
TECHNIQUES FOR DETECTING SCALABILITY BUGS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Bowen Zhou

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2014

Purdue University

West Lafayette, Indiana

ii

To my parents

iii

ACKNOWLEDGMENTS

During my time at Purdue, I received countless help from different people: advi-

sors, instructors, classmates, labmates, friends, and family members. Although most

of my time was spent with a computer, coding or writing papers, it is these people

that make the PhD a journey of no regrets in my life. I want to extend my sincere

thanks to:

Milind Kulkarni, my advisor and role model in research. His insight, passion and

pursuit for perfect solutions are always an inspiration. During these moments when I

was frustrated by seemingly intangible problems and about to give up, he was always

a reliable source for ideas and encouragement. He is as much a comrade as an advisor,

willing to figure out the gory details buried in any technical problems his students

may have. Thanks for being a fantastic advisor and friend.

Saurabh Bagchi, my advisor and instructor for countless 699 research credits.

I will always remember the kindly manner and the perseverance for knowledge he

showed during our first meeting in September 2009. Though most of our meetings

were about research, from time to time we chatted about things other than research:

politics, culture, life and much more. We even watched a world cup match together

after a research meeting. Thanks for being a terrific advisor.

My PhD advisory committee members, Xiangyu Zhang and Ninghui Li, who at-

tended my exams and provided invaluable feedbacks on my work.

Donghoon Shin, my labmate for three years. We don’t have overlap in research

but we chatted a lot when we were both in the lab. I cannot remember much of

our conversations but I do remember the joy of talking with a senior student who is

kind and experienced in pretty much everything about graduate school. Good luck

in Arizona, Donghoon!

iv

Myungjin Lee, my collaborator for summer of 2009 on a research project. I still

remember his extraordinary programming skills.

Jianfu Li, my first roommate at Purdue and friend since the first day I landed on

the continent of North America. Thanks for all exciting trips and distractions. Good

luck with your PhD!

My Purdue friends: Hongbin Kuang, Weiqiang Chen, Chao Pan, Qiming Huang,

Yang Zhao, Chao Xu, Jing Ouyang, Yu Zhang, Junyan Ge, Cheng Liu, Han Wu,

Tanzima Zerin, Ignacio Laguna, Youngjoon Jo, Fahad Arshad, Amiya Maji, Nawanol

Theera-Ampornpunt, Gaspar Modelo-Howard, Subrata Mitra, Tsungtai Yeh, Sambit

Mishra, Sidharth Mudgal Sunil Kumar, Zaiwei Zhang, Jonanthan Too, Wei-Chiu

Chuang, Bo Sang, Sunghwan Yoo, Zheng Zhang, Soumyadip Banerjee, Dimitrios

Koutsonikolas, Abhinav Pathak.

Last but not least, I am forever indebted to my family for their support throughout

my life and work. Without the happiness brought to me by my parents, my wife and

my daughter, my life as a PhD student at West Lafayette would be miserable without

a doubt.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xi

1 INTRODUCTION . 1
1.1 Statistical Debugging . 2
1.2 Vrisha . 4
1.3 Abhranta . 6
1.4 WuKong . 7
1.5 Lancet . 9
1.6 Outline . 13

2 VRISHA: USING SCALING PROPERTIES OF PARALLEL PROGRAMS
FOR BUG DETECTION AND LOCALIZATION 14
2.1 Overview . 14
2.2 Background: Kernel Canonical Correlation Analysis 17

2.2.1 Canonical Correlation Analysis 17
2.2.2 Kernel Canonical Correlation Analysis 17
2.2.3 Comparison to Other Techniques 18

2.3 Feature Selection . 20
2.3.1 Features Used by Vrisha 21
2.3.2 Discussion . 22

2.4 Design . 24
2.4.1 Communication Profiling . 24
2.4.2 Building the KCCA Model 24
2.4.3 Using Correlation to Detect Errors 25
2.4.4 Localization of Bugs . 26
2.4.5 Discussion . 28

2.5 Evaluation . 30
2.5.1 Allgather Integer Overflow in MPICH2 30
2.5.2 Bug in Handling Large Messages in MPICH2 36
2.5.3 Performance Measurement 40
2.5.4 Model Selection and False Positive Rate 40

2.6 Summary . 42

vi

Page

3 ABHRANTA: LOCATING BUGS THAT MANIFEST AT LARGE SYS-
TEM SCALES . 44
3.1 Overview . 44

3.1.1 Data Collection . 44
3.1.2 Model Building . 45
3.1.3 Bug Detection . 46
3.1.4 Bug Localization . 47

3.2 Inferring Expected Program Behavior 47
3.3 Evaluation . 49

3.3.1 Case Study 1: MPICH2’s ALLGATHER 49
3.3.2 Case Study 2: Transmission’s DHT 52

3.4 Summary . 53

4 WUKONG: AUTOMATICALLY DETECTING AND LOCALIZING BUGS
THAT MANIFEST AT LARGE SYSTEM SCALES 55
4.1 Overview . 55
4.2 Modeling Program Behavior . 56

4.2.1 Model Building . 56
4.2.2 Base Model Customization 57

4.3 Feature Selection and Pruning . 59
4.4 Debugging Programs at Large Scales 62

4.4.1 Bug Detection . 63
4.4.2 Bug Localization . 64
4.4.3 Sources and Types of Detection and Diagnosis Error 64

4.5 Data Collection . 68
4.5.1 Control and Observational Features 68
4.5.2 Optimizing Call Stack Recording 69

4.6 Evaluation . 70
4.6.1 Fault Injection Study with AMG2006 71
4.6.2 Case Study 1: Performance Degradation in MPICH2 77
4.6.3 Case Study 2: Deadlock in Transmission 79
4.6.4 Overhead . 82

4.7 Summary . 83

5 LANCET: GENERATING TARGETED SCALING TESTS 85
5.1 Background: Dynamic Symbolic Execution 85

5.1.1 Dynamic Symbolic Execution Basics 85
5.1.2 Path Exploration Heuristics 86
5.1.3 Dynamic Symbolic Execution Overhead 87
5.1.4 WISE . 88

5.2 Design . 89
5.2.1 Overview of Lancet . 89
5.2.2 Explicit Mode . 93

vii

Page
5.2.3 Inference Mode . 95

5.3 Implementation . 100
5.3.1 POSIX Thread . 100
5.3.2 Socket . 102
5.3.3 Libevent . 102
5.3.4 Various Optimizations . 103

5.4 Evaluation . 104
5.4.1 General Observations with Benchmarks 105
5.4.2 Case Study with Memcached 107

5.5 Summary . 109

6 RELATED WORK . 110
6.1 Statistical Bug Detection and Diagnosis 110
6.2 Performance Test Generation . 112

7 CONCLUSION . 114
7.1 Data Dependence in Scaling Behavior Prediction 114
7.2 Environment Modeling in Symbolic Execution 115

LIST OF REFERENCES . 117

VITA . 123

viii

LIST OF TABLES

Table Page

2.1 Sensitivity of false positive rate to model parameters in Vrisha 42

4.1 Scalability of WuKong for AMG2006 on test runs with 256, 512 and 1024
nodes. 73

4.2 The accuracy of detection at various levels of detection threshold with a
90% pruning threshold. 75

4.3 The accuracy and precision of detection and localization at various levels
of feature pruning with detection threshold parameter η = 1.15. 76

5.1 Lancet supports most of PThread API for thread management, synchro-
nization and thread-specific store. 101

5.2 Effectiveness of Lancet and KLEE at generating scaling inputs for target
programs. KLEE is unable to generate any inputs for lbm, as it runs out
of memory. 106

5.3 Examples of path conditions generated for Memcached. ID, number of it-
erations and path condition are listed for each generated test. A character
or space represents an equality constraint for the byte where it appears.
A ’*’ symbol represents a constraint that enforces a non-space character
for the byte where it appears. 108

ix

LIST OF FIGURES

Figure Page

1.1 Example of a real bug. This bug appears in the MPICH2 library imple-
mentation and manifests itself at a large scale. 3

2.1 Overview of system architecture . 14

2.2 Example for demonstrating localization of a bug. 27

2.3 Communication behavior for the Allgather bug at two training scales (4
and 8 nodes) and production scale system (16 nodes). The bug manifests
itself in the 16 node system (and larger scales) 32

2.4 Correlation in the projection space using the KCCA-generated maps for
systems of different scale. Vrisha is trained in 4- through 15-node systems
(in light color) and tested in the buggy 16-node system (in dark color).
The dashed line indicates the bug detection threshold. 32

2.5 Call stacks for the correct case (call stack 9, in the training system) and
the erroneous case (call stack 16, in the production system). 33

2.6 Correlation of training and testing nodes for CG with synthetically injected
bug. Vrisha is trained on 4- and 8-node systems (in light color) and tested
on 16 nodes (in dark color). 35

2.7 Communication behavior for the large message bug at two training scales
(512 MB and 1 GB) and production scale system (2 GB). The bug mani-
fests itself in data sizes of 2 GB and larger. 38

2.8 Call stacks from a normal process (left) and at the point of crash due to
large-sized data. Error message ”socket closed” reported by MPICH2 at
MPID nem tcp send queued helps localize the bug. 39

2.9 Overhead due to profiling in Vrisha for NASPAR Benchmark applica-
tions. 41

2.10 Modeling and detection time for CG, LU and MG on 4-, 8- and 16-node
systems. 41

3.1 Overview of Abhranta architecture 44

3.2 Process to derive reconstructed observations (O′) from control features
(C). f is a non-linear transformation, while B and H are linear. 48

x

Figure Page

3.3 Reconstructed vs. actual buggy behavior for ALLGATHER 51

3.4 Reconstructed vs. actual buggy behavior for Transmission DHT 53

4.1 Possible outcomes and errors when using WuKong to detect and diagnose
bugs. 65

4.2 MPICH2 bug that manifests at large scale as performance degradation. 77

4.3 The top suspicious features for the buggy run of MPICH2 ALLGATHER
given by WuKong. 79

4.4 The deadlock bug appears in Transmission, and manifests when a large
number of peers are contained in a single DHT message. 80

4.5 The top suspicious features for the buggy run of Transmission given by
WuKong. 82

4.6 Runtime overhead of WuKong on NPB benchmarks. 83

5.1 High level flow of Lancet’s inference-mode approach for generating inputs
for a given loop. 90

5.2 Running example: request parsing in Memcached. 92

xi

ABSTRACT

Zhou, Bowen Ph.D., Purdue University, August 2014. Techniques for Detecting Scal-
ability Bugs. Major Professor: Xiangyu Zhang.

Developing correct and efficient software for large scale systems is a challenging

task. Developers may overlook pathological cases in large scale runs, employ inefficient

algorithms that do not scale, or conduct premature performance optimizations that

work only for small scale runs. Such program errors and inefficiencies can result in

an especially subtle class of bugs that are scale-dependent. While small-scale test

cases may not exhibit these bugs, large-scale production runs may suffer failtures or

performance issues caused by them. Without an effective method to find such bugs,

the developers are forced to search through an enormous amount of logs generated in

production systems to fix a scaling problem.

We developed a series of statistical debugging techniques to detect and localize

bugs based on a key observation that most programs developed for large scale systems

exhibit behavioral features predictable from the scale. Our techniques extrapolate

these features to large scale runs, based solely on the training data collected in small

scale runs. The predicted behaviors are then compared with the actual behaviors to

pinpoint individual program features that contain a bug. We applied these techniques

to detect and localize real-world bugs found in a popular MPI library, a P2P file

sharing program, and synthetic faults injected into an HPC application.

We also built Lancet, a symbolic execution tool, to generate large scale test inputs

for distributed applications. Lancet infers the constraints that a large-scale input

should satisfy based on models built on small-scale inputs, allowing programmers

to generate large-scale inputs without performing symbolic execution at large scales.

With built-in support for multithreading, socket API, and event-driven asynchronous

xii

programming, Lancet is ready to be applied to real world distributed applications. We

demonstrated the effectiveness of Lancet by using it to generate large-scale, targeted

inputs for various SPEC benchmarks and Memcached.

1

1 INTRODUCTION

Many software bugs result in subtle failures, such as silent data corruption [1], and

degradation in the application performance [2]. These are undesirable because they

make the results of applications untrustworthy or reduce the utilization of the com-

puter systems. It is therefore imperative to provide automated mechanisms for de-

tecting errors and localizing the bugs in software. With respect to error detection,

the requirement is to detect the hard-to-catch bugs while performing lightweight in-

strumentation and runtime computation, such that the performance of application is

affected as little as possible. With respect to bug localization, the requirement is to

localize the bug to as small a portion of the code as possible so that the developer

can correct the bug. These two motivations have spurred a significant volume of work

in the research community, with a spurt being observable in the last decade [3–8].

Unlike prior work, we focus on bugs that manifest as software is scaled up.

A common development and deployment scenario for parallel and distributed sys-

tems is that the developer develops the code and tests it on small(ish)-sized com-

puting clusters. The testing done by the developer at the small scale is rigorous (for

well-developed codes) in that different input datasets, architectures, and other test-

ing conditions are tried. Both correctness and performance errors can be detected

through the manual testing as long as the error manifests itself in the small scale of

the testbed that the developer is using. However, errors that manifest only at larger

scale are less likely to be caught, for a number of reasons. The developer may not have

access to large-scale systems; he may not have the resources to exhaustively test the

application at larger scales; it can be difficult to even determine when bugs arise when

dealing with large scale programs. This difference in the behavior of the application

between what we will call the testing environment and the production environment

provides the fundamental insight that drives our work.

2

To see an illustrative example, consider a bug in MPICH2 [9], a popular MPI

library from Argonne National Lab. The bug shown in Figure 1.1 is in the imple-

mentation of the allgather routine, a routine for all-to-all communication. In

allgather, every node gathers information from every other node using different

communication topologies (ring, balanced binary tree, etc.) depending on the total

amount of data to be exchanged. The bug is that for a large enough scale an over-

flow occurs in the temporary variable used to store the total size of data exchanged

because of the large number of processes involved (Line 12). As a result, a non-

optimal communication topology will be used. This is an instance of a performance

bug, rather than a correctness bug, and may not be evident in testing either on a

small-scale system or with small amount of data.

Classical program analysis based debugging techniques, such as dynamic program

slicing [10, 11], would not help here because they rely on heuristics or user-defined

rules to define symptoms of buggy behaviors, such as crash or deadlock, while the

subtle performance issue demonstrated in the above example needs more sophisticated

rules, e.g. a predictive model, to be identified from normal scaling behaviors.

1.1 Statistical Debugging

The most relevant class of prior works [5–7, 12] for error detection and bug lo-

calization use statistical approaches to create models for correct behavior. These

approaches typically follow the same strategy: error free runs are used to build mod-

els of correct behavior, runtime behavior is modeled using profiling data collected at

runtime via instrumentation, and if the runtime behavior deviates significantly from

the normal behavior model, an error is flagged. The factor that causes the differ-

ence is mapped to a code region to aid in bug localization. If an error-free run is

unavailable to produce the model, prior work relies on “majority rules.” Under the

assumption that most processes behave correctly, outliers are flagged as faulty.

3

1 int MPIR_Allgather (void *sendbuf, int sendcount,

2 MPI_Datatype sendtype, void *recvbuf,

3 int recvcount, MPI_Datatype recvtype,

4 MPID_Comm *comm_ptr)

5 {

6 int comm_size, rank;

7 int mpi_errno = MPI_SUCCESS;

8 int curr_cnt, dst, type_size,

9 left, right, jnext, comm_size_is_pof2;

10 MPI_Comm comm;

11 ...

12 if ((recvcount*comm_size*type_size < MPIR_ALLGATHER_LONG_MSG)

13 && (comm_size_is_pof2 == 1)) {

14 /* BUG IN ABOVE CONDITION CHECK DUE TO OVERFLOW */

15 /* Short or medium size message and power-of-two

16 * no. of processes. Use recursive doubling algorithm */

17 }

18 ...

19 }

Figure 1.1. Example of a real bug. This bug appears in the MPICH2
library implementation and manifests itself at a large scale.

However, the traditional statistical approach is insufficient to deal with scale-

dependent bugs, especially as system and input scales become large. If the statistical

model is trained only on small-scale runs, statistical techniques can result in numerous

false positives. Program behavior naturally changes as programs scale up (e.g., the

number of times a branch in a loop is taken will depend on the number of loop

iterations, which can depend on the scale), leading small-scale models to incorrectly

label bug-free behaviors at large scales as anomalous. This effect can be particularly

insidious in strong-scaling situations, where each process of a program inherently does

less work at large scales than at small ones.

While it may seem that incorporating large-scale training runs into the statistical

model will fix the aforementioned issue, doing so is not straightforward. If a developer

cannot determine whether large-scale behavior is correct, it is impossible to correctly

label the data to train the model. Furthermore, many scale-dependent bugs affect all

the processes, i.e. Single Program Multiple Data (SPMD), and are triggered at every

4

execution at large scales. Thus, it would be impossible to get any sample of bug-free

behavior at large scales for training purposes.

An additional complication in building models at large scale is the overhead of

modeling. Modeling time is a function of training-data size, and as programs scale

up, so, too, will the training data. Moreover, most modeling techniques require global

reasoning and centralized computation. Hence, the overheads of performing complex

statistical modeling on large-scale training data can rapidly become impractical.

1.2 Vrisha

To handle the problem of error detection and bug localization under the conditions

identified above, we observe that as parallel applications scale up, some of their

properties are either scale invariant or scale determined. By scale invariant, we mean

that the property does not change as the application scales up to larger scales, and

by scale determined, we mean that the property changes in a predictable manner, say

in a linearly increasing manner. Example scale-invariant properties might include the

number of neighbors that a process communicates with, or the relative communication

volume with each neighbor. Example scale-determined properties might include the

total volume of communication performed by a processor. This observation has been

made in previous work [13], though no one has used it for error detection.

We leverage the above observation to build a system called Vrisha [14]. In it, we

focus on bugs that manifest at large scales. In particular, we target bugs that affect

communication behavior (though Vrisha could be adapted to other types of bugs).

Examples of communication bugs include communicating with the wrong process,

sending the wrong volume or type of data, or sending data to a legitimate neighbor,

but in the wrong context (e.g., an unexpected call site). This is an important class

of bugs because bugs of this kind are numerous, subtle, and importantly, for the

distributed nature of the computation, can result in error propagation. As a result of

5

error propagation, multiple processes may be affected, which will make it difficult to

detect the failure and to perform recovery actions.

At a high level, Vrisha operates by building a model of the application running

on a small scale in the testing environment. This model attempts to determine the re-

lationship between certain input, or control, parameters (such as program arguments,

and including the scale) and the programs behavior, captured by scale-determined

observational parameters (such as which call sites are being used to send messages).

By considering test runs at various scales, Vrisha can build a model that can predict,

for any scale, what the expected behavior of the program will be. Vrisha does not

make any a priori assumptions about how scale affects the observed behavior. In a

production environment, Vrisha can use this predictive model to detect errors: if

the observed behavior does not match the predicted behavior, Vrisha will flag an

error. Next, Vrisha determines which part of the observed behavior deviated from

the predicted behavior, aiding in bug localization.

The contributions of Vrisha are as follows.

1. It is the first to focus on bugs that are increasingly common as applications scale

to larger-sized systems or inputs. These bugs manifest at large scales and at these

scales, no error-free run is available and the common case execution is also incorrect.

This appears to be a real issue since the application will ultimately execute at these

large scales and at which exhaustive testing is typically not done.

2. Vrisha is able to deduce correlations between the scale of execution and the

communication-related properties of the application. It makes no assumption about

the nature of the correlation and it can belong to one of many different classes.

Violation of this correlation is indicative of an error.

3. Vrisha handles bugs at the application level as well as at the library level be-

cause our monitoring and analysis are done at the operating system socket level, i.e.,

beneath the library.

4. We show through experimental evaluation that our technique is able to detect

errors and localize bugs that have been reported and manually fixed prior to our

6

work and that cannot be handled by prior techniques. We also show that Vrisha

can do so at minimal performance overhead (less than 8%).

1.3 Abhranta

Unfortunately, while Vrisha takes a model-based automatic approach to bug

detection, it can only identify that the scaling trend has been violated; it cannot

determine which program behavior violated the trend, nor where in the program the

bug manifested, without heuristics provided by human users. Hence, diagnosis in

Vrisha is a manual process. The behavior of the program at the various small scales

of the training set are inspected to predict expected behavior at the problematic large

scale, and discrepancies from these manually-extrapolated behaviors can be used to

hone in on the bug. This diagnosis procedure is inefficient for real-world applications

for two reasons. First, the number of features could easily grow to a scale that is

unmanageable by manual analysis. One can conceive of a feature related to each

performance counter (such as, cache hit rate), each aspect of control flow behavior

(number of times a calling context is seen, number of times a conditional evaluates

to true, etc.), and each aspect of data flow behavior (number of times some elements

of a matrix are accessed, etc.). Second, some scaling trends may be difficult to detect

unless a large number of training runs at different scales are considered, again making

manual inference of these trends tedious.

We build Abhranta [15] to complement Vrisha in bug diagnosis. Abhranta

provides an automatic, scalable approach to localize bugs systematically using a new

statistical model that allows inference on individual features. Abhranta is based on

the same high level concepts as Vrisha, but provides one key contribution: automatic

bug diagnosis.

As described above, Vrisha’s diagnosis technique requires careful manual inspec-

tion of program behaviors both from the training set and from the deployed run.

Abhranta, in contrast, provides an automatic diagnosis technique, built on a key

7

modification to the scaling model used by Vrisha. We adopt a statistical modeling

technique from Feng et al. [16] that results in an “invertible” model. Essentially,

such models not only detect deviations from a scaling trend for bug detection, but

can actually be used to predict the expected, bug-free behavior at larger scales, lift-

ing the burden of manual analysis of program behaviors. Therefore, bug localization

can be automated by contrasting the reconstructed bug-free behavior and the actual

buggy behavior at a large scale and identifying the most diverging feature of program

behavior as the root cause of bug.

1.4 WuKong

Learning from the experience with Vrisha and Abhranta, we start from the first

principle and develop WuKong [17], a regression model based approach to detecting

and diagnosing bugs that manifest at large system scales. WuKong provides three

key contributions over the previous work:

Automatic bug localization

As described above, Vrisha’s diagnosis technique requires careful manual inspec-

tion of program behaviors both from the training set and from the deployed run.

WuKong, in contrast, provides an automatic diagnosis technique. WuKong alters

Vrisha’s modeling technique, using per-feature regression models, built across multi-

ple training scales that can accurately predict the expected bug-free behavior at large

scales.

When presented with a large-scale execution, WuKong uses these models to infer

what the value of each feature would have been were a run bug-free. If any feature’s

observed value deviates from the predicted value by a sufficient amount, WuKong

detects a bug. With carefully chosen program features that can be linked to particular

regions of code (WuKong uses calling contexts rooted at conditional statements, as

described in Section 4.2), ranking features by their prediction error can identify which

8

lines of code result in particularly unexpected behavior. This ranked list therefore

provides a roadmap the programmer can use in tracking down the bug.

Feature pruning

Not all program behaviors are well-correlated with scale, and hence cannot be pre-

dicted by scaling models. Examples of such behaviors include random conditionals

(e.g., if (x < rand())) or, more commonly, data-dependent behaviors (where

the values of the input data, rather than the size of that data determine behavior).

The existence of such hard-to-model features can dramatically reduce the effective-

ness of detection and localization: a feature whose behavior seems aberrant may be

truly buggy, or may represent a modeling failure. To address this shortcoming, we

introduce a novel cross-validation-based feature pruning technique. This mechanism

can effectively prune features that are hard to model accurately from the training

set, allowing programmers to trade off reduced detectability for improved localization

accuracy. We find that our pruning technique can dramatically improve localization

with only a minimal impact on detectability.

Scaling

A key drawback to many statistical debugging techniques is the scalability of both

the initial modeling phase, and the detection phase. As scales increase, the cost of

building statistical models of large-scale behavior becomes prohibitive, especially with

global modeling techniques. WuKong possesses an intriguing property: because the

training models do not need to be built at large scales, WuKong’s modeling cost is

independent of system scale. Hence, WuKong is uniquely suited to diagnosing bugs

in very large scale systems. Furthermore, because WuKong’s detection strategy is

purely local to each execution entity, detection and diagnosis cost scales only linearly

with system size, and is constant on a per-process basis.

In this work, we show that our per-feature scaling models can be used to effectively

detect and diagnose bugs at large scales (> 1000 processes) even when trained only at

small scales (≤ 128 processes). In particular, we show through a fault-injection study

that not only can WuKong accurately detect faulty program behaviors in large-scale

9

runs, but that it can correctly locate the buggy program location 92.5% of the time.

We show that our modeling errors and overheads are independent of scale, leading to

a truly scalable solution.

1.5 Lancet

Our bug detection and diagnosis techniques all require a series of test inputs that

exhibit the scaling trends of a given application to capture the correlation between

scale and program behavior. We have been crafting such test inputs by manually ana-

lyzing the source code of applications or adopting the companion test suites provided

by authors of open source software packages. The need for a systematic approach

to generating performance tests motivates the last piece of work in this thesis. The

following paragraphs will discuss the general motivation for a performance test gen-

eration tool and give a high-level overview of this work.

Writing correct and performant software running at scale has always been a chal-

lenge, especially so given the rising popularity of multithreaded and distributed sys-

tems. Scalability turns out to be the Achilles heel of many, otherwise well-designed

software systems, which suffer from correctness or performance problems when ex-

ecuted at a large scale. For example, Foursquare, a geo-social network for sharing

experiences of places, had an unprecedented 17 hours of downtime because the data

stored in one of its two MongoDB shards reached the hosting computer’s RAM ca-

pacity [18]. This is an example of a scaling problem with the data size. As another

example, the Hadoop Distributed File System (HDFS) runs into performance prob-

lems when the number of clients becomes too large, relative to the processing power

of the namespace server [19]. This is an example of a scaling problem that is triggered

by a large number of nodes, and indirectly, by large sizes of data.

Bugs often happen out of the frequent paths of a program, rather in places where

less attention has been paid to in the development process. As a remedy, unit tests

are often introduced to cover both hot and cold paths and check for errors in the

10

runtime. An important quality criterion for a unit test suite is code coverage, or how

much portion of the entire code base of the system under test (SUT) is touched by a

test suite. By the conventional definition of code coverage, a line of code is considered

covered if it is executed for at least once by a test. Such definition of code coverage

is fraudulent in two means. First, it is purely a control flow concept and therefore

completely ignorant to the data flow. For example, a null pointer dereference error

may never be triggered by a unit test that exercises the line of code but with a valid

pointer. Furthermore, running every part of SUT for once is not sufficient to reveal

many performance issues. For example, there was a scalability issue in a LRU cache

implementation of MySQL [20], which can only be detected by running SQL SELECT

in a loop for a large number of times.

Performance testing, as one kind of system testing that performs end-to-end black-

box testing, is designed to find performance issues in software. The idea in its essence

is to run SUT through a large input, measure the sustainable performance and observe

if any failure is triggered in the runtime. For simple programs, it is obvious that a

larger input will invoke a longer execution. For example a string copy takes more time

for a longer input string. However, it requires years of practice before one can master

the black art of finding ”large” inputs for complex real-world software systems. Sheer

increasing the amount of data contained in the input does not necessarily lead to

a longer execution, depending on how the program processes the input data. Take

the classic binary search algorithm for example, its run time grows as a logarithmic

function of the input size. To double the run time of binary search, the input must be

an order of magnitude larger in size. On the other hand, more data means more logs,

which are more difficult to analyze if a bug does occur. Numerous research projects

invested in log analysis [21] have proved the task a difficult one.

It is only natural to ponder if it is possible to achieve a long execution or a load

spike with a reasonably sized input for SUT, or how to push an execution to the limit

with inputs of a certain size. Unfortunately, there exists no systematic method to

the best of our knowledge that leads to a performance test that induces a significant

11

level of workload on SUT, not to mention striking a balance between execution length

and input size. QA engineers often need to understand the internals and interfaces

of complex software systems that consist of a pile of distributed components and

millions of lines of code written by other developers, then endure a lengthy trial-

and-error session to find a performance test of good quality. If we take a closer

look, the QA workflow consists of the following steps: (a) making the test plan, i.e.

starting with simple tests focused on individual code paths, followed by combination

of different paths to simulate real user behaviors; (b) understanding the relevant code

path and every other part of SUT that interacts with it to get sufficient knowledge

for creating the performance tests; (c) developing and running the performance tests,

while measuring the resultant performance using profiling tools. Out of these steps,

(a) defines the policy, or the goal for the performance tests, for which human effort is

indispensable, while (b) and (c) provide the mechanisms that implement and verify

the resultant performance tests, which also form the most laborious part of the process

for QA engineers.

We introduce Lancet, a performance test generation tool, to address the pain

in the search process of performance tests by automating the latter two steps in the

QA workflow where computers can be more efficient than human beings. Lancet is

built on top of symbolic execution and statistical prediction, providing a tool with:

(a) low entry barriers, i.e. little knowledge of SUT internals is required to create

good performance tests, (b) systematic algorithms to reason the performance impact

of values in the input, (c) integrated statistical models to extrapolate the scaling

trend of SUT, (d) support for widely used concurrent and event-driven programming

libraries, (e) on-the-fly SUT instrumentation for measurement and verification of

generated performance tests. By default, Lancet inspects every loop in a program

and tries to find inputs to run each loop for the number of iterations specified by

the user. In the case where the user is familiar with the implementation of SUT,

he can designate a set of target loops or even a single loop to reduce the scope of

code considered by Lancet and speed up the test generation process. The reason

12

for choosing loops is twofold. First, programs spend a large part of their execution

time in loops. Second, we observe, through examination of applications that have

had documented scalability problems, as the application is run at larger scales, the

negative impact of inefficient or incorrect code inside a loop often gets amplified into

severe performance regressions or cascading failures.

When applying Lancet to an application, the user can specify the loop he wants

to test and the load level, i.e., the number of iterations, for the loop. Lancet takes

these parameters from the user as guidance to steer its symbolic execution engine and

finds the inputs that reach the given number of iterations for the given loop. Lancet

makes two changes to the state-of-the-art symbolic execution algorithm. First, to

reach a specific number of iterations after entering the target loop, Lancet uses a

loop-centric search heuristic that favors the paths that stay inside the loop over those

that exit. This path prioritization strategy is in contrast to existing path strategies

that favor finding new paths. Second, Lancet shortcuts the path exploration by

applying constraint inference to derive the path constraints at a large number of

iteration from training samples, which consist of path constraints from running the

loop a small number of iterations. This way, to reach N iterations of a given loop,

Lancet just needs to execute the loop for 1 . . . M iterations where M � N and

collect the constraints at each iteration. Afterwards, the constraint solver is invoked

for the extrapolated path constraints to get the input that would trigger N iterations

of the target loop.

We apply Lancet to four disparate benchmarks: a linear algebra code, mvm, a

quantum computer simulator from SPEC, libquantum, a fluid dynamics program,

lbm, a utility from the GNU Coreutils suite, wc, and memcached, a distributed in-

memory caching system. Each of these programs needs to scale up to satisfy common

use cases: mvm to tackle large matrices, lq to factorize large numbers, lbm to simu-

late flows for more timesteps, wc to process large text corpuses, and memcached to

retrieve more data objects for a request. We show that for these programs, Lancet

is able to generate more, and larger-scaling, inputs than a state-of-the-art test gen-

13

eration tool when given the same amount of computation time, and that in all cases,

Lancet can generate even larger inputs through the use of constraint inference.

Moreover, because of the regularity of the constraints that Lancet performs infer-

ence over, it is able to make its predictions perfectly, allowing programmers to cor-

rectly generate inputs of any size without incurring the cost of additional symbolic

execution.

1.6 Outline

Chapter 2 provides a detailed description of Vrisha’s approach to bug detection,

Chapter 3 describes Abhranta’s new model to automatic bug localization, Chapter 4

discusses WuKong’s regression-based feature prediction and feature pruning tech-

niques, and Chapter 5 describes Lancet, a symbolic execution tool for performance

test generation. The thesis is concluded in Chapter 7.

14

2 Vrisha: USING SCALING PROPERTIES OF PARALLEL PROGRAMS FOR

BUG DETECTION AND LOCALIZATION

2.1 Overview

A ten-thousand foot overview of Vrisha’s approach to bug detection and diagnosis

is given in Figure 2.1. As in many statistical bug finding techniques, Vrisha consists

of two phases, the training phase, where we use bug-free data to construct a model

of expected behavior, and the testing phase, where we use the model constructed in

the training phase to detect deviations from expected behavior in a production run.

We further subdivide the two phases into five steps, which we describe at a high level

below. The phases are elucidated in further detail in the following sections.

(a) The first step in Vrisha is to collect bug-free data which will be used to

construct the model. Vrisha does this by using instrumented training runs to collect

statistics describing the normal execution of a program (see Section 2.4.1). These

statistics are collected on a per-process basis. Because we are interested in the scaling

behavior of a program, whether by increasing the number of processors or the input

size, our training runs are conducted at multiple scales, which are nevertheless smaller

than the scales of the production runs. The difficulties of doing testing or getting

(a) Training runs at
different scales

n = 64

n = 32

n = 16

Training Phase Test Phase

(c) Model building

KCCA
model

f: C → P
g: O → Q

(b) Data collection

Observational
features

⊆ O

Control
features

⊆ C
(d) Production run

n = 128

(e) Detection and
Diagnosis

Figure 2.1. Overview of system architecture

15

error-free runs at large scales that we mentioned in the Introduction also apply to

the process of building correct models and hence our training runs are done at small

scales. The executions at multiple scales provides enough data to the modeling steps

to allow us to capture the scaling properties of the program.

(b) After collecting profiling data from the training runs, Vrisha aggregates that

data into two feature sets, the control set and the observational set. The characteris-

tics of a particular process in a particular training run can be described using a set of

control features. Conceptually, these control features are the “inputs” that completely

determine the observed behavior of a process. Examples of these features include the

arguments to the application (or particular process) and the MPI rank of the process.

Crucially, because we care about scaling behavior, the control features also include

information on the scale of the training run (e.g., the number of processes, or the size

of input). Each process can thus be described by a feature vector of these control

features, called the control vector.

The control vector for a process captures the input features that determine its be-

havior. To describe the processes’ actual behavior, Vrisha uses observational features

that are collected at runtime through lightweight instrumentation that it injects at

the socket layer under the MPI library. Example observational features for a pro-

cess might include its number of neighbors, the volume of data communicated from

a single call site, or the distribution of data communicated of different types. The

selection of observational features constrains what types of bugs Vrisha can detect: a

detectable bug must manifest in abnormal values for one or more observational fea-

tures. Section 2.3 discusses our choice of features. The feature vector of observations

for each process is called its observation vector.

(c) The third, and final, step of the training phase is to build a model of observed

behavior. Vrisha uses KCCA [22, 23] to build this model. At a high level, KCCA

learns two projection functions, f : C → P and g : O → Q, where C is the domain of

control vectors, O is the domain of observation vectors, and P and Q are projection

domains of equal dimension. The goal of f and g is to project control and observation

16

vectors for a particular process into the projection domains such that the projected

vectors are correlated with each other. These projection functions are learned using

the control and observation vectors of bug-free runs collected in step (b).

Intuitively, if an observation vector, o ∈ O, represents the correct behavior for a

control vector, c ∈ C, projecting the vectors using f and g should produce correlated

results; if the observation vector does not adhere to expected behavior, f(c) will be

uncorrelated with g(o), signaling an error. Crucially, because the control vectors c

include information about the program’s scale, KCCA will incorporate that informa-

tion into f , allowing it to capture scaling trends. Further background on KCCA is

provided in Section 2.2. The construction of the projection functions concludes the

training phase of Vrisha.

(d) To begin the testing phase, Vrisha adds instrumentation to the at-scale pro-

duction run of the program, collecting both the control vectors for each process in

the program, as well as the associated observation vectors. Note that in this phase

we do not know if the observation vectors represent correct behavior.

(e) Finally, Vrisha performs detection and diagnosis. The control vector of each

process, c, accurately captures the control features of the process, while the obser-

vation vector, o, may or may not correspond to correct behavior. Vrisha uses the

projection functions f and g learned in the training phase to calculate f(c) and f(o)

for each process. If the correlation between the two vectors is above some threshold

τ , then Vrisha will conclude that the process’s observed behavior corresponds to its

control features. If the projections are uncorrelated, then the observed behavior does

not match the behavior predicted by the model and Vrisha will flag the process as

faulty. Vrisha then performs further inspection of the faulty observation vector and

compares it to the observation vectors in the training runs, after they have been scaled

up, to aid in localizing the bug. Vrisha’s detection and localization strategies are

described in further detail in Sections 2.4.3 and 2.4.4, respectively.

17

2.2 Background: Kernel Canonical Correlation Analysis

In this section, we describe the statistical techniques we use to model the behavior

of parallel programs, kernel canonical correlation analysis (KCCA) [22,23].

2.2.1 Canonical Correlation Analysis

KCCA is an extension of canonical correlation analysis (CCA), a statistical tech-

nique proposed by Hotelling [24]. The goal of CCA is to identify relationships between

two sets of variables, X and Y, where X and Y describe different properties of par-

ticular objects. CCA determines two vectors u and v to maximize the correlation

between Xu and Yv. In other words, we find two vectors such that when X and Y

are projected onto those vectors, the results are maximally correlated. This process

can be generalized from single vectors to sets of basis vectors.

In our particular problem, the rows of X and Y are processes in the system. The

columns of X describe the set of “control” features of process; the set of characteristics

that determine the behavior of a process in a run. For example, the features might

include the number of processes in the overall run, the rank of the particular process

and the size of the input. The columns of Y, on the other hand, capture the observed

behavior of the process, such as the number of communicating partners, the volume

of communication, etc. Intuitively, a row xi of X and a row yi of Y are two different

ways of describing a single process from a training run, and CCA finds two functions

f and g such that, for all i, f(xi) and g(yi) are maximally correlated.

2.2.2 Kernel Canonical Correlation Analysis

A fundamental limitation of CCA is that the projection functions that map X and

Y to a common space must be linear. Unfortunately, this means that CCA cannot

capture non-linear relationships between the control features and the observational

features. Because we expect that the relationship between the control features and

18

the observational features might be complex (e.g., if the communication volume is

proportional to the square of the input size), using linear projection functions will

limit the technique’s applicability.

We turn to KCCA, an extension of CCA that allows it to use kernel functions to

transform the feature sets X and Y into higher dimensional spaces before applying

CCA. Intuitively, we would like to transform X and Y using non-linear functions

ΦX and ΦY into ΦX(X) and ΦY (Y), and apply CCA to these transformed spaces.

By searching for linear relations between non-linear transformations of the original

spaces, KCCA allows us to capture non-linear relationships between the two feature

spaces.

Rather than explicitly constructing the higher dimensional spaces, KCCA lever-

ages a “kernel trick” [22], allowing us to create two new matrices κX and κY from X

and Y, that implicitly incorporate the higher dimensional transformation, as follows:

κX(i, j) = Φ(xi) · Φ(xj) (2.1)

with κY defined similarly. In particular, as in prior work [25, 26] we use a Gaussian,

defining κX as follows:

κX(i, j) = e−
‖xi−xj‖

2

2σ2 (2.2)

with κY defined analogously. Because we use a Gaussian to construct the κs, when

we apply CCA to κX and κY , we effectively allow CCA to discover correlations using

infinite-degree polynomials. The upshot of KCCA is that we can determine two non-

linear functions f and g such that, for all i, the correlation between f(xi) and g(yi) is

maximized. We can thus capture complex relationships between the control features

and the observed features.

2.2.3 Comparison to Other Techniques

A natural question is why we choose to use KCCA as opposed to other model-

building techniques, such as multivariate regression or principal component analysis

19

(PCA). Multivariate regression attempts to find a function f that maps the input,

independent variables X to dependent variables Y . We could consider the control

features to be the independent variables, and the observational features to be the

dependent variables. However, regression analysis typically requires that the input

variables be independent of each other, which may not be the case. More generally, the

problem with any model that simply maps the control variables to the observational

variables is that such a mapping must account for all the observational variables.

Consider an observational feature such as execution time, which is not truly dependent

on the control features (because, e.g., it is also dependent on architectural parameters

that are not captured by the control features). If the model attempts to predict

execution times, then it may be particularly susceptible to false positives since two

non-buggy runs with the same control features may exhibit different execution times.

Because KCCA projects both the control features and the observational features into

new spaces, it is able to disregard features that may not be related to each other.

Section 2.3 explores this advantage of KCCA further.

Another approach to modeling is to use PCA build a predictive model for the

observational features. Bug detection can then be performed by seeing if the obser-

vational features of the production run correspond to the model. Unfortunately, a

simple PCA-based model will not accommodate different non-buggy processes that

have different observational behaviors. In particular, such a model cannot take into

account scaling effects that might change the observed behavior of a program as the

system size or the data size increases. Instead, additional techniques, such as cluster-

ing, would need to be applied to account for different possible behaviors. For example,

we could build separate PCA models at varying scales and then apply non-linear re-

gression to those models to infer a function that predicts observational feature values

at new scales. KCCA, by contrast, incorporates scaling effects into its modeling

naturally and avoids having to separately derive a scaling model.

20

2.3 Feature Selection

A critical question to answer when using statistical methods to find bugs is, what

features should we use? To answer this question, we must consider what makes for

a good feature. There are, broadly, two categories of characteristics that govern the

suitability of a feature for use in Vrisha: those that are necessary for KCCA to

produce a scale-determined model, and those that are necessary for our techniques

to be useful in finding bugs. Furthermore, because Vrisha uses KCCA to build

its models, we must concern ourselves with both control features and observational

features.

First, we consider what qualities a feature must possess for it to be suitable for

Vrisha’s KCCA-based modeling.

• The control features we select must be related to the observational features we

collect. If there is no relation, KCCA will not be able to find a meaningful

correlation between the control space and the observation space. Moreover,

because we care about scaling behavior, the scale (system and input size) must

be included among the control features.

• The observational features should be scale-determined: Changing the scale while

holding other control features constant should either have no effect on behavior

or affect behavior in a deterministic way. Otherwise, Vrisha’s model will have

no predictive power.

Second, we consider what criteria a feature must satisfy for it to provide useful

detectability.

• The observational features must be efficient to collect. Complex observational

features will require instrumentation that adds too much overhead to production

runs for Vrisha to be useful.

• The observational features must be possible to collect without making any

change to the application. This is needed to support existing applications and

21

indicates that the instrumentation must be placed either between the applica-

tion and the library, or under the library. Vrisha takes the latter approach.

• The observational features must reflect any bugs that are of interest. Vrisha

detects bugs by finding deviations in observed behavior from the norm. If the

observational features do not change in the presence of bugs, Vrisha will be

unable to detect faults. Notably, this means that the types of bugs Vrisha can

detect are constrained by the choice of features.

• The control features must be easily measurable. Our detection technique (de-

scribed in Section 2.4.3) assumes that the control vector for a potentially-buggy

test run is correct. The control features must cover all the attributes of the

input that determine the observational behavior, such as scale, input size, etc.

If some input attributes affect observational behavior but are not captured by

the control features, Vrisha may be unable to build an accurate predictive

model.

2.3.1 Features Used by Vrisha

The features used by Vrisha consist of two parts corresponding to the control

feature set C and the observational feature set O. The control features include (a) the

process ID, specifically Vrisha uses the rank of process in the default communicator

MPI COMM WORLD because it is unique for each process in the same MPI task; (b)

the number of processes running the program, which serves as the scale parameter

to capture system scale-determined properties in communication; (c) the argument

list used to invoke the application, which serves as the parameter that correlates

with input scale-determined properties in the communication behavior of application

because it typically contains the size of the input data set.

22

The observational feature set of the ith process is a vector Di of length c, where c

is the number of distinct MPI call sites manifested in one execution of the program.

Di = (di1, · · · , dic)

The jth component in Di is the volume of data sent at the jth call site. The index j

of call sites has no relation with the actual order of call sites in the program. In fact,

we uniquely identify each call site by the call stack to which it corresponds.

The set of control and observational features we choose has several advantages.

First, they are particularly suitable for our purpose of detecting communication-

related bugs in parallel programs. Second, it is possible to capture these features

with a reasonable overhead so they can be instrumented in production runs. These

features are easy to collect through instrumentation at the Socket API level. Further,

with these features, we can identify call sites in a buggy process that deviate from

normal call sites and further to localize the potential point of error by comparing the

call stacks of the buggy process and the normal process.

We could also consider the features from previous solutions. For example, the

frequent-chain and chain-distribution features from DMTracker [7] are good candi-

dates to be adapted into the observational variable set in Vrisha’s framework. Also,

the distribution of time spent in a function used by Mirgorodskiy et al. [5] is also a

good feature to characterize timing properties of functions in a program and can also

be imported into Vrisha to diagnose performance-related bugs as in prior work.

2.3.2 Discussion

While it may seem that the criteria governing feature selection make the process

of choosing appropriate control and observational features quite difficult, there are

several aspects of Vrisha’s design that lessen the burden.

First, Vrisha’s use of KCCA make it robust to choosing too many features. If

a control feature has no effect on observational behavior (i.e., its value is completely

uncorrelated with observed behavior) or an observational feature is not determined by

23

the control features (e.g., its value is determined by other inputs not captured by the

control features), KCCA is able to ignore the features when building its model. In the

bug detection experiment detailed in Section 2.5.1, Vrisha is able to use the features

described in Section 2.3.1 to detect an integer overflow bug. We experimented with

adding additional “noise” features to both the control features and the observational

features that were uncorrelated with behavior. We found that Vrisha’s ability to

detect the bug was unaffected even in the presence of as many noise features as real

features.

Furthermore, Section 2.5.1 demonstrates that even if only a few of the observa-

tional features are affected by the presence of a bug, Vrisha is still able to detect

it. The upshot of these findings is that inadvertently adding additional features to

either the control or observational feature sets, whether those features are represen-

tative of correct behavior or completely unrelated to correct behavior, does not affect

Vrisha’s detectability. Hence, the primary constraint on choosing features is that a

subset capture the types of bugs the user is interested in and that they be able to be

collected efficiently. Users need not worry that the effectiveness of the model will be

impacted by being overly thorough in selecting observational or control features.

Second, the primary bottleneck in Vrisha is running the program at scale. As

Section 2.5.3 demonstrates, bug detection time is much less than the time it takes

to collect the observational features. We thus envision the following usage scenario

for Vrisha. Users can collect as many observational features as is practical for a

particular program, spanning a wide range of program characteristics. They can then

perform bug detection multiple times on various subsets of the observational features

to detect bugs of various types (e.g., all features that might reveal control flow bugs,

all that might reveal ordering bugs, etc.).

24

2.4 Design

In this section, we explain the design of the runtime profiling component, the

KCCA prediction model, bug detection method and bug localization method in Vr-

isha.

2.4.1 Communication Profiling

In order to detect bugs in both application and library level, we implement our

profiling functionality below the network module of the MPICH2 library and on top

of the OS network interface. So the call stack we recorded at the socket level would

include functions from both the application and the MPICH2 library. The call stack

and volume of data involved in each invocation of the underlying network interface

made by MPICH2 is captured and recorded by our profiling module. The profiling

component can be implemented inside the communication library or as a dynamic

instrumentation tool separately. In our current prototype implementation of Vrisha,

profiling and recording is piggy-backed in the existing debugging facility of MPICH2.

This design is distinct from FlowChecker where, though the instrumentation is at the

same layer as ours, it can only capture bugs in the library. Thus, application-level

calls are not profiled at runtime by FlowChecker.

2.4.2 Building the KCCA Model

First, we construct two square kernel matrices from the values of the control and

the observational variables respectively. These matrices capture the similarity in

the values of one vector with another. Thus, the cell (i, j) will give the numerical

similarity score between vector (control or observational) i and vector j. Since all our

variables are numerical, we use the Gaussian kernel function [23] to create the kernel

matrices, which is defined in Equation 2.2. Then we solve the KCCA problem to find

the projections from the two kernel matrices into the projection space that give the

25

maximal correlation of the control and the observational variables in the training sets.

Finally, we can use the solution of KCCA to project both control and observational

variables to the same space spanned by the projection vectors from KCCA.

KCCA instantiated with Gaussian kernel depends on four parameters, namely,

Ncomps (the number of components to retain in the projected space), γ (the regulari-

sation parameter for improving numerical stability), σx (kernel width parameter for

the observational feature set) and σy (kernel width parameter for the control feature

set). As done in previous work [25,26], we set the kernel width σx and σy in Gaussian

kernel used by KCCA to be a fixed factor times the sample variance of the norms of

data points in the training set. Similarly, we used a constant value for Ncomps and

γ throughout all our experiments. We explore the sensitivity of Vrisha to different

model parameters in Section 2.5.4.

2.4.3 Using Correlation to Detect Errors

To detect if there is an error we find, for each process, the correlation between

its control vector and its observational vector in the projected space spanned by the

projection vectors found when building the KCCA model. The lack of correlation

is used as a trigger for detection and the quantitative value of correlation serves

as the metric of abnormality of each process. Since KCCA provides two projection

vectors that maximizes correlation between the control and observational variables,

most normal processes would have a relatively high correlation between the two sets

of variables. Therefore, we can set a threshold on the deviation of correlation from 1

(which corresponds to perfectly correlated) to decide whether a process is normal or

abnormal. Specifically, the threshold in Vrisha is set empirically based on the mean

and standard deviation of (1−Correlation) of the training set. Because we check for

correlation on a per process basis, our detection strategy inherently localizes bugs to

the process level.

26

2.4.4 Localization of Bugs

Bugs that do not Cause Application Crash

Our strategy for localization of bugs uses the premise that the communication

behavior in the production run should look similar to that in the training runs, after

normalizing for the scale. The similarity should be observed at the granularity of the

call sites, where the relevant calls are those that use the network socket API under

the MPI library. So the localization process proceeds as follows. Vrisha matches

up the call sites from the training runs and the production run in terms of their

communication behavior and orders them by volume of communication. For example,

in Figure 2.2, the matches are (call site ID in training, call site ID in production):

(2, 3), (1, 2), (3, 1), (4, 4). The call site ID order does not have any significance, it

is merely a map from the call stack to a numeric value. Now for the matching call

sites, the call stacks should in the correct case be the same, indicating that the same

control path was followed. A divergence indicates the source of the bug. Vrisha

flags the points in the call stack in the production run where it diverges from the call

stack in the training run, starting from the bottom of the call stack (i.e., the most

recent call). The call stack notation is then translated back to the function and the

line number in the source code to point the developer to where she needs to look for

fixing the bug.

As would be evident to the reader, Vrisha determines an ordered set of code

regions for the developer to examine. In some cases, the set may have just one

element, namely, where there is only one divergent call site and only one divergence

point within the call site. In any case, this is helpful to the developer because it

narrows down the scope of where she needs to examine the code.

Retrieving Debugging Information. To facilitate the localization of bugs, we

need certain debugging information in executables and shared libraries to map an

address A in the call stack to function name and offset. In case such information is

stripped off by the compiler, we also need to record the base address B of the object

27

Figure 2.2. Example for demonstrating localization of a bug.

28

(executable and shared library) when it is loaded into memory so the offset within

the object A−B can be calculated and translated into the function name and the line

number. This is done in an off-line manner, prior to providing the information to the

developer for debugging, and can be done by an existing utility called addr2line.

Bugs that Cause Application Crash

It is trivial to detect an error caused by a bug that makes the application crash.

However, localization of the root cause of such bugs is not as easy. For this, we use

the localization technique for non-crashing bugs as the starting point and modify it.

For comparison with the communication behavior of the training runs, we identify the

point in execution corresponding to the crash in the production run. We then elimi-

nate all call sites in the training run after that point from further processing. Then

we follow the same processing steps as for the non-crashing bugs. One distinction is

in the way we order the different call sites. The call site which is closest to the point

at which the application crashed is given the highest priority. The intuition is that

the propagation distance between the bug and the error manifestation is more likely

to be small than large. Hence, we consider the call stack from the crashed application

(in the production run) and compare that first to the call stack from the closest point

in the training runs and flag the points of divergence, starting from the latest point

of divergence.

2.4.5 Discussion

Our proposed design for Vrisha has some limitations, some of which are unsur-

prising, and some of which are somewhat subtle. The most obvious limitation is that

Vrisha’s ability to detect bugs is constrained by the choice of features. This limita-

tion is imposed by the observational features and, surprisingly, the control features.

If a bug manifests in a manner that does not change the value of an observational

feature, Vrisha will be unable to detect it, as the data will not capture the abnor-

29

mal behavior. Hence, the observational features must be chosen with care to ensure

that bugs are caught. Interestingly, the control features must be chosen carefully, as

well. Our technique detects bugs when the expected behavior of a process (as de-

termined by its control features) deviates from its observed behavior (as determined

by its observational features). If an observational feature (in particular, the observa-

tional feature where a bug manifests) is uncorrelated with any of the control features,

KCCA will ignore its contribution when constructing the projection functions and

hence Vrisha will be unable to detect the bug.

Another limitation, unique to Vrisha’s modeling technique, is that KCCA is

sensitive to the choice of kernel functions. As an obvious example, if the kernel

function were linear, KCCA would only be able to apply linear transformations to

the feature sets before finding correlations, and hence would only be able to extract

linear relationships. We mitigate this concern by using a Gaussian as our kernel

function, which is effectively an infinite-degree polynomial.

Our localization strategy is also limited by the localization heuristics we use. First,

we must infer a correspondence between the features of the buggy run and the fea-

tures of the non-buggy runs. In the particular case of call-stack features, this presents

problems as the call stacks are different for buggy vs. non-buggy runs. Our matching

heuristic relies on the intuition that while the volume of data communicated at each

call site is scale-determined, the distribution of that data is scale invariant (i.e., is

the same regardless of scale). This allows us to match up different call sites that

nevertheless account for a similar proportion of the total volume of communication.

While this heuristic works well in practice, it will fail if the distribution of communi-

cation is not scale-invariant. Another drawback of our localization heuristic is that if

several call sites account for similar proportions of communication, we will be unable

to localize the error to a single site; instead, we will provide some small number of

sites as candidates for the error.

30

2.5 Evaluation

In this section, we evaluate the performance of Vrisha against real bugs in parallel

applications. We use the MPICH2 library [9] and NAS Parallel Benchmark Suite [27]

in these experiments. We have augmented the MPICH2 library with communication

profiling functionality and reproduced reported bugs of MPICH2 to test our technique.

The NAS Parallel Benchmark Suite 3.3 MPI version is used to evaluate the runtime

overhead of the profiling component of Vrisha.

The experiments show that Vrisha is capable of detecting and localizing realis-

tic bugs from the MPICH2 library while its runtime profiling component incurs less

than 8% overhead in tests with the NAS Parallel Benchmark Suite. We also compare

Vrisha with some of the most recent techniques for detecting bugs in parallel pro-

grams and illustrate that the unique ability of Vrisha to model the communication

behavior of parallel programs as they scale up is the key to detect the evaluated bugs.

All the experiments are conducted on a 15-node cluster running Linux 2.6.18.

Each node is equipped with two 2.2GHz AMD Opteron Quad-Core CPUs, 512KB L2

cache and 8GB memory.

2.5.1 Allgather Integer Overflow in MPICH2

This bug is an integer overflow bug which causes MPICH2 to choose a performance-

suboptimal algorithm for Allgather (Figure 1.1). Allgather is a all-to-all collective

communication function defined by the MPI standard, in which each participant

node contributes a piece of data and collects contributions from all the other nodes

in the system. Three algorithms [28] are employed to implement this function in the

MPICH2 library and the choice of algorithm is conditioned on the total amount of

data involved in the operation.

The total amount of data is computed as the product of three integer variables

and saved in a temporary integer variable. When the product of the three integers

overflows the size of an integer variable, a wrong choice of the algorithm to perform

31

Allgather is made and this results in a performance degradation, which becomes more

significant as the system scales up. The bug is more likely to happen on a large-scale

system, i.e., with a large number of processors, because one of the multiplier integer

is the number of processes calling Allgather. For example, on a typical x86 64 Linux

cluster with each process sending 512 KB of data, it will take at least 1024 processes

to overflow an integer.

The bug has been fixed in a recent version of MPICH2 [29]. However, we found

a similar integer overflow bug in Allgatherv, a variant of Allgather to allow varying

size of data contributed by each participant, still extant in the current version of

MPICH2 [30].

Detection and Localization

For the ease of reproducing the bug, we use a simple synthetic application that

does collective communication using Allgatherv and run this application at increasing

scales. The test triggers the bug in the faulty version of MPICH2 if the number of

processes is 16 or more. Vrisha is trained with the communication profiles of the

program running on 4 to 15 processes where the bug is latent and the communication

distribution is not contaminated by the bug. We pictorially represent in Figure 2.3

the communication behavior that is seen in the application for two different sizes of

the training system (4 and 8 processes) and one size of the production system where

the bug manifests itself (16 processes). The X-axis is the different call sites and

the Y-axis is the volume of communication, normalized to the scale of the system.

The divergence in the communication behavior shows up with 16 processes where the

pattern of communication behavior looks distinctly different. Vrisha successfully

detects this bug as the correlation in the projection space for the 16-node system is

low, as depicted in Figure 2.4. The Y-axis is the correlation, and a low value there

indicates deviation from correct behavior. The detection cutoff is set to avoid false

positives in the training set; this is sufficient to detect the error. Note that this bug

32

Call Site ID

C
om

m
un

ic
at

io
n

V
ol

um
e

(B
yt

es
)

in
 lo

g
S

ca
le

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

4−Node System

8−Node System

16−Node System

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2.3. Communication behavior for the Allgather bug at two
training scales (4 and 8 nodes) and production scale system (16
nodes). The bug manifests itself in the 16 node system (and larger
scales)

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99 104 110 116 122 128
Node ID

C
or

re
la

tio
n

−
0.

4
0.

0
0.

4
0.

8

Figure 2.4. Correlation in the projection space using the KCCA-
generated maps for systems of different scale. Vrisha is trained in
4- through 15-node systems (in light color) and tested in the buggy
16-node system (in dark color). The dashed line indicates the bug
detection threshold.

33

Call Stack 9: Call Stack 16:

============================== ==============================

MPID_nem_tcp_send_queued+0x1cc MPID_nem_tcp_send_queued+0x1cc

MPID_nem_tcp_connpoll+0x3a3 MPID_nem_tcp_connpoll+0x3a3

MPID_nem_network_poll+0x1e MPID_nem_network_poll+0x1e

MPIDI_CH3I_Progress+0x2ab MPIDI_CH3I_Progress+0x2ab

MPIC_Wait+0x89 MPIC_Wait+0x89

MPIC_Sendrecv+0x246 MPIC_Sendrecv+0x246

MPIR_Allgatherv+0x6a2 <------> MPIR_Allgatherv+0x17fd

PMPI_Allgatherv+0x1243 PMPI_Allgatherv+0x1243

main+0x14c main+0x14c

__libc_start_main+0xf4 __libc_start_main+0xf4

Figure 2.5. Call stacks for the correct case (call stack 9, in the train-
ing system) and the erroneous case (call stack 16, in the production
system).

affects all processes at systems of size 16 or higher and therefore, many previous

statistical machine learning techniques will not be able to detect this because they

rely on majority behavior being correct.

Following our bug localization scheme, Vrisha compares the normal and the

faulty distributions in Figure 2.3. The call site 9 from the training run is matched up

with call site 16 from the production run and this is given the highest weight since the

communication volume is the largest (90% of total communication). We show the two

call stacks corresponding to these two call sites in Figure 2.5. The deepest point in

the call stack, i.e., the last called function, is shown at the top in our representation.

A comparison of the two call stacks reveals that the faulty processes take a detour

in the function MPIR Allgatherv by switching to a different path. The offset is

mapped to line numbers in the MPIR Allgatherv function and a quick examination

shows that the fault lies in a conditional statement that takes the wrong branch due

to overflow.

34

Detection in an application

The above experiment detects bugs in an MPI library, but at the application level.

The calling-context features used by Vrisha are specified in relation to the appli-

cation using the MPI library, and hence provide information regarding the specific

line in the application where the bug manifested (viz. the last two lines of the calling

contexts shown in Figure 2.5).

Because the features that Vrisha uses for detection (and diagnosis) are specified

at the application level, there is little difference in identifying and finding a bug in

a library and finding a bug in an application. Vrisha’s bug reports are in terms of

call stacks that include application code, and hence localize bugs to regions of the

application source. According to our diagnosis heuristic, if the erroneous call stack

differs from the bug-free call stack in a call that is part of the application, the bug

is likely in the application itself, while if (as in our example) the difference lies in a

library function, the bug is likely in the library.

We do note that one difference between finding a library bug using an application

harness (as we did in the above experiment) and finding a bug in a full-scale applica-

tion is that in the latter case Vrisha may need to track many more features (as the

application will make many more MPI calls), most of which will not exhibit the bug.

When presented with larger, largely correct, feature sets, it can be harder to detect

buggy behavior.

To determine whether the existence of numerous non-buggy features impacts Vr-

isha’s ability to detect bugs such as the Allgather bug, we synthetically injected the

bug into an otherwise non-buggy run of CG from the NAS parallel benchmarks [31]1.

We performed this injection by collecting call-stack features for CG at various scales

(51 features) and appending the Allgather features (19 features, only one of which

exhibits the bug) from our test harness at the corresponding scale, thus simulating an

1We study an injected bug rather than a real-world bug due to the dearth of well-documented
bugs in MPI applications. Most documented non-crashing bugs (both correctness and performance)
appear to occur in libraries. This is likely because scientific applications typically do not maintain
well-documented bug reports or provide change logs indicating which bugs are fixed in a new version.

35

1 4 7 10 14 18 22 26
Node ID

C
or

re
la

tio
n

0.
0

0.
4

0.
8

Figure 2.6. Correlation of training and testing nodes for CG with syn-
thetically injected bug. Vrisha is trained on 4- and 8-node systems
(in light color) and tested on 16 nodes (in dark color).

36

application with a large number of non-buggy call-sites and relatively few locations

that exhibit the bug. Figure 2.6 shows the results of running Vrisha trained on 4-

and 8-node runs (where the Allgather features did not display the bug) and tested

on a 16-node execution (where the Allgather features exhibited the bug). We see

that the correlations of the testing nodes are notably lower than those of the training

nodes (and in particular, are the only nodes with negative correlation). Hence, the

testing nodes would be flagged as buggy by Vrisha’s detection heuristic. Thus even

in a realistic scenario where most features do not show the effects of the bug, Vrisha

is able to detect the bug.

Comparison with Previous Techniques

This bug cannot be detected by previous techniques [5–7,32] which capture anoma-

lies by comparing the behavior of different processes in the same sized system. This is

due to the fact that there is no statistically significant difference among the behaviors

of processes in the 16-node system. As the bug degrades the performance of Allgather

but no deadlock is produced, those techniques targeted at temporal progress [3] will

not work either. Finally, since there is no break in the message flow of Allgather as all

messages are delivered eventually but with a suboptimal algorithm, FlowChecker [8]

will not be able to detect this bug. Therefore, Vrisha is a good complement to these

existing techniques for detecting subtle scale-dependent bugs in parallel programs.

2.5.2 Bug in Handling Large Messages in MPICH2

This bug [33] was first found by users of PETSc [34], a popular scientific toolkit

built upon MPI. It can be triggered when the size of a single message sent between

two physical nodes (not two cores in the same machine) exceeds 2 gigabytes. The

MPICH2 library crashes after complaining about dropped network connections.

It turns out that there is a hard limit on the size of message can be sent in a

single iovec struct from the Linux TCP stack. Any message that violates this limit

37

would cause socket I/O to fail as if the connection were dropped. The most tricky

part is that it would manifest in the MPI level as a MPICH2 bug to the application

programmers.

Detection and Localization

Since we have no access to the original PETSc applications that triggered this

bug, we compromise by using the regression test of the bug as our data source to

evaluate Vrisha against this bug. The regression test, called large message,

is a simple MPI program which consists of one sender and two receivers and the

sender sends a message a little bit larger than 2GB to each of the two receivers. We

adapt large message to accept an argument which specifies the size of message

to send instead of the hard-coded size in the original test so we can train Vrisha

with different scales of input. Here, “scale” refers to the size of data, rather than the

meaning that we have been using so far—number of processes in the system. This

example points out the ability of Vrisha to deduce behavior that depends on the size

of data and to perform error detection and bug localization based on that. We first

run the regression test program with 8MB, 16MB, 32MB, 64MB, 128MB, 256MB,

512MB, and 1GB to get the training data set and then test with the 2GB case. The

distributions of communication over call sites of a representative process in each case

of 512MB, 1GB, and 2GB are shown in Figure 2.7.

Since the bug manifests as a crash in the MPICH2 library, there is nothing left to

be done with the detection part. We are going to focus on explaining how we localize

the bug with the guidance from Vrisha. First of all, as discussed in Section 2.4.4,

we need the stack trace at the time of the crash. This is shown on the right part

of Figure 2.8. In fact, the MPICH2 library exits with error message ”socket closed”

at function MPID nem tcp send queued. Comparing with all the five normal call

stacks shown in Figure 2.7 (i.e., obtained from training runs), we find call stack 5 is

almost a perfect match for the crash stack trace from MPICH2 except for two static

38

Call Site ID

C
om

m
un

ic
at

io
n

V
ol

um
e

(B
yt

es
)

in
 lo

g
S

ca
le

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

large_message 512MB

large_message 1GB

large_message 2GB

1 2 3 4 5

Figure 2.7. Communication behavior for the large message bug at two
training scales (512 MB and 1 GB) and production scale system (2
GB). The bug manifests itself in data sizes of 2 GB and larger.

39

Call Stack 5 Crash Stack from MPICH2

============================== =============================

MPID_nem_tcp_send_queued+0x132 MPID_nem_tcp_send_queued

(Unknown static function) state_commrdy_handler

MPID_nem_tcp_connpoll+0x3d8 MPID_nem_tcp_connpoll

MPID_nem_network_poll+0x1e MPID_nem_network_poll

(Unknown static function) MPID_nem_mpich2_blocking_recv

MPIDI_CH3I_Progress+0x1d8 MPIDI_CH3I_Progress

MPI_Send+0x8ff MPI_Send

main+0x121)

__libc_start_main+0xf4)

Figure 2.8. Call stacks from a normal process (left) and at the point of
crash due to large-sized data. Error message ”socket closed” reported
by MPICH2 at MPID nem tcp send queued helps localize the bug.

functions whose names are optimized out by the compiler. The first divergent point

in the crash trace is at MPID nem tcp send queued, which is where the bug lies.

To this point, we have localized the bug to a single function. The next step de-

pends on the properties of each specific bug. In practice, most applications implement

some error handler mechanism that provide useful error messages before exiting. In

the case of this bug, one only needs to search for the error message ”socket closed”

inside the function MPID nem tcp send queued and would find that it is the fail-

ure of writev (a socket API for sending data over the underlying network) that

misleads MPICH2 to think the connection is closed. In this case, Vrisha only has

to search within a single function corresponding to the single point of divergence. In

more challenging cases, Vrisha may have to search for the error message in multiple

functions. In the absence of a distinct error message, Vrisha may only be able to

provide a set of functions which the developer then will need to examine to completely

pinpoint the bug.

40

Comparison with Previous Techniques

Most previous techniques based on statistical rules will not be helpful in local-

izing this bug because they lack the ability to derive scale-parametrized rules to

provide role model to compare with the crash trace. All the processes at the large

data sizes suffer from the failure and therefore contrary to the starting premise of

much prior work, majority behavior itself is erroneous. However, FlowChecker is

capable of localizing this bug since the message passing intention is not fulfilled in

MPID nem tcp send queued.

2.5.3 Performance Measurement

In this section, we assess the various overheads of Vrisha. The primary overhead

is in Vrisha’s runtime profiling. We looked at the profiling overheads introduced by

Vrisha in five applications from the NAS Parallel Benchmark Suite [31], CG, EP, IS,

LU and MG. Each application is executed 10 times on 16 processes with the class A

inputs, and the average running time is calculated to determine Vrisha’s profiling

overhead. Figure 2.9 shows that the average overhead incurred by profiling is less

than 8%.

The other costs of Vrisha are its modeling time (how long it takes to build

the KCCA model) and its detection time (how long it takes to process data from the

production run to perform bug detection). Figures 2.10(a) and (b) show the modeling

time and detection time, respectively, for different problem sizes, averaged over 100

runs. We see that Vrisha takes a fraction of a second to both model behavior and

detect bugs. Detection takes less time as it uses pre-computed project vectors.

2.5.4 Model Selection and False Positive Rate

This section evaluates the impact of model selection of the KCCA method on the

false positive rate of Vrisha. Because of the lack of a publicly-available comprehen-

41

Benchmark

G
eo

m
et

ry
 M

ea
n

of
 O

ve
rh

ea
d

(%
)

0

1

2

3

4

5

6

7

cg ep is lu mg

Figure 2.9. Overhead due to profiling in Vrisha for NASPAR Bench-
mark applications.

Figure 2.10. Modeling and detection time for CG, LU and MG on 4-,
8- and 16-node systems.

42

Table 2.1
Sensitivity of false positive rate to model parameters in Vrisha

Parameter Range False Positive

Ncomps 1, · · · , 10 2.85%, 3.16%

γ 2−20, · · · , 20 2.32%, 3.25%

σx 2−20, · · · , 220 1.79%, 8.19%

σy 2−20, · · · , 220 2.18%, 4.01%

sive database of bugs in parallel programs, we have no way to conduct a study of false

negative rate, therefore we follow the practice of previous researchers of focusing on

the fault positive rate of our model by considering error-free applications.

The following parameters in the KCCA model, Ncomps, γ, σx, σy are measured

using five-fold cross validation on the training data from Section 2.5.1. We varied

each parameter over a range, given in Table 2.1, while holding the other parameters

constant. The table gives the range of false positives found over each parameter’s

range. As we see, Ncomps, γ and σy do not significantly affect the false positive rate

while σx has more impact taking the false positive to 8.2% in the worst case. The

impact of σx on the performance of Vrisha can also be interpreted as such that

even for the worst case of σx Vrisha could still detect bug with an accuracy of

around 91.8% in most cases. Overall, the KCCA model used in Vrisha is not very

sensitive to parameter selection which makes it more accessible to users without solid

background in machine learning.

2.6 Summary

In this chapter, we introduced Vrisha, a framework for detecting bugs in large-

scale systems using statistical techniques. While prior work based on statistical

techniques relied on the availability of error-free training runs at the same scale as

production runs, it is infeasible to use full-scale systems for development purposes.

43

Unfortunately, this means that prior bug-detection techniques are ill-suited to deal-

ing with bugs that only manifest at large scales. Vrisha was designed to tackle

precisely these challenging bugs. By exploiting scale-determined properties, Vrisha

uses kernel canonical correlation analysis to build models of behavior at large scale

by generalizing from small-scale behavioral patterns. Vrisha incorporates heuristics

that can use these extrapolated models to detect and localize bugs in MPI programs.

We studied two bugs in the popular MPICH2 communication library that only man-

ifest as systems or inputs scale. We showed that Vrisha could automatically build

sufficiently accurate models of large-scale behavior such that its heuristics could de-

tect and localize these bugs, without ever having access to bug-free runs at the testing

scale. Furthermore, Vrisha is able to find bugs with low instrumentation overhead

and low false positive rates.

To this point, we have evaluated Vrisha with test cases at slightly larger scales

than the training inputs, validating our approach, but leaving open the question

of how much larger the scale of the test system can be compared to the training

runs. This study is a prime target for future work. Further, we will consider other

kinds of bugs beyond communication-related bugs, investigate more fully the scaling

behavior with respect to data sizes, and evaluate the scalability of the detection and

the localization procedures.

44

3 Abhranta: LOCATING BUGS THAT MANIFEST AT LARGE SYSTEM

SCALES

3.1 Overview

This section presents a high level overview of Abhranta, an approach to auto-

matically detecting and diagnosing scale-determined bugs in programs.

Figure 3.1 shows a block-diagram view of Abhranta’s operation. The key compo-

nents are: (i) collecting data that characterizes the behavior of a deployed application;

(ii) building a statistical model from the training data; (iii) using the statistical model

to detect an error caused by the application; and (iv) reconstructing the “expected”

correct behavior of a buggy application to diagnose the fault.

3.1.1 Data Collection

Abhranta operates by building a model of behavior for a program. To do so, it

must collect data about an application’s behavior, and sufficient information about

an application’s configuration to predict its behavior. The approach is broadly similar

to that taken by Vrisha [14].

For a given application run, Abhranta collects two types of features: control fea-

tures and observational features. Control features are a generalization of scale: they

Training runs

n = 16

n = 8

n = 4

(i)
 In

st
ru

m
en

ta
tio

n

Feature
matrices

Ct

Ot

Projection
functions

(ii
)

M
od

el
in

g f

g

Tr
ai

ni
ng

Deployment
runs

n = 64

(i)
 In

st
ru

m
en

ta
tio

n

Feature
matrices

Cd

Od

Projected
matrices(ii

i)
D

et
ec

tio
n

f(Cd)

g(Od)

Re-
construction

(iv
)

D
ia

gn
os

is=?

g-1(f(Cd))

Od =?

D
ep

lo
ym

en
t

Figure 3.1. Overview of Abhranta architecture

45

include of all input parameters to an application that govern its behavior. Example

control features include input size, number of processes and, for MPI applications,

process rank. Control features can be gathered for a program execution merely by

analyzing the inputs and arguments to the program.

Observational features capture the observed behavior of the program. Examples

include the number of times a particular branch is taken, or the number of times a

particular function is called. Abhranta generates an observational feature for each

unique calling context. In the case of instrumented network libraries, Abhranta

also records the amount of communication performed by each unique calling context.

This data collection is accomplished by using Pin [35] to instrument applications.

Exactly what the observational features will be (e.g., whether for libc library calls,

all library calls, etc.) is driven by the developer, possibly with some idea of where

the bug lies. The developer can of course cast a wider net with an attendant increase

in cost of data collection.

Observational and control features are collected separately for each unit of execu-

tion we wish to build a model for. For example, when analyzing MPI applications,

Abhranta collects data for each process separately, creating a model for individ-

ual processes of the application. In contrast, in our DHT case study (Section 3.3.2)

Abhranta is configured to collect control and observational data for each message

the application processes. Currently, the execution unit granularity must be specified

by the developer; automatically selecting the granularity is beyond the scope of this

work.

3.1.2 Model Building

The basic approach to model building in Abhranta is similar to in Vrisha: a

series of training runs are conducted, at different, small, scales (i.e., with different

control features). The control features for the training runs are collected into a matrix

C, while the observational features are collected into a matrix O, with the property

46

that row i of C and O contains the control and observational features, respectively, for

the i-th process or thread in a training run. We then use a statistical technique called

Kernel Canonical Correlation Analysis [22,23] to construct two projection functions,

f and g, that transform C and O, respectively, into matrices of the same (lower)

dimensionality, such that the rows of the transformed matrices are highly correlated.

The projection functions f and g comprise the model.

In Vrisha, the f and g projection functions are non-linear, allowing the model

to capture non-linear relationships between scale and behavior. Unfortunately, the

functions are not invertible: given a set of control features, it is very difficult to

infer a set of observational features consistent with these control features. This fa-

cility is necessary for Abhranta’s bug localization strategy, discussed below. Hence

Abhranta uses a modified version of KCCA to construct its projection functions.

The key difference of Abhranta’s model is that while f (the projection function for

the control features) remains non-linear, g (the projection function for the observa-

tional features) is linear. Section 3.2 explains how this modified model can be used

to predict the behavior of large-scale runs.

3.1.3 Bug Detection

Abhranta detects bugs by determining if the behavior of a program execution

is inconsistent with the scaling trends captured by the behavioral model.

To detect bugs, Abhranta uses the same instrumentation used in the training

runs to collect control and observational features from a test run. These features are

projected into a common subspace using the projection functions f and g computed

during the model building phase. If the projected feature sets are well-correlated, then

the observed behavior of the program is consistent with the scaling trends captured

in the model, and the program is declared bug-free. If the projected features are not

well-correlated, then the program is declared buggy, and more sophisticated diagnosis

procedures (discussed below) are initiated.

47

3.1.4 Bug Localization

Once a bug is detected, Abhranta then attempts to localize the bug to a partic-

ular function or even line of code. Unlike Vrisha, which relied on manual inspection

to identify buggy behaviors, Abhranta attempts to reconstruct the expected non-

buggy behavior of a buggy program, i.e., it predicts what the behavior of the buggy

program would have been had the bug not occurred.

To perform reconstruction, we take advantage of the fact that even though the

observational features for a buggy program, o are anomalous, the control features for

the program, c, are nevertheless correct. A good guess for reconstruction is an o′ such

that g(o′) is correlated with f(c) (in other words, o′ is a set of observational features

that would appear non-buggy to our model). Section 3.2 describes how Abhranta

infers o′.

Given o′ and o, Abhranta’s diagnosis strategy is straightforward. The two

observational feature sets are compared. Those features whose values deviate the

most between o′ and o have been most affected by the bug, and hence are likely

candidates for investigation. The features are ranked by the discrepancy between

the actual observations and the reconstructed observations. Because each feature is

associated with a calling context, investigating a feature will lead a programmer to

specific function calls and line numbers that can help pinpoint the source of the bug.

3.2 Inferring Expected Program Behavior

The key technical challenge for Abhranta’s diagnosis strategy given a buggy run

is to compute o′, a prediction of what the observational features of the run would be

were there no bug. An appealing approach to finding o′ would be as follows. Given c,

the control vector for the buggy execution, compute f(c) to find its projected image

in the common KCCA subspace. Then, because both the control and observational

features are intended to be highly correlated in the projected space, we can treat f(c)

as equivalent to the projected value of o′, g(o′). We can then compute o′ by inverting

48

Control space (C) Projected space

Predicted spaceObservation space (O')

f

B

H

Figure 3.2. Process to derive reconstructed observations (O′) from
control features (C). f is a non-linear transformation, while B and
H are linear.

g: o′ = g−1(f(c)) Unfortunately, as discussed before, the projection functions used

in Vrisha were non-linear and non-invertible.

In Abhranta, we sidestep this problem by abandoning non-linear transforma-

tions of the observational features with g. Instead, we use a linear projection func-

tion for g, while leaving f as a non-linear function. Note that while using a simpler

g means certain relationships cannot be captured, f remains non-linear, allowing us

to still model program behaviors that vary non-linearly with scale. Section 3.3 con-

firms that this restricted modeling space does not significantly reduce Abhranta’s

detectability.

Abhranta’s reconstruction strategy is inspired by the preimage reconstruction

method presented by Feng et al. [16]. Figure 3.2 shows the steps to reconstruct a

predicted set of observational features O′ given a set of control features C. At a

high level, we compute the projected form of C, PC , using the non-linear projection

function for control features f . We then use a linear transformation, B, to predict

the projected form of O′, PO′ . We then compute a second linear transformation, H,

which inverts the linear mapping provided by the projection function g, allowing us

to compute O′ as follows: O′ = H ·B · PC . How do we determine B and H?

To compute B, recall that f and g maximize the linear correlation between the

control and observational features. Hence for non-buggy runs, we can assume that

49

the projections of the control and observational features will be linearly correlated.

We can hence compute B using linear regression (for an N -dimensional predicted

space):

min
B

N∑
i=1

∥∥BP i
C − P i

O′

∥∥2
Given B, we can predict the projected form of O′ for a buggy execution. The

next step is to undo that projection. Because Abhranta uses a linear kernel for

observational features, this can be accomplished by deriving a reverse linear mapping

from the projected space back to the original observational feature space. That is,

we want to find an H such that H · PO′ = O′. Because the projection subspace is

of lower dimensionality than the original observational space, H is underdetermined.

Hence, we find H by solving the following least-squares problem (for an n-dimensional

observational feature space):

min
H

n∑
i=1

∥∥HP i
O′ −O′i

∥∥2
3.3 Evaluation

This section describes our evaluation of Abhranta. We present two case studies,

demonstrating how Abhranta can be used to detect and localize bugs in real-world

parallel and distributed systems. Both case studies concern scale-dependent bugs

that are only triggered when executed with a large number of nodes. Thus, they

are unlikely to manifest in testing, and must be detected at deployed scales. The

case studies are conducted on a 16-node cluster running Linux 2.6.18. Each node is

equipped with two 2.2GHz AMD Opteron Quad-Core CPUs, 512KB L2 cache and

8GB memory.

3.3.1 Case Study 1: MPICH2’s ALLGATHER

ALLGATHER is a collective communication operation defined by the MPI stan-

dard, where each node exchanges data with every other node. The implementation

50

of ALLGATHER in MPICH2 pre-1.2 contains an integer overflow bug [29], which is

triggered when the total amount of data communicated causes a 32-bit int variable

to overflow (and hence is triggered when input sizes are large or there are many par-

ticipating nodes). The bug results in a sub-optimal communication algorithm being

used for ALLGATHER, severely degrading performance.

Detection: In our prior work, we showed that Vrisha could detect the MPICH2

bug using KCCA with Gaussian kernels. To show that the linear kernel used by

Abhranta does not affect detectability compared to Vrisha, we applied Abhranta

to a test harness that exposes the ALLGATHER bug at scale, using both Vrisha’s

original Gaussian kernel and our new linear kernel. The control features were the

number of processes in the program, and the rank of each process, while the observa-

tional features were the amount of data communicated at each unique calling context

(i.e. call stack) in the program. The model is trained on runs with 4–15 processes

(all non-buggy), while we attempted to detect the bug at 64 processes.

Experimentally, we validate that the use of the linear kernel does not hurt the

detectability of Abhranta vis-à-vis Vrisha. We find that in both cases the buggy

run has a significantly lower correlation between control and observational features

than the test runs. We can quantify the accuracy of our model as the margin between

the lowest correlation in the test case and the highest correlation in the buggy case.

Using the linear kernel results in only a 7.2% drop in detection margin.

Localization: We next evaluate Abhranta’s ability to localize the ALLGATHER

bug by reconstructing the expected behavior of the 64-process execution. Figure 3.3

shows how the actual observational behavior of the buggy run compares with the

reconstructed behavior. Abhranta ranks all the observational features in descending

order of reconstruction error; this is the suggested order of examination to find the

bug. The call stacks of the top two features, Features 9 and 18, differ only at the

buggy if statement inside ALLGATHER, precisely locating the bug.

51

Call Stack

A
m

ou
nt

 o
f C

om
m

un
ic

at
io

n

1e
+

00
1e

+
04

1e
+

08

Actual
Reconstructed

Feature 9 Feature 18

Figure 3.3. Reconstructed vs. actual buggy behavior for ALLGATHER

52

3.3.2 Case Study 2: Transmission’s DHT

Transmission is a popular P2P file sharing application on Linux platforms. The

bug [36] exists in its implementation of the DHT protocol (before version 0.18). When

a new node joins the network, it sends a message to each known peer to find new

peers. Each peer responds to these requests with a list of all its known peers. Upon

receiving a response, the joining node processes the messages to extract the list of

peers. However, due to a bug in the processing code, if the message contains a list of

peers longer than 2048 bytes, it will enter an infinite loop.

It may seem that this bug could be easily detected using, e.g., gprof, which could

show that the message processing function is consuming many cycles. However, this

information is insufficient to tell whether there is a bug in the function or whether it

is behaving normally but is just slow. Abhranta is able to definitively indicate that

a bug exists in the program.

For this specific bug, given the information provided by gprof, we can focus

on the message processing function which is seen most frequently in the program’s

execution. We treat each invocation of the message processing function as a single

execution instance in our model and use the function arguments and the size of the

input message as the control features. For the observational feature, we generalize

our instrumentation to track the number of calls, and the associated contexts, to any

shared libraries.

To train Abhranta, we used 45 normal invocations of the message processing

function, and apply the trained model to 1 buggy instance. First, Abhranta detects

that the correlation for the buggy run is abnormally low, confirming that the buggy

instance is truly abnormal behavior, and not just an especially long-running function.

Having established that the long message is buggy, Abhranta reconstructs the ex-

pected behavior and compares it to the observed behavior, as in Figure 3.4. The rank

ordering of deviant features highlights Feature 12, which corresponds to the call to a

53

Figure 3.4. Reconstructed vs. actual buggy behavior for Transmission DHT

libc function strtol, only a few lines away from the root cause of the bug in this

several-hundred-line function.

3.4 Summary

We developed Abhranta, which leverages novel statistical modeling techniques

to automate the detection and diagnosis of scale-dependent bugs where traditional

statistical debugging techniques fail to provide satisfactory solutions. With case stud-

ies of two real-world bugs, we showed that Abhranta is able to automatically and

effectively diagnose bugs.

Challenges There are several challenges that still remain to develop an effective

system for diagnosing bugs in large-scale systems:

Feature selection To be effective at diagnosing scaling bugs, features must be

(a) correlated with scale, and (b) related to the bug’s manifestation. The former is

necessary for the scaling model to be effective, while the latter is necessary for the

54

bug to be detected. We are looking into approaches based on dynamic information

flow to identify scale-related program behaviors to narrow down the set of possible

features.

Model over-fitting A common pitfall in statistical modeling is over-fitting the

training data, resulting in poor predictive performance for test data: the model may

accurately predict behavior at scales close to those of the training set, but will fail

as they are applied to ever-larger scales. Our current modeling approach uses very

high-degree polynomials, increasing the likelihood of over-fitting. We are exploring

the use of techniques such as the Bayesian Information Criterion (BIC) [37] to reduce

the likelihood of over-fitting.

Non-deterministic behavior Many program behaviors are non-deterministic,

which causes inaccurate trend predictions. Nevertheless, higher-level program behav-

ior often is more predictable. For example, the amount of data sent over the network

can be deterministic even if the particular network send methods used (immediate

vs. buffered) may differ. We are investigating aggregation techniques that combine

non-deterministic features to produce higher-level, deterministic features.

55

4 WuKong: AUTOMATICALLY DETECTING AND LOCALIZING BUGS

THAT MANIFEST AT LARGE SYSTEM SCALES

4.1 Overview

At a high level, WuKong’s modeling, detection and localization approach consists

of the following components.

(a) Model Building During training, control and observational features are col-

lected at a series of small scales. These features are used to construct per-feature

regression models that capture non-linear relationships between system scale (the

control features) and program behavior (the observational features). Sections 4.2.1

and 4.2.2 describe WuKong’s modeling strategy in more detail.

(b) Feature Pruning Features whose behavior is inherently unpredictable (e.g.,

non-deterministic, discontinuous or overly-complex) cannot be accurately modeled by

WuKong’s regression models. Because model failures can complicate detection and

localization (poorly modeled features may deviate significantly from predictions, trig-

gering false positives), WuKong uses a novel, cross-validation-based feature pruning

strategy to improve the accuracy of detection and localization. Section 4.3 details

this approach.

(c) Bug Diagnosis WuKong can detect and diagnose bugs in large-scale produc-

tion runs by using its models to predict what behavior should have been at that large

scale. Intuitively, a feature whose predicted value is significantly different from its

actual value is more likely to be involved in the bug than a feature whose predicted

value is close to its actual value. A test run is flagged as buggy if any one of its

features has a significant deviation between its observed and the predicted values. To

56

locate a bug, WuKong simply ranks features by the relative difference between the

predicted value and the actual value, and presents the ordered list to the programmer.

Section 4.4 elaborates further.

4.2 Modeling Program Behavior

This section describes WuKong’s modeling technique. The key component is the

construction of per-feature models that capture the relationship between the control

features and the value of a particular observational feature. These models can be

used to predict the expected observational features for production runs at a scale

larger than any seen during training. As a result, the correct behavior (observational

feature values) of large scale runs can be reconstructed based on the prediction of the

model, and this information can be used for detection and localization.

4.2.1 Model Building

WuKong models application behavior with a collection of base models, each of

which characterizes a single observational feature. The base model is an instance of

multiple regression where multiple predictors are considered. Specifically, the base

model for each observational feature considers all control features as predictor vari-

ables, and the value of the observational feature as the response variable.

Suppose Y is the observational feature in question, and Xi for i = 1 . . . N are the

N control features. We note that a base model of the form:

Y = β0 +
N∑
i=1

βi ·Xi (4.1)

is not sufficient to capture complex relationships between control features and pro-

gram behavior. It does not account for higher-order relationships between behavior

and scale (consider the many algorithms that are O(n2)), and it does not capture

interaction between control features (consider a program location inside a doubly-

nested loop where the inner loop runs Xi times and the outer loop runs Xj times).

57

To account for this, we apply a logarithmic transform on both the control features

and the observational feature, yielding the following base model:

log(Y) = β0 +
N∑
i=1

βi log(Xi) (4.2)

The refined model transforms multiplicative relationships between the variables

into additive relationships in the model, allowing us to capture the necessary higher

order and interactive effects.

The multiple regression problem is solved by the ordinary least squares method.

The solution is given by a vector of coefficients β0...βN :

arg min
β0,...,βN

|| log(Y)−
N∑
i=1

βi log(Xi)− β0||2 (4.3)

The resulting model achieves the best fit for the training data, i.e., it minimizes the

mean squared prediction error of Y .

WuKong limits the regression model to linear terms as our empirical results

suggest linear terms are enough to capture the scaling trend of most observational

features. Although more complex terms, (e.g., high order polynomials, cross products,

etc.) might result in better fit for the training data, they also have a higher risk of

overfitting and generalize poorly for the test data.

Since each feature gets its own base model, we do not face the same problem as in

Vrisha [14], where a single model must be “reverse-engineered” to find values for indi-

vidual observational features. Instead, WuKong can accurately predict each feature

in isolation. Moreover, the linear base models leads to more stable extrapolation at

large scales, thanks to the lack of over-fitting.

4.2.2 Base Model Customization

One model does not fit all observational features. Observational features usually

scale at differing speeds and the scaling trends of different features may be vastly

different. Furthermore, some observational features may depend only on a subset

58

of all control features. Therefore, throwing all control features into the base model

for every observational feature may result in over-fitting the data, and lower the

prediction accuracy for such features. To handle this problem, we need to customize

the base model for each individual observational feature based on the training data.

Through the customization process, we want to determine the particular formula used

for modeling each individual feature, i.e., which control features should be included

as predictor variables in the model. Essentially, we want the simplest possible model

that fits the training data; if making the model more complex only yields a marginal

improvement in accuracy, we should prefer the simpler model.

WuKong’s model customization is based on the Akaike Information Criterion

(AIC) [38], a measure of relative goodness of fit in a statistical model given by:

AIC = −2 ln(L) + 2k (4.4)

where L is the likelihood of the statistical model, which measures the goodness of

fit, and k is the number of parameters in the model, which measures the model

complexity. Unlike the more common approach to measuring model accuracy, the

coefficient of determination R2, AIC penalizes more complex models (intuitively, a

more complex model must provide a much better fit to be preferred to a simpler

model). This avoids over-fitting and ensures that WuKong produces appropriately

simple models for each observational feature.

In a program with N control features, there are 2N possible models that match

the form of Equation 4.2. If N is small, it is feasible to conduct an exhaustive search

through every model configuration to find the appropriate model for each observa-

tional feature. However, if N is large, the configuration space might be prohibitively

large, making an exhaustive search impractical. In such a scenario, WuKong uses

a greedy, hill-descending algorithm [39]. We begin with a model that includes all

control features. At each step, WuKong considers all models one “move” away from

the current model: all models with one fewer control feature than the current model

and all models with one more control feature than the current model. Of the candi-

date models, WuKong picks the one with the lower AIC and makes it the current

59

model. The process continues until no “move” reduces the AIC compared to the cur-

rent model. For any single observational feature, the result of model customization

is a model that includes a subset of control features that are most relevant to that

particular observational feature.

4.3 Feature Selection and Pruning

As described in Section 4.5, WuKong uses as its observational features all con-

ditionals in a program, augmented with the dynamic calling context in which that

conditional executed. Each time a particular conditional is evaluated, WuKong

increments the value of the appropriate feature.

The logarithmic model in Section 4.2.1 allows us to readily compute the relative

prediction error for a given feature, which we require to identify faulty features (see

Section 4.4). The model built for each observational feature, i, is used to make pre-

diction Y ′i for what the value of that feature should have been if the program were not

buggy. WuKong then compares Y ′i to the observed behavior, Yi and calculates the

relative prediction error of each observational feature, using the approach of Barnes

et al. [40]:

Ei = |elog(Y ′i)−log(Yi) − 1| (4.5)

Note that a constant prediction of 0 for any feature will result in relative reconstruc-

tion error of 1.0; hence, relative errors greater than 1.0 are a clear indication of a

poorly-predicted feature.

Unfortunately, not all observational features can be effectively predicted by the

regression models of WuKong, leading to errors in both detection and diagnosis.

There are two main reasons why an observational feature can be problematic for

WuKong. One is that the feature value is non-deterministic: a conditional whose

outcome is dependent on a random number, for example. Because such features do

not have deterministic values, it is impossible to model them effectively. Recollect

60

that WuKong relies on the assumption that any observational feature is determined

by the control features.

A second situation in which a feature cannot be modeled well is if its value is

dependent on characteristics not captured by the control features. These could be

confounding factors that affect program behavior such as OS-level interference or net-

work congestion. Another confounding factor is data-dependent behavior. WuKong

uses as its control features scale information about the program, such as number of

processes/threads or input data size. If a program’s behavior is determined by the

contents of the input, instead, WuKong does not capture the appropriate informa-

tion to predict a program’s behavior.

WuKong’s reconstruction techniques can be thrown off by unpredictable program

behavior: the behavioral model will be trained with behavior that is not correlated

with the control features, and hence spurious trends will be identified. Note that even

a small number of such problematic features can both introduce false positives and

seriously affect the accuracy of localization. If WuKong makes a prediction based

on spurious trends, even non-buggy behavior may disagree with the (mis)prediction,

leading to erroneously detected errors. Second, even if an error is correctly detected,

because reconstruction will be based on bogus information, it is likely that the re-

construction errors for such problematic features will be fairly high, pushing the true

source of errors farther down the list. The developer will be left investigating the

sources of these problematic features, which will not be related to any bug.

We note, however, that if we had a means of removing bad features, we could

dramatically improve localization performance. Because a bad feature’s appearance

at the top of WuKong’s roadmap occurs far out of proportion to its likelihood of

actually being the buggy feature, simply filtering it from the feature set will negatively

impact a small number of localization attempts (those where the filtered feature is

the source of the bug) while significantly improving all other localization attempts

(by removing spurious features from the roadmap). Therefore, WuKong employs a

61

feature filtration strategy to identify hard-to-model features and remove them from

the feature list.

To eliminate bad features, WuKong employs cross validation [39]. Cross valida-

tion uses a portion of the training data to test models built using the remainder of

the training data. The underlying assumption is that the training data does not have

any error. More specifically, WuKong employs k-fold cross-validation. It splits the

original training data by row (i.e. by training run) into k equal folds, treats each one

of the k folds in turn as the test data and the remaining k − 1 folds as the training

data, then trains and evaluates a model using each of the k sets of data. For each

cross-validation step, we compute the relative reconstruction error of each feature Xi

for each of the (current) test runs.

If a particular feature cannot be modeled well during cross validation, WuKong

assumes that the feature is unpredictable and will filter it out from the roadmaps

generated during the localization phase. WuKong’s pruning algorithm operates as

follows.

WuKong has a pruning threshold parameter, x, that governs how aggressively

WuKong will be when deciding that a feature is unpredictable. Given a pruning

threshold x, a feature is only kept if it is well-predicted in at least x% of the training

runs during cross-validation. In other words, WuKong will remove a feature if more

than (100− x)% of the runs are poorly predicted (i.e., have a relative reconstruction

error less than 1.0). For example, if the pruning threshold is 25%, then WuKong

prunes any feature for which more than 75% of its (relative) errors are more than than

1.0. The higher x is, the more aggressive the pruning is. If x is 0, then no pruning

happens (no runs need be well predicted). If x is 100, then pruning is extremely

aggressive (there can be no prediction errors for the feature during cross-validation).

Typically, x is set lower than 100, to account for the possibility of outliers in the

training data.

Some discontinuous features are hard to eliminate with cross-validation because

only a few runs during training have problematic values. Hence, in addition to

62

cross-validation-based feature pruning, WuKong also employs a heuristic to de-

tect potentially-discontinuous observational features based on the following two cri-

teria [41]:

• Discrete value percentage: defined as the number of unique values as a per-

centage of the number of observations; Rule-of-thumb: < 20% could indicate a

problem.

• Frequency ratio: defined as the frequency of the most common value divided

by the frequency of the second most common value; Rule-of-thumb: > 19 could

indicate a problem.

If both criteria are violated, the feature has too-few unique values and hence is con-

sidered potentially discontinuous. These features are pruned from the feature set,

and are not used during detection or diagnosis.

It is important to note that the feature pruning performed by WuKong is a com-

plement to the model customization described in the prior section. Model customiza-

tion prunes the control features used to model a particular observational feature. In

contrast, feature pruning filters the observational features that cannot be effectively

modeled by any combination of the control features.

4.4 Debugging Programs at Large Scales

Once the models are built and refined, as described in the previous section,

WuKong uses those models to debug programs at large scales. This proceeds in

two steps, detection and diagnosis, but the basic operation is the same. When a

program is run at large scale, WuKong uses its models to predict what each obser-

vational feature should be, given the control features of the large-scale run1. In other

words, WuKong uses its models to predict the expected behavior of the program at

1Note that WuKong makes the crucial assumption that the control features for production runs
are correct; this is reasonable since control features tend to be characteristics of program inputs and
arguments.

63

large scale. These predictions are then used to detect and diagnose bugs, as described

below.

4.4.1 Bug Detection

WuKong detects bugs by determining if the behavior of a program execution is

inconsistent with the scaling trends captured by the behavioral model. If any feature’s

observed value differs significantly from its predicted value, WuKong declares a bug.

The question then, is what constitutes “significantly”? WuKong sets detection

thresholds for flagging bugs as follows.

For each observational features, WuKong tracks the reconstruction errors for that

feature across all the runs used in cross validation during training (recall that this

cross validation is performed for feature pruning). For each feature, WuKong deter-

mines the maximum relative error (Equation 4.5) observed during cross validation,

and uses this to determine the detection threshold. If Mi is the maximum relative

reconstruction error observed for feature i during training, WuKong computes Ei,

the relative reconstruction error for the test run, and flags an error if

Ei > ηMi (4.6)

where η is a tunable detection threshold parameter. Note that η is a global parameter,

but the detection threshold for a given feature is based on that feature’s maximum

observed reconstruction error, and hence each feature has its own detection threshold.

What should η be? A lower detection threshold makes flagging errors more likely (in

fact, a detection sensitivity less than 1 means that even some known non-buggy

training runs would be flagged as buggy), while a higher detection threshold makes

flagging errors less likely (η ≥ 1 means that no training run would have been flagged

as buggy).

We note that in the context of bug detection, false positives are particularly dam-

aging: each false positive wastes the programmer’s time searching for a non-existent

64

bug. In contrast, false negatives, while problematic (a technique that detects no bugs

is not particularly helpful!), are less harmful: at worst, the programmer is no worse

off than without the technique, not knowing whether a bug exists or not. As a result

of this fundamental asymmetry, we bias η towards false negatives to prevent false

positives: η should always be set to a greater-than-one constant. We use η = 1.15

in our experiments; Section 4.6.1 shows how changing η affects false positive and

negative rates.

4.4.2 Bug Localization

When a bug is detected, to provide a “roadmap” for developers to follow when

tracking down the bug, WuKong ranks all observational features by relative error;

the features that deviate most from the predicted behavior will have the highest rel-

ative error and will be presented as the most likely sources for the bug. WuKong

produces the entire ranked list of erroneous features, allowing programmers to inves-

tigate all possible sources of the bug, prioritized by error. Note that while deviant

features are likely to be involved with the bug, the most deviant features may not ac-

tually be the source of the bug. Buggy behavior can propagate through the program

and lead to other features’ going awry, often by much larger amounts than the initial

bug (a “butterfly effect”). Nevertheless, as we show in Section 4.6’s fault injection

study, the majority of the time the statement that is the root cause of the bug appears

at the top of the roadmap.

4.4.3 Sources and Types of Detection and Diagnosis Error

WuKong has two primary configuration parameters that affect the error rates of

both its detection scheme and its diagnosis strategy: the feature pruning parameter x,

and the detection threshold parameter η. This section describes how these parameters

interact intuitively, while the sensitivity studies in Section 4.6 explore these effects

empirically. Figure 4.1 shows the possible outcomes and error types that can occur

65

test run

false positive

false negative

successful detection

successful localization

underpruning error

underpruning error

oversensitivity error

overpruning error

overpruning error

undersensitivity error

Figure 4.1. Possible outcomes and errors when using WuKong to
detect and diagnose bugs.

66

when WuKong is applied to a test run; we discuss these error sources in more detail

below.

False positives The most insidious error, from a developer productivity standpoint,

is a false positive (an erroneous detection of an error in a bug-free run): if WuKong

throws up a false positive, the developer can spend hours searching for a bug that

does not exist. False positives can arise from two sources: feature underpruning and

detection oversensitivity. Feature underpruning occurs when the pruning threshold

x is set too low. By keeping too many features, including those that cannot be

modeled effectively, WuKong may detect an error when a poorly-modeled feature

leads to a bad prediction, even if the observed feature value is correct. Detection

oversensitivity happens when the detection threshold η is too low, which increases

the model’s sensitivity to slight variations and deviations from the predicted value,

increasing the likelihood of a false positive.

If a test run results in a false positive, it is hard to pinpoint the source of the error,

as both oversensitivity and underpruning lead to correct features’ being mispredicted

by WuKong. Nevertheless, if the erroneous feature was never mispredicted during

training (i.e., it would not have been pruned even if the pruning threshold were 100%),

then oversensitivity is likely at fault.

False negatives False negatives occur when a buggy run is incorrectly determined

to be correct by WuKong, and can occur for two reasons (unsurprisingly, these

are the opposite of the issues that result in false positives): feature overpruning

and detection undersensitivity. If too many features are pruned, then WuKong

tracks fewer features, and hence observes less program behavior. Because WuKong

can only detect a bug when it observes program behavior changing, tracking fewer

features makes it more likely that a bug will be missed. If the detection threshold

is raised, then the magnitude of reconstruction error necessary to detect a bug is

correspondingly higher, making WuKong less sensitive to behavior perturbations,

and hence less likely to detect a bug.

67

For false negatives, overpruning is the culprit if the error manifested in a pruned

feature, while undersensitivity is the issue if the error manifested in a tracked feature,

but WuKong did not flag the error.

Diagnosis errors Even after WuKong correctly detects a bug in a program, it

may not be able to successfully localize the bug (here, successful localization means

that the bug appears within the top k features suggested by WuKong). The success

of localization is primarily driven by x, the feature pruning threshold. Interestingly,

there are two types of localization errors, one of which is caused by overpruning, and

the other by underpruning. If x is too low, and features are underpruned, then many

poorly-modeled features will be included in WuKong’s model. These poorly modeled

features can have high reconstruction errors, polluting the ranked list of features, and

pushing the true error farther down the list. Conversely, if x is too high and the

feature set is overpruned, the erroneous feature may not appear anywhere in the list.

It may seem weird that the erroneous feature could be pruned from the feature set

even while WuKong detects the bug. This is due to the butterfly effect discussed

earlier; even though the buggy feature is not tracked, features that are affected by the

bug may be tracked, and trigger detection.

For detection errors, it is easy to determine whether overpruning is the source of an

error. If the buggy feature is not in the feature set at all, x is too high. Underpruning

is harder to detect. It is a potential problem if the buggy feature appears in the feature

set but is not highly placed in the ranked list of problematic features. However, the

same outcome occurs if the bug cascades to a number of other features, all of which

are perturbed significantly as a result, and hence appear high in the list. Due to this

error propagation, it is non-trivial to decide whether more aggressive pruning would

have improved localization accuracy.

68

4.5 Data Collection

This section presents the data collection approach used by WuKong to capture

program behaviors at different scales. Recall that the goal of WuKong is to diagnose

bugs in program runs at large scales, even if it has never observed correct behavior

at that large scale. Therefore, WuKong needs to observe program behaviors at a

series of training scales to derive the scaling trend.

The fundamental approach of WuKong is to build a statistical model of program

behavior that incorporates scale. Essentially, we would like a model that infers the

relationship between scale attributes (e.g., number of processes, or input size) and

behavior attributes (e.g., trip count of loops, value distribution of variables). We will

discuss what information is collected, how WuKong does the data collection, and a

few optimizations to reduce the run-time overhead.

4.5.1 Control and Observational Features

WuKong operates by building a model of behavior for a program. To do so, it

must collect data about an application’s behavior, and sufficient information about

an application’s configuration to predict its behavior.

WuKong collects values of two types of features: control features and observa-

tional features. Control features generalize scale: they include all input properties

and configuration parameters to an application that govern its behavior. Example

control features include input size, number of processes and, for MPI applications,

process rank. Control features can be gathered for a program execution merely by

analyzing the inputs and arguments to the program. Observational features capture

the observed behavior of the program. Examples include the number of times a syscall

is made, or the number of times a libc function is called.

WuKong uses context-sensitive branch profiles as its observational features. Ev-

ery time a branch instruction is executed, WuKong’s instrumentation computes the

current calling context, i.e., the call stack, plus the address of the branch instruc-

69

tion, and uses the result as an index to access and update the corresponding tuple of

two counters: one recording the number of times this branch is taken, and the other

recording the number of times this branch is not taken. The benefits of choosing such

observational features are twofold: (1) by choosing observational features that can be

associated with unambiguous program points, WuKong can provide a roadmap to

the developer to hone in on the source of the bug; (2) with this selection of observa-

tional features, WuKong is geared to observe perturbations in both the taken→ not

taken and not taken → taken directions thereby, in principle, detecting and locating

all bugs that perturb control-flow behavior.

Observational and control features are collected separately for each unit of execu-

tion we wish to model. For example, when analyzing MPI applications, WuKong

collects data and builds a model for each process separately. Currently, the execution

unit granularity must be specified by the programmer; automatically selecting the

granularity is beyond the scope of this work.

4.5.2 Optimizing Call Stack Recording

WuKong’s run-time overhead comes solely from collecting the observational fea-

tures, since the control features can be extracted before running the program. This

section presents performance optimizations we employ to reduce the run-time over-

head for a given set of observational features. Section 4.3 will describe our approach

to pruning the observational feature set, whose main goal is to increase the accu-

racy of detection and diagnosis, but which has the additional benefit of reducing the

overhead of data collection.

WuKong’s instrumentation operates at the binary code level, where determining

the boundary of a function can be difficult, as compilers may apply complex optimiza-

tions, e.g., using “jmp” to call a function or return from one, popping out multiple

stack frames with a single instruction, issuing “call” to get the current PC, etc.. As

a result, simply shadowing the “call” and “ret” instructions cannot capture the call

70

stack reliably. Instead, WuKong walks down the call stack from the saved frame

pointer in the top stack frame, chasing the chain of frame pointers, and recording the

return address of each frame until it reaches the bottom of the call stack. This makes

sure that WuKong records an accurate copy of the current call stack irrespective of

compiler optimizations.

Based on the principle of locality, we design a caching mechanism to reduce the

overhead incurred by stack walking in WuKong. First, whenever WuKong finishes

a stack walk, it caches the recorded call stack. Before starting the next stack walk,

it compares the value of the frame pointer on top of the cached call stack and the

current frame pointer register and uses the cached call stack if there is a match. This

optimization takes advantage of the temporal locality that consecutive branches are

likely to be a part of the same function and therefore share the same call stack. Note

that it is possible in theory to have inaccurate cache hit where consecutive branch

instructions with the same frame pointer come from different calling contexts. We

expect such a case to be rare in practice, and it did not arise in any of our empirical

studies.

4.6 Evaluation

This section describes our evaluation of WuKong. We implemented WuKong

using PIN [35] to perform dynamic binary instrumentation. To collect the features

as described in Section 4.5, we use PIN to instrument every branch in the program to

determine which features should be incremented and update the necessary counters.

WuKong’s detection and diagnosis analyses are performed offline using the data

collected after running a PIN-instrumented program at production scales.

We start by conducting large scale fault injection experiments on AMG2006, a

benchmark application from the Sequoia benchmark suite [42]. Through these exper-

iments, we show that (a) our log-transformed linear regression model can accurately

predict scale-dependent behavior in the observational features for runs at an unseen

71

large scale; (b) the automatic feature pruning techniques based on cross validation

allow us to diagnose injected faults more effectively; (c) as the scale of the test system

increases, the modeling time for WuKong remains fixed without hurting accuracy;

and (d) the overhead for instrumentation does not increase with the scales of test

systems.

We also present two case studies of real bugs, demonstrating how WuKong can

be used to localize scale-dependent bugs in real-world software systems. These bugs

can only be triggered when executed at a large scale. Thus, they are unlikely to

manifest in testing, and must be detected at deployed scales. One of the case studies

is also used in Vrisha [14]. We demonstrate here how WuKong can be used to

automatically identify which features are involved in the bug and can help pinpoint

the source of the fault. The two applications come from different domains, one from

high performance computing in an MPI-C program, and the other from distributed

peer-to-peer computing in a C program. Since WuKong works at the binary level

for the program features, it is applicable to these starkly different domains.

The fault injection experiments were conducted on a Cray XT5 cluster, as part

of the XSEDE computing environment, with 112,896 cores in 9,408 compute nodes.

The case studies were conducted on a local cluster with 128 cores in 16 nodes running

Linux 2.6.18. The statistical analysis was done on a dual-core computer running

Windows 7.

4.6.1 Fault Injection Study with AMG2006

AMG2006 is a parallel algebraic multigrid solver for linear systems, written in

104K lines of C code. The application is configured to solve the default 3D Laplace

type problem with the GMRES algorithm and the low-complexity AMG precondi-

tioner in the following experiments. The research questions we were looking to answer

with the AMG2006 synthetic fault injection study are:

72

• Is WuKong’s model able to extrapolate the correct program behavior at large

scales from training runs at small scales?

• Can WuKong effectively detect and locate bugs by comparing the predicted

behavior and the actual behavior at large scales?

• Does feature pruning improve the accuracy and instrumentation overhead of

WuKong?

We began by building a model for each observational feature of AMG2006, us-

ing as training runs program executions ranging from 8 to 128 nodes. The control

features were the X, Y , Z dimension parameters of the 3D process topology, and

the observational features were chosen using the approach described in Section 4.3,

resulting in 3 control features and 4604 observational features. When we apply fea-

ture pruning with a threshold of 90%, we are left with 4036 observational features for

which WuKong builds scaling models.

Scalability of Behavior Prediction To answer the first research question, we

evaluated WuKong on 31 non-buggy test runs of distinct configurations, i.e., each

with a unique control feature vector, using 256, 512 and 1024 nodes to see if WuKong

can recognize these normal large-scale runs as non-buggy in the detection phase.

Based on the detection threshold η = 1.15 and a feature pruning threshold of 90%,

WuKong correctly identified all of the 31 test runs as normal, thus having zero false

positives. In contrast, the prior state-of-the-art in detection of scale-dependent bugs,

Vrisha [14], flags six of the 31 runs as buggy, for a 19.4% false positive rate. Recall

that false positives are highly undesirable in this context because each false positive

leads the developer to chase after a non-existent bug.

Table 4.1 gives the mean reconstruction error, the time for analysis, and the

runtime overhead, due to collecting the observational feature values, at each scale.

We see that the average reconstruction error for the features in the test runs is always

less than 10% and does not increase with scale despite using the same model for all

73

Table 4.1
Scalability of WuKong for AMG2006 on test runs with 256, 512 and 1024 nodes.

Scale of

Run

Mean

Error

Analysis

Time

(s)

Runtime

Over-

head

256 6.55% 0.089 5.3%

512 8.33% 0.143 5.4%

1024 7.77% 0.172 3.2%

scales. Hence, WuKong’s regression models are effective at predicting the large scale

behavior of the benchmark despite having only seen small scale behavior.

Furthermore, WuKong’s run-time overhead does not increase with scale. Indeed,

because there is a fixed component to the overhead of Pin-based instrumentation and

larger-scale runs take longer, the average run-time overhead of feature collection de-

creases a little as scale increases. On the other hand, the analysis overhead (evaluating

the detection and reconstruction models for the test runs) is always less than 1/5th

of a second. Hence, with diminishing instrumentation costs and negligible analysis

costs, WuKong provides clear scalability advantages over approaches that require

more complex analyses at large scales.

Effectiveness in Fault Diagnosis To determine the effectiveness of WuKong’s

bug detection and localization capabilities, we injected faults into 100 instances of the

1024-node run of AMG2006. Each time a random conditional branch instruction is

picked to “flip” throughout the entire execution. The faults are designed to emulate

what would happen if a bug changed the control flow behavior at the 1024-node scale

but not at the smaller training scales, as manifested in common bug types, such as

integer overflow errors, buffer overflows, etc.. This kind of injection has been a staple

of the dependability community due to its ability to map to realistic software bugs

(e.g., see the argument in [43]).

74

Using the same pruning and detection thresholds as in the scalability study, we

evaluated WuKong’s ability to (a) detect the faults, and (b) precisely localize the

faults. Of the 100 injected runs, 57 resulted in non-crashing bugs, and 93.0% of those

were detected by WuKong. For the crashing bugs, the detection method is obvious

and therefore, we leave these out of our study. We also tested with alternative values

for the detection threshold η as shown by Table 4.2. This shows, expectedly, that as

η increases, i.e.,WuKong is less trigger-happy in declaring a run to be erroneous,

the false positive rate decreases, until it quickly reaches the desirable value of zero.

Promisingly, the false negative rate stays quite steady and low until a high value of

η is reached. Furthermore, when η = 1.15, the average of maximal reconstruction

error among all features for the non-buggy runs at scale 256, 512 and 1024 are 96.2%,

91.6% and 91.3%, respectively. Comparing with the average reconstruction error of

these runs as shown in Table 4.1, this discrepancies in reconstruction error emphasize

the importance of having a different model for each feature to allow different scaling

behaviors and improve the overall prediction accuracy.

We next studied the accuracy of WuKong’s localization roadmap. For the runs

where WuKong successfully detects a bug, we used the approach of Section 4.4.2 to

produce a rank-ordered list of features to inspect. We found that 71.7% of the time

the faulty feature was the very first feature identified by WuKong. This compares to

a null-hypothesis (randomly selected features) outcome of the correct feature being

the top feature a mere 0.35% of the time. With the top 10 most suspicious features

given by WuKong, we can further increase the localization rate to 92.5%. Thus, we

find that WuKong is effective and precise in locating the majority of the randomly

injected faults in AMG2006.

Sensitivity to Feature Pruning We examined the sensitivity of WuKong to

the feature pruning threshold. With a detection threshold η = 1.15, we used three

different pruning thresholds: 0%, 90%, and 99%. Table 4.3 shows how many features

were filtered during pruning, the false positive rate of detection, the false negative rate

75

Table 4.2
The accuracy of detection at various levels of detection threshold with
a 90% pruning threshold.

η False

Positive

False

Nega-

tive

1.05 9.7% 5.3%

1.10 6.5% 7.0%

1.15 0% 7.0%

1.20 0% 7.0%

1.25 0% 12.3%

76

Table 4.3
The accuracy and precision of detection and localization at various
levels of feature pruning with detection threshold parameter η = 1.15.

Detection Localization

Threshold Features

Pruned

False

Positive

False

Nega-

tive

Located

Top 1

Located

Top 5

Located

Top 10

0% 0% 6.5% 5.3% 64.8% 68.5% 85.2%

90% 12.3% 0% 7.0% 71.7% 77.4% 92.5%

99% 22.5% 0% 12.3% 56.0% 62.0% 78.0%

of detection, the percentage of detected faulty runs where the faulty feature appears

among the top 1, top 5 and top 10 of ranked features. Note that if the buggy feature

is pruned for a faulty run, localization will always fail.

We see that performing a small amount of feature pruning can dramatically im-

prove the quality of WuKong’s detection and localization accuracy: at a threshold

of 90%, false positives are completely eliminated from the detection result, compared

with a 6.5% false positive rate when no feature pruning is done; in the meantime, over

92.5% of the faulty features appear in the top 10 features suggested by WuKong, a

jump from 85.2% in the case of no pruning. We note that being too aggressive with

pruning can harm localization: with a threshold of 99% (where all but the most accu-

rately modeled features are pruned), only 78.0% of the cases are successfully located,

as too many features are filtered out, resulting in many situations where a bug arises

in a feature that is not modeled by WuKong.

Effect of Fault Propagation Occasionally WuKong may detect an error that

it cannot localize because the buggy feature has been pruned from the feature set.

Because faults can propagate through the program, affecting many other features,

WuKong may still detect the error in one of these dependent features despite not

77

1 if (recvcount*comm_size*type_size < MPIR_ALLGATHER_LONG_MSG &&

2 comm_size_is_pof2 == 1) {

3 /*** BUG IN ABOVE CONDITION CHECK DUE TO OVERFLOW ***/

4 /* ALGORITHM 1 */

5 ...

6 } else if (...) {

7 /* ALGORITHM 2 */

8 ...

9 } else {

10 /* ALGORITHM 3 */

11 ...

12 }

Figure 4.2. MPICH2 bug that manifests at large scale as performance degradation.

tracking the buggy feature. In 4% of the buggy runs in our fault injection study, with a

90% pruning threshold, the bug is detected but cannot be localized because the faulty

feature is pruned (see Section 4.4.3 for a discussion of this seeming contradiction).

In such scenarios, we further investigate whether WuKong’s diagnosis could still

help developers zoom in to the root cause of a bug. In our study, there were two

faults detected by WuKong with root causes in features that were pruned. The two

faults targeted the same branch instruction, though with different contexts. In these

cases, the top-most feature located by WuKong resides in the same case-block of

a switch statement as the fault. Moreover, the closest feature to the fault in the

top-10 roadmap is a mere 19 lines from the true fault. Given the sheer amount of

code in AMG2006, it is clear that WuKong can still help the developer hone in on

the relevant code area for bug hunting, even if the precise feature cannot be identified.

4.6.2 Case Study 1: Performance Degradation in MPICH2

To evaluate the use of WuKong in localizing bugs in real-world scenarios, we

consider a case study from Vrisha [14], based on a bug in MPICH2’s implementation

of ALLGATHER.

78

ALLGATHER is a collective communication operation defined by the MPI stan-

dard, where each node exchanges data with every other node. The implementation

of ALLGATHER in MPICH2 (before v1.2) contains an integer overflow bug [29],

which is triggered when the total amount of data communicated goes beyond 2GB

and causes a 32-bit int variable to overflow (and hence is triggered when input sizes

are large or there are many participating nodes). The bug results in a sub-optimal

communication algorithm being used for ALLGATHER, severely degrading perfor-

mance.

We built a test application to expose the ALLGATHER bug when more than 64

processes are employed. The control features were the number of processes in the

execution, and the rank of each process, while the observational features were 4126

unique calling contexts chosen as described in Section 4.3. After feature pruning

with our default pruning threshold of 90%, WuKong is left with 3902 features. The

model is trained on runs with 4–16 processes (all non-buggy), while we attempted to

predict the normal behavior for 64-process runs. When the buggy 64-process version

was run, WuKong was able to successfully detect the bug. The next question was

whether WuKong could aid in the localization of the bug.

First, we used WuKong to reconstruct the expected behavior of the 64-process

run and compared it with the observed buggy run. We find that while most features’

observed values closely match the predictions, some features are substantially different

from the predicted values. As displayed in Figure 4.3, even though the bug involves

a single conditional, numerous features are impacted by the fault. However, when we

examined the top features suggested by WuKong, we found that all features shared

a common call stack prefix which was located inside the branch that would have been

taken had the bug not been triggered. Thus, by following the roadmap laid out by

WuKong, we could clearly pinpoint the ill-formed “if” statement, the root cause of

the bug as shown in Figure 4.2. Here we indirectly located the bug based on the most

suspicious features provided by WuKong because the bug did not happen right on

one of the observational features we were tracking. We plan to explore direct methods

79

P
re

di
ct

io
n

E
rr

or
 in

 L
og

 S
ca

le

0
1

2
3

4
5

6
7

17
2

27
6

39
2

49
6

71
1

78
1

80
3

99
5

11
11

11
61

12
11

14
85

15
07

17
72

17
98

18
86

25
15

25
43

35
93

41
17

Feature ID

Figure 4.3. The top suspicious features for the buggy run of MPICH2
ALLGATHER given by WuKong.

to locate bugs beyond the set of observational features, such as program slicing, in

future work.

Because WuKong’s regression models were built using training data collected

with a buggy program, an obvious question to ask is whether WuKong is actu-

ally predicting what the correct, non-buggy behavior should be, or whether it is

merely getting lucky. To test this, we applied a patch fixing the ALLGATHER

bug and performed a test run on 64 processes using the now-non-buggy application.

We then compared the observed (non-buggy) behavior to the behavior predicted by

WuKong’s model. We find that the average prediction error is 7.75% across all fea-

tures. In other words, WuKong is able to predict the corrected large-scale behavior;

WuKong correctly predicted how the program would behave if the bug were fixed!

4.6.3 Case Study 2: Deadlock in Transmission

Transmission is a popular P2P file sharing application on Linux platforms. As

illustrated in Figure 4.4, the bug [36] exists in its implementation of the DHT protocol.

Transmission leverages the DHT protocol to find peers sharing a specific file and to

form a P2P network with found peers. When Transmission is started, the application

80

1 while (1) {

2 l = strtol((char*)buf + i, &q, 10);

3 if(q && *q == ’:’ && l > 0) {

4 if(j + l > MAX_VALUES_SIZE)

5 continue;

6 /*** BUG: i INCREMENT IS SKIPPED ***/

7 i = q + 1 + l - (char*)buf;

8 ...

9 } else {

10 break;

11 }

12 }

Figure 4.4. The deadlock bug appears in Transmission, and manifests
when a large number of peers are contained in a single DHT message.

81

sends messages to each bootstrapping peer to ask for new peers. Each peer responds

to these requests with a list of its known peers. Upon receiving a response, the

joining node processes the message to extract the peer list. Due to a bug in the DHT

processing code, if the message contains more than 341 peers, longer than the fixed

2048-byte message buffer, it will enter an infinite loop and cause the program to hang.

Hence, this bug would more likely manifest when the program is joining a large P2P

network where the number of peers contained in a single DHT message can overflow

the message buffer.

This bug could be easily detected using full-system profiling tools such as Opro-

file that could show that the message processing function is consuming many cycles.

However, this information is insufficient to tell whether there is a bug in the function

or whether the function is behaving normally but is just slow. WuKong is able to

definitively indicate that a bug exists in the program.

For this specific bug, given the information provided by Oprofile, we can focus

on the message processing function which is seen most frequently in the program’s

execution. We treat each invocation of the message processing function as a single

execution instance in our model and use the function arguments and the size of the

input message as the control features. For the observational features, we use the

same branch profile as in the previous experiments, and the associated contexts, to

any shared libraries. This gives 83 features and no feature is pruned with our default

90% pruning threshold.

To train WuKong, we use 16 normal runs of the message processing function, and

apply the trained model to 1 buggy instance. WuKong correctly determines that the

buggy instance is truly abnormal behavior, and not just an especially long-running

function. Having established that the long message processing is buggy, WuKong

reconstructs the expected behavior and compares it to the observed behavior to locate

the bug, as in Figure 4.5. The rank ordering of deviant features highlights Features

53 and 66, which correspond to the line if (q && *q == ’:’ && l > 0) at

82

P
re

di
ct

io
n

E
rr

or
 (

%
)

0
20

40
60

80
10

0

20 21 31 46 53 58 66 69 71 79

Feature ID

Figure 4.5. The top suspicious features for the buggy run of Trans-
mission given by WuKong.

the beginning of Figure 4.4, exhibiting an excessive number of occurrences as a direct

consequence of the bug. This feature is a mere 3 lines above the source of the bug.

4.6.4 Overhead

To further evaluate the overhead of WuKong, we used 5 programs from the NAS

Parallel Benchmarks, namely CG, FT, IS, LU, MG and SP2. All benchmarks are

compiled in a 64-process configuration and each is repeated 10 times to get an average

running time. Figure 4.6 shows the average run-time overheads caused by WuKong

for each of these benchmarks. The geometric mean of WuKong’s overhead is 11.4%.

We note that the overhead with the larger application, AMG2006, is smaller (Table

4.1).

It is possible to reduce the cost of call stack walking—the dominant component

of our run-time overhead—by using a recently demonstrated technique called Bread-

crumbs [44] and its predecessor called Probabilistic Calling Context (PCC) [45], both

of which allow for efficient recording of dynamic calling contexts. Breadcrumbs builds

2The overhead numbers for our two case studies are not meaningful—for MPICH2, we created a
synthetic test harness; and for Transmission, we relied on a prior use of profiling to identify a single
function to instrument.

83

FT IS LU MG SP geomean

Benchmark

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e
%

0
40

80
12

0

Figure 4.6. Runtime overhead of WuKong on NPB benchmarks.

on PCC, which computes a compact (one word) encoding of each calling context that

client analysis can use in place of the exact calling context. Breadcrumbs allows one

to reconstruct a calling context from its encoding using only a static call graph and a

small amount of dynamic information collected at cold (infrequently executed) call-

sites. We defer to future work the implementation of these techniques in WuKong

to capture calling contexts at even lower overheads.

4.7 Summary

With the increasing scale at which programs are being deployed, both in terms of

input size and system size, techniques to automatically detect and diagnose bugs in

large-scale programs are becoming increasingly important. This is especially true for

bugs that are scale-dependent, and only manifest at (large) deployment scales, but

not at (small) development scales. Traditional statistical techniques cannot tackle

these bugs, either because they rely on data collected at the same scale as the buggy

process or because they require manual intervention to diagnose bugs.

To address these problems, we developed WuKong, which leverages novel sta-

tistical modeling and feature selection techniques to automatically diagnose bugs in

large scale systems, even when trained only on data from small-scale runs. This ap-

84

proach is well-suited to modern development practices, where developers may only

have access to small scales, and bugs may manifest only rarely at large scales. With

a large-scale fault injection study and two case studies of real scale-dependent bugs,

we showed that WuKong is able to automatically, scalably, and effectively diagnose

bugs.

85

5 Lancet: GENERATING TARGETED SCALING TESTS

5.1 Background: Dynamic Symbolic Execution

Many state-of-the-art white-box test-generation tools rely on dynamic symbolic

execution [46–48]. This section provides a brief overview of how these tools work,

and discusses some of the shortcomings of current techniques that Lancet aims to

ameliorate.

5.1.1 Dynamic Symbolic Execution Basics

Dynamic symbolic execution couples the traditional strengths of symbolic analysis—

tracking constraints on variables to determine the feasibility of various program

behaviors—with the efficiency of regular concrete execution. The inputs to a pro-

gram are treated as symbolic variables. As the program executes, statements that

involve symbolic variables are executed symbolically, adding constraints on symbolic

variables. When a branch statement is reached (e.g. if (x < y) goto L), one

of the paths is taken, and the appropriate constraint is added to the path condition,

or set of constraints (e.g., if the branch above is taken, the constraint (x < y) would

be added to the path condition). As new constraints are added to the path condi-

tion an SMT solver (Satisfiability Modulo Theory) is invoked to ensure that the path

condition is still satisfiable; unsatisfiable constraints imply that the particular path

that execution has taken is infeasible—no program execution could follow that path.

Once a path through the program is found, the SMT solver is used to produce a

concrete set of values for all the symbolic variables. These concrete values constitute

an input. Note that unlike traditional symbolic execution, dynamic symbolic analysis

can always fall back to concrete values for variables; if execution encounters a state-

86

ment that cannot be analyzed using the underlying SMT solver, calling an external

function for example, the variables involved can be concretized and the statement

can be executed normally. What it gives up is completeness of the code coverage as

a result of the concretization.

5.1.2 Path Exploration Heuristics

One of the key decisions in dynamic symbolic execution tool is how to choose the

path through a program an execution should explore. In other words, how to choose

directions for the branches encountered in execution. For example, a tool such as

KLEE [46] executes multiple paths concurrently, in an attempt to generate a series

of inputs to exercise different paths of the program. When encountering the branch

statement described above, KLEE can fork the execution to two clones that follow

the two branches respectively, choose one execution clone to explore first and save the

other for later. The resultant paths would include the constraint (x < y) in the clone

that follows the true branch, and ¬(x < y) in the one that follows the false branch.

There are numerous heuristics that can be used to choose which path to explore

first at each branch in dynamic symbolic execution; the choice of the correct heuristic

depends on the goals of the particular tool being developed. We abstract away the goal

of a dynamic symbolic execution tool by describing it in terms of a meta-constraint.

A meta-constraint is a higher level constraint that the path condition describing a

particular execution attempts to satisfy. For example, in the case of generating high-

coverage tests, the meta-constraint for a tool may be to produce a path that exercises

program statements not seen by previously-generated inputs, in which case a path-

exploration heuristic might prioritize flipping branches to generate a never-before-seen

set of constraints. In the case of generating stress tests, as in Lancet, the meta-

constraint would be to generate a path condition that exercises a particular loop body

a certain, user-defined number of times, in which case the path-exploration heuristic

might prioritize taking branches that cause the loop to execute again, till the user-

87

defined limit is reached (Section 5.2.2). Note that just as a path condition may not

be tight—there can be many possible concrete inputs that follow a particular path

through the execution—a meta-constraint need not be tight: multiple path conditions

may all satisfy a given meta-constraint.

5.1.3 Dynamic Symbolic Execution Overhead

The primary drawback of dynamic symbolic execution is its dependence on an

underlying SMT solver to manage the path condition that an execution generates.

At every branch, the SMT solver must be invoked to determine whether a particu-

lar choice for a branch is feasible or infeasible. Though the constraint solver is also

invoked to concretize input variables when necessary, or to generate the final con-

crete input for a particular run, the majority of queries to the solver arise from these

feasibility checks [48]. Though there are many techniques to reduce the expense of

queries to the constraint solver, such as reducing the query size by removing irrele-

vant constraints and reusing the results of prior queries whenever possible [46], the

fundamental expense of invoking the constraint solver at each branch in an execution

remains. This overhead can lead to an order-of-magnitude slowdown in execution [46].

A second overhead of dynamic symbolic execution is the path-explosion problem.

The path exploration heuristics of a particular tool may prioritize certain choices for

branches in an attempt to satisfy the tool’s meta-constraint. However, the exploration

heuristics may be wrong: whenever a branch is encountered, if the heuristic makes the

wrong choice, the meta-constraint may not be satisfiable, and the tool must return

to the branch to make a different choice.

These two overheads make generating large-scale, long-running inputs using dy-

namic symbolic execution difficult. First, as the path being explored gets longer, more

branches are encountered, resulting in more invocations to the SMT solver. Second,

long-running inputs execute more branches, creating more opportunities for the path-

88

exploration heuristic to “guess wrong,” leading to unsatisfiable meta-constraints and

ultimately leading to path explosion.

5.1.4 WISE

WISE is perhaps the most closely-related dynamic symbolic execution technique

to Lancet. WISE attempts to generate worst-case inputs for programs (e.g., a

worst-case input for a binary-search-tree construction program would be a sorted

list of integers, generating an unbalanced tree) [49]. In meta-constraint terms, WISE

attempts to generate a path condition that produces worst-case inputs of a reasonably

large size.

While it is possible to exhaustively search through all possible path conditions for

a certain input size to find the worst-case inputs, it is clear that this approach will lead

to path explosion when applied to larger inputs. To avoid the path explosion problem,

WISE uses the following strategy. It exhaustively searches the input space for small

input sizes to find worst-case behaviors. Then, by performing pattern matching on

the worst-case path conditions generated for different input sizes, WISE learns what

choices worst-case path conditions typically make for branches in the program (e.g.,

always following the left child to add a new element in a BST). This pattern is then

integrated into a path-exploration heuristic.

At large scales, when WISE encounters a branch, it looks through the patterns

that it identified at small scales to choose the direction for the branch. In essence,

WISE has a notion of what a worst-case path condition “looks like,” and chooses

directions for branches to make the path condition for a larger input match that

worst-case pattern. By using this new path-exploration heuristic, WISE is able to

find worst-case inputs for larger scales without exploring every possible path. In many

cases, WISE need only explore a single path through the program to find a worst-case

input!

89

WISE addresses the overheads of dynamic symbolic execution by tackling the sec-

ond drawback described above: it controls path explosion by learning the pattern of

path constraints from smaller runs where path explosion is less of an issue. Neverthe-

less, WISE still sits on top of dynamic symbolic execution, and must query the SMT

solver at every branch; it does not tackle the first source of overhead. As a result,

even though WISE has much better scalability than näıve symbolic execution, it still

cannot generate particularly large inputs. Generating an input that runs a loop one

million times still requires performing symbolic execution on a run that visits the

loop test condition one million times.

Section 5.2.3 explains how Lancet tackles this problem. In particular, Lancet

can generate large-scale inputs for a program without ever performing symbolic exe-

cution at large scales.

5.2 Design

Lancet is a dynamic symbolic execution tool that aims to generate scaling inputs

for programs: inputs that cause programs to run for a long time. In contrast to black-

box stress-generation tests, Lancet targets particular loops for scaling. It attempts

to generate inputs that will cause a chosen loop to execute a specified (large) number

of iterations. In this way, particular regions of code can be targeted to see how they

behave under heavy load. This section first describes Lancet’s behavior at a high

level, and then explains Lancet’s various components in more detail. For ease of

exposition, this section assumes that the program under test takes a single symbolic

string as input.

5.2.1 Overview of Lancet

Lancet has two modes of operation: explicit mode, which uses traditional dy-

namic symbolic execution techniques to generate inputs that run a target loop for

a specified, small number of iterations, and inference mode, which uses statistical

90

Figure 5.1. High level flow of Lancet’s inference-mode approach for
generating inputs for a given loop.

techniques to generate inputs that run a target loop for a large number of iterations.

These modes are described in more detail in Sections 5.2.2 and 5.2.3, respectively. At

a high level, they behave as described next.

Lancet’s explicit mode begins by using programmer annotations to identify the

target loops (Section 5.2.2). For each target loop, Lancet then generates a path

condition that satisfy a loop-iteration meta-constraint that the target loop executes

exactly N times. For small N , this is done by a custom loop-centric path-exploration

heuristic (Section 5.2.2).

While the explicit mode suffice to generate path constraints that run a loop a

small number of times, it is impractical for large N : e.g., running a loop a thousand

times will require two orders of magnitude more invocations to Lancet’s constraint

solver than running a loop ten times, and will be unacceptably slow. Lancet’s

novel approach to this problem is to determine the path constraints that satisfy the

loop-iteration meta-constraint for a large N without performing symbolic execution.

Lancet’s inference mode operates as shown in Figure 5.1. First, Lancet uses

its explicit mode to generate multiple path conditions, for a pair of consecutive num-

bers of iterations M and M + 1, using a symbolic input string of L bytes.1 It then

1Multiple path conditions may result in the same number of iterations.

91

looks into pairs of path conditions for different numbers of iterations and identifies

the incremental set, the set of path constraints that only exist in the M + 1-iteration

path conditions. Lancet then extrapolates the path condition of N iterations by ap-

pending N −M copies of the incremental set to the M -iteration path condition, each

projected to appropriate offsets beyond the initial L bytes of the input string using a

linear regression model (Section 5.2.3). Finally, the predicted N -iteration path condi-

tion is solved with a constraint solver to generate a large-scale input for the program

(Section 5.2.3), which is then verified in real execution of the program. Depending

on the result of verification, Lancet may restart the explicit mode to generate more

training data and refine the large-scale input based on new path conditions discovered

in the explicit mode.

Crucially, once the initial training phase of Lancet is complete, inputs that target

any scale can be generated at the same overhead (though potentially different levels

of accuracy), making Lancet a truly scalable approach to generating large-scale,

stress-test inputs.

Running example To aid in the discussion of the components and operation of

Lancet, we will use a running example of request parsing from Memcached [50]. A

few salient points: (i) the code parses the request string that contains a get command

followed by a list of keys separated by one or more spaces; (ii) the first function

tokenize command splits the command string (a symbolic string of configurable

size received from the Socket layer of Lancet, see Section 5.3.2) into a list of tokens,

stores them as a list of tokens terminated by a length 0 token, then returns the

number of tokens retrieved; (iii) the second function parse get command parses

the list of tokens in the target loop (line 29) and executes the get command for each

key contained in tokens. (iv) the number of iterations executed by the target loop

is determined by the loop in function tokenize command. (v) in the following

references to this example, we suppose the length of the command string is 8 bytes

for the ease of exposition.

92

1 size_t tokenize_command(char *command, token_t *tokens, size_t max_tokens) {

2 char *s, *e;

3 size_t ntokens = 0;

4 size_t len = strlen(command);

5 unsigned int i = 0;

6 s = e = command;

7 for (i = 0; i < len; i++) {

8 if (*e == ’ ’) {

9 if (s != e) {

10 /* add a new token into tokens */

11 ntokens++;

12 if (ntokens == max_tokens - 1) { e++; s = e; break; }

13 }

14 s = e + 1;

15 }

16 e++;

17 }

18 if (s != e) {

19 /* add the last token into tokens */

20 ntokens++;

21 }

22 /* add a terminal token of length 0 into tokens */

23 ntokens++;

24 return ntokens;

25 }

26

27 void process_get_command(token_t *tokens, size_t ntokens) {

28 token_t *key_token = &tokens[KEY_TOKEN]; /* KEY_TOKEN is the offset to the first key */

29 [[loop_target]] while(key_token->length != 0) {

30 /* retrieve the key from cache */

31 key_token++;

32 }

33 }

Figure 5.2. Running example: request parsing in Memcached.

93

5.2.2 Explicit Mode

The goal of Lancet is to find performance tests that impose a certain load level

precisely on a certain part of code in the given program. Specifically, Lancet’s test

generation is designed for loops and therefore the load level is determined by the trip

count of a loop.

For a given trip countN and a target loop l, Lancet’s explicit mode uses symbolic

execution to generate an execution path that satisfies the meta-constraint that the

path executes loop l exactly N times. The symbolic execution engine treats the

input as a bitvector of symbolic variables, computes symbolic expressions for input-

dependent variables, and accumulates the constraints at every branch to form the set

of constraints, i.e., the path condition, that must hold when the path is followed in

an execution. Lancet obtains a test input for the program that will run l for N

iterations by calling an external SMT solver to find concrete values that satisfy the

path condition.

Targeting a loop

Lancet provides a simple yet powerful interface for user to specify which loops

she wants to target using source code annotation. To mark a loop as a target for

test generation, the attribute [[loop target]] needs to be inserted right before

the loop statement. In the running example, the loop at line 29 is targeted for test

generation.

Loop-centric search heuristic

The powerful multi-path analysis enabled by symbolic execution comes with a

price: the path explosion problem. In order to get meaningful results within a rea-

sonable time frame, any symbolic execution tool must steer through the exponentially

growing number of paths and prioritize the exploration of the more interesting ones.

94

For example, as demonstrated by KLEE [46], path searching heuristics like random

path selection and coverage-optimized search are effective for generating high-coverage

tests for complex programs (like Gnu Coreutils). However, these heuristics, though

good for discovering unexplored code, are ill-suited for the purpose of generating per-

formance tests, because rather than exercising every line of code once, as a functional

test suite might, a performance test should instead repeatedly execute critical pieces

of code to simulate high loads.

Lancet employs a loop-centric heuristic to guide the search for paths that extend

the target loop for a large number of iterations. Following many existing symbolic

execution tools, Lancet encapsulates runtime execution information such as program

counter, path condition, memory content in a symbolic process. The loop-centric

search operates in two modes, the explorer mode and the roller mode.

In explorer mode, Lancet starts the execution with a single symbolic process

from program entry, forking a new process at each branch that has a satisfiable path

condition (this is the default execution mode for KLEE). If the loop header of the

target loop, l is hit by any of these symbolic processes, that process enters roller

mode and the other explorer processes are paused. Roller mode prioritizes symbolic

processes that stay inside the target loop (e.g., taking loop back edges to avoid exiting

the loop) so that it can reach a high number of iterations more quickly.

Roller mode maintains a FIFO queue for all symbolic processes whose current

program counters are inside the target loop and schedules the next process from the

head of the queue whenever the queue is not empty. Each symbolic process tracks

how many times it has executed the target loop. Lancet counts the number of times

the loop has run in the current calling context (i.e., the loop trip count is reset if the

function is exited). This policy means that in nested loops, inner loops cumulatively

count iterations across all iterations of any outer loop. If a symbolic process has

executed exactly N iterations, roller mode attempts to exit the loop, yielding a path

constraint for an input that will run the loop exactly N times. The explorer mode

95

is agnostic to the search strategy and any effective code discovery strategy could be

leveraged by Lancet for identifying a path from the input to the target loop.

Example: In explorer mode, Lancet will spawn symbolic processes that try every

possible path through the program in Figure 5.2. Because process get command is

called only for get requests where the command string starts with ’get ’, every process

that reaches the target loop at line 29 would include the following constraints:

command[0] =′ g′ ∧ command[1] =′ e′ ∧ command[2] =′ t′ ∧ command[3] =′ ′

A process that executes the target loop for one iteration will end up with the following

additional constraints:

command[4] 6=′ ′ ∧ command[5] 6=′ ′ ∧ command[6] 6=′ ′ ∧ command[7] 6=′ ′

Another process that executes the target loop for two iterations will accumulate

constraints as follows:

command[4] 6=′ ′ ∧ command[5] =′ ′ ∧ command[6] 6=′ ′ ∧ command[7] 6=′ ′

A direct comparison between the constraints of 1-iteration and 2-iteration processes

would reveal that, omitting the case of consecutive spaces, the number of times the

condition at line 8 is true is determined by the number of tokens the string contains,

thereby the number of iterations the target loop executes. This observation will lead

to our key insight for the inference mode.

5.2.3 Inference Mode

A strawman approach to performance test generation would use Lancet’s explicit

mode exclusively to generate large-scale inputs, targeting loop l to run N times

for some large N . This approach could generate tests that accurately trigger the

target loop for N times if given indefinite amount of time. However, nontrivial loops

that contain complex control flow structure may cause the path explosion problem

96

after a large number of iterations even if Lancet only considers the code enclosed

by these loops. Secondly, the symbolic execution engine needs to consult with the

constraint solver at every branch instruction to determine if the current path condition

is satisfiable. In a state-of-the-art symbolic execution tool, more than half of the time

is spent by the constraint solver [46]. It is simply impractical to run a symbolic

execution engine for more than a handful of iterations of the target loop.

Since our goal is not to verify every possible execution path, but merely to generate

a large-scale input, it is unnecessary and wasteful to execute every iteration of the

target loop through the symbolic execution engine. Lancet’s inference mode takes a

more efficient approach that skips symbolic execution of these intermediate iterations

and simply generates the path condition for the Nth iteration. In further detail, the

training of Lancet’s interference is done for various small scale inputs that execute

the target loop up to M times, M << N , and then skips executing the loop between

M and N times.

Recall the running example where the number of iterations of the target loop is

determined by the number of times the true branch is taken at line 8. This observation

leads to our key insight that for many loops, there is a statistical correlation between

the desired trip count for a loop and the number of constraints generated by a set of

critical branches, and this correlation can be used for inference of the path condition

for the Nth iteration. In its essence, a path condition is just a document that contains

a set of constraints represented by strings. However, it is difficult and inaccurate to

generate them directly from the inference model using general text mining techniques

if we treat a set of constraints as an unstructured document. Lancet first extracts

features from the path conditions based on the structural properties of path condition,

and trains a regression model to capture the correlation between the trip count of

the target loop and each feature of the path conditions using the data from small-

scale training runs. The structural features of the N -iteration path condition are

then predicted using the regression models and the N -iteration path condition is

generated based on the predicted features. Finally, Lancet solves the N -iteration

97

path condition to obtain a concrete input using a SMT solver, and verifies the input

in real execution. In case the input verification fails, Lancet switches back to the

explicit mode to generate more training data before running the inference mode again.

We will present each of these steps of the inference mode in the following sections.

Extracting features from path conditions

Lancet transforms path conditions into constraint templates and numerical vec-

tors, which are then used to train the statistical models Lancet builds to capture

the relationship between the trip count of a loop and the resultant path condition.

As a preprocessing step, Lancet first puts the constraints of each path condition

into groups introduced by the same branch instruction, then sorts each group by

the lowest offset of symbolic byte each constraint accesses. Each ordered group of

constraints constitute a feature in Lancet’s inference mode. For a series of path

conditions, {Pi | i ≤ M + 1}, where Pi represents the path condition ensued by i

iterations, and each path condition is processed into a set of features {P j
i }, where P j

i

represents the jth feature of Pi, Lancet finds the incremental set Dj
i+1, the residual

part of P j
i+1 after removing the longest common prefix between P j

i+1 and P j
i . In the

running example, the incremental set between the 1-iteration and the 2-iteration path

conditions contains the following constraints:

command[5] =′ ′ ∧ command[6] 6=′ ′ ∧ command[7] 6=′ ′

Intuitively, the incremental set starts at the first byte where two path features differ

and continues till the end in the feature of the more number of iterations.

Lancet extracts from a incremental set the following information: (a) the set of

constraint templates; (b) the offsets of symbolic bytes referenced by each constraint;

(c) the values of the concrete numbers in each constraint. The constraint templates

can be obtained from a incremental set by replacing offsets of symbolic bytes and con-

crete numbers in each constraint with abstract terms numbered by their appearances.

The sequence of offsets of symbolic bytes and concrete numbers are also recorded in

98

the meantime. For example, the above incremental set from the running example can

be abstracted into constraint templates:

command[x1] = x2 ∧ command[x3] 6= x4 ∧ command[x5] 6= x6

The corresponding sequence of symbolic variable offsets is 5, 6, 7, and the sequence

of concrete numbers 32, 32, 32 (32 is the ASCII code for space).

It is possible to reach the same number of iterations with different path conditions.

For example, another path that finishes the target loop for one iteration in the running

example may require this condition:

command[4] =′ ′ ∧ command[5] 6=′ ′ ∧ command[6] 6=′ ′ ∧ command[7] 6=′ ′

Furthermore, the incremental set between this path condition and the previous 2-

iteration one is:

command[4] 6=′ ′ ∧ command[5] =′ ′ ∧ command[6] 6=′ ′ ∧ command[7] 6=′ ′

which is longer than the aforementioned incremental set. In light of this case where

multiple paths are possible for the same trip count of a loop, Lancet uses the minimal

incremental set, which contains the shortest list of constraints.

Inference over path conditions

Lancet infers the next N−M incremental sets based on the constraint templates

and the sequences of terms, i.e. symbolic variable offsets or concrete numbers, ex-

tracted from the current incremental set for M iterations. It first extrapolates these

sequences into the next N −M iterations and then fill N −M copies of the templates

with predicted values. Since both kinds of sequences contain numbers, Lancet uses

the same algorithm to predict them. For the common case when there are multiple

constraints in the current incremental set, Lancet employs a regression model to

predict the sequence. For the case when there is a single constraint in the current

99

incremental set, Lancet applies two extrapolation heuristics: (i) repeating the sin-

gle number in the sequence; (ii) extending the sequence with a series of consecutive

numbers.

In our running example, there are 3 constraints in the current incremental set,

therefore Lancet will use a regression model to capture the relationship between the

trip count and the sequences of terms, and predicts the following incremental set for

the 3rd iteration of the target loop:

command[8] =′ ′ ∧ command[9] 6=′ ′ ∧ command[10] 6=′ ′

Note although the size of the symbolic input string is constant due to the lack of

support for string length operation in the underlying SMT solver [51], Lancet is

able to infer constraints beyond the fixed range of input in its inference mode and

generate path condition that references input of arbitrary length.

Generating a large-scale input

Once Lancet predicts a path condition to execute the loop N times, it calls the

SMT solver [51] to solve the predicted path condition to generate an appropriate

large-scale input. For the generated test inputs, it also verifies the actual number of

iterations achieved for the target loop in the runtime. Lancet compiles the program

under test into a native x86-64 executable with lightweight instrumentation inserted

around the target loop in compile time, to record the number of times the loop

header is observed during an execution. If the actual trip count does not reach the

set goal, Lancet returns to its explicit mode to explore the loop for more iterations

and covers more code paths within the loop body, then feeds the new data into the

inference mode to get an improved prediction of the path condition for N iterations.

This process repeats until the actual trip count are within a small range of N , which

is a configurable option of Lancet.

100

5.3 Implementation

This section presents the implementation of Lancet. The symbolic execution

engine used in the explicit mode of Lancet is built on top of KLEE, with added

support for pthread-based multithreaded programming, libevent-based asynchronous

event processing, socket-based network communication and various performance en-

hancements for the symbolic execution engine. Lancet uses the build system of

Cloud9 [52], based on Clang [53], allowing it to compile makefile-based C programs

into LLVM bitcode [54] required by the symbolic execution engine. We now discuss

the changes made to baseline KLEE.

5.3.1 POSIX Thread

Lancet supports most of PThread API for thread management, synchronization

and thread-specific store (Table 5.1). A thread is treated the same as a process ex-

cept that it shares address space and path condition with the parent process that has

created it. And since threads are treated as processes, they are scheduled sequen-

tially to execute unless a thread is blocked in a synchronization calls, such as calling

pthread mutex lock on a lock that has been acquired by another thread. When a

thread encounters a branch with a symbolic condition, it will forked all threads belong-

ing to the same process, essentially making a copy for the entire process. Both mutex

and condition variable are implemented as a wait queue. When the current owner re-

leases the synchronization resource, Lancet will pop a thread from the wait queue to

take control of the resource and mark the thread runnable. Lancet applies the wait

morphing technique to reduce wasted wake-up calls in condition variables. When the

condition variable has an associated mutex, pthread cond signal/broadcast

does not wake up the threads, but rather move them from waiting on the condition

variable, to waiting on the mutex.

101

Table 5.1
Lancet supports most of PThread API for thread management, syn-
chronization and thread-specific store.

Category API

Thread Management

pthread create

pthread join

pthread exit

pthread self

Synchronization

pthread mutex init

pthread mutex lock

pthread mutex trylock

pthread mutex unlock

pthread cond init

pthread cond signal

pthread cond broadcast

pthread cond wait

Thread Specific Store

pthread key create

pthread key delete

pthread setspecific

pthread getspecific

102

5.3.2 Socket

Socket API is a network programming interface, provided by Linux and other

operating systems, that allows applications to control and use network communi-

cation. Server applications, like Apache, MySQL and Memcached, consume data

received from the network via sockets, therefore cannot be tested in solitude. Previ-

ous work [52] that generates tests for Memcached using symbolic execution combines

a client program into the server code to address this problem. However, this approach

requires deep knowledge of the server program under test to write the client code and

cannot be easily generalized. Inspired by Unix’s design that treats sockets the same

as regular files, Lancet takes a similar approach that implements symbolic sockets

as regular symbolic files of a fixed size configurable in the command line. Essentially,

instead of simulating sporadic network traffic in real world, Lancet sends a single

symbolic packet to the server program under test. Leveraging the existing symbolic

file system of KLEE, our implementation creates a fixed number of symbolic files dur-

ing system initialization, and allocates a free symbolic file to associate with a socket

when the socket is created.

5.3.3 Libevent

Libevent is a software library that provides asynchronous event notification and

provides a mechanism to execute a callback function when a specific event occurs

on a file descriptor. Lancet implements Libevent as part of its runtime, centering

around a core structure, event base, the hub for event registration and dispatch. It

simulates event base as a concurrent queue that supports multiple producers and

consumers. The queue implementation is based on PThread condition variable and

mutex for thread synchronization. To register a event, Lancet inserts a new item

into the corresponding event queue.

A Libevent-based application usually contains a thread that calls the function

event base loop to execute callback functions for events in a loop. In Lancet’s

103

implementation of Libevent, event base base runs a loop forever to go through an

event queue and call registered callback functions for activated events until all events

are deleted from the queue. event base loop also employs PThread condition

variable to synchronize with event registration and dispatch.

5.3.4 Various Optimizations

Simplified libraries Certain functions in the C standard library consume a signif-

icant amount of time in symbolic execution. One case is atoi(), which is frequently

used in C programs to transform a NULL-terminated string into an integer. The stan-

dard implementation for atoi() supports different bases for the integer and tolerates

illegal characters in the input string, all of which add complexity to the code and slow

down symbolic execution with a huge number of execution paths. Since Lancet is

not concerned with looking for corner cases that trigger bugs—unlike KLEE—we opt

to simplify some of these common functions in the runtime. For example, in a sim-

plified atoi(), only characters between ’0’ and ’9’ is allowed except for the trailing

NULL in the string. Note that this simplification applies only to KLEE’s handling of

atoi(); the program under test need not be changed. This simplification also helps

keep constraints from different runs in a consistent form and eases the identification

of constraint templates.

Scheduling changes The explorer mode of Lancet leverages a code discovery

strategy that biases for new code coverage. We found this searching strategy of-

ten results in breadth-first traversal of execution paths, causing excessive memory

utilization during the search. This phenomenon is because programs usually allocate

memory at the beginning of execution and release memory towards the end. Breadth-

first search strategies thus perform allocations for every symbolic process, consuming

significant amounts of memory. KLEE has a copy-on-write memory sharing mecha-

nism in place to mitigate this problem. However, it cannot skip the duplication of

memory allocation when memory initialization is used after allocation. For example,

104

in libquantum, calloc() is used to acquire memory and initialize the content by

zeroing the allocated memory immediately.

To address this problem, Lancet employs an auxiliary search strategy in explorer

mode to delay the execution of symbolic processes that are about to make an external

function call (e.g.,malloc() or calloc()) This strategy keeps all processes with

imminent external calls in a separate queue and prioritizes the execution of processes

that stay inside the application’s own code. When the only processes left are those in

the queue, Lancet dequeues a waiting process and begins execution. Thus, Lancet

makes sure that earlier symbolic processes have a chance to release resources before

another process allocates additional resources.

5.4 Evaluation

We have used Lancet to generate inputs for several applications, both in explicit

mode and inference mode. The benchmarks we use to evaluate Lancet’s explicit

mode are mvm, a simple program for matrix-vector multiplication, lq (libquantum),

a simulation of quantum factoring, lbm, a Lattice-Boltzmann computational sim-

ulation, and wc, the Unix word-count utility. We take Memcached, a distributed

in-memory object caching system as a case study for the inference mode. The first

three benchmarks are numeric: the inputs to the benchmarks are simple numerical

values, which Lancet naturally handles. The fourth benchmark, wc, is structured:

it takes a list of words separated by spaces and line breaks as the input. Memcached,

on the other hand, serves a variety of different commands defined by its client-server

communication protocol. Both lq and lbm are drawn from the SPEC CPU2006

benchmark suite. In all benchmarks, we targeted the main (outer) loop of the pro-

gram for scaling, except with mvm, where we targeted both the inner (row) loop and

outer (column) loop (labeled as mvm(i) and mvm(o) in the following discussion).

For the case study with Memcached, we targeted the loop that processes a ”get”

105

command, which is used to retrieve data objects associated with the list of keys given

in the command.

5.4.1 General Observations with Benchmarks

Lancet’s Explicit Mode versus KLEE

In our first experiment, we compared the effectiveness of Lancet’s explicit mode

for generating scaling inputs to baseline KLEE. This comparison primarily highlights

the modifications made to the symbolic execution engine in Lancet: the loop-centric

search heuristic and the scheduling changes.

For each program, we ran Lancet in explicit mode for 1 hour (with the exception

of lbm, which we ran for 24 hours, as the target loop is deep in the code), and

determined (i) how many tests Lancet was able to generate (only counting tests

that execute the loop at least once), and (ii) the largest-scale input Lancet was

able to generate (i.e., the largest number of iterations the target loop executed in

any synthesized input). We then performed the same experiment using baseline,

unmodified KLEE. The results are given in Table 5.2.

We see that for the more complex programs, lq and lbm, Lancet is able to

generate more test inputs that stress the loop than KLEE, and that those inputs run

the loop for more iterations. In lbm, KLEE cannot even generate test inputs, as

it runs out of memory. Lancet’s optimized process scheduling (Section 5.3) avoids

this pitfall. In lq, although KLEE successfully generates 4 inputs in one hour, none

of them reach the target loop, while Lancet generates 168 different inputs. This

advantage arises because of Lancet’s “roller” path exploration heuristic. While

searching for the loop itself, Lancet behaves similarly to KLEE. However, once a

path reaching the loop is found, Lancet builds upon that path as much as possible

to run the loop for additional iterations.

Note that the mvm(i) numbers are misleading. Lancet was configured to stop

generating inputs when it reached 100 iterations. Although KLEE may appear to

106

Table 5.2
Effectiveness of Lancet and KLEE at generating scaling inputs for
target programs. KLEE is unable to generate any inputs for lbm, as
it runs out of memory.

Bench
Lancet KLEE

of tests Max scale # of tests Max scale

mvm(i) 50 100 285 307

mvm(o) 81 81 355 4

lq 168 27 4 N/A

lbm 14 5 0 N/A

wc 67 89 502 375

have generated more, and larger, inputs, Lancet generated the mvm(i) inputs in

∼1 second, and clearly could have outpaced KLEE. We will perform a more equitable

comparison in the final version.

Note that because KLEE does not perform symbolic allocation (allocations are

concretized), its normal execution is faster than Lancet; Lancet’s advantage arises

purely from its optimized path exploration heuristics and process scheduling. In

programs where path explosion is attenuated, KLEE can be faster. We see this

effect in wc, where KLEE generates larger inputs than Lancet. Note, however, that

Lancet’s inference mode will still allow it to generate large inputs faster, as it need

only generate a handful of small inputs to start predicting path conditions for larger

inputs.

Inferring Large-scale Inputs

Using the path conditions generated in the explicit mode for each benchmark, we

used Lancet’s inference mode to predict input values that would run the loop for

larger scales. In particular, we attempt to use Lancet to generate an input that will

run a loop exactly N times, where N is larger than the scales seen during training.

107

In all cases, Lancet successfully generates the large-scale input. This is despite the

very different scaling trends that different programs have. For example, lbm scales

linearly with the input, while lq scales logarithmically with its input (the loop runs

for log2(N) iterations), and Lancet is able to correctly capture both trends.

Interestingly, for all benchmarks, Lancet predictions are perfect: the generated

input runs the program for exactly the specified number of iterations. This is because

the behaviors of these applications are deterministic, hence the constraints that govern

scaling tend to be highly predictable, even if any individual set of inputs may not be.

5.4.2 Case Study with Memcached

Memcached runs as a caching server that communicates with clients through TCP

connections. Clients send commands to the server to store and fetch data objects.

The server reads commands and sends back responses through a socket file descriptor

for each client. In Lancet’s symbolic socket layer, a socket is implemented as a

symbolic file so that a server application can be tested by it self and all its interaction

with clients through the socket can be recorded in the content of the symbolic file.

For the case study of Memcached, we added code to establish a connection with a

single client which sends a single symbolic packet of configurable size to the server.

Later on, the command processing functions are exercised with the symbolic packet

and eventually a response will be written back to the symbolic file.

We targeted at the processing function for a common command for Memcached,

the ”get” command, used for retrieving one or more data objects currently stored

in the cache server. The command takes the form of a space-delimited string that

contains ”get” or ”bget” followed by a list of keys, IDs to address specific data objects.

The command string is first split into an array of tokens. The tokens are then analyzed

by the processing function for the ”get” command. We targeted at the main loop

in the processing function, process get command, as shown in Figure 5.2. In the

explicit mode, we set a limit of 10 iterations so Lancet can explore different paths

108

Table 5.3
Examples of path conditions generated for Memcached. ID, number
of iterations and path condition are listed for each generated test.
A character or space represents an equality constraint for the byte
where it appears. A ’*’ symbol represents a constraint that enforces
a non-space character for the byte where it appears.

Test ID Iterations Path Condition

test000001 1 get *

test000006 2 get * *

test000007 3 get ** * ****

test000008 4 get ** * * *

test000023 5 get *** * * *** **** ***

test000036 6 get *** * * **** * ** *

thoroughly at small scales. After running in the explicit mode for around 10 hours,

Lancet generated 590 tests that exercise the target loop between 1 and 10 iterations.

Table 5.3 shows some of the path conditions Lancet generated for Memcached.

We applied the inference mode on these generated tests and successfully deduced

the path condition for exactly 100 iterations by extrapolating the difference between

test000001 and test000006. Note there are multiple ways to reach 100 iterations by

inferring over the generated tests. For example, we were able to do the same based

on test000007 and test000008. However, there also exist path conditions that lead

to inaccurate inference if employed as the base cases for path condition extrapola-

tion. For example, the incremental set of test000006 and test000007 is ’* * ****’

starting at the 6th byte of the input. The inference based on these two tests ends up

with a path condition that exercises the target loop for 293 iterations. The reason for

this inaccuracy is that Lancet only runs the explicit mode for a certain amount of

time and could not cover every path for a given number of iterations. As a result, the

incremental set between test000006 and test000007 is not the minimal incremental

set between 2-iteration and 3-iteration path conditions.

109

5.5 Summary

Lancet is the first system that can generate accurate, targeted, large-scale stress

tests for programs. Though it builds upon dynamic symbolic execution, it sidesteps

many of the fundamental scaling problems of such techniques through a novel use of

statistical inference, allowing Lancet to generate large-scale test inputs without hav-

ing to run large-scale dynamic symbolic execution. Through a series of case studies,

we have demonstrated that Lancet is general, efficient and effective.

110

6 RELATED WORK

6.1 Statistical Bug Detection and Diagnosis

There is a substantial amount of work concerning statistical debugging [4–6, 12,

14, 55–61]. Some of these approaches focus primarily on detection, with diagnosis

as a secondary, often ad hoc capability [4–6, 14], while others focus primarily on

automatically assisting bug diagnosis [12,55–61].

The typical approach taken for detection by statistical approaches [4–6, 14] is to

characterize a program’s behavior as an aggregate of a number of features. A model

is built based on the aggregate behavior of a number of training runs that are known

to be buggy or non-buggy. To determine if a particular program execution exhibits a

bug, the aggregate characteristics of the test program are checked against the modeled

characteristics; deviation is indicative of a bug. The chief drawback to many of these

approaches that they do not account for scale. If the system or input size of the

training runs differs from the scale of the deployed runs, the aggregate behavior of

even non-buggy runs is likely to deviate from the training set, and false positives will

result. Some approaches mitigate this by also detecting bugs in parallel executions if

some processes behave differently from others [5]; this approach does not suffice for

bugs which arise equally in all processes (such as our MPI case study).

Other statistical techniques eschew detection, in favor of attempting to debug

programs that are known to have faults [12, 55–61]. These techniques all share a

common approach: a large number of executions are collected, each with aggregate

behavior profiled and labeled as “buggy” or “non-buggy.” Then, a classifier is con-

structed that attempts to separate buggy runs from non-buggy runs. Those features

that serve to distinguish buggy from non-buggy runs are flagged as involved with the

bug, so that debugging attention can be focused appropriately. The key issue with all

111

of these techniques is that they (a) rely on labeled data—whether or not a program

is buggy must be known; and (b) they require a large number of buggy runs to train

the classifier. In the usage scenario envisioned for our techniques, the training runs

are all known to be bug-free, but bug detection must be performed given a single

buggy run. We are not attempting to debug widely distributed faulty programs that

can generate a large number of sample points, but instead are attempting to localize

bugs given a single instance of the bug. Hence, classification-based techniques are

not appropriate for our setting. Some of the most relevant works in this domain is

sampled in the rest of this section.

The first work in this domain that illuminates our work is that by Mirgorodskiy

et al. [5], which applies to similarly behaving processes in an application. Behavioral

data is collected for each process in the system, and an error is flagged if a process’s

behavior deviates from correct behavior (given known ground-truth data), or if its

behavior is sufficiently different from other processes in the system.

The second relevant work in this domain is AutomaDeD [6]. This work provides a

model to characterize the behavior of parallel applications. It models the the control

flow and timing behavior of application tasks as Semi-Markov Models (SMMs) and

detects faults that affect these behaviors. AutomaDeD detects errors by clustering

tasks with similar SMMs together, and identifying tasks that do not fit into expected

clusters. AutomaDeD then inspects the faulty SMMs to localize the bugs.

DMTracker [7] uses data movement related invariants, tracking the frequency of

data movement and the chain of processes through which data moves. The premise of

DMTracker is that these invariants are consistent across normal processes. Bugs are

detected when a process displays behavior that does not conform to these invariants,

and can be localized by identifying where in a chain of data movements the invariant

was likely to be violated.

112

6.2 Performance Test Generation

The typical method to generate load tests is to induce load by increasing the input

size (e.g., a larger query or a larger number of queries) or the rate at which input is

provided (e.g., more query requests per unit of time) [62]. However, such techniques

are not very discriminating with respect to the kind of load that is introduced, e.g.,

the kind of query can make a big difference to the response time.

Previous work in workload synthesis [63–65] applies genetic algorithms to syn-

thesize benchmarks for stress testing. The key idea is to form an abstract space

parameterized on a finite number of workload characteristics such as instruction mix,

instruction level parallelism, or working set size, and employ genetic algorithms to

search for the optimal point with regard to a target metric such as execution time,

energy consumption, or voltage fluctuation. Nevertheless, the application is treated

as a black box that accepts the generated tests as input and emits the performance

metrics as output. In the absence of correlation between tests and code, it is arduous

to analyze the testing results and fix the issues found from running these tests.

Zhang et al. design a tool that generates tests that target certain types of load [66].

In their scheme, the user is asked for the metric that characterizes load, such as

memory consumption. Based on this information, the tool searches for paths, using

symbolic execution, that stress that load metric. For example, if the user is inter-

ested in memory consumption, then paths containing memory allocation actions are

favored. In the background section, we have already presented discussion of another

technique in this category, WISE [49], which generates worst-case inputs, i.e., inputs

that cause the program to run the longest. FOREPOST [67] uses runtime monitoring

for a short duration of testing. The data that is collected is fed through a machine

learning algorithm and automated test scripts provide insights into properties of test

input data that lead to increased computational loads.

There are some solutions that apply dynamic techniques to detect problems with

a loop, such as, the loop will never terminate, or that the loop has a performance

113

issue. For example, [68] describes Looper, which dynamically analyzes a program

to detect non-termination. For this, it uses symbolic execution to generate a non-

terminating path and then uses the SMT solver, to create concrete variables that will

cause such non-termination, if such a situation exists. Some techniques like [69] seek

to cure such loop problems.

114

7 CONCLUSION

This thesis focuses on addressing an important class of software defects, scale-dependent

bugs, which have a deteriorated impact on the correctness and performance of applica-

tions as the system and input scale up. We built Vrisha, Abhranta, and WuKong

to detect and diagnose scaling bugs for large scale systems, and developed Lancet

to generate test inputs that exhibit scaling trends of a given application to facilitate

the above bug detection and localization approaches that need test inputs to work.

Statistical inference and compiler techniques, such as dynamic instrumentation and

symbolic execution, have been applied throughout these works. We evaluated our

techniques with real bugs and actual production code, such as MPICH2, Transmis-

sion, SPEC2006 and Gnu Coreutils. All our works are released as open source software

for the benefit of the research community.

The works in this thesis constitute only the first step towards building effective

defense and offense mechanism for scaling bugs, the most notorious bugs that break

the scalability of software in production systems. There are still a lot of challenges

and open problems that need to be address in future works. We have discussed some

of the limitations and shortcomings of our techniques in their respective chapters.

Here, we will summarize the most critical restrictions and provide guidance over the

directions for future exploration.

7.1 Data Dependence in Scaling Behavior Prediction

Data dependence describes the situation where the behavior of a program depends

on certain values contained in the input. For example, the execution of a sparse ma-

trix multiplication program may very well depend on the number of non-zero elements

contained in the input matrices, not just the size of the matrices. Not like size, or

115

other control parameters, which we have used as the determining factors for applica-

tion behaviors in our prediction models, values in the input data are information of

much lower levels and difficult to interpret and model. Still taking the sparse matrix

multiplication program as an example, if we just take every byte in the input as a

feature and try to see how the value of each byte influences the behavior of the entire

application, we will reach nowhere since it is the total number of non-zero values, an

aggregated feature over the entire matrix, that determines the behavior of the appli-

cation. What we need here is a way to extract or abstract high-level features, e.g. the

number of non-zeros in the above example, which have more interpretable relation

with the application’s behaviors, from the ensemble of data values in the input.

However, a naive high-level feature extraction technique would base itself on the

specific semantic of the internal algorithms of the given application and the structure

of the input data, which would prevent it from being generalized to other applications.

A potential general solution to this feature extract problem is to leverage dynamic

code instrumentation of the input processing module of a given application and record

values of certain critical variables as the desired high-level features, then use them to

predict the behavior of the rest of the execution. Now the users only need to identify

the code modules that process the input and the critical variables that store high-level

information useful for predicting the behavior of application.

7.2 Environment Modeling in Symbolic Execution

In order to generate tests for real-world programs that rely on the system envi-

ronment, e.g. libraries, system calls, file system, network, etc., symbolic execution

engines need to include support for the executing external code symbolically. A com-

mon method to achieve this is to build a model, a simplified implementation of the

external function that understands the semantics of the operation well enough to

generate the required constraints. In practice, this is done manually for common

libraries and system calls [46], which leads to our second future research direction:

116

automating the environment model building process. This problem is closely related

to program synthesis with respect to a given specification. A simpler problem is to

derive the symbolic version of a library from the original concrete version by redirect-

ing all external dependencies into the counterpart modules provided by the symbolic

execution engine.

LIST OF REFERENCES

117

LIST OF REFERENCES

[1] David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira,
and Ron Brightwell. Detection and correction of silent data corruption for large-
scale high-performance computing. In Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage and Analysis, SC
’12, pages 78:1–78:12, Los Alamitos, CA, USA, 2012. IEEE Computer Society
Press.

[2] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. Under-
standing and detecting real-world performance bugs. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’12, pages 77–88, New York, NY, USA, 2012. ACM.

[3] Dong H. Ahn, Bronis R. de Supinski, Ignacio Laguna, Gregory L. Lee, Ben
Liblit, Barton P. Miller, and Martin Schulz. Scalable temporal order analysis for
large scale debugging. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09, pages 44:1–44:11, New
York, NY, USA, 2009. ACM.

[4] Gregory L. Lee, Dong H. Ahn, Dorian C. Arnold, Bronis R. de Supinski, Matthew
Legendre, Barton P. Miller, Martin Schulz, and Ben Liblit. Lessons learned
at 208k: Towards debugging millions of cores. In Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, SC ’08, pages 26:1–26:9, Piscat-
away, NJ, USA, 2008. IEEE Press.

[5] Alexander V. Mirgorodskiy, Naoya Maruyama, and Barton P. Miller. Problem
diagnosis in large-scale computing environments. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, SC ’06, New York, NY, USA, 2006.
ACM.

[6] Greg Bronevetsky, Ignacio Laguna, Saurabh Bagchi, Bronis R. de Supinski,
Dong H. Ahn, , and Martin Schulz. AutomaDeD: Automata-based debugging for
dissimilar parallel tasks. In Proceedings of the IEEE/IFIP International Confer-
ence on Dependable Systems and Networks,, DSN ’10, pages 231–240, 2010.

[7] Qi Gao, Feng Qin, and Dhabaleswar K. Panda. DMTracker: Finding bugs in
large-scale parallel programs by detecting anomaly in data movements. In Pro-
ceedings of the 2007 ACM/IEEE Conference on Supercomputing, SC ’07, pages
15:1–15:12, New York, NY, USA, 2007. ACM.

[8] Zhezhe Chen, Qi Gao, Wenbin Zhang, and Feng Qin. FlowChecker: Detect-
ing bugs in mpi libraries via message flow checking. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’10, pages 1–11, Washington, DC, USA, 2010.
IEEE Computer Society.

118

[9] http://www.mcs.anl.gov/research/projects/mpich2/.

[10] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In Proceedings
of the ACM SIGPLAN 1990 Conference on Programming Language Design and
Implementation, PLDI ’90, pages 246–256, New York, NY, USA, 1990. ACM.

[11] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Precise dynamic slicing algo-
rithms. In Proceedings of the 25th International Conference on Software Engi-
neering, ICSE ’03, pages 319–329, Washington, DC, USA, 2003. IEEE Computer
Society.

[12] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug isolation
via remote program sampling. In Proceedings of the ACM SIGPLAN 2003 Con-
ference on Programming Language Design and Implementation, PLDI ’03, pages
141–154, New York, NY, USA, 2003. ACM.

[13] Xing Wu and Frank Mueller. ScalaExtrap: Trace-based communication extrap-
olation for spmd programs. In Proceedings of the 16th ACM Symposium on
Principles and Practice of Parallel Programming, PPoPP ’11, pages 113–122,
New York, NY, USA, 2011. ACM.

[14] Bowen Zhou, Milind Kulkarni, and Saurabh Bagchi. Vrisha: Using scaling prop-
erties of parallel programs for bug detection and localization. In Proceedings of
the 20th International Symposium on High Performance Distributed Computing,
HPDC ’11, pages 85–96, New York, NY, USA, 2011. ACM.

[15] Bowen Zhou, Milind Kulkarni, and Saurabh Bagchi. Abhranta: Localizing bugs
that manifest at large system scales. In Proceedings of the Eighth USENIX Con-
ference on Hot Topics in System Dependability, HotDep’12, pages 5–5, Berkeley,
CA, USA, 2012. USENIX Association.

[16] Wei-Wen Feng, Byung-Uck Kim, and Yizhou Yu. Real-time data driven defor-
mation using kernel canonical correlation analysis. In Proceedings of ACM SIG-
GRAPH 2008, SIGGRAPH ’08, pages 91:1–91:9, New York, NY, USA, 2008.
ACM.

[17] Bowen Zhou, Jonathan Too, Milind Kulkarni, and Saurabh Bagchi. WuKong:
Automatically detecting and localizing bugs that manifest at large system scales.
In Proceedings of the 22nd International Symposium on High-performance Paral-
lel and Distributed Computing, HPDC ’13, pages 131–142, New York, NY, USA,
2013. ACM.

[18] Eliot Horowitz. Foursquare outage post mortem. https://groups.google.
com/forum/#!topic/mongodb-user/UoqU8ofp134.

[19] Konstantin V Shvachko. HDFS scalability: The limits to growth. USENIX login,
35(2):6–16, 2010.

[20] http://bugs.mysql.com/bug.php?id=49177.

[21] Adam Oliner, Archana Ganapathi, and Wei Xu. Advances and challenges in log
analysis. Communications of the ACM, 55(2):55–61, February 2012.

[22] Francis R. Bach and Michael I. Jordan. Kernel independent component analysis.
Journal of Maching Learning Research, 3:1–48, March 2003.

119

[23] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, New York, NY, USA, 2004.

[24] Harold Hotelling. Relations between two sets of variates. Biometrika,
28(3/4):321–377, 1936.

[25] Archana Ganapathi, Kaushik Datta, Armando Fox, and David Patterson. A case
for machine learning to optimize multicore performance. In Proceedings of the
First USENIX Conference on Hot Topics in Parallelism, HotPar’09, pages 1–1,
Berkeley, CA, USA, 2009. USENIX Association.

[26] Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L. Wiener, Ar-
mando Fox, Michael Jordan, and David Patterson. Predicting multiple metrics
for queries: Better decisions enabled by machine learning. In Proceedings of
the 2009 IEEE International Conference on Data Engineering, ICDE ’09, pages
592–603, Washington, DC, USA, 2009. IEEE Computer Society.

[27] D. H. Bailey, L. Dagum, E. Barszcz, and H. D. Simon. NAS parallel benchmark
results. In Proceedings of the 1992 ACM/IEEE Conference on Supercomput-
ing, Supercomputing ’92, pages 386–393, Los Alamitos, CA, USA, 1992. IEEE
Computer Society Press.

[28] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective com-
munication operations in mpich. International Journal of High Performance
Computing Applications, 19(1):49, 2005.

[29] https://trac.mcs.anl.gov/projects/mpich2/changeset/5262.

[30] https://trac.mcs.anl.gov/projects/mpich2/browser/mpich2/
trunk/src/mpi/coll/allgatherv.c.

[31] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS parallel benchmarks.
RNR-91-002, NASA Ames Research Center, August 1991.

[32] Michael P. Kasick, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. Black-
box problem diagnosis in parallel file systems. In Proceedings of the 8th USENIX
Conference on File and Storage Technologies, FAST’10, pages 4–4, Berkeley, CA,
USA, 2010. USENIX Association.

[33] http://trac.mcs.anl.gov/projects/mpich2/ticket/1005.

[34] Satish Balay, Jed Brown, Kris Buschelman, William D. Gropp, Dinesh Kaushik,
Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang.
PETSc web page, 2009. http://www.mcs.anl.gov/petsc.

[35] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-
off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
Building customized program analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’05, pages 190–200, New York, NY, USA,
2005. ACM.

[36] https://trac.transmissionbt.com/changeset/11666.

120

[37] Gideon E. Schwarz. Estimating the dimension of a model. Annals of Statistics,
6(2):461–464, 1978.

[38] H. Akaike. A new look at the statistical model identification. IEEE Transactions
on Automatic Control, 19(6):716 – 723, dec 1974.

[39] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Sta-
tistical Learning (2nd edition). Springer-Verlag, 2008.

[40] Bradley J. Barnes, Barry Rountree, David K. Lowenthal, Jaxk Reeves, Bro-
nis de Supinski, and Martin Schulz. A regression-based approach to scalability
prediction. In Proceedings of the 22nd Annual International Conference on Su-
percomputing, ICS ’08, pages 368–377, New York, NY, USA, 2008. ACM.

[41] Max Kuhn and Kjell Johnson. An introduction to multivariate modeling tech-
niques. http://zoo.cs.yale.edu/classes/cs445/slides/Pfizer_
Yale_Version.ppt.

[42] https://asc.llnl.gov/sequoia/benchmarks/.

[43] Kuan-Yu Tseng, D. Chen, Z. Kalbarczyk, and R.K. Iyer. Characterization of
the error resiliency of power grid substation devices. In Proceedings of the 42nd
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works, DSN ’12, pages 1–8, June 2012.

[44] Michael D. Bond, Graham Z. Baker, and Samuel Z. Guyer. Breadcrumbs: Ef-
ficient context sensitivity for dynamic bug detection analyses. In Proceedings
of the 2010 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’10, pages 13–24, New York, NY, USA, 2010. ACM.

[45] Michael D. Bond and Kathryn S. McKinley. Probabilistic calling context. In
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications, OOPSLA ’07, pages 97–112, New York,
NY, USA, 2007. ACM.

[46] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation, OSDI’08, pages 209–224, Berkeley, CA, USA, 2008. USENIX
Association.

[47] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed automated
random testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’05, pages 213–223,
New York, NY, USA, 2005. ACM.

[48] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: Three
decades later. Communications of the ACM, 56(2):82–90, February 2013.

[49] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. WISE: Automated test gener-
ation for worst-case complexity. In Proceedings of the 31st International Confer-
ence on Software Engineering, ICSE ’09, pages 463–473, Washington, DC, USA,
2009. IEEE Computer Society.

[50] http://memcached.org/.

121

[51] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and ar-
rays. In Proceedings of the 19th International Conference on Computer Aided
Verification, CAV’07, pages 519–531, Berlin, Heidelberg, 2007. Springer-Verlag.

[52] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. Parallel sym-
bolic execution for automated real-world software testing. In Proceedings of the
Sixth Conference on Computer Systems, EuroSys ’11, pages 183–198, New York,
NY, USA, 2011. ACM.

[53] http://clang.llvm.org/.

[54] http://llvm.org/docs/BitCodeFormat.html.

[55] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan.
Scalable statistical bug isolation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’05,
pages 15–26, New York, NY, USA, 2005. ACM.

[56] Alice X. Zheng, Michael I. Jordan, Ben Liblit, Mayur Naik, and Alex Aiken.
Statistical debugging: Simultaneous identification of multiple bugs. In Proceed-
ings of the 23rd International Conference on Machine Learning, ICML ’06, pages
1105–1112, New York, NY, USA, 2006. ACM.

[57] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and Samuel P. Midkiff. Statis-
tical debugging: A hypothesis testing-based approach. IEEE Transactions on
Software Engineering, 32:831–848, October 2006.

[58] Laura Dietz, Valentin Dallmeier, Andreas Zeller, and Tobias Scheffer. Localizing
bugs in program executions with graphical models. In Proceedings of Advances
in Neural Information Processing Systems 22, NIPS 22, pages 468–476, 2009.

[59] Trishul M. Chilimbi, Ben Liblit, Krishna Mehra, Aditya V. Nori, and Kapil
Vaswani. HOLMES: Effective statistical debugging via efficient path profiling.
In Proceedings of the 31st International Conference on Software Engineering,
ICSE ’09, pages 34–44, Washington, DC, USA, 2009. IEEE Computer Society.

[60] David Andrzejewski, Anne Mulhern, Ben Liblit, and Xiaojin Zhu. Statistical
debugging using latent topic models. In Proceedings of the 18th European Con-
ference on Machine Learning, ECML ’07, pages 6–17, Berlin, Heidelberg, 2007.
Springer-Verlag.

[61] James A. Jones and Mary Jean Harrold. Empirical evaluation of the tarantula
automatic fault-localization technique. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’05, pages
273–282, New York, NY, USA, 2005. ACM.

[62] Rick Hower. Web site test tools and site management tools: Load and perfor-
mance test tools. http://www.softwareqatest.com/qatweb1.html#
LOAD.

[63] Ajay M. Joshi, Lieven Eeckhout, Lizy Kurian John, and Ciji Isen. Automated
microprocessor stressmark generation. In Proceedings of the 14th IEEE Inter-
national Symposium on High Performance Computer Architecture, HPCA-14,
pages 229–239, Feb 2008.

122

[64] Youngtaek Kim, Lizy Kurian John, Sanjay Pant, Srilatha Manne, Michael
Schulte, W. Lloyd Bircher, and Madhu S. Sibi Govindan. AUDIT: Stress testing
the automatic way. In Proceedings of the 45th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-45, pages 212–223, Washington, DC,
USA, 2012. IEEE Computer Society.

[65] Peter Bodik, Armando Fox, Michael J. Franklin, Michael I. Jordan, and David A.
Patterson. Characterizing, modeling, and generating workload spikes for stateful
services. In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC
’10, pages 241–252, New York, NY, USA, 2010. ACM.

[66] Pingyu Zhang, Sebastian Elbaum, and Matthew B. Dwyer. Automatic gener-
ation of load tests. In Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’11, pages 43–52, Wash-
ington, DC, USA, 2011. IEEE Computer Society.

[67] Mark Grechanik, Chen Fu, and Qing Xie. Automatically finding performance
problems with feedback-directed learning software testing. In Proceedings of the
34th International Conference on Software Engineering, ICSE ’12, pages 156–
166, Piscataway, NJ, USA, 2012. IEEE Press.

[68] Jacob Burnim, Nicholas Jalbert, Christos Stergiou, and Koushik Sen. Looper:
Lightweight detection of infinite loops at runtime. In Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineering, ASE
’09, pages 161–169, Washington, DC, USA, 2009. IEEE Computer Society.

[69] Michael Kling, Sasa Misailovic, Michael Carbin, and Martin Rinard. Bolt: On-
demand infinite loop escape in unmodified binaries. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’12, pages 431–450, New York, NY, USA, 2012.
ACM.

VITA

123

VITA

Bowen Zhou started as a Ph.D student in the Computer Science Department of

Purdue University in 2008, doing research on automated software debugging under

the guidance of Professor Milind Kulkarni and Professor Saurabh Bagchi. He obtained

two Computer Science degrees before coming to Purdue, including a B.E. from the

University of Science and Technology of China in 2004 and an M.E. from the Chinese

Academy of Sciences in 2007.

