor’s checkpointing systems with local and remote storage servers,

respectively.

The major challenge of checkpointing systems in HPC is that network bandwidth

is not scaling proportionately with the increase in the amount of checkpoint data.

In addition to that, the current practice of storing checkpoint files by each process

99

individually results in contention on parallel file system resources and network band-

width. This ultimately results in checkpointing systems not being able to scale with

the growth of applications. To solve this problem, we propose a new technique called

— data-aware checkpoint aggregation and compression. Our system, mcrEngine,

aggregates checkpoints in rank-wise order, merges “similar” variables, and performs

data-aware compression. For real-world applications, mcrEngine achieves 3.8× com-

pression compared to uncompressed data; improves compression ratio by 115% com-

pared to concatenating them and compressing using general purpose algorithm. Our

preliminary results on synthetic data shows that grouping checkpoints in “benefit-

aware” manner can improve compression ratio even further. Our observation in

Chapter 4.6 is that our benefit metric is able to realize any inherent clusters these

checkpoints may have. Results show that mcrCluster achieves significant improve-

ment in compression ratio, compared to grouping them in rank-wise order.

In summary, this thesis contributes in solving the scalability challenge of check-

pointing systems in large-scale, distributed computing environments. We hope that

techniques presented in this thesis will go a long way in making the exascale dream

a reality.

LIST OF REFERENCES

100

LIST OF REFERENCES

[1] J. N. Glosli, D. F. Richards, K. J. Caspersen, R. E. Rudd, J. Gunnels, and
F. Streitz, “Extending Stability Beyond CPU Millennium: a Micron-Scale Atom-
istic Simulation of Kelvin-Helmholtz Instability,” in Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, p. 58, ACM, 2007.

[2] B. Schroeder and G. A. Gibson, “Understanding Failures in Petascale Comput-
ers,” in Journal of Physics: Conference Series, vol. 78, p. 012022, IOP Publish-
ing, 2007.

[3] S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, W. Dally, E. Elnohazy,
M. Hall, R. Harrison, W. Harrod, and K. Hill, “ExaScale Software Study: Soft-
ware Challenges in Extreme Scale Systems,” DARPA IPTO, Air Force Research
Labs, Tech. Rep, 2009.

[4] “Top500 Supercomputing Site.” http://www.top500.org/.

[5] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A survey of
rollback-recovery protocols in message-passing systems,” ACM Comput. Surv.,
vol. 34, no. 3, pp. 375–408, 2002.

[6] E. N. Elnozahy and J. S. Plank, “Checkpointing for Peta-Scale Systems: A
Look into the Future of Practical Rollback-Recovery,” IEEE Transactions on
Dependable and Secure Computing, vol. 1, pp. 97 – 108, April-June 2004.

[7] P. Lemarinier, A. Bouteiller, G. Krawezik, and F. Cappello, “Coordinated Check-
point Versus Message Log for Fault Tolerant MPI,” International Journal of High
Performance Computing and Networking, vol. 2, no. 2, pp. 146–155, 2004.

[8] R. L. Berger, L. M. Divol, S. H. Glenzer, D. E. Hinkel, R. K. Kirkwood, A. B.
Langdon, J. D. Moody, C. H. Still, L. J. Suter, E. A. Williams, et al., “Modeling
with Backscatter and Transmitted Light of High-Power Smoothed Beams with
pF3D: A Massively Parallel Laser Plasma Interaction Code,” in Proceedings of
SPIE, vol. 4424, p. 206, 2001.

[9] A. Moody, “Overview of the Scalable Checkpoint / Restart (SCR)
Library.” http://www.csm.ornl.gov/srt/conferences/ResilienceSummit/
2009/pdf/moody_slides.pdf .

[10] B. Schroeder and G. A. Gibson, “A Large-Scale Study of Failures in High-
Performance Computing Systems,” IEEE Transactions on Dependable and Se-
cure Computing, vol. 7, no. 4, pp. 337–351, 2010.

[11] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design, Mod-
eling, and Evaluation of a Scalable Multi-level Checkpointing System,” in Pro-
ceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC’10, pp. 1 –11, November 2010.

101

[12] K. Sato, N. Maruyama, K. Mohror, A. Moody, T. Gamblin, B. R. de Supinski,
and S. Matsuoka, “Design and modeling of a non-blocking checkpointing system,”
in Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’12, (Los Alamitos, CA, USA), pp. 19:1–
19:10, IEEE Computer Society Press, 2012.

[13] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in practice:
the Condor experience.,” Concurrency - Practice and Experience, vol. 17, no. 2-4,
pp. 323–356, 2005.

[14] X. Ren, R. Eigenmann, and S. Bagchi, “Failure-aware checkpointing in fine-
grained cycle sharing systems,” in Proceedings of the 16th international sympo-
sium on High performance distributed computing, pp. 33–42, 2007.

[15] de Camargo, R. Y., Cerqueira, Renato, and K. Fabio, “Strategies for storage of
checkpointing data using non-dedicated repositories on grid systems,” in MGC,
pp. 1–6, 2005.

[16] M. K. Aguilera, R. Janakiraman, and L. Xu, “Using erasure codes efficiently for
storage in a distributed system,” in DSN ’05: Proceedings of the 2005 Interna-
tional Conference on Dependable Systems and Networks, pp. 336–345, 2005.

[17] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira, “Adaptive Incremental
Checkpointing for Massively Parallel Systems,” in Proceedings of the 18th Annual
International Conference on Supercomputing (ICS), pp. 277–286, 2004.

[18] S. I. Feldman and C. B. Brown, “IGOR: A System for Program Debugging via
Reversible Execution,” in Proceedings of the 1988 ACM SIGPLAN and SIGOPS
Workshop on Parallel and Distributed Debugging (PADD), pp. 112–123, 1988.

[19] N. Naksinehaboon, Y. Liu, C. B. Leangsuksun, R. Nassar, M. Paun, and S. L.
Scott, “Reliability-Aware Approach: An Incremental Checkpoint/Restart Model
in HPC Environments,” in Proceedings of the 2008 Eighth IEEE International
Symposium on Cluster Computing and the Grid (CCGRID), pp. 783–788, 2008.

[20] K. Ferreira, R. Riesen, R. Brighwell, P. Bridges, and D. Arnold, “libhashckpt:
Hash-Based Incremental Checkpointing Using GPUs,” Recent Advances in the
Message Passing Interface, pp. 272–281, 2011.

[21] J. S. Plank, J. Xu, and R. H. B. Netzer, “Compressed Differences: An Algo-
rithm for Fast Incremental Checkpointing,” Tech. Rep. CS-95-302, University of
Tennessee, August 1995.

[22] K. Ryu and J. Hollingsworth, “Resource Policing to Support Fine-Grain Cy-
cle Stealing in Networks of Workstations,” IEEE Transactions on Parallel And
Distributed Systems, pp. 878–892, 2004.

[23] “http://www.dia-grid.org/members/purdue.cfm.”

[24] X. Ren, S. Lee, R. Eigenmann, and S. Bagchi, “Resource Failure Prediction in
Fine-Grained Cycle Sharing Systems,” in Proc. of Fifteenth IEEE International
Symposium on High Performance Distributed Computing (HPDC-15), pp. 19–23,
2006.

102

[25] X. Ren and R. Eigenmann, “Empirical studies on the behavior of resource avail-
ability in fine-grained cycle sharing systems,” in ICPP ’06: Proceedings of the
2006 International Conference on Parallel Processing, pp. 3–11, 2006.

[26] T. Z. Islam, S. Bagchi, and R. Eigenmann, “Falcon: a system for reliable check-
point recovery in shared grid environments,” in SC ’09: Proceedings of the
Conference on High Performance Computing Networking, Storage and Analy-
sis, (New York, NY, USA), pp. 1–12, ACM, 2009.

[27] D. K. Jacob Strauss and F. Kaashoek, “A measurement study of available band-
width estimation tools,” in IMC, pp. 39–44, 2003.

[28] Z. Wilcox-O’Hearn, “Zfec Homepage,” Located at http://allmydata.org/trac/zfec,
2008.

[29] A. K., J. A., X. Wu, F. M., J. B., C.-W. Tseng, and Y. D., “Biobench: A
benchmark suite of bioinformatics applications,” in ISPASS ’05, pp. 2–9, 2005.

[30] T. Bray, “The Bonnie home page,” Located at http://www.textuality.com/bonnie,
1996.

[31] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill, “Collective operations
in application-level fault-tolerant mpi,” in ICS ’03, pp. 234–243, 2003.

[32] J. Walters and V. Chaudhary, “A Comprehensive User-level Checkpointing Strat-
egy for MPI Applications,” tech. rep., TR 2007-1, The State University of New
York, Buffalo, NY, 2007.

[33] R. Rodrigues and B. Liskov, “High Availability in DHTs: Erasure Coding vs.
Replication,” in Peer-to-Peer Systems IV 4th International Workshop IPTPS
2005, 2005.

[34] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz,
“Pond: the OceanStore prototype,” in Proc. of the 2nd USENIX Conference on
File and Storage Technologies (FAST), 2003.

[35] B. Rood and M. J. Lewis, “Multi-state grid resource availability characteriza-
tion,” in GRID ’07, pp. 42–49, 2007.

[36] B. Rood and M. Lewis, “Scheduling on the Grid via multi-state resource avail-
ability prediction,” in Grid ’08, pp. 126–135, 2008.

[37] E. N. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson, “A Survey of
Rollback-Recovery Protocols in Message-Passing Systems,” ACM Computing
Surveys (CSUR), vol. 34, no. 3, pp. 375–408, 2002.

[38] F. Petrini, “Scaling to Thousands of Processors with Buffer Coscheduling,” in
Scaling to New Height Workshop, (Pittsburgh, PA), 2002.

[39] “The ASC Sequoia Draft Statement of Work.”
https://asc.llnl.gov/sequoia/rfp/02 SequoiaSOW V06.doc, 2008.

[40] K. Iskra, J. Romein, K. Yoshii, and P. Beckman, “ZOID: I/O-forwarding infras-
tructure for petascale architectures,” in Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, pp. 153–162,
ACM, 2008.

103

[41] R. Ross, J. Moreira, K. Cupps, and W. Pfeiffer, “Parallel I/O on the IBM Blue
Gene/L System,” Blue Gene/L Consortium Quarterly Newsletter, Tech. Rep.,
First Quarter, 2006.

[42] R. Hedges, B. Loewe, T. McLarty, and C. Morrone, “Parallel File System Testing
for the Lunatic Fringe: The Care and Feeding of Restless I/O Power Users,” in
Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage
Systems and Technologies, pp. 3–17, IEEE Computer Society, 2005.

[43] T. H. Cormen and D. Kotz, “Integrating Theory and Practice in Parallel File
Systems,” in Proceedings of the 1993 DAGS/PC Symposium, vol. 7, 1993.

[44] H. Shan and J. Shalf, “Using IOR to Analyze the I/O Performance of XT3,” in
Proceedings of the 49th Cray User Group (CUG) Conference, 2007.

[45] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel, and
J. Shalf, “The Cactus Framework and Toolkit: Design and Applications,” in
Vector and Parallel Processing – VECPAR’2002, 5th International Conference,
Lecture Notes in Computer Science, (Berlin), Springer, 2003.

[46] G. Allen, W. Benger, T. Dramlitsch, T. Goodale, H. C. Hege, G. Lanfermann,
A. Merzky, T. Radke, E. Seidel, and J. Shalf, “Cactus Tools for Grid Applica-
tions,” Cluster Computing, vol. 4, no. 3, pp. 179–188, 2001.

[47] B. O’Shea, G. Bryan, J. Bordner, M. Norman, T. Abel, R. Harkness, and A. Krit-
suk, “Introducing Enzo, an AMR Cosmology Application,” Adaptive Mesh Re-
finement – Theory and Applications, pp. 341–349, 2005.

[48] G. Bronevetsky, K. Pingali, and P. Stodghill, “Experimental Evaluation of
Application-Level Checkpointing for OpenMP Programs,” in Proceedings of the
20th Annual International Conference on Supercomputing, pp. 2–13, 2006.

[49] “Who Uses HDF?.” http://www.hdfgroup.org/users.html.

[50] “The NetCDF Users Guide.” http://www.unidata.ucar.edu/software/
netcdf/docs/netcdf.pdf.

[51] “Enzo N-Body Simulation with Hydro+Dark Matter Nested Cosmology Simula-
tion,”

[52] M. Burtscher and P. Ratanaworabhan, “FPC: A High-speed Compressor for
Double-Precision Floating-Point Data,” IEEE Transactions on Computers,
pp. 18–31, 2008.

[53] P. Lindstrom and M. Isenburg, “Fast and Efficient Compression of Floating-Point
Data,” Visualization and Computer Graphics, IEEE Transactions on, vol. 12,
no. 5, pp. 1245–1250, 2006.

[54] L. Reinhold, “QuickLZ,” 2009.

[55] “A Parallel Implementation of GZIP for Modern Multi-processor, Multi-core
Machines.” http://zlib.net/pigz/.

[56] E. Seidel and W. Suen, “Numerical Relativity as a Tool for Computational Astro-
physics,” Journal of Computational and Applied Mathematics, vol. 109, no. 1-2,
pp. 493–525, 1999.

104

[57] J. Li, W. Liao, A. Choudhary, and V. Taylor, “I/O Analysis and Optimization
for an AMR Cosmology Application,” in Cluster Computing, 2002. Proceedings.
2002 IEEE International Conference on, pp. 119–126, IEEE, 2002.

[58] R. Liska and B. Wendroff, “Comparison of Several Difference Schemes on 1D
and 2D Test Problems for the Euler Equations,” SIAM Journal of Scientific
Computing, vol. 25, no. 3, pp. 995–1017, 2003.

[59] “Capability Cluster Sierra at LLNL.” https://computing.llnl.gov/?set=
resources&page=OCF_resources#sierra.

[60] H. Shan, K. Antypas, and J. Shalf, “Characterizing and Predicting the I/O
Performance of HPC Applications Using a Parameterized Synthetic Benchmark,”
in Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, p. 42,
2008.

[61] J. S. Plank and K. Li, “ickp: A Consistent Checkpointer for Multicomputers,”
IEEE Parallel & Distributed Technology, vol. 2, no. 2, pp. 62–67, 1994.

[62] M. Burrows, C. Jerian, B. Lampson, and T. Mann, “On-line Data Compression
in a Log-Structured File System,” ACM SIGPLAN Notices, vol. 27, pp. 2–9,
September 1992.

[63] C. Li and W. Fuchs, “CATCH - Compiler-Assisted Techniques for Checkpoint-
ing,” in 20th International Symposium on Fault-Tolerant Computing, pp. 74–81,
June 1990.

[64] T. Z. Islam, S. Bagchi, and R. Eigenmann, “falcon: A System for Reli-
able Checkpoint Recovery in Shared Grid Environments,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis,
pp. 1–12, ACM, 2009.

[65] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent Checkpointing
for Cluster Computations and the Desktop,” in 23rd IEEE International Parallel
and Distributed Processing Symposium, (Rome, Italy), May 2009.

[66] L. A. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama,
and S. Matsuoka, “FTI: High Performance Fault Tolerance Interface for Hy-
brid Systems,” in International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pp. 1–12, IEEE, 2011.

[67] K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing Bitmap Indices with Efficient
Compression,” ACM Transactions on Database Systems (TODS), vol. 31, no. 1,
pp. 1–38, 2006.

[68] X. Ouyang, K. Gopalakrishnan, and D. K. Panda, “Accelerating Checkpoint
Operation by Node-Level Write Aggregation on Multicore Systems,” in Interna-
tional Conference on Parallel Processing, pp. 34–41, IEEE, 2009.

[69] L. A. Bautista-Gomez, N. Maruyama, F. Cappello, and S. Matsuoka, “Dis-
tributed Diskless Checkpoint for Large Scale Systems,” in 10th IEEE/ACM In-
ternational Conference on Cluster, Cloud and Grid Computing, pp. 63–72, IEEE,
2010.

105

[70] T. Z. Islam, K. Mohror, S. Bagchi, A. Moody, B. R. de Supinski, and R. Eigen-
mann, “Mcrengine: A scalable checkpointing system using data-aware aggrega-
tion and compression,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’12, (Los Alami-
tos, CA, USA), pp. 17:1–17:11, IEEE Computer Society Press, 2012.

[71] T. Gamblin, B. R. De Supinski, M. Schulz, R. Fowler, and D. A. Reed, “Clus-
tering performance data efficiently at massive scales,” in Proceedings of the 24th
ACM International Conference on Supercomputing, pp. 243–252, ACM, 2010.

[72] “Muster Library.” http://tgamblin.github.com/muster/main.html.

[73] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective com-
munication operations in mpich,” International Journal of High Performance
Computing Applications, vol. 19, no. 1, pp. 49–66, 2005.

VITA

106

VITA

Tanzima Zerin Islam received her Bachelors in Computer Science and Engineer-

ing from Bangladesh University of Engineering and Technology in November, 2006.

Before starting as a Ph.D. student at Purdue in August 2007, she briefly worked

for a leading research and development company in Bangladesh. In her short stay,

she co-developed the first software solution to service-independent telecommunication

network, also known as Intelligent Network (IN). The most significant achievement

of her work has been the deployment of this technology in improving the overall com-

munication system of major cities in Bangladesh. During her Ph.D., she worked on

many different practical challenges that persist in making distributed systems more

reliable. Her software solution improves the reliability of Purdue’s largest opportunis-

tic Condor system – DiaGrid and as a result, improves the performance of applications

significantly.

Tanzima’s research interests are in the broad areas of fault-tolerance and reliabil-

ity in large-scale distributed environments. Her research internships during Summers

of 2010, 2011, and 2012 at Lawrence Livermore National Laboratory led to significant

publications. She co-authored multiple papers that were nominated for the Best Stu-

dent Paper awards in premier conferences in the area of High-performance computing.

She received the 2nd place in ACM Student Research Competition in 2010, and the

Best Female Team award in the National Collegiate Programming Contest (2004) in

Bangladesh, among others. Tanzima is an active member of the Bangladesh Student

Association (BDSA) at Purdue University and chaired many important roles in the

organization. She is also a member of the Society of Women Engineers and mentored

several undergraduate, M.S. and first-year Ph.D. students over the years.

