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ABSTRACT

Arshad, Fahad A. Ph.D., Purdue University, August 2014. Failure Characterization
and Error Detection in Distributed Web Applications . Major Professor: Saurabh
Bagchi.

We have seen an evolution of increasing scale and complexity of enterprise-class

distributed applications, such as, web services for providing anything from critical

infrastructure services to electronic commerce. With this evolution, it has become

increasingly difficult to understand how these applications perform, when do they

fail, and what can be done to make them more resilient to failures, both due to

hardware and due to software? Application developers tend to focus on bringing

their applications to market quickly without testing the complex failure scenarios that

can disrupt or degrade a given web service. Operators configure these web services

without the complete knowledge of how the configurations interact with the various

layers. Matters are not helped by ad hoc and often poor quality failure logs generated

by even mature and widely used software systems. Worse still, both end users and

servers sometime suffer from “silent problems” where something goes wrong without

any immediate obvious end-user manifestation. To address these reliability issues,

characterizing and detecting software problems with some post-detection diagnostic-

context is crucial.

This dissertation first presents a fault-injection and bug repository-based evalua-

tion to characterize silent and non-silent software failures and configuration problems

in three-tier web applications and Java EE application servers. Second, for detection

of software failures, we develop simple low-cost application-generic and application-

specific consistency checks, while for duplicate web requests (a class of performance

problems), we develop a generic autocorrelation-based algorithm at the server end.
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Third, to provide diagnostic-context as a post-detection step for performance prob-

lems, we develop an algorithm based on pair-wise correlation of system metrics to

diagnose the root-cause of the detected problem.
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1. INTRODUCTION

1.1 Motivation

Distributed systems are ubiquitous and affect our everyday life in many different

ways. We interact with reservation systems, financial systems, supply chain systems

and many others for modern business. We shop at online stores, buy stocks and do

online banking transactions. All these activities involve movement of financial assets

and are managed by enterprise class distributed web applications. These business

critical applications require high reliability to keep their customers’ trust. To provide

reliability in complex distributed applications, it is important to characterize failures,

i.e., understand the scenarios under which an application fails to function correctly.

Further, with the increase in scale of the applications, it becomes increasingly difficult

to detect both functional and performance errors.

To understand the ways an application can fail, failure characterization is a criti-

cal step. An application can fail due to a variety of different software problems—for

example due to a programming bug by a developer, due to a configuration mistake by

an operator or due to an environmental condition such as server overload. For failure

characterization, the application can be studied in two ways, fault-injection-based or

bug-repository-based. After failure characterization, an operator has an additional

insight on various failure patterns and their frequency of occurrence. With this knowl-

edge, error detection techniques can be implemented to help alert the operators and

developers when a problem occurs.

Error detection is an important step in the dependability life-cycle of an applica-

tion as it helps to find the time point at which an application fails. Error detection

methods provide reliability to the application and are the basis for any post-detection

diagnosis. All detection techniques depend on capturing the failure manifestation of
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an inherent problem in the system. Failure manifestation can be non-silent or silent—

for example an Exception captured in the logs or a performance problem at the

server respectively. Error detection techniques need to be accurate with low-latency

of detection. The methods employed to implement the detection techniques should

have low programming overhead.

Any post-detection automated diagnosis helps to provide more context to the

developers and operators in finding the root-cause of a problem. Finding the root-

cause has been primarily a manual printf-based step for decades. Programmers

typically use hit and trial methods to diagnose failures. They go through the time

consuming process of modifying code, compiling, running several times. With the

advent of more flexible dynamic tracing frameworks [1, 2], there is an opportunity

to develop automated diagnostic tools that help to determine the root-cause of a

problem at a finer granularity.

1.2 Solution Approaches and Contributions

In this dissertation, we present failure characterization of programming and con-

figuration problems by fault-injection and bug-repository-based study in typical web

applications and their corresponding underlying infrastructure. Additionally, we pro-

pose detection techniques for both functional problems and a class of performance

problems called “unneeded duplicate requests”. Finally, we present our ideas on

diagnosing performance problems at a finer granularity. Below we present these con-

tributions as four pieces of works.

1. Failure Characterization and Detection of Programming Mistakes by

Developer:

An approach to failure characterization in an online stock trading benchmark

application, called DayTrader [3] is shown. The application has the typical

structure of a web service in that it is deployed on a web container and an

EJB container, with the persistent state being stored in a back-end database.
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Failures are classified from an end-user perspective, into three categories: Non-

silent, Non-silent-interactive, and Silent. Non-silent failures are characterized

by explicit error messages from the infrastructure that are visible to the end

user, e.g., a servlet exception that results in an HTTP 500 status in the browser.

Non-silent-interactive failures are the ones that a user notices interactively, e.g.,

a user searches for five valid stock quotes but is returned only three. Silent

failures disrupt web service without any manifestation to the user.

Each of these classes of failures is studied by developing a fault-injection frame-

work and by observing how DayTrader reacts to each injected fault. The fault

injection scheme mimics typical software bugs encountered in middle-tier of an

enterprise software system. Specifically, we target bugs in business logic and

control logic of an application. Business logic has functionality specific to the

business (such as, buying and trading stocks in our application), while con-

trol logic handles input HTTP requests and triggers the business functionality.

Our fault trigger for errors in business logic is method invocation. For errors

in control logic, at compile-time, we inject Skip-EJB, where a call to a busi-

ness method and corresponding usage of returned data is commented out in

the source code. Skip-EJB represents missing programming constructs and is a

dominant type of software bug studied in previous work [4]. By observing the

behavior of DayTrader to each injected error, we subsequently recommend one

application-generic and three application-specific detection checks. Application-

generic check is based on catching programming constructs like NULL while

application-specific checks are based on learning from normal back-end request-

flow lengths and message-types.

2. Failure Characterization and Detection of Configuration Mistakes by

Operator:

A bug-repository-based characterization-study of configuration problems in Java

EE (Enterprise Edition) based application servers, GlassFish [5] and JBoss [6] is
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presented. We classify configuration-bugs according to four dimensions: Type,

Time, Manifestation and Responsibility. The first dimension (Type) consid-

ers a configuration-bug due to a problem relating to a particular parameter

option, incompatibility with an external library or a missing component. The

second dimension (Time) refers to the timepoint at which the configuration-bug

is triggered, i.e., pre-boot-time, boot-time, or run-time. The third dimension

(Manifestation) refers to whether a bug is silent or non-silent (with a log mes-

sage). The fourth dimension refers to who (developer or user) is responsible for

a given type of configuration bug. Based on the characterization, we built a

tool called ConfGauge, that injects configuration errors (misconfigurations).

A fault-injection tool like ConfGauge will help to measure the robustness,

the ability to handle unintended input, and can play an important role in the

decision making process of choosing a Java EE vendor. ConfGauge injects

human-induced configuration errors and measures the reaction of the system

under test (SUT).

3. Detection of Duplicate Requests Causing Performance Problems: A

detection algorithm that uses autocorrelation function to detect duplicate web

requests sent by client browsers is presented. There are two root causes for

the problem of duplicate web requests, missing component names [7–9] and

duplicate Javascript inclusion. The first cause is due to the incorrect way in

which browsers handle missing component names, or empty tags, such as, <img

src="">, <script src="">, and <link href="">. The second cause is

due to the same Javascript being included in the page twice, or more number

of times [10].

We present a general-purpose solution to the duplicate detection problem, in a

system called Griffin. By “general-purpose”, we mean that the solution ap-

plies unmodified to all kinds of resources and browsers. The solution has at its

heart the observation that the duplicate web requests cause a repeated signal,



5

for some definition of “signal”. The signal should be defined such that it can

be easily traced in a production web server, without impacting computation

or storage resources and without needing specialized code insertion. We find

that the function call depth is the signal that satisfies these conditions, while

preserving enough fidelity that the repeated sequence can be easily and auto-

matically discerned. To automatically discern the repeated pattern, we use the

simple-to-calculate autocorrelation function for the signal and at a lag, equal to

the size of the web request (in terms of number of HTTP commands), Griffin

sees a spike in autocorrelation which it uses to flag the detection.

4. Diagnosis of Metric-based Performance Problems: We present Orion, a

framework for localizing the origin of problems, as a result of abnormal changes

in metrics, in distributed applications. Orion works by profiling a variety

of metrics as the application is executing, either at declared instrumentation

points (such as, method entry or exit) or asynchronously with a fixed periodicity.

Through machine learning techniques, it verifies if the runtime profile is similar

enough to profiles created offline of non-faulty application’s executions. If it

is not, Orion goes back through traces to indicate which metrics caused the

divergence and from that, to the region of suspect code. We provide a rank-

ordered list to the developer for inspection. Orion uses pair-wise correlations

between the metrics to diagnose errors.

1.3 Published Work

The main part of this dissertation has appeared in the following publications.

• Dangers and Joys of Stock Trading on the Web: Failure Characteri-

zation of a Three-Tier Web Service: Fahad A. Arshad, Saurabh Bagchi, In

the 30th IEEE Symposium on Reliable Distributed Systems (SRDS), 10 pages,

Madrid, Spain, Oct 5-7, 2011.
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• Characterizing Configuration Problems in Java EE Application Servers:

An Empirical Study with GlassFish and JBoss: Fahad A. Arshad, Re-

becca Krause, Saurabh Bagchi, In the 24th IEEE International Symposium on

Software Reliability Engineering, Pasadena, CA (ISSRE), 10 pages, Pasadena,

CA, USA, November 4-7, 2013.

• Is Your Web Server Suffering from Undue Stress due to Duplicate

Requests?: Fahad A. Arshad, Amiya K. Maji, Sidharth Mudgal, Saurabh

Bagchi, In the 11th ACM International Conference on Autonomic Computing

(ICAC), 6 pages, Philadelphia, PA, June 18-20, 2014.

• Automatic Problem Localization in Distributed Applications via Multi-

dimensional Metric Profiling: Ignacio Laguna, Subrata Mitra, Fahad A. Ar-

shad, Nawanol Theera-Ampornpunt, Zongyang Zhu, Saurabh Bagchi, Samuel

P. Midkiff, Mike Kistler and Ahmed Gheith, In the 32nd IEEE Symposium on

Reliable Distributed Systems (SRDS), 10 pages, Braga, Portugal, October 1-3,

2013.

While working towards this dissertation, I have also contributed to several published

works which relate to the field of error detection and diagnosis, but are not the

primary focus for this dissertation.

• An Empirical Study of the Robustness of Inter-component Commu-

nication in Android: Amiya K. Maji, Fahad A. Arshad, Saurabh Bagchi and

Jan S. Rellermeyer, In the 42th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), 12 pages, Boston, MA, June 25-28,

2012.

• How To Keep Your Head Above Water While Detecting Errors:

Ignacio Laguna, Fahad A. Arshad, David M. Grothe, and Saurabh Bagchi,

ACM/IFIP/USENIX 10th International Middleware Conference, November 30-

December 4, 2009, Urbana-Champaign, Illinois.
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• Stateful Detection in High Throughput Distributed Systems: Gunjan

Khanna, Ignacio Laguna, Fahad A. Arshad, and Saurabh Bagchi, 26th IEEE

International Symposium on Reliable Distributed Systems (SRDS-2007), pp.

275-287, Beijing, CHINA, October 10-12, 2007.

• Distributed Diagnosis of Failures in a Three Tier E-Commerce Sys-

tem: Gunjan Khanna, Ignacio Laguna, Fahad A. Arshad, and Saurabh Bagchi,

26th IEEE International Symposium on Reliable Distributed Systems (SRDS-

2007), pp. 185-198, Beijing, CHINA, October 10-12, 2007.

1.4 Outline

The rest of this dissertation is organized as follows: Chapter 2 discusses back-

ground and related work in the field of software failure characterization, error detec-

tion and diagnosis. Chapter 3 presents failure characterization and detection of pro-

gramming mistakes by developers in three-tier web applications. Chapter 4 presents

failure characterization and detection of configuration mistakes by operators in Java

EE application servers. Chapter 5 presents detection of duplicate requests that cause

performance problems. We present our ideas on metric-based error diagnosis for per-

formance problems in chapter 6. Conclusion and Future Work is presented in Chapter

7 and Chapter 8 respectively.
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2. BACKGROUND AND RELATED WORK

2.1 Fault Model Definitions

We give an overview of the fault model that we follow in this dissertation.

• Fault: Fault is defined as an inherent defect, which is latent, and was introduced

into the system at some point in time. An example of a fault is a programming

mistake (e.g., a variable which is incorrectly null in a given application) or

a wrong configuration (e.g., an incorrect configuration value such as a wrong

filename).

• Error: When a fault is activated, it gives rise to an error. For example when a

variable which is incorrectly null, is accessed, or when a missing file is accessed.

• Failure: A failure occurs when the error handling is not enough and the prob-

lem is manifested to the application user. An example is a NullPointerEx-

ception or a FileNotFoundExceptionmanifested in the browser on send-

ing a web request.

2.2 Summary of Related Work

2.2.1 Characterizing and Detecting Developer Bugs

Studying failure characterization involves two general methodologies, i.e., analyz-

ing bug databases and employing fault injection. In the former case, multiple bug

reports are analyzed and correlated to classify failures according to some criteria,

e.g., [11] studies failures in JVM, classifies them based on failure manifestation, fail-

ure source and failure frequency. [12] studies failures in application servers and shows

that 75% of all failures are related to service semantics and require application-specific
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efforts. Bug repository based failure analysis has some limitations, i.e., quality of bug

reports and subjective administration, etc., therefore many researchers have resorted

to fault-injection, e.g., [13], [4] emulates classes of software faults. For evaluation

based on fault injection, different injection campaigns depending on where and how

to inject errors exist. Faults can be injected in source code [14], or they can be

emulated at runtime using an emulation technique [13]. We emulate faults in the

application, and classify them based on manifestation at client’s browser. Failures

can also be analyzed at different layers in the software system, i.e., operating sys-

tem [15], [16], network controller [17], virtual machine [11], application server [12]

and application [18]. The type of injected fault for a given system also varies depend-

ing on the system under test, e.g., [16] shows that, one of the major causes null pointer

is responsible for system crashes in operating system kernel. We study null-calls in a

similar fashion at the application layer.

Detecting injected faults as studied by [19] can be done at a system level or at

an application level. The study shows that low-level system monitoring tools are not

enough to detect application level errors. Pinpoint [20], [18] treats failures as anoma-

lies and applies machine learning techniques to detect application level failures in

an application-generic way. For application-specific evaluation, assessing application

problems is important, e.g., [21] applies a set of tests, by mutating call parameters,

and analyzes robustness of web services code and application server infrastructure.

Similarly, [22] uses a set of robustness tests to detect programming and design errors,

along with classifying silent errors. We follow a similar approach, but instead of ro-

bustness failures, we focus on more general emulated failure classes.

Characterizing by failure type, especially variants of silent failures is studied

by [17]. The study detects silent failures that impact database clients in a tele-

phone network. It uses software fault injection at database tier and does data audit

to reduce silent failures. An experimental study [23] quantifies distribution of bugs

among different layers, i.e., business, presentation and data logic layer of Web and

Desktop applications. Our study focuses on business and control logic in middle-tier
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and is for a three-tier application. Another study on silent errors in OS [15] estimates

the percentage of silent failures by comparing the execution of a given API across dif-

ferent operating systems. Application-specific detection, diagnosis and recovery are

all important. A study in [24] shows that application generic recovery techniques are

not enough to recover from application failures. Our work tests this hypothesis from

a detection perspective and is helpful to give useful hints for diagnosis. In addition, if

detection results by our checks are taken into account by an application logger, then

this can improve logging quality as shown in [14].

2.2.2 Characterizing and Detecting Configuration Bugs

From the perspective of configuration management, software systems reliability

has been studied from different angles, characterization, testing, detection, diagnosis

and recovery: (1). Failure characterization [25], where the goal is to study the cause

and effect of failures to identify misconfiguration-patterns. (2). Resilience testing

[26], where the goal is to study the reaction of a software system when injected

with configuration errors to identify weaknesses in failure handling mechanisms. (3).

Configuration error-detection [27], where the goal is to study failure manifestations

of misconfigurations to identify patterns that detect a given configuration-error. (4).

Failure diagnosis [28], where the goal is to find a root-cause of a given configuration

problem. (5). Failure Recovery [29], where the goal is to find the candidate fixes for

a configuration problem.

Failure characterization studies using bug-reports, both on configuration [25] and

non-configuration [30] bugs, reveal common patterns that lead to failures. Yin et

al. [25] studied user forums for five non-Java EE systems from the perspective of con-

figuration errors. Some dimensions studied in their work, e.g. type and manifestation

of configuration problem are similar to our work, while others e.g. responsible-party

and problem-time are different. Another major difference is that their work focuses

on non-Java EE systems, whereas we claim that Java EE based systems have distinc-
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tive differences (e.g. standardized APIs, modular architecture) that warrant separate

attention. Also, as cloud-based Java EE system like OpenShift [31] and GlassFish-4

become mainstream, Java EE based systems would require more focused attention

towards configuration-related issues.

Keller et al. [26] tested the configuration system of five non-Java EE systems by

injecting misconfigurations using a tool called ConfErr. ConfErr is different from

our work, as we inject misconfigurations that have been reported in bug repositories,

while ConfErr injects misconfigurations that are derived from error models in human

psychology only. We consider ConfErr complimentary to our work, ConfGauge,

as both efforts give an indication of how robust a particular software is.

Besides failure characterization and configuration testing, configuration-error de-

tection [27], Barricade [32] and diagnosis works like [33], PeerPressure [34], Chronus

[35], ConfAid [36] are other areas that have been studied in configuration management

research.

2.2.3 Detecting Duplicated Requests to Avoid Performance Bugs

Most of the existing approaches to handle duplicate requests are not at the

application-level. TCP [37] is the classic example that uses sequence numbers along

with a windowing-based mechanism to do duplicate detection of IP packets. Stateless

protocols like HTTP have to deal with the request-response nature and maintain state

at the application-level. Application-level works include similarity detection [38] de-

ployed at web-proxy caches to eliminate redundant network traffic, duplicate-content

detection [39] with clustering and similarity metrics [40]. These are directed at generic

payloads and are therefore less accurate than our work. Another related area is

schemes for avoiding the occurrence of duplicate requests in the first place, which are

complementary to our work. These schemes are implemented either on the client-

end [41] or on the server-end [42].
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Finding relevant system events to detect and diagnose failures is often equated to

the problem of finding a needle in a haystack. Over the last decade, several researchers

have proposed solutions to this challenging problem [43–46]. The high-level objective

here is to mine vast amounts of system data to find relevant signatures for failures.

Once “syndromes” [43] or signatures are created [44], these can be used to detect

problems in the future efficiently. Present day data centers often suffer from tens of

minutes to hours of downtime due to inherent difficulties in diagnosing and fixing

such failures. [45] and [46] partially automate this process, thereby, reducing manual

effort and downtime. Our work falls within this broad umbrella. We automate the

process of detecting duplicated web requests by looking at a compressed signal from

system events, specifically function calls and returns.

2.2.4 Automated Debugging of Performance Problems

Various tools exist to help programmers and network administrators localize the

problems in distributed applications. Most of these tools can be grouped into these

main categories: traditional debuggers and execution replays, model checkers, and

statistical methods. Each type of tools is appropriate for different scenarios, as we

will discuss below.

Traditional debuggers such as gdb, and tools that enable execution replays [47,48]

let the programmer find the exact line of code of the bug. However, for this to

be feasible, the programmer needs to have a good guess of where the problem lies.

Therefore, these tools are complimentary to our tool since our tool reports suspicious

regions of code, and when it is not obvious where the bug is, the programmer can

use these tools to pinpoint the bug. Attariyan et al. [49] propose a technique that

determines the root cause of performance problems using taint analysis. It is suitable

for cases where the source of the problem is user input or the configuration file.

Model checkers are useful for checking small applications against specifications [50,

51]—due to its exhaustive nature, it is not feasible for most real-world applications.
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In addition, it is more appropriate for checking against specifications. Liu et al. [52]

propose a technique that does live model checking and provides execution replay.

The programmer writes a predicate that is invariant throughout the execution, and

this predicate is checked as the application runs. When the predicate is violated, the

system states leading to the violating state are given as output. While this approach

works well for specifications, as the instruction that changes the system state from

conforming to violation is usually the root cause of the problem, for other types

of problems such as performance problems, the errors may have accumulated from

different regions of the code before the specification is violated. Our tool does not

assume that the instruction that makes the system state in violation is the root cause

of the problem, and is thus more applicable to a wider range of problems.

There is a volume of work on statistical methods to detect and localize problems.

Some of the work analyzes application logs [53–56]. However, there is often a one-to-

many mapping between the log record corresponding to the problem and the actual

code regions that could be the source of the problem. [57–59] analyze request flows

to diagnose problems in request-processing applications. Other work analyzes metric

values, typically using machine learning algorithms [60–63]. In [60] and [61], the

signature of the current problem is compared to a database of known problems. If

there is a match, the diagnosis and fixes used previously can be reused again. This

approach is suitable for problems that are not easy to fix even if the root cause

is known (e.g., overloaded servers), problems due to the environment, or hardware

problems. In other situations, once a problem is diagnosed and fixed, it will not occur

again, limiting the usability of the tool. The overall approach of [62] and [63] is similar

to our approach in that machine learning models are trained based on training data.

If the system is in an abnormal state, the metrics that are most abnormal are given

to localize the problem. In addition, when this is not enough to pinpoint the location

of the fault, our work goes a step further and provides a ranking of most suspicious

code regions to reduce the programmer’s effort needed to fix the problem.
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3. FAILURE CHARACTERIZATION AND DETECTION

OF PROGRAMMING MISTAKES

3.1 Introduction

Business critical enterprise applications require high reliability to keep their cus-

tomer’s trust. A customer trusts the service provider if all her web requests are

satisfied, and possibly for a small fraction of requests, a noticeable failure is flagged

to the customer and the customer’s application state is not corrupted. An instance,

where a failure of a web request is not made obvious to the consumer, but affects the

end functionality, possibly at the time of a later transaction, is highly undesirable.

To avoid this, the service provider needs an understanding of how software errors

affect her web service, such as which failures occur in a silent manner and which in a

non-silent manner; for the latter class, how are the failures logged (where—at the web

server, the application server, or the database server, and within each, at which com-

ponent; and the level of detail in the log). With an understanding of the failures, the

service provider can start to design techniques to better log failures and to reduce the

incidence of silent failures through appropriate, preferably non-intrusive, detection

checks. In this chapter, an approach to failure characterization in an online stock

trading benchmark application, called DayTrader [3] is shown. The application has

the typical structure of a web service in that it is deployed on a web container and an

EJB container (specifically, the Glassfish [5] application server), with the persistent

state being stored in a back-end database. DayTrader is a benchmark derived from

IBM’s performance benchmark Trade6 and is representative of an enterprise-class

three-tier web service. It has been used in several recent works [64], [65], [66].

Failures are classified from an end-user perspective, into three categories: Non-

silent, Non-silent-interactive, and Silent. Non-silent failures are characterized by
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explicit error messages from the infrastructure that are visible to the end user, e.g.,

a servlet exception that results in an HTTP 500 status in the browser. Non-silent-

interactive failures are the ones that a user notices interactively, e.g., a user searches

for five valid stock quotes but is returned only three. Thus, these failures need

user circumspection for detection. Silent failures disrupt web service without any

manifestation to the user. An administrator is unable to detect such failures from

system or application logs, until informed by an external agent. The silent failures can

have serious consequences such as emptying out the portfolio of a user, or giving an

incorrect view of the portfolio to the user. This study goes further and characterizes

silent failures according to the type of fault. Non-silent and non-silent-interactive

failures are generally logged, while silent failures are normally unplugged. Each of

these classes of failures is studied by developing a fault-injection framework and by

observing how DayTrader reacts to each injected fault.

The fault injection scheme presented mimics typical software bugs encountered in

middle-tier of an enterprise software system. Specifically, we target bugs in business

logic and control logic of an application. Business logic has functionality specific to

the business (such as, buying and trading stocks in our application), while control

logic handles input HTTP requests and triggers the business functionality. Our fault

trigger for errors in business logic is method invocation and we inject three variants of

null-call [18]: Null-Return, where a null is returned on a call to a business method

, Null-Object-Return where a null is cast into the return type and returned, No-

Op, where an empty object of required return type is instantiated and returned.

We also inject unchecked exceptions, a major fault type, especially in multi-threaded

architecture [67]. We find that such exceptions are quite common due to the desire

(sometimes a mistaken desire) to keep the code compact enough by omitting exception

handling for lots of corner cases. For errors in control logic, at compile-time, we inject

Skip-EJB, where a call to a business method and corresponding usage of returned data

is commented out in the source code. Skip-EJB represents missing programming

constructs and is a dominant type of software bug studied in previous work [4].
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We inject errors that mimic common programming faults. Based on these injected

errors, in DayTrader, we find that 49% of errors from null-call injections, 34% of

errors from unchecked exceptions and 3% of skipped statements cause silent failures.

A relevant study [12] shows that 29% of failures in application servers are silent.

By observing the behavior of DayTrader to each injected error, we recommend

an intuitive application-generic check to handle the null-call injections where a null

object is returned, and find that on average this low-cost generic check is able to

detect 100% of such errors for Null-Return, and 29% for Null-Object-Return. This

kind of check generalizes effortlessly across applications, and this result points web

service developers or distributed middleware developers toward building primitives

that will make such checks easy to insert in the application. However, one kind of

null-call injection, No-Op, where an object of the correct return type is returned, but

without executing any functionality of the called function, is impossible to detect to

any meaningful degree using application-generic checks.

Application-specific checks require a study of application characteristics, but here

we focus on checks that can be easily deduced by standard machine learning al-

gorithms. We use learning to induce two application-specific checks—checking the

length of any web request (in terms of the number of software components) and

checking the first and the last method invoked in any web request. We find, that of

the different kinds of web requests, these checks perform well for those that are not

data dependent, i.e., the control path is the same regardless of the parameters in the

request. However, two of the ten web requests in DayTrader are data dependent and

are challenging to detect and require the need for checks that have a more detailed

understanding of the application [68]. A data dependent web request is either depen-

dent on data specified by a user (in a search box) or data fetched from the database

for a given user. To detect data-dependent web requests with higher accuracy, we

introduce a third type of application-specific check, one that incorporates information

on runtime length of a web request.

To summarize, we believe this chapter makes the following contributions:
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• It provides the distribution and classification of silent, non-silent, and non-silent-

interactive failures in business and control logic of a representative three-tier web

service.

• It presents an application-generic consistency check that can detect a subclass

of errors that cause silent failures.

• It presents low-cost application-specific consistency checks that have a high

coverage for unchecked exceptions.

• It presents a low-cost application-specific consistency check that can detect data

dependent web requests.

3.2 Three-tier Architecture

We build a three-tier system with clients, a middleware and a back-end database.

The client layer is composed of a browser emulator, Grinder [69]. It sends web re-

quests to the middleware that hosts an application server, Glassfish. Middleware

executes application logic and builds database requests, that are sent to back-end

database. Within application logic, the functionality is subdivided into presenta-

tion, control and business logic as depicted by Figure 3.1. Our system architecture,

shown in Figure 3.2, implements DayTrader, a java based web service application.

DayTrader follows MVC (model-view-controller) architecture, where model refers to

business logic implemented by java beans in EJB container, view refers to presenta-

tion logic implemented by JSPs in web container and controller refers to control logic

implemented by a controller servlet in web container. In web container, our target

component for fault injection is the controller servlet.
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Middleware

WEB Container EJB Container

Presentation Logic Control Logic Business Logic

JSPs(View) Servlets(Controller) Beans(Model)

Fig. 3.1.: Middleware functionality separation

Fig. 3.2.: DayTrader System Architecture

3.3 Middleware

Middleware is composed of an application server, Glassfish, that executes appli-

cation logic functions and builds corresponding database queries at runtime. The

application, DayTrader, is deployed on top of the application server. On deployment,

two major parts of application server: web container and EJB container work to re-

ceive and process HTTP web requests from clients.

Web container extends the web server functionalities and gives an environment to

run servlets and JavaServer Pages (JSPs). DayTrader has a main controller servlet,
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TradeAppServlet (Figure3.3(a)) that is responsible for handling incoming HTTP re-

quests and is the entry point for all client requests. This controller servlet implements

the control logic while the supporting JSPs: welcome.jsp, register.jsp, portfolio.jsp,

quote.jsp, tradehome.jsp, account.jsp, order.jsp, runStats.jsp implement the presenta-

tion logic. Web container executes a sequence of steps for every web request initiated

by client browser: (1) receive an HTTP request; (2) send a request to the EJB in the

EJB container (optionally, it may need to instantiate the EJB first); (3) set-up the

response page template based on the request by instantiating the appropriate JSP;

(4) process the response from the EJB and then use it to populate the response page

template created by the JSP in step (3); (5) send response back to client browser.

1zero or more invocations

Table 3.1.: Web Request to EJB Request Mapping

Web Request EJB Requests

Login getClosedOrders->login->getAccountData->getHoldings-

>getMarketSummary

Home getClosedOrders->getAccountData->getHoldings-

>getMarketSummary

Account getClosedOrders->getAccountData->getAccountProfileData

Portfolio getClosedOrders->getHoldings->getQuote∗1

Quotes getClosedOrders->getQuote∗

Buy getClosedOrders->buy->updateQuotePriceVolume

Sell getClosedOrders->sell->updateQuotePriceVolume

Logoff logout

Update getClosedOrders->updateAccountProfile->getAccountData-

>getAccountProfileData

Register register->login->getAccountData->getHoldings-

>getMarketSummary
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(a) Web Functionality (b) EJB Functionality

Fig. 3.3.: DayTrader: Web and EJB container in the middleware layer
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The EJB container is responsible for executing application’s business logic. For

DayTrader, it contains a stateless session bean and several entity beans as shown in

Figure 3.3(b). The stateless session bean, TradeSLSBBean, maintains state only for

a given business method call, e.g. TradeSLSBBean.buy(), and does not maintain

state across business methods. Entity beans represent relational data corresponding

to database tables with one-to-one mapping. Each entity bean corresponds to a table

in the database whereas each instance of the entity bean corresponds to a row in that

table. On receiving an EJB request from web container, EJB container executes the

following sequence of steps, also shown in Figure 3.3(b): (1) invoke the requested

EJB business method in TradeSLSBBean (2) invoke one or more entity beans (3)

send SQL query to the database table corresponding to the entity bean to insert,

update or load from back-end database.

3.4 Client Requests

DayTrader customers send web requests to the middleware layer. Each web re-

quest results in several EJB method invocations in a stateless session bean, which we

call EJB requests. An example invocation is “Login” web request, where a user enters

her username and password, and sends the web request to the web container. The

web container calls the TradeSLSBBean.login() in EJB container. This in turn calls

several different entity bean methods according to application logic. Entity bean

methods invoke load, update and insert operations on corresponding tables in the

database.

The client layer is represented by Grinder [69], a load testing distributed frame-

work that emulates simultaneous users. We use a client workload provided by the

DaCapo benchmark suite [70] for stressing DayTrader. The workload comprises of a

set of stocks, users, and user sessions. Each user session starts with “Login”, followed

by other possible web requests as defined by the application design. Each request

ends with “Logout”. For a new user, the session starts from a “Register” request. A
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typical user session may be: Login, Home, Portfolio, Sell, Account, Update, Quote,

Buy, Logout. We show the client web request distribution from our workload in

Figure 3.4(a). Each web request results in multiple EJB requests (Table 3.1). The

distribution of EJB requests is shown in Figure 3.4(b). We observe that “Quotes”,

a read web request, is exercised with the highest percentage. This is expected of a

real online user, who looks up stock quotes most of the time. Write web request like

“Buy” and “Sell” have equal percentage.

3.5 Database

Database layer is composed of an independent database management system

(DBMS) that stores tables specified by application designer. The DBMS, derby [71],

is responsible for processing database requests, i.e., load, update and insert SQL

queries.

(a) Web (b) EJB

Fig. 3.4.: Web and EJB Request Distribution for 750 users
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3.6 Fault Injection Methodology

In order to characterize faults, we built a fault injector that ultimately leads to

silent and non-silent failures in web service based applications. Our faultload is rep-

resentative of typical faults in three-tier applications. Our injected faults are similar

to faults injected in [18], and we claim that they are general enough to cover a wide

range of low-level programming errors. The key questions while designing our fault

injector were: What kind of faults to inject? Where to inject these faults? When to

inject the faults?

3.6.1 Types of faults injected

We inject Skip-EJB at compile-time through source code modification, while null

variants and undeclared exceptions are injected at runtime. After injecting undeclared

runtime exceptions, we study the effect of injection. We find that the practice of not

handling such exceptions is quite common due to the desire (sometimes a mistaken

desire) to keep the code compact enough by omitting exception handling for lots of

corner cases. We decided not to inject declared exceptions as these exceptions are

normally handled and masked by the application code itself. We also inject Null-call,

where the called component is never executed. Specifically, we experiment with three

variants of null-call, Null-Return, Null-Object-Return, No-Op as shown in Figure 3.5

where foo() calls bar().

Null-Return

By injecting a Null-Return error in the EJB container, we mean that when a call

to a method is made, a null is returned without executing the logic of the method.
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Fig. 3.5.: Example code for emulated error types in business logic
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Null-Object-Return

By injecting a Null-Object-Return error in the EJB container, we mean that when

a call to a method is made, then on return a null is cast into the return type of the

method.

No-Op

By injecting a No-Op error in the EJB container, we mean that when a call to a

method is made, an empty object of the correct return type is created by using the

new operator. This empty object is returned to the caller. No-Op error can occur,

e.g, when a programmer knows the return type, but incorrectly implements the func-

tionality of the called method.

Unchecked Exceptions

On a call to a method, this throws an unchecked exception in the callee. The

list of unchecked exceptions, that we inject, along with the typical reasons for their

occurrence is: ArithmeticException due to a divide by zero, ArrayIndexOutOfBound-

sException due to out of bound array access and ClassCastException due to bad

casting, e.g., converting non-numeric to integer.

void doSe l l ( Serv l e tContext ctx , HttpServletRequest req ,

HttpServletResponse resp , Str ing userID , In t eg e r holdingID )

throws Serv l e tExcept i on , IOException {

Str ing r e s u l t s = ”” ;

t ry {

// OrderDataBean orderData = tAction .

// s e l l ( userID , holdingID , TradeConfig . orderProcessingMode ) ;

// req . s e tAt t r i bu t e (” orderData ” , orderData ) ;

req . s e tA t t r i bu t e (” r e s u l t s ” , r e s u l t s ) ;
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} catch ( java . lang . I l l egalArgumentExcept ion e ) {

Log . e r r o r ( e , ” TradeServletAct ion . doSe l l ( . . . ) ” ,

” i l l e g a l argument , i n f ormat i on should be in except i on s t r i n g ” ,

” user e r r o r ” ) ;

} catch ( Exception e ) {

throw new Serv l e tExcept i on (” TradeServletAct ion . doSe l l ( . . . ) ”

+ ” except i on s e l l i n g ho ld ing ” + holdingID + ” f o r user =”

+ userID , e ) ;

}

r eques tDi spatch ( ctx , req , resp , userID , TradeConf ig

. getPage ( TradeConfig .ORDERPAGE) ) ;

}

Listing 3.1: Example code for Skip-EJB injection

Skip-EJB

By injecting a Skip-EJB, we mean skipping a call to the EJB container from the

web container, specifically, from the controller servlet. For Skip-EJB, where returned

data is assigned to a variable and later used in javax.servlet.HttpServlet-

Request.setAttribute(String name, Object o)method to pass the data

to JSP, we skip both the EJB call and javax.servlet.HttpServletRequest.-

setAttribute call in a given injection. An example of this is shown in Listing 3.1,

where the injection of Skip-EJB is shown by the commented code.

3.6.2 Parameters and mechanics of fault injection

In deciding fault locations, we had two major goals: Injection should be non-

intrusive, which means parsing the source code to find good locations should be

avoided. Secondly, injections should mimic real programming mistakes. To achieve

this, we emulate the manifestation of fault conditions in the EJB container (busi-

ness logic). We emulate injection in TradeSLSBBean’s methods in the EJB container

using interceptors. In addition, our chosen error types, for injection, are representa-

tive for capturing the low-level programming mistakes as shown by previous studies.
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Specifically, [12] shows that 60% of all failures are manifested as thrown exceptions.

The number of previous works about Null Pointer Exceptions [16] is a proof of how

common this type of failure is, and the motivation to inject null-call variants in our

work. Programming mistakes in control logic are injected in TradeAppServlet in the

web container. Next we choose fault triggers, i.e., when to inject a fault. For business

logic, we inject whenever a call is made to invoke one of the methods of TradeSLS-

BBean in the EJB container. This fault injection implementation is generic and can

inject these faults in any typical three-tier web application. However, for control logic

injection, we require source code modification.

We use interceptors for the EJB container and filters for the web container to

implement the generic runtime injection and detection framework. An interceptor

intercepts a call whenever a call is being made or returned from a java session bean.

Similarly, a filter intercepts calls to the web container. Both interceptors and filters

can run custom java code and can be configured to throw exceptions at runtime

according to some failure injection rate.

3.7 Failure Classification

We classify failures with respect to their manifestation at user end. We relate this

manifestation to whether the failure is originated from the application, or from the

underlying container. We categorize failure manifestation in three groups: Non-silent,

Non-silent-interactive and Silent as shown in Figure 3.6.

3.7.1 Non-silent

On receiving an HTTP web request from user’s browser, if the response shows

a blank page or an exception, we classify it as a non-silent failure. Non-silent fail-

ure can be either logged by the application or by the container as shown in Figure

3.6. A non-silent failure logged by an application comes from a println statement

in application’s logger. It shows that the developer of the application anticipated
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Fig. 3.6.: Failure classification

the failure. A non-silent failure that is logged by other modules in the container

e.g. javax.enterprise.system.container.web is an example of a failure

for which the application developer did not anticipate.

3.7.2 Non-silent-interactive

A non-silent-interactive failure occurs when a user interactively realizes in the

same transaction that a failure has occurred. An example of a non-silent-interactive

failure is a Null-Return injected in the login() method, which reports “Could not

find account for + xxxxxx” in the browser for an existing user. Another example is

when a user searches for five quotes but only three quotes show up in the result. Non-

silent-interactive failures can be either logged by the application, or by the container.

3.7.3 Silent

Silent failures are those whose manifestation is never captured in logs until af-

ter multiple web requests, when a user recognizes that her transactions did not go

through. An example would be when a user buys a stock, and when after a few days

wants to sell it, she cannot find that stock in her portfolio. When the user contacts

the administrator, the administrator is unable to determine from logs that the user

purchased such a stock. This is the kind of failure mode that keeps owners of web

services awake at nights and provides employment to many legions of lawyers.
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3.8 Consistency Checks

3.8.1 Application Generic

Null-call Check

A rule is placed as an EJB interceptor which checks for null on return from every

EJB request. Whenever a session bean’s method is called, this rule flags if the return

value is null. This rule has false positives as some of EJB requests like logout()

do return null in normal case. We quantify the accuracy and precision of this rule.

Fig. 3.7.: Web Request Classification

3.8.2 Application Specific

Call-length Check

For a given web request type, this check counts the number of corresponding EJB

requests invoked, e.g., “Account” web request invokes getClosedOrders->getAccount

Data->getAccountProfileData, which makes the call length of this web request three.

Call length for each web request is learned from training as explained in the next

sub-section. We observe that call length of web requests fall into two categories:

data-dependent and data-independent as shown in Figure 3.7. Data-independent web

requests have fixed call length in normal case, e.g., “Account” invokes three EJB re-

quests. Data-dependent web requests have variable call lengths based on the entries
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in the database (DB) or entries entered by the user in a search box. Call lengths

learned through training are used for this check; for data-dependent requests, the

minimum observed call length is used. This check is triggered in a filter on return

from a servlet, that handles the web request in the web container. If the observed

length differs from the length inferred through training, an error is flagged.

For implementing this check, we use the java.lang.ThreadLocal API to

monitor the web request as it passes through the three-tier system. ThreadLocal

is used to create and update a local vector variable, called call-vector. As the call

passes through to the EJB container, an interceptor adds every EJB request for the

given web request to the call-vector. On return to the filter in the web container,

call-vector has the given web request along with all the EJB requests invoked for that

web request.

Head-tail Check

This check requires the normal tail EJB request names, that are learned in a

training run as described in next sub-section. For a given web request, this check

monitors head and tail EJB request, e.g., in foo()->bar()->baz() chain, if

foo() and baz() are invoked in a web request, then the web request is assumed to

successfully complete and no alarm is raised. The trigger for this check is the same

as for call-length check, i.e., return from the servlet in a filter.

For implementing this check, we use the same call-vector, as in previous check.

Errors like unchecked exceptions that can result in shortening of web requests will

be caught by this check. The head-tail check is able to detect errors in some data

dependent web requests which call-length check cannot detect, e.g., in “Portfolio” as

long as the length is ≥ 2, call-length check is satisfied, but the head-tail check can

catch the error if either the head or the tail does not match.
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Data-dependent call-length Check

This check requires the knowledge of expected length of call-vector at runtime, in

addition to the learned call-vector length. In a web request from a client, within the

data-dependent call-vector, e.g, “Portfolio”(getClosedOrders -> getHoldin-

gs -> getQuote∗) there is a constant part (getClosedOrders -> getHold-

ings) and a variable part (getQuote∗). The constant part has information on the

variable part—in this example, getHoldings returns a Collection<HoldingD-

ataBean> containing information on how many subsequent EJB requests of type

getQuote will be made. This check extracts the size of this Collection<Holdin-

gDataBean> at runtime and matches the observed call length to expected call length

(constant part + variable part) at the end of a web-request. For this check, the con-

stant part would be learned through training as in call-length check, while variable

part is extracted at runtime.

3.8.3 Learning Parameters for Application-Specific Checks

To learn the rule parameters, we run the workload in a training mode (where the

buggy cases are expected to be a minority), and find frequency distribution of call

length for each web request, as shown in Figure 3.8(a) for “Login”. We find normal

call length for a given web request, even in the presence of errors, by choosing the call

length with the highest frequency, e.g., for “Login” this is 5. For data-dependent web

requests, “Portfolio” and “Quotes”, the call-length check is of the form “≥value”.

We set the value equal to the minimum call length observed in training. This keeps

the processing for the check simple and not too tied to the application, because we

do not have to extract at runtime the part of data which determines the call length

for data-dependent web requests.

For the head-tail check, we follow the same training approach as for data indepen-

dent web request in the call-length rule, and find the head and the tail EJB methods

that give the highest frequency. Figure 3.8(b) shows the distribution of tail EJB



32

methods, and shows that getMarketSummary() is the normal tail EJB request for

“Login” web request.

(a) Frequency Distribution of call length

for Login web request

(b) Frequency Distribution of Tail EJB

requests for Login web request

Fig. 3.8.: Distributions for learning parameters for application-specific checks

3.9 Experiments and Results

Our experiments quantify the distribution of occurrence of failure classes, for all

types of injected errors. Further, we quantify the accuracy, precision and cost for our

consistency checks. In our experiments, we uniformly inject in 5% of all EJB requests

for business logic. For a given injection location, the injections for control logic are

done for the complete duration of an experiment.

3.9.1 Testbed and Metrics

For our experiments, we use 750 concurrent users running the workload. The

emulation of 750 users is achieved by Grinder framework that uses 15 client machines

each emulating 50 users. Users send their web requests concurrently to a machine
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running the Glassfish application server, which sends the corresponding database calls

to a derby database running on a third machine. The client machines are Quad-Core

AMD Opteron 2.2 GHz with 8182 MB of memory. The application server and the

database machines are an Intel Xeon 3.4 GHz with 1024 MB of memory.

To evaluate each of our consistency checks, we define Accuracy as the ratio of

the number of correctly detected errors to injected errors. Precision is defined as the

ratio of the number of correctly detected errors to the number of total detected errors.

For application generic check, we give accuracy and precision at the granularity of an

EJB request. For our application specific checks, we give accuracy and precision at

the granularity of a web request, as they are evaluated at the end of each web request.

Fig. 3.9.: Distribution by Failure Class

Fig. 3.10.: Failure Distribution Breakdown for the two kinds of Non-Silent Failures



34

3.9.2 Failure Distribution in the EJB Container

In this section, we determine the distribution of failure classes across each injec-

tion type in the EJB container. For the three kinds of unchecked exceptions, we

aggregate, and give average accuracy, precision, and overhead in our results. Figure

3.9 shows that 40% of injected Null-Return errors are silent, which neither the end

user nor the administrator can detect and they are not logged at the server either by

the application or by the container. Non-silent failures constitute 24%, while non-

silent-interactive failures are 36%. For Null-Object-Return type, silent failures remain

almost the same as in Null-Return, while non-silent failures increase to 33% and non-

silent-interactive decrease to 27%. This increase is because, when the callee returns,

in Null-Object-Return, it returns an expected return type object, but with null in

it. On return, caller continues with its processing, until it tries to use the returned

object, and this is when a problem is detected. For No-Op errors, we observe 67%

silent failures and 33% non-silent failures with no occurrence of non-silent-interactive

failures. This happens, because for this type of injected error, we instantiate with

new operator an object of the return type, and then return it to caller. For example,

in getQuote() EJB request, the caller expects a “QuoteDataBean” object on re-

turn. When we inject Null-Return, the caller handles it in a general catch block (also

logs it), and the quote result is not shown in the browser. Thus, the user interactively

detects the failure. When we inject No-Op, the catch block at caller is never activated

as the caller gets a “QuoteDataBean” object on return. Caller continues its buggy

execution without logging anything and therefore a silent failure happens.

The objective of the next analysis is to see that for the failures (in business logic)

that are logged (i.e., are non-silent), where are they logged—by the application or

by the EJB container. We show error class breakdown, as logged by the applica-

tion and the container in Figure 3.10 for both non-silent and non-silent-interactive

failures. For Null-Return, out of all non-silent failures, 10% are logged by the appli-

cation, while 90% by the container’s logger. This suggests the need of null checking
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mechanisms at more places in application code. On the other hand, the majority

of non-silent-interactive Null-Returns are detected (73%) by the application. This is

understandable as an application developer would focus more on handling scenarios

where a user should not see a failure interactively. The distribution for both non-

silent and non-silent-interactive failures for Null-Object-Return errors is similar with

the container logging majority of errors. This is conceivable for non-silent failures,

but a low percentage of non-silent-interactive (11%) failures logged by application

entails for extensive sanity checks on returned objects. For No-Op errors, 91% of

the non-silent errors are detected by the container while the rest are detected by the

application. This is because the developer did not anticipate the occurrence of No-Op

errors and did not handle them in application code.

For unchecked exceptions, we see from Figure 3.9 that they are either silent or

non-silent. Also, those that are silent (33%), i.e., normal operation in user’s browser,

are logged at the server. Majority of unchecked exceptions (67%) are non-silent, and

all of them are logged by the container.

For Skip-EJB in Figure 3.9, it is observed that majority of Skip-EJB errors

result in non-silent (63%) and non-silent-interactive failures (35%). A reason for

this is that, whenever the presentation logic, i.e., JSPs try to access the data (using

javax.servlet.HttpServletRequest.getAttributemethod) that was sup-

pose to be returned by the skipped EJB call, we encounter an exception that is not

masked or handled by JSPs and it results in a user visible failure. However 3% of

failures are still silent, indicating that presentation logic can be improved to make

these silent failures non-silent. An example of the silent failure is whenever up-

dateAccountProfile EJB request within “Update” web request is skipped. The

returned data from updateAccountProfile is not subsequently used or validated

(whether the update really happened in the back-end database) resulting in a silent

failure.
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Table 3.2.: Accuracy of Null-Call Check

Type of Injection Failure Class Accuracy

Null-Return

Silent 100%

Non-Silent 100%

Non-Silent-Interactive 100%

Null-Object-Return

Silent 30%

Non-Silent 22%

Non-Silent-Interactive 35%

No-Op

Silent 1%

Non-Silent 0%

Non-Silent-Interactive 0%

3.9.3 Application Generic Check

We implement our null-call application generic check, as defined in section 3.7.3.

The accuracy and precision of this check is shown in Figure 3.11(a) and Figure 3.11(b)

respectively, for each of the thirteen types of EJB requests. As we check for null on

return from a method call, this check shows an accuracy of 100% for Null-Return.

For Null-Object-Return, accuracy is less than Null-Return. This type of error

escapes the null-call check at caller because an object of the same type as expected

is returned. For No-Op, no method except logout() is detected by null-call check.

The reason for this is that, logout() expects a null on its return and null-call check

catches it. This also raises false alarms as seen by low precision (4%) for logout().

In general, as we move from Null-Return to Null-Object-Return to No-Op, accuracy

reduces. Table 3.2 shows accuracy of null-call check, for each failure class in each

of the injection types. Unchecked exceptions are not detected at all by the null-call

check.
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(a) Accuracy

(b) Precision

Fig. 3.11.: Null-call Check: Performance of application-generic check that matches

null on return

3.9.4 Application Specific Checks

We show accuracy and precision of each check in Figure 3.12 and Figure 3.13.

Call-length check

We observe in Figure 3.12(a), that all three variants of null-call in 6 of the 10

web requests (“Account”, “Update”, “Buy”, “Portfolio”, “Quotes”, and “Logoff”)

are not detected by this check. From DayTrader’s application code for the above
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Table 3.3.: Accuracy of Call-Length Check

Type of Injection Failure Class Accuracy

Null-Return

Silent 0%

Non-Silent 48%

Non-Silent-Interactive 30%

Null-Object-Return

Silent 1%

Non-Silent 57%

Non-Silent-Interactive 11%

No-Op
Silent 0.2%

Non-Silent 60%

Unchecked
Silent 0%

Non-Silent 41%

6 web requests, we find that there is no code that checks for returned null and

handles it. Handling null means that there is specialized code that executes when

a null is returned, typically to terminate the web request. Therefore, for these web

requests, subsequent EJB requests are made and the total call length is not affected.

For web requests that handle a returned null, EJB request sequence is cut short,

and an error is detected by this rule—in “Login”, “Home”, “Sell” and “Register”.

For unchecked exceptions, this check does not detect in “Portfolio”, “Quotes” and

“Logoff”, while it detects with an average accuracy of 46% across the rest of the web

request types. The rule for “Portfolio” and “Quotes” is of “≥ value” form with learned

value equal to 2 and 1 respectively, and also confirmed by Table 3.1. The reason for

failing to detect is that the caller for the first EJB request, getClosedOrders()

(always called since it is the first EJB request), contains a generic catch block, that

handles the exception, and proceeds with the next EJB request. This means that

“Quotes” would never be detected by this check as it checks for ≥ 1 EJB request
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(a) Accuracy

(b) Precision

Fig. 3.12.: Call-Length Check: Performance of application-specific check that matches

the normal length of a web request to detect

only. Also, since getClosedOrders() always proceeds with the next EJB request,

getHoldings() in “Portfolio” is always invoked. This means that this check will

not detect “Portfolio”, as the rule is that the EJB invocation chain length is ≥ 2. For

web requests that are detected by this check, precision in general is good as shown in

Figure 3.12(b).

Accuracy of call-length check within each failure class for each injected error is

shown in Table 3.3. It detects 57% of non-silent failures for Null-Object-Return type,

which is an improvement when compared with null-call check. It also detects 60% of

non-silent failures for No-Op, which the null-call check did not detect. In addition,

it is able to detect 41% of unchecked non-silent failures because the length of web

requests is changed.



40

Head-tail match

This check requires knowledge of first and last EJB request names for a given web

request. The results of this check in Figure 3.13 show that, it is able to detect errors in

“Portfolio”, which the previous rule did not detect. To see why this happens, note that

the “Portfolio” web request comprises of the EJB requests getClosedOrders(),

getHoldings(), followed by zero or more invocations of getQuote(). The num-

ber of invocations will depend on how many stocks the user has in her portfolio.

When the target of the error injection happens to be either getClosedOrders()

or getHoldings(), this check detects the error because getQuote() never gets

invoked. However, due to the nature of the workload (most users have multiple stocks

in their portfolio), in a large majority of the cases (more than 80%) getQuote() is

invoked at least once. In these cases, the head-tail match check fails. The averaged

precision for “Portfolio” is 62%. For “Quotes” web request, this check does not de-

tect for the same reason as in call-length check. The accuracy and precision results

for the rest of the web requests are similar to call-length check results. Accuracy of

head-tail check within each failure class for each injected error is shown in Table 3.4.

The results are similar to call-length check.

Data-dependent call-length check

This check is targeted at improving the detection accuracy in data-dependent

web requests, so we show the performance of data-dependent call-length check for

DB-dependent web request (“Portfolio”) in Figure 3.14. This check detects the

unchecked exceptions with an average accuracy of 62%, an improvement over the 14%

detection accuracy of the head-tail check. The improvement comes at the expense

of monitoring the size of Collection<HoldingDataBean> which is returned by

getHoldings EJB request. This rule is unable to detect whenever the target of

injection is either getClosedOrders or getHoldings EJB request within “Port-

folio” web request. This happens because total length of the web request is equal to
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(a) Accuracy

(b) Precision

Fig. 3.13.: Head-tail Match: Performance of application-specific check that matches

the first and the last EJB request names to detect
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Table 3.4.: Accuracy of Head-Tail Check

Type of Injection Failure Class Accuracy

Null-Return

Silent 0%

Non-Silent 45%

Non-Silent-Interactive 36%

Null-Object-Return

Silent 1%

Non-Silent 60%

Non-Silent-Interactive 11%

No-Op
Silent 0%

Non-Silent 68%

Unchecked
Silent 0%

Non-Silent 42%

the expected length, i.e., 2 (getClosedOrders always proceeds with the next EJB

request (getHoldings)). Also, when the target of injection is the last EJB request,

i.e., getQuote, this rules misses to raise an alarm. This check is not able to detect

the Null-Return or Null-Object-Return type of errors. The reason for that is again

that the call length does not change. For No-Op, this rule shows low accuracy as it

detects only when No-Op happens to be injected in getHoldings because the call

length changes as getHoldings determines the number of subsequent getQuote

EJB web requests. Call length check complements the head-tail check, which is able

to detect whenever the target of injection is either getClosedOrders or getH-

oldings. The overhead is the same as that in the other two application-specific

checks (Figure 3.15). This is because the java.lang.ThreadLocal API is al-

ready monitoring the web request and the only additional work needed is to lookup

the size of Collection<HoldingDataBean> whenever getHoldings returns

it. Data-dependent call-length check is not able to detect the USER-dependent web
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Fig. 3.14.: Data-dependent call-length check: Performance of application-specific

check that matches the call length with the expected runtime call length in the data-

dependent portfolio web request

requests like “Quotes” (getClosedOrders -> getQuote*), as the number of

getQuote EJB requests is determined by the user (client browser) as oppose to the

backend database. For the “Quotes” web request, there is no dependence on the

number of getQuote EJB requests invoked as in case of “Portfolio” where getH-

oldings determines the number of getQuote EJB requests. To detect Skip-EJB

errors, we conjecture that data-dependent call-length check would have a good de-

tection performance as the runtime and expected call-vector length would differ in

almost all the cases. We show detection accuracy and precision for Skip-EJB in Ta-

ble 3.5. Data-dependent call-length check when Skip-EJB is injected performs well

(100% accurate and precise for 10 out of 12 injections (see Table 3.5)). The intuition

behind this is that the number of EJB requests within a web request is reduced and

the runtime call length is lower than the expected call length. The getHoldings

EJB call within “Portfolio” web request is not detected by data-dependent call-length

check. This happens since getHoldings is not called, i.e., the rule cannot determine

the expected length since it looks up the size of the collection returned by getH-

oldings. The other EJB call, that data-dependent call-length check detects with
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Fig. 3.15.: Overhead of application-specific checks in WEB, EJB and DB in terms of

time spent per web request

a lower accuracy (97%) is getQuote within “Portfolio” web request. This happens

whenever the preceding EJB call getHoldings returns the size of the collection as

zero, meaning that the user does not have any stocks so, no subsequent EJB calls

are made which is equivalent to skipping the EJB call (which is what was injected).

Also it should be noted that, the web request “Quotes” is not injected in this type of

injection. The reason behind this is that, our Skip-EJB injection is targeted towards

the control logic servlet (TradeAppServlet) whereas the functionality of “Quotes” is

implemented in a JSP and not the central controller servlet (TradeAppServlet). Ta-

ble 3.6 summarizes the accuracy with respect to failure class and shows that all the

silent failures are detected for Skip-EJB class of errors. It is observed that 93% of all

Skip-EJB errors are detected.

Overhead: To understand the time overhead of each rule, we measure the time

spent per web request, in the web container, the EJB container and the back-end

database. The time spent in database is an overestimate as it includes network latency

between the EJB container and database. We observe this latency to be small relative

to time spent in the database. We compare these times to a baseline case, that has no

detection mechanism. We show the overhead of call-length check in Figure 3.15. We

aggregate the results for Null-Return, Null-Object-Return and unchecked types into

an “Others” category. We do this as results for injections in “Others” category are
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Table 3.5.: Accuracy and Precision of Data-dependent Call-length Check with Skip-

EJB Injected

Web

Re-

quest

EJB Call Skipped Failure

Class

Accuracy Precision Logged

Account getAccountData Non-Silent 100% 100% Yes

Account getAccountProfileData Non-Silent 100% 100% Yes

Update updateAccountProfile Silent 100% 100% No

Buy buy Non-

Silent-

Interactive

100% 100% No

Home getAccountData Non-Silent 100% 100% Yes

Home getHoldings Non-Silent 100% 100% Yes

Login login Non-

Silent-

Interactive

100% 100% Yes

Logout logout Silent 100% 100% No

Portfolio getHoldings Non-Silent 0% 0% Yes

Portfolio getQuote Non-

Silent-

Interactive

97% 100% Yes

Register register Non-

Silent-

Interactive

100% 100% Yes

Sell sell Non-

Silent-

Interactive

100% 100% No
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Table 3.6.: Aggregated Accuracy of Data-dependent Call-length Check with Skip-EJB

Injected

Failure Class Accuracy

Silent 100%

Non-Silent 80%

Non-Silent-Interactive 99%
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similar. We observe, that overhead is minimal for time spent in each of WEB, EJB

and DB for the “Others” category. No-Op, however has considerable overhead. The

time spent for No-Op in WEB is 2.5x, in EJB 1.9x and in DB 3x. The reason for this

extra overhead is from the fact, that in No-Op, we instantiate a new object of the

return type, which the caller accepts and processes for a longer time. The overhead

results for head-tail check are similar, since it uses the same underlying monitoring.

3.10 Lessons Learned

In this section, we point out the lessons that we deduce from our injections and

analysis of the resulting data. These lessons may be instructive to an application

developer of web services.

(1) A caller method should flag a returned null as an incorrect operation and cause a

failure notification to the end user. An application developer should log these cases,

thus causing a non-silent error. While this does happen with some methods, further

validation of checking that the returned object type is correct and its values are

reasonable is not done at all in this application. Such validation should also be a

part of careful application development. The first kind of validation can be created

through static analysis of source code, while the latter will need application-specific

checks inserted by the developer.

(2) In case of a correct return type, i.e., Null-Object-Return, a caller should have some

sanity check, e.g. check size of returned object is greater than a threshold etc., before

proceeding with the rest of its operations. This would detect the error immediately

on return rather than delaying it till the null-return-object is used, thus reducing

error propagation.

(3) The No-Op errors is very hard to detect in an application-generic manner because

the right kind of data structure is returned, only no logic is executed in the invoked

function.
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(4) We find that detecting failures caused by unchecked exceptions is difficult. There-

fore, for application developers aiming for high reliability of their developed web ser-

vices, we would suggest putting explicit catch blocks specifically for each of the

common unchecked exceptions. Our list of three unchecked exceptions is a good can-

didate set for the ones for which exception handling should be provided because we

find that they occur most frequently.

(5) Silent failures constitute a significant percentage of the injected errors. Mecha-

nisms both internal and external to the application to log possible manifestations to

logs and convert some silent errors to non-silent will be very valuable.

(6) Data dependent web requests are hard to detect. We speculate they will require

more sophisticated data-specific checks or stateful monitoring in the web container.

They will require extracting and interpreting data in the request.

(7) For controller servlet, all the exceptions should be logged and thrown in the

servlet as opposed to forwarding it to a JSP. This would help in pinpointing the

failure location.

(8) Unlogged failures should be logged on detection to improve the quality of logs

and the process of diagnosis.

3.11 Discussion

This chapter presents an experimental study on characterizing silent and non-silent

failures in a three-tier web service application. It uses a fault-injection based scheme

and classifies failures from a user’s perspective. Three variants of null-call and three

types of unchecked exceptions are used in the fault injection scheme to emulate faults

at runtime in business logic. Additionally, skipped statements in control logic are

injected at compile-time. The reaction of injecting each of these faults in DayTrader

is classified into three failure classes, Non-Silent, where the server notifies the client

of the failure, Non-Silent-Interactive, where a client detects by observation of an

obvious failure manifestation in the same transaction, and Silent, where neither the
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client nor the administrator is able to detect. This study shows that 49% of errors

averaged across three null-call variants result in silent failures, while 34% of unchecked

exceptions cause silent failures. The majority of non-silent (90%) failures in Null-

Return are logged by the container, while the majority of non-silent-interactive (73%)

failures are logged by application. Majority of failure resulting from Skipped-EJB are

either non-silent or non-silent-interactive 97%, but not all of these are logged.

A second issue investigated is the applicability of consistency checks to detect

the injected faults. A simple null-call check that looks for null on return gives an

accuracy of 100% for Null-Return in each of the three failure classes. Null-call check

is an application-generic rule that can be implemented with almost zero cost. Our

study also includes application-specific checks, i.e., Call-length check, where length

of a web request is monitored , and Head-tail check, where the first and last EJB

request name in a given web request are matched. Data-dependent call-length check

is similar to call-length check with an additional ability to detect data-dependent

web request (“Portfolio”). Data-dependent call-length check is most intrusive of all

our application-specific checks as it requires knowledge of specific data structures to

monitor the runtime length of a web request. Quantitatively, these three checks are

able to detect between 40%-70% of the various error classes, except for the No-Op

errors which go mostly undetected.
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4. FAILURE CHARACTERIZATION AND DETECTION

OF CONFIGURATION MISTAKES

4.1 Introduction

Downtime of software systems due to configuration problems is a critical issue for

large-scale enterprise systems [72]. A configuration error in a software system can

cause significant financial losses [73], [74]. A human mistake in entering a single char-

acter can result in a major outage; for example, a human error of misunderstanding

the meaning of character “/” [75] caused all the search results returned by Google

search engine to be falsely flagged as harmful for a period of up to 40 minutes in 2009.

To understand the preponderance of configuration errors, consider that IT experts

currently estimate that more than 80 percent of network outages occur due to con-

figuration errors [76]. Arguably network configuration management is a challenging

task, but it is safe to extrapolate and conclude that a significant fraction of other

failures are also caused by configuration errors.

To minimize these losses, software systems should be built in a manner that is

resilient to configuration errors. Further, to improve resilience, the testing of the

developed software is a critical phase for all software products. Unfortunately, due to

time-to-market constraints, artificial testing environments and insufficient configura-

tion testing, bugs related to configuration problems often are pushed to users of the

software.

To make matters worse, it is not clear who is responsible for a given configuration

problem. Developers blame users of incorrect configuration at the user-end, while

users blame the software developers. This blame game of each other leads to longer

bug-resolution time. Though, user-training helps to minimize the occurrence of con-
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figuration problems, developers are expected to play a more pro-active role from the

perspective of developing robust and resilient software.

In order to improve software resilience towards configuration bugs, we present

a characterization-study of configuration problems in Java EE (Enterprise Edition)

based application servers, GlassFish [5] and JBoss1 [6]. Java EE application servers

are complex with large number of configuration parameters. In addition, as they

become an integral part of cloud-based platforms [31], both their configuration com-

plexity and their importance are only bound to increase.

We classify configuration-bugs according to four dimensions: Type, Time, Mani-

festation and Responsibility. The first dimension (Type) considers a configuration-bug

due to a problem relating to a particular parameter option, incompatibility with an

external library or a missing component. The second dimension (Time) refers to the

timepoint at which the configuration-bug is triggered, i.e., pre-boot-time, boot-time,

or run-time. The third dimension (Manifestation) refers to whether a bug is silent

or non-silent (with a log message). The fourth dimension refers to who (developer or

user) is responsible for a given type of configuration bug.

Based on the characterization, we built a tool called ConfGauge, that injects con-

figuration errors (misconfigurations) derived from bug databases. A fault-injection

tool like ConfGauge will help to measure the robustness, the ability to handle unin-

tended input, and can play an important role in the decision making process of choos-

ing a Java EE vendor. ConfGauge follows a similar design-flow as ConfErr [26], a

tool that injects human-induced configuration errors and measures the reaction of the

system under test (SUT). ConfErr injects configuration errors derived from human

psychology rather than being grounded in real bugs that have been observed in real

software. Further, it only covers boot-time bugs, one point in one of four dimensions

that we consider.

1We use the more common name, JBoss application server, as opposed to its recent new name
WildFly
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As opposed to an exhaustive parameter sweep, that can take a large amount of

time, ConfGauge selectively injects a relatively small set of problems that are en-

countered in bug-repositories. This avoids the search-space explosion problem and

reduces the running time of ConfGauge, thus making it an effective testing tool.

ConfGauge injects character-strings in configuration data values that are stored as

xml-attribute values. It then programmatically starts the application server, deploys

an application, stops the server and analyzes the reaction to injection from the col-

lected server logs. Ideally, a given injection should be manifested at boot-time (as

oppose to waiting until a web user reports it at runtime) thus providing a direct

feedback to the operator about a problem. Our experiments show that some injec-

tions result in silent manifestations after boot-time, thus requiring more intrusive

configuration validation tests for Java EE servers.

ConfGauge specifically injects addition and removal of the forward-slash (“/”)

character and replacement by empty-string (“”). The injections are done across both

the application and the application server configuration values in GlassFish and JBoss.

The results show that as high as 35% of injections result in silent failures in GlassFish

while all injections result in non-silent manifestation in JBoss.

We claim the following contributions in this chapter:

• Characterization of configuration-problems for Java EE application servers,

where we categorize real configuration problems across four dimensions, Type,

Trigger-Time, Manifestation and Responsible-party.

• Fault-Injector for configuration-problems in Java EE application servers, where

a configuration-resilience profile in terms of percentage of non-silent manifesta-

tions is provided for the two most widely used Java EE application servers.

• Recommendations for better configuration management where we provide sug-

gestions for developers to avoid such mistakes.
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4.2 Threats to Validity

All characteristic studies have limitations; for example, the number and type of

bug-reports studied can be non-representative from the point-of-view of the studied

problem. Studying bug-reports and classifying them is a manual process and can be

subjective.

Each bug-report can state the problem with varying levels of detail for reproducing

a given bug. The quality of a bug-report often depends on the expertise of the user

submitting the bug-report. We do not have any way of characterizing the expertise

of the user who submits a bug report. A bug report that does not have enough

information to be classified as configuration-error is classified as non-configuration

error. Also, an expert user might not report a given configuration problem as opposed

to a novice user. Therefore, we argue that the statistics reported in this work are a

lower-bound and in reality, configuration bugs likely occur with higher frequencies.

4.3 Java EE Application Server Design

Here we describe the design principles and implementation aspects of Java EE

application servers that are germane to understanding the incidence of configuration

errors in them. A Java EE application server provides tools and APIs to develop

multi-tier enterprise applications. It is designed to implement several Java EE stan-

dards represented by Java Specification Requests (JSRs) [77]. Common modules in

an application server include, web-container, ejb-container, persistence-management,

command-line, GUI-based administration, messaging (JMS) etc. The functionality

implemented by each module in a particular Java EE application server can vary. For

example, vendor A can implement ejb-container functionality in one module, while

vendor B might decide to implement it by a co-ordination of several modules.

Figure 4.1 presents basic modules and interfaces for a Java EE application server

from the perspective of configuration. The arrow-heads in Figure 4.1 point to server

components that require configuration data from outside. At boot-time, JVM param-
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eter configurations are configured for a Java EE server. At run-time, an administrator

can create server resources such as JDBC resources (connection pools), JMS (Java

Messaging Service) resources, etc. These resources provide applications with a way to

connect to other components, JDBC for database or JMS for asynchronous services

(e.g., mail services). The creation and destruction of these resources, a configuration

task requiring configuration parameters, is executed either by using the commmand-

line interface or administration-console in the web browser. Both command-line and

admin-console utilities, which come bundled with all major Java EE servers, are used

to execute several other configuration tasks as well, such as deployment of a web

(*.war) or an enterprise (*.ear) application.

Fig. 4.1.: Java EE Server Components Interacting with Configuration Data

The components of GlassFish encountered in the studied bug-reports are: ad-

min, admin gui, bean-validator, build system, cdi, command line interface, configu-

ration, deployment, distributed management, docs, ejb container, elasticity, embed-

ded, entity-persistence, grizzly-kernel, group management service, iaas, installation,

jca, jdbc, jms, jsf, jts, l10n, load balancer, logging, orb, OSGi, other, packaging, per-

formance, rest-interface, rmi iiop failover, security, standalone client, update center,

web container, web services and web services mgmt. JBoss implements its server com-

ponents at a coarser granularity when compared to GlassFish. The components from

studied bug-reports include: Build System, CMP service, EJB2, JMS (JBossMQ),

Other, Test Suite, Web Services, Web (Tomcat) service, Weld/CDI, OSGi, Server,
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Clustering, Domain Management, Console, JSF, Security, Application Client, Nam-

ing and EJB.

4.4 Classification of Configuration Problems

To characterize configuration errors, we study configuration issues in four orthog-

onal dimensions: Type, Trigger-time, Manifestation, and Responsible-party.

4.4.1 Type of errors in Java EE application servers

We are first going to define configuration and non-configuration bugs and then

eliminate non-configuration bugs from further discussion.

Non-configuration

This is an error that results due to an interaction of internal components, without

directly operating on data input by a human, either user or administrator. Examples

of this include an incorrect returned object by a method, an incorrect method being

called, a missing method call, an incorrect cast operation, etc. This type of error can

manifest as failures called exceptions in Java programs. Typical examples of excep-

tions thrown at run-time due to non-configuration problems are ClassCastExcep-

tion, ArithmeticException etc. Other exceptions like NullPointerExcep-

tion can be thrown irrespective of whether the problem origin is non-configuration

or configuration.

Configuration

This is a problem that is a result of operating on data that a human user configures

in a file, in an administration console, in an environment variable or via command-line

interface. The configuration errors can further be of the following types:
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Parameter This a problem that occurs due to a wrong parameter type, value or

format. Examples include an empty tag value in an xml tag (JBAS-929), an incorrect

value passed by the user (GLASSFISH-17581), a missing forward slash “/” in resource

path (JBAS-1115), etc.

Compatibility This is a problem that occurs due to an incompatibility with the

environment, e.g., the JVM or a library. Examples of this type of configuration-

problem are: JBAS-5275, where while reading xml-attribute values, the application

server reads the values in different orders when run in different JVMs. The ap-

plication server handles the values for attributes when read in forward direction,

but fails to handle when read in backward direction for some JVMs. GLASSFISH-

17764, where starting the cluster fails when started on the JRocket [78] JVM only.

GLASSFISH-14922 where the enabling of the secure mode of the server (enable-

secure-admin) fails on an old JVM.

Misplaced-Component Amisplaced-component (henceforth called component only)

is a type of configuration problem which occurs when a component or a file is missing

or in the wrong location and subsequently causes an application to fail. Typically, a

ClassNotFoundException or NullPointerException is thrown as a mani-

festation. Examples of this type of configuration-problem are: GLASSFISH-17462,

where a missing file (ssl.json) manifests as a NullPointerException in server

log, while the user is shown a HTTP 404 error screen in administration console.

GLASSFISH-17649, where while configuring the server, java.lang.NoClassDef-

FoundError is manifested due to a missing classpath dependency. AS7-1719, where

due to a missing (org.jgroups) dependency, ClassNotFoundException is

thrown when the server creates a lot of http sessions within a short time interval.



57

4.4.2 When does the configuration error occur?

Pre-Boot-time

If a Java EE application server or an application fails to compile or allocate pre-

boot resources due to any type of a configuration problem, it is considered to occur

at pre-boot-time.

Boot-time

If a configuration error is observed at application server startup or application

deployment, then it is classified as a boot-time failure due to a configuration problem.

Run-time

An error that affects a running application on an application server while users

are accessing the application is a run-time problem. Configuration problems that

occur after an application is successfully deployed on the server fall in this category.

Arguably this is the most serious of the three kinds because a user, and a potentially

non-expert one, is affected by this.

4.4.3 In what manner do the configuration errors manifest?

Silent

A silent error can occur as a performance problem, data-corruption or a problem

that is not directly detectable by the operator (e.g., network administrator) and

is not manifested as a relevant exception in the server logs. An example of silent

error is GLASSFISH-18875, where the deployment (a configuration action) of an ear

archive is very slow and upon fixing, the deployment-time reduces from 50 minutes

to 2 minutes only.
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Non-Silent

A non-silent error occurs with a clear manifestation, typically as exceptions in

the server logs. The silent errors are the more serious kind, due to the difficulty of

detecting them.

4.4.4 Who is responsible?

We consider a configuration problem from two different perspectives of who in-

serted it — developer and user. A configuration bug from the user point-of view

may not be a bug from developers point-of-view, for example, if the user forgot to

set the value for a parameter “host”, it is a configuration problem of the user. On

the other hand, if the user set the value for “host” correctly, but the value was not

correctly interpreted (resolving hostname to IP incorrectly etc.), then it is a bug by

the developer and requires a code change. So, somewhat simplistically, we come up

with the following definition of the classes.

Developer

A configuration bug that is fixed by a code change made by the developer.

User

A bug that is fixed by making the appropriate change in the configuration file,

menu. etc.
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4.5 Classification Methodolgy and Results

4.5.1 Methodology

We conduct our characterization study as two separate sub-studies, which we

will call Study-1 and Study-2 (Table 4.1). In Study-1, we constrain the bug space

from all bugs (GlassFish=15805, JBoss=4160) to bugs that have the state ‘Fixed’

for the attribute RESOLUTION and the state ‘Resolved’ or ‘Closed’ for the attribute

STATUS in the time intervals [23-May-2005,16-Mar-2012] (GlassFish) and [11-Apr-

2001,11-Mar-2012] (JBoss). This represents 64% of all GlassFish and 56% of all JBoss

bugs. From this set, we uniformly sampled 1% of bugs giving us a total of 124 bug

reports (101 (GlassFish) and 23 (JBoss)) for manual analysis.

Table 4.1.: Statistics of bug reports that form our studies

# Issues

Studied

Time-interval Versions

GlassFish
Study-1 101 05/23/05–03/16/12 beginning till 4.0

Study-2 132 08/03/11–07/12/12 3.1.2 (23 builds)

JBoss
Study-1 23 04/11/01–03/11/12 3, 4, 5, 6

Study-2 25 11/01/10–09/21/12 7 (5 builds)

In Study-2, our goal is to focus in more on configuration bugs pushing automated

queries to bug databases as much as we can. We constrain our search query time

intervals to target one specific version of GlassFish (ver.3.1.2 - all 23 builds within

it) and one specific version of JBoss (ver.7 - all 5 builds within it). We create a

keyword-based search to find configuration bugs (Listing 6.4). This search query

looks for keywords indicating configuration problems present in both the description

and the comments section of the bug report. We believe that this will provide bug

reports that indicate a mutual agreement (whether an issue is a configuration or

non-configuration) between users and developers; developers typically put comments
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about the bug type in the comments section. This search query results in a total of

157 bug reports (132 (GlassFish) and 25 (JBoss)) that are now manually inspected

in Study-2.

project = GLASSFISH AND (summary ˜ "config* || setting* || setup

|| set-up || set up" OR description ˜ "config* || setting* ||

setup || set-up || set up") AND issuetype = Bug AND (

resolution= Fixed OR resolution = Complete) AND CREATED >= "

2011/08/03" and CREATED < "2012/07/17" AND (comment ˜ "config*

|| setting* || setup || set-up || set up") ORDER BY created

ASC, key DESC

project = AS7 AND (summary ˜ "config* || setting* || setup || set

-up || set up" OR description ˜ "config* || setting* || setup

|| set-up || set up") AND issuetype = Bug AND (resolution=

Done) AND (status= Resolved or status=Closed) AND created >=

"2010/11/01" AND created < "2012/09/21" AND (comment ˜ "config

* || setting* || setup || set-up || set up") ORDER BY created

ASC, key DESC

Listing 4.1: GlassFish and JBoss keyword-based search queries for automatically

zooming into configuration bugs (with imperfect success)

4.5.2 Study-1 Results

In this subsection, we present the results of our analysis for Study-1, a total of 124

bug reports, from GlassFish and JBoss application server bug repositories [79], [80].

Table 4.2 shows the distribution of configuration and non-configuration problems. It

is determined through manual analysis that more than one-third of problems in each

server are configuration problems. This provides quantitative evidence for our claim

that configuration errors are a significant source of concern.
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Table 4.2.: Study-1: Distribution of Configuration and Non-Configuration Problems

GlassFish JBoss

Configuration 33% 43%

Non-Configuration 67% 57%

We observe that for GlassFish, nine components have more than 40% of their

issues classified as configuration-problems. Among these nine components, the top

two components having the most number of configuration problems are admin (6/14

(43%)), admin gui (10/18 (56%)). This is an expected result as admin and ad-

min gui components in GlassFish are responsible for processing the configuration

data passed in by the user. This pattern is not very visible for JBoss, mainly because

of the few number (twenty-three) of bugs analyzed across many (nine) components.

Distribution by Classification Category

We present the percentage frequency distribution of configuration problems for

GlassFish and JBoss in Figure 4.2 and Figure 4.3 respectively. For GlassFish, we

observe a majority of the problems (79%) relate to configuration parameters, while

70% of the time, the configuration problem occurs at run-time. Additionally, 91%

of all configuration problems are non-silent and 91% of the problems are attributed

to the developer. For JBoss, only 40% of configuration problems are classified as

parameter-based, while 50% are due to misplaced-components. In addition, there are

no issues that occur silently, a fact which is also verified by our injection tool (Section

4.6).
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(a) Type (b) Trigger-time (c) Manifestation

(d) Who is Responsible

Fig. 4.2.: Study-1 GlassFish: Frequency Distribution of Configuration Problems in

each Dimension (Total = 101 bugs)

(a) Type (b) Trigger-time (c) Manifestation

(d) Who is Responsible

Fig. 4.3.: Study-1 JBoss: Frequency Distribution of Configuration Problems in each

Dimension (Total = 23 bugs)

4.5.3 Study-2 Results

In this subsection, we present the results of our analysis for Study-2, a total of

157 bug reports from GlassFish and JBoss. We observe that our search (Listing

6.4) did help to find more configuration problems because we observe an increase in
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configuration problems from study-1 to study-2 (Table 4.3). Specifically, 33% to 62%

for GlassFish and from 43% to 56% for JBoss.

Table 4.3.: Study-2: Distribution of Configuration and Non-Configuration Problems

GlassFish JBoss

Configuration 62% 56%

Non-Configuration 38% 44%

Distribution by Classification Category

(a) Type (b) Trigger-time (c) Manifestation

(d) Who is Responsible

Fig. 4.4.: Study-2 GlassFish: Frequency Distribution of Configuration Problems in

each Dimension (Total = 132 bugs)

The percentage frequency distribution within each configuration problem dimen-

sion is presented in Figure 4.4 and Figure 4.5 for GlassFish and JBoss respectively.

For Type (Figure 4.4.(a)), the parameter-based configuration problems for GlassFish

decreases from 79% in study-1 to 44% in study-2, while compatibility issues increase

from 12% to 34%. One reason for this is that study-1 analyzes issues across various
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(a) Type (b) Trigger-time (c) Manifestation

(d) Who is Responsible

Fig. 4.5.: Study-2 JBoss: Frequency Distribution of Configuration Problems in each

Dimension (Total = 25 bugs)

versions of GlassFish. Parameter names, values and format are more likely to change

across versions (as opposed to within versions), thus giving a greater probability to

see parameter-related issues for study-1 as opposed to study-2 (which focuses on one

specific version of GlassFish). The distribution by trigger-time (Figure 4.4.(b)) is

similar to study-1, where run-time configuration problems have the majority (66%)

followed by boot-time (24%) problems. Also the patterns for problem-manifestation

and responsible-party in GlassFish are similar to study-1.

For JBoss in study-2, we observe that all three subtypes, parameter, compatibility

and misplaced-components have almost one-third share (Figure 4.5.(a)) of the config-

uration problems. This pattern is different from study-1’s results, where parameter-

based problems were dominant (50%) followed by misplaced-components (40%). The

primary reason for this is that study-1 studied JBoss application server versions 3,4,5

and 6 which were very similar in their design, whereas study-2 studied version 7,

which provided the same functionalities as previous versions, but had major struc-

tural differences and even required a migration guide [81] for migration to version 7

from previous versions. One well-known side-effect of this refactoring is that prob-

lems related to compatibility will happen more. This is confirmed by our analysis
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(an increase from 10% to 36%). For problem trigger-time in study-2, more run-time

(69%) problems occur as opposed to more boot-time (50% problems in study-1). This

could also be attributed to the major refactoring of JBoss version 7. The patterns

for the last two studied catogories, manifestation and responsible-party, are similar

for both study-2 and study-1 in JBoss.

4.6 Fault Injector

Based on insights from our characterization, we developed a configuration bug

injection tool called ConfGauge. We believe that running ConfGauge with any

given Java EE application server would give the user an opportunity to assess the

configuration-resilience of the server. On the other hand, this can help organiza-

tions to evaluate a given application server before deploying it in a large-scale in the

production environment.

ConfGauge follows a workflow as shown in Figure 4.6. Given a Java EE applica-

tion server installation location and an application that can run on it, ConfGauge

emulates normal server-management workflow, i.e., starts the server, deploys an appli-

cation, adds and deletes server resources, and then stops the server. While executing

this workflow, ConfGauge injects configuration problems. Currently ConfGauge

injects parameter-based configuration problems at boot-time.

A fault injector should know the answers to the following questions:

Fig. 4.6.: WorkFlow for Time of Injection
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What to inject? ConfGauge injects character-string-based misconfigurations that

were observed while conducting our characterization study. For this work, we choose

to inject the character “/” and empty-string (“”). Forward-slash character has been

the cause of several parameter-related configuration problems in Java EE application

servers [82] (JBoss), [83] (Geronimo), [84] [85] (GlassFish), [86] (TomEE) as well

as in general Java programs [87] (RestEasy), [88] (OpenSSO), [89] (SailFin), [90]

(JavaServerFaces) etc. Configuration problems related to empty-string for server

attribute-values have also been reported in both GlassFish [91] and JBoss [92].

Where to inject? ConfGauge injects its misconfigurations in the xml configu-

ration files that are maintained by the Java EE application servers for configura-

tion management. Specifically, it injects in xml-attribute values within do-

main.xml (GlassFish) or standalone-full.xml (JBoss), web.xml, and per-

sistence.xml files. domain.xml in GlassFish and its equivalent standalone-

full.xml in JBoss maintain the major server configurations that are read during the

boot-up process. The last two are configuration parameters of the application (Spec-

JEnterprise2010 in our case). web.xml is used to configure the application server

resources used by a given deployed application, e.g., how URLs map to servlets, au-

thentication information etc. persistence.xml is used to configure settings for

the connection to back-end database, e.g, the driver-name, persistence-provider-name,

etc.

When to inject? ConfGauge injects its misconfigurations at boot-time. Boot-time

can be either application-server start or an application deploy operation.

How to inject? ConfGauge injects its boot-time misconfigurations by parsing

the xml configuration files, mutating only one attribute-value at a time and writing

the mutated file before the application-server or the application is started. For each

injected string, the application server is programmatically (using CARGO API [93])

started, an application is deployed, the application server is stopped and the server

log file is saved for analysis. This process is repeated for all injections. We define

three injection-operators, Add, Remove and Replace. Add means that we append the
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injected character to a similar, already existing character in the attribute-value-string.

Remove means that we remove the injected character from the correct attribute-value-

string. Replace means that we replace the correct attribute-value with a different

string, i.e., either “/” or the empty string. These operators were defined based on

evidence from bug repositories [85], [82], [91]. An example of a sample injection for

each of the Add, Remove and Replace operating on domain.xml is shown in Table

4.4.

Table 4.4.: An example of mutated configuration values in domain.xml in GlassFish

Mutation

Opera-

tor

Original Value Mutated-Value

Add <jdbc-resource jndi-

name=“jdbc/ default” pool-

name=“DerbyPool”/>

<jdbc-resource jndi-

name=“jdbc// default” pool-

name=“DerbyPool”/>

Remove <jdbc-resource jndi-

name=“jdbc/ default” pool-

name=“DerbyPool”/>

<jdbc-resource jndi-

name=“jdbc default” pool-

name=“DerbyPool”/>

Replace <property name=“URL”

value=“jdbc:mysql://hostname:3306

/specdb”/>

<property name=“URL”

value=“”/>

Target Application: SPECjEnterprise2010 We need an application running on

the Java EE application servers to stress it with a realistic workload. We deploy

SPECjEnterprise2010 [94] on GlassFish and JBoss.

SPECjEnterprise2010 is an industry-standard Java Enterprise Edition (EE) bench-

mark that emulates a complete enterprise system. It describes an end-to-end business

process and emulates an automobile dealership, manufacturing, supply chain man-

agement and order/inventory system. The set of functionalities that this benchmark

includes are: Dynamic Web page generation, Web Service based interactions, Trans-



68

actional and Distributed components, Messaging and asynchronous task management

and Multiple company service providers with multi-site servers. The system architec-

ture corresponds to a 3-tier architecture, i.e., client, middleware and database.

The clients of SPECjEnterprise2010 are automobile dealers, who use a web based

user interface to access the application. The interface allows customers (car dealers)

to login to their accounts, keep track of dealership inventory, sell automobiles, manage

a shopping cart and purchase automobiles.

4.7 Fault Injection Results

For one injection, ConfGauge mutates one string in one of the xml files, starts

the application server, deploys the SPECjEnterprise2010 application, stops the ap-

plication server and collects the server logs for analyzing the effect of injection. The

number of non-silent manifestations for boot-time injections are presented in Table

4.5.

For a total of 132 injections of “/” character in GlassFish, both the server config-

urations in domain.xml and the application configurations in web.xml have silent

failures for the majority of injections. Specifically, only 24.2% of remove-operator-

based injections and 22% of add-operator-based injections result in non-silent man-

ifestations with exceptions thrown in server log file. On the other hand, all the

JBoss injections result in non-silent manifestations. For empty-string (“”) injections,

75.9% in GlassFish and 100% in JBoss are non-silent. These results mean that in

GlassFish, the throwing of exceptions is delayed until the end-users (users of SPEC-

jEnterprise2010) try to access a particular resource. As an operator of the application

server and applications, this would result in a higher frequency of issues filed by the

users, a fact that is verified by observing (Figure 4.7) the total number of issues filed

for each of the projects. We see qualitatively that the number of configuration-related

issues follow a similar pattern.
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Table 4.5.: Number of non-silent manifestations for boot-time injections in GlassFish

and JBoss

GlassFish JBoss

Application Server Application Server

Operator Injected

charac-

ter

web.xml persistence.xml domain.xml Total web.xml persistence.xml standalone-full.xml Total

remove / 2/35 (5.7 %) 4/4 (100 %) 26/93 (28.0 %) 32/132 (24.2 %) 35/35 (100 %) 4/4 (100 %) 15/15 (100.0 %) 54/54 (100 %)

add / 0/35 (0 %) 4/4 (100 %) 25/93 (26.9 %) 29/132 (22.0 %) 35/35 (100 %) 4/4 (100 %) 15/15 (100.0 %) 54/54 (100 %)

replace “” - - 460/606 (75.9 %) 460/606 (75.9 %) - - 397/397 (100 %) 397/397 (100 %)

Table 4.6.: Detailed Exception Distriubtion in JBoss when “/” was Injected

File
Remove Add

Exception # Percentage Exception # Percentage

standart-full.xml

org.jboss.msc.service.StartException 11 73 java.lang.NullPointerException 1 6.6

org.jboss.as.controller.persistence.ConfigurationPersistenceException 4 27
org.jboss.msc.service.StartException 13 87

java.lang.IllegalArgumentException 1 6.6

web.xml
java.lang.IllegalArgumentException 16 46

org.jboss.msc.service.StartException 35 100
org.jboss.msc.service.StartException 19 54

persistence.xml org.jboss.msc.service.StartException 4 100 org.jboss.msc.service.StartException 4 100
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Fig. 4.7.: Number of issues filed to GlassFish and JBoss (vers. 3-6) bug repositories

per month

Fig. 4.8.: Frequency Distribution of Exceptions for non-silent manifestations for

GlassFish in domain.xml with “/” injection

4.7.1 GlassFish Injection Results

Forward-slash Injection

For domain.xml in GlassFish, the non-silent exceptions distribution when forward-

slash is injected is presented in Figure 4.8. It shows that NullPointerException

occurs most frequently. For these NullPointerExceptions, the root-cause is

due to the injection at two separate locations related to JMS configurations: (1).

Injection in the attribute pool-name within xml-element connector-resource,

where the pool-name is changed from “jms/value” to “jms//value”, (2). Injection

in the attribute name within the xml-element connector-connection-pool,

where the name is changed from “jms/value” to “jms//value”. Both of these attribute

values should match for the correct operation, thus avoiding NullPointerExcep-
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tion. Given that the standard way to delimit is using a single “/”, we recommend

a deployment verifier that would verify and favorably replace the extra forward-slash

introduced, due the configuration error thus automatically fixing the issue. Note that

GlassFish does have a verifier tool called verify-domain-xml, which is claimed

to be much more than an XML syntax verifier. Its documentation [95] states: “Rules

and interdependencies between various elements in the deployment descriptors are

verified”. We tested it with the injected error in domain.xml, and it did not catch

the injected forward-slash configuration problem.

For most of the injections (94.3% with remove and 100% with add operator) in

web.xml, the server log did not show any exceptions at boot-time. This fact where

exceptions are delayed until the end-user accesses the application through the web

browser is a point of concern.

<s e r v l e t>

<s e r v l e t −name>purchase</ s e r v l e t −name>

<j sp− f i l e>//purchase . j s p</ j sp− f i l e>

</ s e r v l e t>

<s e r v l e t>

<s e r v l e t −name>shopp ingcar t</ s e r v l e t −name>

<j sp− f i l e> shopp ingcar t . j s p</ j sp− f i l e>

</ s e r v l e t>

Listing 4.2: Two sample injections (underlined) using add and remove operators in

web.xml that were not detected at boot-time in GlassFish

Empty-String Injection

Out of 606 empty-string injections in domain.xml within GlassFish, 69.5% (421)

of them resulted in the failure of server boot-up process while 6.4% (39) resulted in

exceptions in server log. This means that there were still a significant number (146

(24.1%)) of empty-string-based problems that were silent at boot-time.
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4.7.2 JBoss Injection Results

Forward-slash Injection

For JBoss, we observe in Table 4.6 that for all injected file types and both mu-

tation operators, org.jboss.msc.service.StartException is thrown 80%

(86/108) of the time. The StartException is a JBoss-defined Exception that

is thrown when a service fails to start. This high-level exception in JBoss provides

enough details in server log to diagnose the root-cause (injection location). As an

example, consider the effect of applying the remove operator in the JMS queue entry

name to change it from "java:jboss/jms/LoaderQueue" to "java:jbossjms/

LoaderQueue" in standalone-full.xml. The corresponding server log entry

is shown in Listing 4.3, where the corresponding problem (missing forward-slash) is

observable (manifestation underlined in Listing 4.3). Another example with injection

in web.xml is the second injection in Listing 4.2, which GlassFish did not detect

whereas JBoss gave a clear manifestation of missing “/” as shown underlined in List-

ing 4.4. These are desirable manifestations and show that JBoss is robust enough to

diagnose the injected configuration problems, both at the application and the server

level. After diagnosis, a subsequent automated replacement or deletion (in the case

of an extra character) of the forward-slash is still a desirable but missing feature.

15 : 58 : 44 , 916 ERROR [ org . j bo s s . msc . s e r v i c e . f a i l ] ( S e r v e r Se r v i c e Thread Pool −− 58)

MSC00001 : Fa i l ed to s t a r t s e r v i c e j bo s s . messaging . default . jms . queue . LoaderQueue :

org . j bo s s . msc . s e r v i c e . StartExcept ion in s e r v i c e j bo s s . messaging . default . jms . queue

. LoaderQueue : JBAS011639 : Fa i l ed to c r ea t e queue

Caused by : java . lang . RuntimeException : JBAS011846 :

Illegal context in name: java:jbossjms/LoaderQueue

Listing 4.3: Log entry after applying remove-operator

on “java:jboss/jms/LoaderQueue” in JBoss (standalone-full.xml) to remove

“/”

15 : 07 : 43 , 301 ERROR [ org . apache . c a t a l i n a . cor e ] ( S e r v e r Se r v i c e Thread Pool −− 64)

JBWEB001097 : Error s t a r t i n g context / spec j−s p e c j : java . lang .

I l l egalArgumentExcept ion : JBWEB000273 : JSP file shoppingcart.jsp must start with a ”/”
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Listing 4.4: Log entry after applying remove-operator on “/shoppingcart” in

SPECjEnterprise2010 (web.xml) to remove first forward-slash

Empty-String Injection

All empty-string injections in standalone-full.xml within JBoss result in

the failure of server boot-up process. The corresponding log entry, ‘‘Server boot

has failed in an unrecoverable manner", shows that all misconfigura-

tions need to be fixed before a successful boot-up operation. This is a desirable

outcome.

4.8 Observations and Recommendations

In this section, we highlight some of the high-level observations from our study

and recommendations for improving the management of Java EE software systems.

4.8.1 Observations on configuration problem patterns

1. Our observations reveal that more than one-third of problems reported by users

are configuration-related. These problems occur more in components that are

at the interface between the user and the program.

2. Inter-version and intra-version configuration problems tend to have different

characteristics. Inter-version problems are majorly parameter-related while

intra-version problems have an almost equal share for each of parameter, com-

patibility and missing-component related issues.

3. Code refactoring or re-implementation results in an increased number of com-

patibility issues.
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4. Parameter-based fault-injection, as done in our tool ConfGauge, based on bug

reports, can provide a measure of robustness of the software.

5. Silent configuration-related failures (35% in GlassFish) found by ConfGauge

provide evidence of inadequate configuration validation. Silent failures should

be made non-silent via more intrusive validation checks.

4.8.2 Recommendations for better configuration management

1. Automated Fixing of Parameter Values: Today, incorrect parameter val-

ues specified by users of application servers are fixed by users themselves. They

primarily go through the manual process of searching for similar problems, com-

municating with developers, trial-and-error of different possible values and even

applying patches. We suggest to developers of application servers to take a more

pro-active role and dynamically fix configuration mistakes that users make. For

example, given that a file name cannot contain the character “/” and many

configurations have a well-defined format, e.g., token separation of single “/”

character, any extra “/” characters should automatically be removed at boot-

time with a notice to the user. This process requires configuration validation,

a step that is not mandatory according to Java specifications and hence not

pursued by many vendors. To strongly enforce it, there is a need to push for

this in the future versions of Java EE standards.

2. Efficient Bug Repository Maintenance: Operating a bug repository where

it is easier for users to search and fix problems helps to reduce bug-resolution

time and frequency of issues. From our experience while studying bug-reports

in GlassFish and JBoss, we observed some desirable features in the bug-tracking

systems which we recommend: (1). JBoss employs a duplicate bug-detection

tool called Suggestimate [96]. Suggestimate clusters similar issues to-

gether. Also, as users are typing in their bug-reports, similar issues based on
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the keywords used are presented. This helps to reduce average number of issues

filed by users. (2). For a majority of fixed bugs, JBoss cross-references the

bug-fixes giving an option for the developers and users to view the difference to

previous version, thus providing an opportunity to better understand the fix.

4.9 Discussion

This chapter presented an empirical study for characterization of configuration

problems in Java EE servers, followed by a fault-injection based evaluation. We pre-

sented the failure characterization by studying bug reports from the two most popular

Java application servers — GlassFish and JBoss. The studied dimensions for each

configuration-bug were problem-type (parameter, compatibility, missing-component),

problem-time (pre-boot-time, boot-time, run-time), problem-manifestation (silent, non-

silent), and problem-culprit (developer, user). The key findings in our characterization

are: (1). More than one-third of problems reported by users are configuration-related

implying that configuration-perspective in software development requires considerable

attention. (2). Inter-version problems are majorly parameter related, thus requiring

more consistency in configuration-design from version-to-version. (3). Intra-version

configuration-problems have an almost equal share for each of parameter, compatibil-

ity, missing-component subtypes. (4). Code refactoring or re-implementation results

in an increased number of compatibility issues.

The second part of this chapter presented ConfGauge, a tool that injects miscon-

figurations based on evidence from bug-repositories. Through the injection process,

ConfGauge automates the configuration-management life-cycle, i.e., start-server,

make configuration changes, deploy applications, undeploy applications and stop-

server. It subsequently analyzes the reaction of the server to each of the injections by

determining the type of manifestation (silent or non-silent) from server logs. JBoss

performs better than GlassFish with all of the injections giving a non-silent failure as



76

opposed to only 65% non-silent failures in GlassFish. Based on the results and our

analysis, we suggest automated fixing of parameter values.
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5. DETECTION OF DUPLICATE REQUESTS CAUSING

PERFORMANCE PROBLEMS

5.1 Introduction

We live in a world where web page views are worth bragging rights and cold hard

cash. Big web sites tout the number of page views. Also, provisioning of servers

for hosting web content is done by monitoring the number of page requests. If the

number trends high, a decision is made to provision more servers. This is typically

done through human deliberation, but in some leading edge deployments, through

automatic means as well [31, 97]. Web page views are monetized through various

means, such as, increasing the amount charged to an advertiser for ad placement on

the page, increasing the number of advertisements shown for the page, and so on.

Web page views are calculated, simply put, by tracking the number of requests sent

by client web browsers for that page. Could this simple but fundamental view of the

web world be afflicted by a little known problem?

The affliction of duplicated web requests Yes indeed! The affliction is duplicate

web requests. In this, the client web browser sends two requests for the same web

page, the second being a redundant duplicate request. This affliction does not affect

poorly run web sites alone. It afflicts two of the top 10 most visited sites — CNN and

YouTube [10]. On the academic side, we found that it affects HUBzero, a widely used

open source software platform (originating from Purdue) for building powerful Web

sites that support scientific discovery, learning, and collaboration [98]. We discovered

this latter case while dealing with problem tickets submitted to a collaboration portal

instantiated from HUBzero, called NEEShub, and this discovery triggered the line of

work that we report here. The duplicated request issue causes two obvious problems.

First, there is a spike in the traffic directed to the web server, caused by fruitless
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requests. For a web site that receives lots of views, this doubling can have a crippling

effect due to increasing the network as well as the computational load. The increase

in computational load becomes significant due to the fact that many content-rich

pages today are dynamically generated by running complex, demanding scripts at

the server end. Second, there is the potential problem of user state corruption. If the

web site is tracking state, either by cookies or in another way, there is the possibility

of corrupting this data.

Why do duplicate web requests happen? There are two root causes for the

problem of duplicate web requests, which have been separately pointed out in many

developer forums and blog posts [7–9]. The first cause is the incorrect way in which

browsers handle missing component names, or empty tags, such as, <img src="">,

<script src="">, and <link href="">. Equivalently, this could be caused by

JavaScript which dynamically sets the src property on either a newly created image

or an existing one:

var img = new Image();

img.src = ""; // More realistically, the RHS will be some code

that will resolve to the empty string

Listing 5.1: Sample code that results in duplicate request

The most readable and comprehensive treatment of this first cause can be found in [7].

We will refer to this first root cause as missing resource cause. The second cause is

the same Javascript being included in the page twice, or more number of times [10].

This is the root cause behind the duplicate web requests in CNN and YouTube. Two

main factors increase the odds of a script being duplicated in a single web page: team

size and number of scripts. It takes a significant amount of resources to develop a

web site, especially if it is a top destination. In addition to the core team building the

site, other teams contribute to the HTML in the page for things such as advertising,

branding, and data feeds. With so many people from different teams adding HTML

to the page, it is easy to imagine how the same script could be added twice, e.g., CNN
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and YouTube’s main pages have 11 and 7 scripts respectively. A plausible scenario is

two developers are contributing JavaScript code that requires manipulating cookies,

so each of them includes the companys cookies.js script. Both developers are unaware

that the other has already added the script to the page. This increases the time for

the page to load along with the duplicate web requests problem. We will refer to this

second root cause as duplicate script cause.

How to fix the problem? The “missing resource cause” happens because the

HTML specification, version 4 [99]1 is silent on this seemingly esoteric aspect. Even

though the specification indicates that the src attribute should contain a Uniform

Resource Identifier (URI), it fails to define the behavior when src does not contain a

URI. Consequently, different browsers behave in different ways. For example, Internet

Explorer (IE) sends the duplicate request to the directory of the page rather than the

page itself, while Firefox and Chrome send the duplicate request to the page itself.

Further, the behavior of different browsers for handling different missing resources is

different, e.g. , IE does not initiate a duplicate request with missing script while

Firefox and Chrome do. The overall approach to handling this could be to write

server-side code that will catch a similar request arising close in time to the original

request and correlated with finding a missing URI in a tag. However, due to the

differences in browser behaviors and for different tags, this would lead to ungainly

code, with case statements for a large number of different cases. An indirect evidence

comes from the fact that though this problem has been known for a while (since

at least 2009), this solution is seldom deployed. The “duplicate script cause” of

course has no easy solution available currently. The solution is mainly process-based

— enabling better communication and coordination between developers writing or

using scripts to create web pages. Thus, hopefully, the situation where two different

developers include the same script on the same page or, more subtly, incorporate

different but overlapping scripts on the same page, can be avoided.

1HTML4 is the latest version of the specification, except for a W3C “Candidate Recommendation”
for HTML5 dated 04 February, 2014.
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Our solution approach In this , we present a general-purpose solution to the above

problem, in a system called Griffin2. By “general-purpose”, we mean that the so-

lution applies unmodified to all kinds of resources and browsers. The solution has

at its heart the observation that the duplicate web requests cause a repeated signal,

for some definition of “signal”. The signal should be defined such that it can be

easily traced in a production web server, without impacting computation or storage

resources and without needing specialized code insertion. We find that the function

call depth is the signal that satisfies these conditions, while preserving enough fidelity

that the repeated sequence can be easily and automatically discerned. To automat-

ically discern the repeated pattern, we use the simple-to-calculate autocorrelation

function for the signal and at a lag, equal to the size of the web request (in terms of

number of HTTP commands), Griffin sees a spike in autocorrelation which it uses

to flag the detection.

When tested over a wide range of buggy and non-buggy behavior, we find that

Griffin performs well with respect to both the detection and the false positive. For

example, we evaluate Griffin on the production NEEShub web portal at Purdue,

which is the portal created out of an ongoing NSF center called NEES, for provid-

ing computational tools and data upload/download facilities to earthquake scientists

and engineers all over the US [100]. NEEShub has been operational since 2009 and

has had 105,000 users over the last 12 month period. So a problem in it cannot be

easily dismissed as a corner case in an obscure site. We find that Griffin has no

false positive and an 78% detection accuracy. To make Griffin feasible in real pro-

duction settings, we adopt a mix of synchronous and asynchronous approaches, both

without modifying the application’s source code, or even needing access to the source

code. Synchronously we capture the call stack depth, using a built-in functionality,

in the tracing tool called SystemTap. The SystemTap tool is highly efficient and

has already been used in prior efforts for analyzing the properties and behavior of

2Griffin is a mythical creature with the front legs, wings, and head of a giant eagle, and the body,
hind legs, and tail of a lion. It is often used to guard treasures.
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software systems [101]. Then, asynchronously, Griffin calculates the autocorrela-

tion function for various lags, filters the values, and flags a detection when the value

exceeds a threshold. In addition to detection, Griffin also provides some diagnostic

insight, i.e., gives an idea of the module where the root cause lies. It does this by in-

serting probes through SystemTap, determining the lag at which the autocorrlation

function has a peak, and correlating the two to determine the suspect module.

Our contributions in this work can be summarized as follows.

1. We provide automatic detection of duplicate web requests in a manner that is

generic to any web server and works across different web clients and different

root causes of the problem.

2. We develop code to extract the signal from amidst a plethora of tracing data. We

zoom in on the right signal to use through insights born out of troubleshooting

web servers. Our method has in fact been merged within the SystemTap code

repository.

3. We evaluate our scheme with a popular production web portal for science. We

report on the performance overhead as well as error coverage from our evalua-

tion.

5.2 Example Bug Case

The manifestation of the duplicate web request can be silent or non-silent. Silent

implies there is no visual indication of the problem at the client web browser, while

in the non-silent case, there is such an indication. With the NEEShub home page,

we observed a non-silent manifestation whereby multiple images are not shown as

depicted in Figure 5.1. An example of the silent case is that the browser after down-

loading the multiple Javascripts, generates duplicate web request from the multiple

Javascripts.
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Fig. 5.1.: Duplicate bug-manifestation (with missing images) before and after the fix
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Here we present a bug-case that was observed for the beta release of the main web

portal of our NSF center called NEEScomm, meant for providing a cyberinfrastructure

for earthquake engineers and scientists throughout the US www.nees.org. Griffin

was able to detect it before the code update made it to the production site, and thus

avoided the duplicate request problem. On accessing the homepage, the images that

appear as part of background were missing (Figure 5.1). Figure 5.2 presents the code

modifications that fixed the problem (no duplicate requests seen from client). In

Figure 5.2, $slide->mainImage variable does not resolves to the image XYZ.jpg

location. Instead, it resolves to the NUL character. Manual inspection revealed that

the images were missing. To verify, we hard-coded a valid image location and it fixed

the duplicate problem. Listing 5.3 shows the runtime state of the rendered HTML

in Firefox browser. On lines 3 and 10, the empty url() is observed, while on line

4, the src field in <img> tag having a value of “/” pinpoints the root cause for the

duplicate request to the base URL.

1 −−− a/modules/mod fpss /tmpl/Movies/ de f au l t . php

2 +++ b/modules/mod fpss /tmpl/Movies/ de f au l t . php

3 − <span s t y l e = ‘ ‘ background : u r l (<?php echo $ s l i d e−>mainImage ; ?>) no−r epeat ; ”>

4 + <span s t y l e = ‘ ‘ background : u r l ( media/ system / images/XYZ. jpg ) no−r epeat ; ”>

5 − <img s r c=‘‘<?php echo $ s l i d e−>mainImage ; ?>” a l t =‘‘<?php echo $ s l i d e−>a l tT i t l e ; ?>” />

6 + <img s r c = ‘ ‘media/system / images/XYZ. jpg” a l t =‘‘<?php echo $ s l i d e−>a l tT i t l e ; ?>” />

7 − <span c l a s s = ‘ ‘ navigat ion−thumbnail ” s t y l e = ‘ ‘ background : u r l (<?php echo $ s l i d e−>thumbnailImage ;

?>) no−r epeat ; ”>&nbsp;</span>

8 + <span c l a s s = ‘ ‘ navigat ion−thumbnail ” s t y l e = ‘ ‘ background : u r l ( media/system / images/XYZ. jpg ) no−

r epeat ; ”>&nbsp;</span>

Listing 5.2: Code modification to fix unnecessary duplicate requests

1 <div c l a s s = ‘ ‘ s l i d e ” s t y l e = ‘ ‘ p o s i t i o n : ab so lu t e ; opac i ty : 0 ; z−index : 89 ; ”>

2 <a c l a s s = ‘ ‘ s l i d e−l i nk ” h re f = ‘ ‘/ f p s s / track /35/ L3Jlc291 , , ”>

3 <span s t y l e = ‘ ‘ background : u r l ( ) no−r epeat ; ”>

4 <img a l t = ‘ ‘NEEShub Release 5 . 0 ” s r c = ‘ ‘/”>

5 </span>

6 </a>

7 .

8 .

9 .

10 <span c l a s s = ‘ ‘ navigat ion−thumbnail ” s t y l e = ‘ ‘ background : u r l ( ) no−r epeat ; ”> </span>

Listing 5.3: Runtime state of generated HTML as observed by Firebug

To understand how current browser versions (Chrome 32, Firefox 26) behave under

unexpected input, we did a synthetic injection in HTML tags: <span style:backg-
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Fig. 5.2.: Overview of the duplicate-detection workflow.

round=X>, <img src=X>, <script src=X>, <iframe src=X>, <link -

href=X>. Here X, the injected character, had ASCII codes in the range 32-126 ex-

cluding alphanumeric characters. We found that, in addition to duplicate requests

due to empty strings which have been reported before [7], the characters ‘?’ and ‘#’

also resulted in duplicate requests. <span style:background=SPACE,EMPTY>

resulted in a duplicate request for both browsers. For Firefox, <img src=SPACE>,

<script src=SPACE,EMPTY>, and <link href=SPACE> created duplicate re-

quests. These injections provide evidence that browsers do behave differently and

erroneously under unexpected special characters for URIs.

5.3 Design

Here we detail the design of Griffin to detect duplicate web requests. At a

high level, it comprises three steps: model application behavior at the web server (in

terms of the function calls and returns), create a signal of the function call depths,

and compute the auto-correlation of the signal to trigger detection. Figure 5.2 shows

these steps in Griffin.
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5.3.1 Synchronous Tracing

Tracing can be divided into static or dynamic tracing. Static tracing involves mod-

ifying the application’s source code to insert tracing statements followed by compila-

tion and execution. Dynamic tracing involves instrumentation of live, in-production

applications without needing to stop and restart them. Dynamic tracing can be

sub-divided into asynchronous or synchronous tracing. Asynchronous tracing takes

samples at regular intervals, from a running application, easing the possible impact on

performance but also opening up the possibility of missing important events between

samples. Synchronous tracing captures pre-defined events (function calls in our case)

within the source code. In this work, we use synchronous tracing as it meets our

following tracing framework goals.

1. The tracing should be done dynamically, i.e., the tracer should be able to con-

nect and disconnect to an already running application without the need of

stopping, recompiling and restarting.

2. The application should not be polluted with instrumentation within its source

code.

3. The instrumentation should provide enough function call context for triggering

post-detection diagnosis, e.g, the name of the called function, filename, class-

name of the object calling the function etc.

4. The instrumentation overhead should be small enough to debug problems in

the production environment in an online setting.

We leverage SystemTap [2], a tracing/probing framework that can provide syn-

chronous tracing data on Linux hosts. SystemTap is built on the same architecture

as the well-known DTrace [1] tool for Solaris systems and can provide event-tracing

across the whole system stack: kernel, applications, system-services, interpreters

(PHP, Python, Perl, Java), databases, etc. This ability to look through the whole
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system with low probe-point programming overhead makes SystemTap a better fit

than other tools like PIN [102] and Valgrind [103].

To enable tracing, SystemTap allows to write probe-point scripts. Probe-point

scripts tell SystemTap two things. (1). What event do you want to trace? (2).

What do you want to print at the traced event-location?. An example output of

tracing function calls in PHP for the program in Listing 5.7 with SystemTap tracer-

script in Listing 5.8 is shown in Listing 5.9. abc.php invokes the function call-chain

(a()→b()→c()) from main-method. php.stp, that traces abc.php, has two probe-

points, for function-entry and function-return. At both entry and return, php.stp

logs, in order of their appearance in the printf call, timestamp, thread-id, function

call depth, funcation name, file name, line number, and class name, if available. Other

than thread indent depth(long) function, all the other functions are natively

available in SystemTap .

funct i on a ( ) { funct i on b ( ) { funct i on c ( ) {

echo ‘ ‘ Func a” ; echo ‘ ‘ Func b” ; echo ‘ ‘ Func c” ;

b ( ) ; } a ( ) ; c ( ) ; } }

Listing 5.7: abc.php, where a() calls b() and b() calls c()

5.3.2 Modeling Application Behavior

For modeling purposes, we define a numeric metric called function call-depth that

represents the runtime function call-depth. At every function-call, the call-depth

is incremented and at every return, it is decremented. Our foundational intuition

for modeling application behavior is that the flow of an application can be roughly

represented by how function call depth changes. The function call depth sequence for

a given high-level web operation can be considered as a fingerprint of the high-level
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1

2 probe p roce s s ( ‘ ‘ / usr / l i b /apache2 /modules/ l ibphp5 . so ” ) . p rov ide r ( ‘ ‘ php” ) . mark ( ‘ ‘ f un c t i on en t r y ” )

3 {

4 p r i n t f ( ‘ ‘PHP: %d %d => %d %s f i l e :%s l i n e :%d classname :%s\n” , ge t t imeo fday us ( ) , t i d ( ) ,

th r ead inden t dep th (1) , u s e r s t r i n g qu o t ed ( $arg1 ) , u s e r s t r i ng qu o t ed ( $arg2 ) , $arg3

, u s e r s t r i ng quo t e d ( $arg4 ) ) ;

5 }

6

7 probe p roce s s ( ‘ ‘ / usr / l i b /apache2 /modules/ l ibphp5 . so ” ) . p rov ide r ( ‘ ‘ php” ) . mark ( ‘ ‘ f u nc t i on r e t u rn ”

)

8 {

9 p r i n t f ( ‘ ‘PHP: %d %d <= %d %s f i l e :%s l i n e :%d classname :%s\n” , ge t t imeo fday us ( ) , t i d ( ) ,

th r ead inden t dep th (−1) , u s e r s t r i ng quo t ed ( $arg1 ) , u s e r s t r i n g qu o t ed ( $arg2 ) ,

$arg3 , u s e r s t r i n g qu o t ed ( $arg4 ) ) ;

10

11 }

Listing 5.8: php.stp SystemTap script with function-entry/return probes

1

2 PHP: 1392668507729050 22061 => 1 ‘ ‘ a” f i l e : ‘ ‘ /www/ a b c . php” l i n e : 18 classname : ‘ ‘ ”

3 PHP: 1392668507729120 22061 => 2 ‘ ‘ b” f i l e : ‘ ‘ /www/ a b c . php” l i n e : 5 classname : ‘ ‘ ”

4 PHP: 1392668507729134 22061 => 3 ‘ ‘ c” f i l e : ‘ ‘ /www/ a b c . php” l i n e : 11 classname : ‘ ‘ ”

5 PHP: 1392668507729146 22061 <= 2 ‘ ‘ c” f i l e : ‘ ‘ /www/ a b c . php” l i n e : 11 classname : ‘ ‘ ”

6 PHP: 1392668507729158 22061 <= 1 ‘ ‘ b” f i l e : ‘ ‘ /www/ a b c . php” l i n e : 5 classname : ‘ ‘ ”

7 PHP: 1392668507729167 22061 <= 0 ‘ ‘ a” f i l e : ‘ ‘ /www/ a b c . php” l i n e : 18 classname : ‘ ‘ ”

Listing 5.9: Output of php.stp SystemTap script

operation. For further exploration of this intuition, let us first define some terms:

web-request, web-click, http-transaction. Starting from the lowest level, a web request

is the HTTP request sent by the web browser, such as, GET and POST. A web click

is a human user clicking in the browser to send web requests. A single web click can

generate multiple web requests. A set of web clicks done in a particular sequence,

as permitted by the workflow in the website, is called an http transaction. An http

transaction can consist of one or more web clicks; in typical usage this will be more

than one web click. An example of an http-transaction of size two is going to the

homepage followed by going to the login page (HomePage→Login).

Now coming back to our intuition for detecting duplicate web requests, consider

that a duplicate web request will create a duplicated signal of the function call depths.

It is easy to concoct a synthetic example where this intuition is violated. For example,

consider two legitimate consecutive web clicks and the corresponding web requests:

(a (b (c c’) b’) a’) (d (e (f f’) e’) d’) giving a call-depth sequences of (1 2 3 3 2 1) (1
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2 3 3 2 1). This would give the appearance to Griffin of duplicated web requests.

However, we find that for real web pages, the length of web clicks in terms of the

number of function calls and returns tends to be much larger. This kind of accidental

matching of the function call depth signal happens only very rarely for these real

situations.

To get the call-depth at runtime, we add a function called thread indent dept-

h(long) to SystemTap ’s native scripts. This function returns a number corre-

sponding to the depth of nesting. We call this function thread indent depth(1)

in the probe-point SystemTap script (Listing 5.8). Here, the argument one means

that at every function-call, increment the depth by one. We submitted this function to

the SystemTap repository and it has been merged (commit-id:cecdb2dddae55b51081-

4dc8a6d7510e5fa5e0d9f) into SystemTap ’s master-branch and is available out-of-

the-box after SystemTap is installed [104].

5.3.3 Duplicate Detection Algorithm

With the function call-depth sequence captured, the next goal is to detect whether

the sequence has a repetitive pattern and to do this efficiently with respect to time.

To do this, we use a common signal analysis technique to detect repeating patterns,

auto-correlation [105] of the function call-depth signal. Auto-correlation of a signal x

is defined by Rxx (Equation 5.1) as a function of lag-value t, where t varies from zero

(perfect signal match with Rxx=1) to n, the sequence length in terms of the number of

function calls and exits. Ideally forGriffin to detect duplicate web requests resulting

from a single user web click, it would be possible to segment the web requests for each

web click. But that is not always possible in practice, as we discuss in Section 5.4.1.

Auto-correlation can be viewed as a sequences of shift, multiply, sum operations for

all lag values on function call-depth signal. Intuitively, we are using auto-correlation

to estimate the similarity between the signal and its time shifted versions for various
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1 /∗ Compute auto−c o r r e l a t i o n f o r a l l l a g s ∗/

2 X ← l oad s i g n a l va lues

3 X̄ ← get mean value

4 C0 ← 0

5 Rxx[t] ← get an empty array o f s i z e n

6 Threshold ← 0 . 4

7 f o r each t i n range n :

8 sum ← 0

9 f o r j ← 0 ; j < n ; j++:

10 sum ← sum + (X[j]− X̄) ∗ (X[j + t]− X̄)

11 sum ← sum/n

12 i f t = 0

13 C0 ← sum

14 Rxx[t] ← sum/C0

15

16 /∗ Get the index where auto−c o r r e l a t i o n f i r s t becomes negat i ve ∗/

17 index ← 0

18 f o r each t i n range n :

19 i f Rxx[t] < 0

20 index ← t

21 break

22

23 /∗ Check i f auto−c o r r e l a t i o n i s gr eat than thr esho ld beyond index ∗/

24 f o r i ← index ; to end o f sequence

25 i f Rxx[t] ≥ Threshold

26 Pr int Duplicate Request Detected!

27 break

Fig. 5.3.: Algorithm to detect duplicate messages from function call-depth signal.

values of the time shift. If the function-depth signal is exactly repeated twice, we

expect to see a peak of 0.5 around the lag value of n/2.

Rxx[t] =
Ct

C0
where t=0,. . . ,n

Ct =
1

n

min(n−t,n)
∑

s=max(1,−t)

[Xs+t − X̄ ][Xs − X̄ ]
(5.1)

We present the auto-correlation-based duplicate-detection algorithm in Figure 5.3.

After auto-correlation computation for all lag-values, we find the index at which the

auto-correlation first becomes negative, call this t0. For values of auto-correlation
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beyond t0, we find if there is any value greater than a threshold value τ . If yes,

we flag a duplicate-detection. For the duplication of a set of web requests once, we

expect ideally an auto correlation peak of 0.5. But to tolerate the normal variation

in function call-depth signal, we set the threshold τ to be a little lower than 0.5. We

report on our sensitivity empirical study in Section 5.5.3. The reason for starting the

search beyond t0 is that then we eliminate the high values of autocorrelation that we

will see due to the original signal being correlated with itself with small time lags.

5.3.4 Usage Modes

We envision Griffin to work in two scenarios, pre-production testing and in-

production. In testing, developer’s have control of the environment and trace seg-

mentation is not an issue. Here, a possible concern by developers could be Griffin’s

detection latency, which is in order of seconds. Also, there are several works that show

speed-up of autocorrelation-like functions using parallelization in software [106] and

hardware like FPGAs [107], GPUs [108]. For in-production mode, operators’ main

concern could be the overhead of configuring and tuning Griffin and the applica-

tion tracing overhead, which is incurred in the critical path of all web requests and

responses. Griffin’s configuration is minimal with only one threshold parameter for

which we provide a recommendation (threshold=0.4) with our sensitivity analysis. In

fact, this simplicity was appealing enough for us that we adopted this scheme in favor

of more complex, and potentially better-performing, schemes that have a plethora of

parameters. The tracing overhead with SystemTap is low enough as it is. To further

minimize the tracing overhead, an operator can run Griffin in time intervals of low

load on the web server .
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1 g l ob a l remote ip

2

3 //Probe 1 : Apache probe to get ip−address o f incoming web−r eques t

4 probe p roce s s ( ‘ ‘ / usr /∗bin/apache2 ”) . funct i on ( ‘ ‘ ap p ro c e s s r e que s t ”)

5 {

6 remote ip [ t i d ( ) ]= u s e r s t r i n g ( @cast ( $r−>connect ion , ‘ ‘ conn rec ”)−>remote ip )

7 }

8

9 //Probe 2 : probe that r e c e i v e s the http−r eques t from Apache in the PHP runtime

10 probe p roce s s ( ‘ ‘ / usr / l i b /apache2 /modules/ l ibphp5 . so ”) . funct i on ( ‘ ‘ php apache reques t c tor ”)

11 {

12 p r i n t f ( ‘ ‘APACHE: %d %d %s\n” , ge t t imeo fday us ( ) , t i d ( ) , u s e r s t r i n g qu o t ed ( $r−>

unpar sed ur i ) ) ;

13 }

14

15 //Probe 3 : php funct ion−entry

16 probe p roce s s ( ‘ ‘ / usr / l i b /apache2 /modules/ l ibphp5 . so ”) . p rov ide r ( ‘ ‘ php”) . mark ( ‘ ‘ f un c t i on en t r y ”)

17 {

18 p r i n t f ( ‘ ‘PHP: %d %d %s => %d %s f i l e :%s l i n e :%d classname :%s\n” , ge t t imeo fday us ( ) , t i d

( ) , remote ip [ t i d ( ) ] , th r ead inden t dep th (1) , u s e r s t r i n g qu o t ed ( $arg1 ) ,

u s e r s t r i ng qu o t ed ( $arg2 ) , $arg3 , u s e r s t r i ng qu o t ed ( $arg4 ) ) ;

19 }

20

21 //Probe 4 :

22 probe p roce s s ( ‘ ‘ / usr / l i b /apache2 /modules/ l ibphp5 . so ”) . p rov ide r ( ‘ ‘ php”) . mark ( ‘ ‘ f u nc t i on r e t u rn

”)

23 {

24 p r i n t f ( ‘ ‘PHP: %d %d %s <= %d %s f i l e :%s l i n e :%d classname :%s\n” , ge t t imeo fday us ( ) , t i d

( ) , remote ip [ t i d ( ) ] , th r ead inden t dep th (−1) , u s e r s t r i n g quo t ed ( $arg1 ) ,

u s e r s t r i ng qu o t ed ( $arg2 ) , $arg3 , u s e r s t r i ng qu o t ed ( $arg4 ) ) ;

25 }

Listing 5.11: SystemTap probes for tracing

5.4 Experimental Setup

5.4.1 Configurations: Hardware, Software, Tracing

NEEShub infrastructure is running Apache/2.2.16 (Debian) web server in Prefork

MPM (Multi-Processing Module) [109] mode, i.e., with multiple processes and one

thread per process, on a VM with Intel(R) Xeon(R) CPU E5-2643 0 @ 3.30GHz with

6GB RAM. The PHP-runtime (libphp5.so) version is 5.3.3 and is compiled with

--enable-dtrace option in order for SystemTap (ver 2.4) to be able to intercept

PHP-function calls and returns with its probes.

Listing 5.11 presents the SystemTap probes used for synchronous tracing. The

objective that we discuss here is how to segment multiple users so that the analysis

can be done on web clicks from a single user. This segmentation is conceptually
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done using a combination of fields such as, source IP address, port, etc. For ease of

exposition, in the discussion in this section we will use IP address as the proxy for this

combination. In Listing 5.11, we show the SystemTap probes that Griffin inserts.

On receiving a web request, Apache probe (Probe 1) fires first. When probe 1 fires,

we record the IP address of the incoming web-request in a global variable with the

key equal to the Apache thread id. Since the design is such that the same thread id

is going to complete the web click request, so, whenever subsequent probes fire they

have the same thread id. The probe at the interface between the Apache web server

and the PHP module is probe 2. Probe 3 gets triggered at all function calls in the

PHP module and probe 4 at all function returns in the PHP module. In probes 2,

3, and 4, we read the global variable to get the IP address corresponding to thread

id of the current thread. Thus, even though the IP address is visible only to probe

1, inward-situated probes 2-4 can also access the client-distinctive information. In

terms of frequency, most probe 1’s have a corresponding probe 2; each probe 2 gives

rise to many probes 3 and 4. This is due to the design, common to most content-rich

web sites, that dynamic content is generated through the PHP module and the PHP

module invocations traverse a long chain of libraries. For example, for the NEEShub,

on an average a single web click results in a total of 67,071 function calls and returns

in the PHP module.

Fig. 5.4.: Probes that fire in the life-cycle of an HTTP request
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5.4.2 Evaluation Metrics

We evaluate Griffin’s detection performance with traditional definitions of ac-

curacy and precision (Equation 5.2). We establish the ground truth through manual

verification, at client-end, by checking duplicate requests for each web-click using

browser debugging tools, Firebug and Chrome-dev-tools. We measure the overhead

of Griffin in two areas, tracing overhead and detection overhead. Tracing-overhead

is the fraction of total time, taken by SystemTap ’s probes while processing a given

web-click. Detection overhead or detection latency is measured in the standard way

as the time elapsed for all the detection steps—getting the signal as input, computing

auto-correlation, determining the trigger point, and sweeping through a series of time

lag values to detect if there is a peak corresponding to the duplicate web request.

Accuracy =
TruePositives+ TrueNegatives

TruePositives+ TrueNegatives+ FalsePositives + FalseNegatives

Precision =
TruePositives

TruePositives+ FalsePositives

(5.2)

5.4.3 NEEShub Infrastructure

We apply Griffin to a large-scale real setup called NEEShub [100], a system

built with HUBzero [98] open source software platform. HUBzero is a proven dynamic

website building technology to support scientific research and educational activities.

HUBzero has over 29 documented hubs [110] operating across various scientific disci-

plines. In addition to building dynamic websites, HUBzero provides a modular archi-

tecture that helps to quickly build tools (for data-analysis, simulation etc) for a given

scientific discipline. We can view NEEShub as an instance of HUBzero where the

website and tools are developed for Earthquake Engineering discipline. NEEShub ar-

chitecture is composed of a front-end webserver and a back-end database. NEEShub’s

website usage shows an increasing yearly trend of number of unique users who logged

into the website for past four years. Additionally, after its inception in 2009, the
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annual webserver hits for last 3 years has been over 32 million. Both, webserver

hits and increasing website users mean that any duplicated web requests can cause a

performance bottleneck or may lead to unneeded hardware upgrade.

5.5 Evaluation

5.5.1 Experimental Workload

Griffin’s testing was conducted on a replica of the production site (www.nees.org),

technically referred to as a “staging machine” where developers merge their code after

doing the unit testing on their own development box. We made no modifications or

synthetic error injections. Therefore, we expected to find few, if any, problems with

the website.

We tested Griffin’s duplicate-detection performance by sending a total of 60

HTTP transactions of varying sizes. The size of a transaction is measured by the

number of web clicks incorporated within the transaction. Thus, the transaction

HomePage→Login has a size of two. Also, for the analysis (autocorrelation compu-

tation), the signal is considered the entire transaction. We used 20 transactions for

each of the sizes 1,2,3. These 60 HTTP transactions were executed following differ-

ent possible user workflows as enabled by the web portal. We tried to cover all the

workflows that a typical user would follow while visiting the website. This is enabled

by our having worked as part of the NEES team for 3+ years.

Ideally, the analysis in Griffin will consider the traces corresponding to a single

web click from a single user. The combination of IP address, source port, etc. is

meant to segment different users. Within a single user, we expect that different web

clicks are handled by threads of different IDs. We empirically validated that this

is always the case for all our transactions. This is explained by the design of the

Apache web server, which has a maximum number of concurrent requests that can

be served, given by the parameter MaxClients with a default value of 256. For

Apache Prefork MPM, this translates to the total number of processes. When a
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request processing is completed, the process becomes idle and after an expiry time, is

killed off. If the next request arrives within the expiry time, then with a probability

1
MaxClients

, it will be handled in a process with the same thread ID. If the next request

arrives after the expiry time, then there is only an infinitesimal chance that it will

be processed with the same thread ID. To account for these probabilities, plus other

Apache modes (multi thread, etc.), we also evaluate Griffin’s performance with

HTTP transactions of size greater than one. For HTTP transaction size greater than

one, we are mimicking the situation where the duplicate request happened due to one

web-click (e.g. , HomePage) but Griffin analyzed two (e.g. , HomePage→Login)

or three web clicks (e.g. , HomePage→Login→LoggingIn) together.

5.5.2 Accuracy and Precision Results

Out of the 7 duplicate request problems (among the 60 HTTP transactions),

Griffin was able to correctly find 4 duplicated requests i.e., HomePage, Topics-page,

SimulationWiki-page and Wiki-page. SimulationWiki page was due to a Javascript-

based duplication, while the other three were due to missing-resources. Griffin

missed 3 cases of duplicated requests, warehouse, simulation and education pages.

Griffin’s accuracy and precision with different HTTP transaction sizes is pre-

sented in Table 5.1. Griffin provides an average accuracy of 80% across HTTP trans-

actions of size one and two with no false positives. With three web clicks, Griffin’s

performance degrades– here 0% precision is misleading in the sense that out of the 20

HTTP transactions of size three, only one (HOMEPAGE→LOGIN→LOGGINGIN)

had a duplicate request which Griffin did not detect. Griffin falsely flagged 4

out of 20 transactions giving a false positive rate of 20% for HTTP transactions of

size three. The reason why Griffin did not detect HOMEPAGE web-click within

HOMEPAGE→LOGIN→LOGGINGIN transaction is due to the significant differ-

ence of LOGGGINGIN function call-depth signal from the signals of HOMEPAGE

and LOGIN web clicks (see the increase in function call-depth signal between index
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100K to 150K in Figure 5.6). Here, HOME and LOGIN web clicks have an aver-

age function call-depth of 15.61 and 15.47 respectively while LOGGINGIN has an

average of 32.42 making it significantly different. With HTTP transaction of size 3,

Griffin is performing its analysis after combining these three signals into one. Thus,

the divergence in the single combined signal means that the autocorrelation values,

even with one duplication, tend to be low, and stay below the threshold. In practice,

the HTTP transactions of size 3 will be very rare because of the discrimination that

Griffin will be able to do using the thread ID.

Table 5.1.: Summary of Performance Results

Accuracy Precision

one-click 90% =
18

20
100% =

3

3

two-clicks 70% =
14

20
100% =

4

4

three-clicks 75% =
15

20
0% =

0

4

With the ideal (and practically common) case of analysis over HTTP transaction

of size 1, Griffin shows 90% accuracy and 100% precision. As an example, the

function call-depth and autocorrelation for HOME web-transaction is presented in
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Fig. 5.5.: HOME→LOGIN→LOGGINGIN: Function call-depth signal for three web

clicks from browser



97

0 50000 100000 150000
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

au
to

−
co

rr
el

at
io

n

HOMEPAGE_LOGIN_LOGGINGIN:Auto−correlation of Function−depth Signal

Fig. 5.6.: HOME→LOGIN→LOGGINGIN: Autocorrelation for three web clicks from

browser

Figure 5.2. We see that the autocorrelation has a clear peak value of 0.4998 near a

lag-value of 40,000 which is detected byGriffin (with a threshold set at 0.4). Manual

checking, both at user-end and at server-end revealed that HOME web-request (“/”)

is being sent twice by the user’s browser. Further inspection on the server revealed

that a field called hits in the back-end database is incremented on every HOME

web-transaction. We reported this hitherto unknown problem to the web developer at

NEES, and it was subsequently fixed and not pushed into the production environment.

Testing Griffin with HTTP transactions of size 2, we observe a drop in accuracy

(to 70%). This happens due to the significant variability in the basic signal due

to the very different nature of the function call invocations in the two web clicks.

Expectedly, autocorrelating a divergent signal gives low autocorrlation values, which

sometime fall below the Griffin threshold, which has a default value of 0.4.

5.5.3 Sensitivity and Overhead

Griffin’s sensitivity to different parameters, sequence length, threshold and num-

ber of traced contiguous web clicks is critical from a usability perspective. With an

increasing number of contiguous web clicks, Griffin’s accuracy and precision drop.
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(a) One-click (b) Two-click

(c) Three-click

Fig. 5.7.: Sensitivity of Griffin for each of one, two and three-clicks
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Fig. 5.8.: Detection Latency

The pattern of accuracy decreasing with increasing number web clicks holds true

with increasing sizes of the traces. We present Griffin’s sensitivity with different

thresholds in Figure 5.7. Looking at Figure 5.7(a) and Figure 5.7(b), we set Griffin

threshold to 0.4 as the default value for Griffin to provide us zero false positives,

i.e., 100% precision. The user can decrease the threshold for fine tuning her system,

but we suggest to not go below 0.35 (based on Figure 5.7(b)) as that can result in

possible false positives.

The detection latency as a function of the sequence length (i.e., the number of

trace events due to SystemTap probes) is shown in Figure 5.8. It shows the expected

behavior of greater latency with increasing sequence length. This is due to a larger

number of autocorrelation computations for a longer trace length. However, the

upper range of the sequence length is typically about 100K and with that we have a

detection latency of about half a minute, which should be fast enough to be useful for

the subsequent manual process of fixing the problem. The average tracing overhead

across the 60 tested HTTP transactions is 28.6% with a standard devitation of 10.0%.

The overhead for HTTP transactions for each size is presented in Table 5.2. The

tracing overhead is independent of the length of the sequence and the differences seen

are due to statistical variations. This overhead can be reduced simply by removing

all the fields in the traces, say as in Listing 5.8, except for the thread ID (needed for

segmentation), function call depth (needed for detection), and filename (needed for

diagnostic context, as explained in next Section.
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Table 5.2.: Tracing Overhead

Tracing

Overhead

(Avg)

Tracing

Overhead

(Std. Dev)

Sequence

Length

(Avg)

Sequence

Length (Std.

Dev)

one-click 24.0% 6.6% 67,071 54,165

two-clicks 32.8% 11.6% 131,511 76,630

three-clicks 29.1% 9.1% 141,427 33,727
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5.6 Discussion

Griffin’s Diagnostic-context: When Griffin detects duplicate web-requests, a

diagnostic-context about the detection would help the developers as a starting point

for debugging. At detection-time, in addition to the autocorrelation value, we also

have the lag when this autocorrelation value exceeded the threshold, call this tmax.

We use tmax alongwith the information provided by probe-2 (Figure 5.4), a probe that

records the HTTP-request going from apache-core to PHP-runtime, to provide the

diagnostic-context . With the tmax, we get the nearest next fired probe-2 and extract

a high-level component (module name) from the file name. For the duplicate bug

of Figure 5.2, this simple scheme is able to flag mod fpss module in Joomla, the

Content Management System, on which HUBzero is built.

ID-based Trace Segmentation: Given two parallel web-clicks from two different

users, the segmentation-problem (as discussed in Section 5.5) of getting a per-user

click-trace can be solved using a variety of IDs available at the server-end. Specifically,

for Apache server, the data structures, request rec (created whenever the server

accepts an HTTP request from client) and conn rec (an internal representation of

TCP connections in Apache) can help in filtering. An interesting scenario occurs

when the same IP address represents different users, e.g. , multiple users behind a

NAT (Network Address Translation) server. In this case simply segmenting users by

IP address will not work and additional information, e.g. , port number is needed.

This can be achieved with writing an Apache probe with SystemTap intercepting

the function ap process connection (which is invoked in the call-chain for every

incoming web-request) and reading the port field using cast($c, "conn rec")-

>remote addr->port.

Simple Strawman Schemes: Given that we have the function call depth and

the sequence length, a simple scheme for detection of duplicate requests can be a

threshold for each of the two parameters. Though simple in theory, we will need to

maintain and learn per-web-request type thresholds, e.g. , different thresholds for
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each of Homepage, Login etc. Additionally, as the application is developed new web-

requests would have to be benchmarked for learning the threshold. We think that

for a busy operator, this poses too much of configuration overhead. An attraction

of Griffin is that it requires little configuration for detecting a wide variety of

duplicate request problems. Another possible technique is to use logs at the server

and use some heuristic to flag detection when similar requests are received within a

small time window. Such a scheme though would be fragile in practice and be unable

to handle natural variations in user request patterns.

In this chapter, we have presented a systematic method and an automated tool

called Griffin for detecting an important problem that afflicts many web servers,

namely, duplicate client browser requests. This causes an artificially high load on

servers and corrupts server and client state. Culling together many blog posts and

developer forum reports, we identify the two fundamental root causes of the problem

and come up with a solution that handles both, without needing special case logic

for the two root causes or for different browsers. We use Griffin for detecting

the problem in a production web portal for an NSF center at Purdue and identify

that the problem is more widespread than previously identified. Our evaluation on

the production site revealed no false positive. The dynamic system tracing using

SystemTap is lightweight and the detection latency small enough (less than half

a minute) as to be useful in practice. Our contributions were considered significant

enough that the problem was fixed in the web portal and our addition to the dynamic

tracing facility was accepted in its official release.
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6. FAILURE DIAGNOSIS WITH METRIC-BASED

PERFORMANCE PROBLEMS

6.1 Introduction

Debugging today’s large-scale distributed systems is complex. Systems are com-

posed of multiple software components often running on distributed nodes. The

interactions between these components are complex enough that they cannot all be

enumerated a priori. The unpredictability of the execution environment and its effects

on the application execution increases difficulty in the debugging process. Failures

can come from different layers of the system—network, hardware, operating system,

middleware, and application layers. Thus in general, it is necessary to monitor the

behavior of all the layers to understand the origin of failures.

Why another debugging tool? There exists a significant number of debugging

tools today [49, 111, 112]. They work well for many kinds of failures though they

require varying amounts of developer intervention. Despite the existence of this rich

set of tools, the debugging process is time consuming and it often requires full domain

knowledge of the program to find where problems originate in the source code. Profil-

ers [113–115] can help in isolating performance bottlenecks, however, identifying the

root cause of the bottleneck still remains essentially a manual process. Research on

distributed systems has developed functional techniques that can help in debugging,

such as program tracing and replay debugging [47, 48, 116], model checking [50–52],

and log analysis [53–56]. But there remains work to be done to build on these tech-

niques to create a usable debugging tool.

In this work, we focus on debugging distributed applications by identifying the

region of code where a fault first becomes active. The developer can then focus on this

region to fix the problem rather than spending time in examining the entire source
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code. We focus on manifested-on-metrics (MM) bugs, i.e., those bugs that manifest

themselves as an abnormal temporal pattern in one or more metrics at the hardware,

OS, middleware, or application layers. MM bugs can manifest as performance or

correctness problems. Examples are resource leaks prior to an application crashing,

or incorrect use of synchronization locks prior to the application hanging. We do not

handle bugs that lead to incorrect output, data corruption or failures that do not

affect a system-measurable metric.

Design approach. We present Orion, a framework for localizing the origin of

MM faults in distributed applications. Orion works by profiling a variety of metrics

as the application is executing, either at declared instrumentation points (such as,

method entry or exit) or asynchronously with a fixed periodicity. Through machine

learning techniques, it verifies if the runtime profile is similar enough to profiles

created offline of non-faulty application’s executions. If it is not, Orion goes back

through traces to indicate which metrics caused the divergence and from that, to

the region of suspect code. The mechanism is probabilistic thus a rank-ordered list

is provided to the developer for inspection. This design approach is shared with a

few prior software systems [60,117]. However, unlike these prior systems, which only

gather traces from one or two dimensions of the application, e.g., CPU and memory,

Orion performs application profiling along a large number of metrics. These metrics

do not have to be hand-picked by the developer. Orion first automatically selects

important metrics from the entire set for detailed analysis and then uses correlations

between the metrics to diagnose subtle errors.

Summary of findings. We deploy Orion and evaluate it on diverse distributed

applications: HBase [118], Hadoop [119], an on-campus Java Enterprise Edition (JEE)

application, called StationsStat, and an IBM regression testing application for its full

system simulator called Mambo. We focus on failures that were difficult to debug

manually. We demonstrate Orion with a total of 7 bug cases from these applications

and find that the root cause is related to the top 3 abnormal metrics or code regions

in 6 of them.
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The main contributions of this work are:

(1) We introduce the concept of multi-dimensional metric profiling to provide prob-

lem determination for a wide variety of root causes. We show that, despite profiling

a large number of metrics, it is possible to find the “needle in the haystack”, i.e.,

the problematic metrics in a (possibly small) time window amidst a large number of

normal metrics.

(2) We focus on a subtle class of problems that are not diagnosable by compar-

ing instantaneous values of metrics against thresholds. Our approach develops a

correlation-analysis algorithm that identifies when joint behavior of metrics is sus-

pect.

(3) We successfully demonstrate Orion in four different distributed applications and

under 7 failure conditions. In all of the cases, Orion pinpoints the origin of problems

to abnormal metrics and in most of the cases it finds code regions that require human

attention to fix the failures.

The rest of the chapter is structured as follows. In Section 6.2, we provide an

overview of the execution of Orion. In Section 6.3, we present the detailed design.

In Section 6.4, we describe the seven case studies. In Section 6.5, we discuss practical

implications of this work.

6.2 Overview

6.2.1 Measurement Gathering

Orion collects measurements of multiple metrics at different levels in the system,

i.e., hardware, OS, middleware and application by means of third-party monitoring

tools. Using collected measurements, Orion builds models of normal behavior, which

permits localizing the failures’ origin.

The appendix shows the list of metrics that we measure. Although this is not an

exhaustive list of all the metrics in the system, we tried to monitor as many metrics as

possible from multiple layers. Orion does not impose a limit in the number of metrics
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used. Instead, it allows developers to use as many metrics as they think are useful

for debugging. Orion addresses the curse of dimensionality problem by filtering out

noisy metrics and automatically zooming into the metrics that are relevant for failure

debugging.

Some examples of the metrics that we gather are:

End-user Application: per-servlet statistics such as processing time, request and ex-

ception counts; Middleware: cache hits and accesses, number of busy and created

threads, and request processing time from the middleware layer (such as Apache

Tomcat); OS: cpu- and memory-usage, context switches, file descriptors, disk read-

s/writes, packets received and transmitted, stack size; Hardware: L1/L2/L3 data

and instruction cache hits and misses, TLB misses, branches taken/not taken/miss-

predicted, load/store instructions, hardware interrupts.

Importance of collecting metrics from different layers. Bugs can manifest

in different layers of the system, therefore it is necessary to monitor metrics from all

layers. For example, a file-descriptor leak often manifests as an abnormal pattern in

OS-related metrics such as memory and file-descriptor usage—Section 6.4.1 illustrates

this case in a file-descriptor leak bug in Hadoop. Other bugs can be diagnosed faster

if hardware-related metrics are analyzed. To illustrate this, consider the sample code

in Figure 6.1. Here, a performance problem would arise if a developer does not

realize the importance of the sorting operation at line 8 and comments it out as a

result. Then, due to random nature of the data, branch misprediction will drastically

increase for the if statement at line 11 causing a performance degradation. In our

experiments with multiple runs of this bug, performance can be reduced by a factor

of 2.4x. To our astonishment, we found that many developers are not aware of such

bugs—in fact this was one of the most voted topics in stackoverflow [120] and also

one of the most viewed questions with more than 214,000 views. To further verify

this fact, we conducted a survey with 30 respondents with 3 to 7 years of experience

in software industry. Only 23% of them realized removing the sort statement might

degrade performance.
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In cases like in Figure 6.1, hardware metrics related to branch-misprediction would

be more useful than other metrics in finding the problem’s root cause. Since it is

difficult for developers to select a priori the important metrics in debugging, our tool

starts with the entire set of metrics and automatically identifies those metrics with

the zoom-in process that we describe in detail in Section 6.2.3. For example, when we

used our tool in the above scenario, it identified branch-mispredicted as the top

anomalous metric. When we used only OS-level metrics, it was not able to accurately

identify the root cause.

6.2.2 Profiling

Orion can perform multi-dimensional profiling in two ways: synchronous and

asynchronous. In asynchronous mode, metric collection happens asynchronously to

the application. The measurement gathering is done by a process separate from the

application process(es). The asynchronous mode does not interfere with the moni-

tored application and therefore is a lightweight method. Orion collects OS metrics

values from the Linux /proc file system, hardware metrics through PAPI [121] and

1 /∗From a random data−set , add numbers g r ea t e r than 127 ∗/

2 i n t a r r ayS i z e = 50000;

3 i n t data [ ] = new in t [ a r r ayS i z e ] ;

4 Random rnd = new Random(0) ;

5 f o r ( i n t c = 0 ; c < a r r ayS i z e ; ++c )

6 data [ c ] = rnd . next Int ( ) % 256 ;

7 /∗ No s o r t i n g causes branch m i sp r ed i c t i on ∗/

8 //Arrays . s o r t ( data ) ;

9 long sum = 0 ;

10 f o r ( i n t i = 0 ; i < 100000; ++i ) {

11 f o r ( i n t c = 0 ; c < a r r ayS i z e ; ++c )

12 i f ( data [ c ] >= 128)

13 sum += data [ c ] ;

14 }

Fig. 6.1.: Performance bug due to branch misprediction.
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Fig. 6.2.: Overview of the problem determination workflow.

middleware- and application-metrics values from server containers by querying Java

JMX connectors via a separate Linux process. This method requires offline processing

to “line up” the metric collection points with the execution points of the application.

This is done by using a common time base since all the involved processes execute on

the same machine.

Synchronous profiling annotates code regions with a set of measurements. When-

ever a code region begins and ends, this method collects measurements and labels

them with the corresponding code-region name. For Java applications (such as in the

Hadoop and HBase case studies), we use Javaassist to instrument binary code

and to collect measurements at the beginning and at the end of classes/methods.

Notice that Orion can rely on other metric collection mechanism as long as they

can provide at least the asynchronous mode of operation—the main novelty of Orion

is its problem determination algorithms based on multi-metric data sets.

6.2.3 Workflow of our Approach

Figure 6.2 shows the steps in Orion to diagnose failures. (1) Trace collection:

Orion uses two set of traces to localize the origin of problems: a normal and an

abnormal trace file. Normal trace files are obtained by collecting metrics of the

application when failures are not manifested. This can be runs of an earlier bug-free

application version or, in the case of intermittent failures, sections of a failed run

where the fault did not manifest itself. The abnormal trace file is obtained when the

failure is manifested. Labeling a run as one or the other is a manual process.
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(2) Selection of pertinent metrics for modeling: Orion filters out unimportant

(or noisy) metrics from the analysis. This step can also be viewed as dimensionality

reduction. We used an algorithm based on Principal Component Analysis (PCA)

to reduce the dimensionality of the problem. The intuition behind this step is to

eliminate metrics that do not provide much information for the rest of the analysis;

an example is constant metrics.

(3) Normal-behavior modeling: Orion creates a baseline model using the normal-

behavior traces. Given traces of n metrics, the algorithm splits traces into equally

sized time windows and calculates pairwise correlations between all the n metrics for

each time window. These correlation serve as a summary of the expected behavior of

the application in different time windows.

(4) Suspicious metric selection: Abnormal traces are used to select the metrics

that are correlated with a failure. From all the n metrics, the top-3 most abnormal

metrics are presented to the user. The user can then focus on finding the problem’s

origin based on the abnormal metrics.

(5) Abnormal code-region selection: Often, finding suspicious metric informa-

tion in step 3 is not sufficient to infer the origin of a failure. For example, a metric

like CPU utilization may be affected by any region of code. Orion selects the code

regions that have a high degree of association with the suspect metric(s). Orion

highlights suspicious code regions so that users can focus on finding bugs that could

have caused the problems within them.

6.3 Design

6.3.1 Selection of Pertinent Metrics for Modeling

Some dimensions (or metrics) are more important than others when debugging

failures. We perform dimensionality reduction to: (i) eliminate redundant metrics

from the analysis, and (ii) reduce computation overhead. We use Principal Compo-

nent Analysis (PCA) as a baseline technique for dimensionality reduction. PCA uses
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Table 6.1.: Almost equal variance explained by first two PCs.

Data Transformation Matrix

A B C D PC-1 PC-2 PC-3 PC-4

3 9 3 9 0.70 -0.11 0.68 -0.16

6 7 2 1 -0.21 0.31 0.46 0.80

1 6 2 1 0.66 0.07 -0.57 0.48

8 5 8 4 0.11 0.94 -0.03 -0.32

% of Variance Explained 46.71 45.28 8.0 0

an orthogonal transformation to convert a set of observations (of possibly correlated

variables (into a set of values of linearly uncorrelated variables, i.e., principal com-

ponents (PC). Applying PCA directly does not eliminate metrics from the analysis

(which is our goal). Instead, PCA generates a new set of metrics which are linear

combinations of the input metrics. We developed a heuristic following the idea in [122]

to rank input metrics based on their importance. The idea is to rank metrics that are

weighted heavily, especially in the first few PCs of the PCA-generated transformation

(which contain most of the variance of the data), higher than metrics with smaller

weights. Different from [122], we consider the contribution of each PC to explain the

total variance in the data and design a new algorithm to rank metrics based on that.

To illustrate, consider Table 6.1 with 4 metricsA,B,C,D and 4 observation rows.

In this experiment, the first principal component (PC-1) and the second principal

component (PC-2) cover 46.7% and 45.3% of the variance of the data, respectively.

In the transformation matrix generated by PCA, metric A has a weight of 0.7 in

PC-1 and metric D has weight of 0.94 in PC-2. The heuristic used in [122] will rank

A higher than D. But if we also consider the variance covered by each PC, metric D

should get a higher rank than metric A.

Figure 6.3 shows our ranking algorithm. Here, in the transformation-matrix, we

first adjust the weight of a metric by the corresponding contribution of that PC

towards explaining the total variance of the data. Then, we give equal importance to
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1 metrics : ar ray o f metr i c s names

2 W : t r ans f ormat i on matrix generated by PCA.

3

4 percentagePCA ← getVarianceExplainedByPCA(W ,normalizedData )

5 f o r each column in W :

6 /∗ Multip ly columns by var i ance coverage ∗/

7 column ← column ∗ percentagePCA [ column ]

8 f o r each row in W :

9 /∗ Cal cu l ate maximum value in row . Store in map ∗/

10 rowMaxValueMap [ row-num ] ← MAX{abs ( row )}

11 rank ← SIZE(metrics )

12 /∗ Sort based on max−weight in each row . Key i s row−num∗/

13 f o r each key in va lueSor t (rowMaxValueMap )

14 rankMap [metrics [ key ] ] ← rank

15 rank = rank − 1 /∗ Weight imp l i e s importance ∗/

16 PRINT rankMap

Fig. 6.3.: PCA-based heuristic for filtering out metrics.
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each column in the modified transformation matrix. We calculate maximum weight

of a metric across all columns and then sort metrics based on these maximum weights

to get a total ordering of metrics based on its importance. This allow us to filter out

unimportant metrics from the rest of the analysis in Orion. The complexity of this

algorithm is O(n2) where n is the number of metrics. We used the difference in ranks

between normal and abnormal runs to chose important metrics. Performance bugs

tend to change the correlation between metrics and in turn the weights in the PCA

transformation matrix which changes relative ranking between metrics. More shift

in metrics ranking indicates it was affected by the bug and hence should be chosen

for detailed analysis. This first pass is very light weight and coarse as it lacks the

notion of time. But it is very useful to reduce the overhead of detailed analysis in the

following phase without losing vital information.

6.3.2 Modeling Sequential Data

Many bugs and performance anomalies develop a characteristic temporal pattern

that can only be captured by analyzing measurements in a sequential manner (rather

than by observing instantaneous snapshots of values). After reducing the number of

metrics with the PCA algorithm, we build a baseline model that captures temporal

patterns between metrics using correlation coefficients.

Observation window. Traces are split into non-overlapping windows of the same

size. A window can be viewed as a matrix S×N in which S is the number of records (or

samples) andN is the number of metrics. The set of records comprises one observation

window. Since we do not know a priori the optimal size of observation windows (S),

i.e., the window size that is sufficient to capture the temporal patterns that a failure

shows, our algorithm sweeps through multiple sizes for the windows within a range

(between sizes of 100 and 200 samples in our evaluation). The algorithm then finds

the k-most abnormal windows (irrespective of its size) and, within those abnormal

windows, the correlations and metrics that cause the unusual patterns. For our
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evaluation, we use a k value of 3. Section 6.3.3 describes our algorithms for the

selection of suspicious metrics and code regions.

Correlation coefficients. For each observation window, Orion builds a vector

of (pair-wise) correlation coefficients between all the metrics

CCV = [cc(1, 2), cc(1, 3), . . . , cc(N − 1, N))], (6.1)

where cc(i, j) is the correlation coefficient of metrics i and j, i 6= j. We denote

this vector as a correlation coefficient vector or CCV . Correlation coefficients are

calculated using the Pearson correlation-coefficient formula:

cc(X, Y ) =
1

N − 1

N
∑

k=1

(

Xk − X̄

sX

)(

Yk − Ȳ

sY

)

(6.2)

where N is the number of elements of observations in the window, X̄ and Ȳ are the

mean of variables X and Y respectively, and sX and sY are the standard deviations

of X and Y .

Normal-behavior Model. Using the normal-behavior traces, our framework

creates a baseline model which is used in step 3 (from the main workflow) to select

suspicious metrics. The model is a set of normal-behavior CCVs obtained by splitting

traces into observations windows and computing a CCV for each window. We term

this model as a hyper-sphere. Figure 6.4 shows the process of creating this hyper-

sphere. The number of points in it corresponds to the number of windows that

we obtained from the normal-behavior traces, and the dimensions (or features) are

correlation-coefficients of metric pairs. Notice that, if we have N metrics in the

analysis, the dimension of the hyper-sphere is D = N(N−1)
2

.

The idea of using a hyper-sphere where dimensions are correlation coefficients is

that we can use nearest-neighbor to pinpoint abnormal observation windows from

the faulty traces. Since an observation window is translated to a single data point

(i.e., a CCV ), we can treat the problem of finding abnormal windows as an outlier

detection problem via nearest-neighbor, i.e., an abnormal window would correspond

to the CCV point that is the farthest away from the hyper-sphere.
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Fig. 6.4.: Creation of the normal-behavior hyper-sphere.
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1 /∗ Get s t a t i s t i c s o f f a i l e d−run windows ∗/

2 f o r each s i z e s i n range r :

3 setOfWindows ← c r ea t e windows s e t o f s i z e s

4 f o r each window w i n setOfWindows :

5 d ← f i nd NN d i s tance o f w i n the hyperSphere

6 ccs ← get top abnormal co r r . c o e f f i c i e n t s o f w

7 Append {w , d , ccs} to tuplesList

8

9 /∗ S e l e c t the most abnormal windows∗/

10 Sort tuplesList based on d i s t ance d ( high to low )

11 abnormalWindows ← get top elements in tuplesList

12

13 /∗ Build histogram of most abnormal metr i c s ∗/

14 f o r each window w i n abnormalWindows :

15 f o r each c o r r e l a t i o n cc cor r espond ing to w :

16 From cc add metr i c s X and Y to histogram

17

18 Pr int the most f r equent metr i c s in histogram

Fig. 6.5.: Algorithm to select the suspicious metrics from traces of a failed run.

6.3.3 Detection of Suspicious Metrics

Motivation. The main motivation of our technique is that the manifestation

of faults will change the correlations between some (affected) metric(s) and the rest

of the metrics, while maintaining the legitimate correlations in the other metrics.

To illustrate this idea, consider a bug where unused database connections are kept

open—metrics such as file descriptors and open sockets will be affected by the bug

and will exhibit a different temporal pattern than during workloads where the bug is

not activated. However, correlations among the other metrics will not be affected.

Our goal is that, when faults are manifested, Orion finds the metric(s) that is

(are) mostly associated with failures. This is performed by ranking metrics according

to their contributions to correlation breakups and by selecting the top-k metrics in

this ranking. The application developer can subsequently focus on reviewing the code

which affects these suspicious metrics to locate the root cause of the problem.
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Algorithm overview. The goal of the algorithm is to select the metrics that are

most likely associated with the problem’s origin. The algorithm’s input is a normal-

behavior hyper-sphere and traces of a failed run. The algorithm’s output is a list

of metrics that are ranked by abnormality degree. The algorithm is presented in

Figure 6.5.

The algorithm has the following main steps:

Statistics creation per window: We create observation windows of multiple sizes

from the failed-run traces file. For each window, we calculate two statistics: (1) the

nearest-neighbor (NN) distance of the window from the hyper-sphere representing

normality. This distance is calculated by first computing a CCV from the window

and then by finding the euclidean distance between the CCV and the closest point

in the hyper-sphere using the formula d =
√

∑D

i=1(cci − bbi)2, where cci and bbi are

correlation coefficients; (2) the dimensions that have the highest weight in making the

CCV far away from the hyper-sphere. A dimension here corresponds to a correlation

coefficient.

Abnormal window selection: Windows are sorted by their NN distance from high

to low and only the top-k windows in the list are taken for further analysis (k = 3 for

our evaluation). These windows correspond to time periods when abnormal behavior

is manifested.

Select most abnormal metrics: Once the top-k abnormal windows are ranked,

within each window, the correlation coefficients (CCs) are ranked by how much they

contribute to the NN distance of that window. Now the top-k CCs are taken from

each abnormal window, giving a total of k × k CCs. Recall that each CC involves

two metrics. With these short-listed CCs, the metrics that are present in them are

counted up and the top-k most frequently occurring metrics are flagged as the most

abnormal metrics. Notice that we use the same parameter for filtering the top choices

(windows, CCs, metrics). In theory, they are different parameters, but in practice the

same value (k = 3) works well and reduces the search space of parameters, a desirable

outcome for any deployable tool.
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6.3.4 Detection of Anomalous Code Regions

After the suspicious metrics are detected, Orion highlights code regions that make

metrics abnormal so that developers can focus on them to fix the problem. Orion

first finds suspicious periods of time in which a metric shows an unusual temporal

pattern (i.e., an abnormal window). Then, within that period, Orion looks for outlier

observations, i.e., an abnormal code region.

Algorithm requirements. The algorithm for detecting abnormal code regions

is similar to the abnormal metric-selection algorithm. A major difference is that

only one metric is used in the analysis, i.e., the abnormal metric. This metric is given

by the previous step, i.e., the metric-selection step. The user can opt to execute this

algorithm using the top-two (and top-three and so on) abnormal metric(s) if the top-

one abnormal metric does not help in finding the problem’s origin. The algorithm’s

inputs are traces files (from the normal and the failed run) such as in Figure 6.4 but

with only one column—this column corresponds to measurements of the abnormal

metric. The output of the algorithm is the top few anomalous code regions. We

assume that each record in this file is annotated with a code region.

Algorithm overview. The algorithm is shown in Figure 6.6. First, we construct

a set of windows from traces of the normal run and another set from traces of the

failed run. Second, we find NN distances of the windows of the failed-run from the

normal-behavior windows. Then, to select the most abnormal windows, we rank the

failed-run windows based on the NN distances (from high to low) and select only

the top-k windows. Finally, we build a histogram of the occurrences of code regions

in these abnormal windows— as we observe from our case studies, the faulty code

regions in performance bugs execute frequently in the most unusual periods of time.

The top-3 most frequent code regions are shown to the user.

How to compare one-dimensional windows? In the previous algorithm, we

find the difference between two windows by calculating the Euclidean distance of

their corresponding CCV s. We summarize the window’s information by calculating
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1 /∗ Get s t a t i s t i c s o f f a i l e d−run windows ∗/

2 f o r each s i z e s i n range r :

3 normalWins ← get windows from normal t r a c e s

4 failedRunWins ← get windows from abnormal t r a c e s

5 f o r each window w i n failedRunWins :

6 d ← NN di s tance o f w from normalWins

7 Append {w , d} to tuplesList

8

9 /∗ S e l e c t the most abnormal windows∗/

10 Sort tuplesList based on d i s t ance d ( high to low )

11 abnormalWindows ← get top elements in tuplesList

12

13 /∗ Build histogram of abnormal code−r eg i on s ∗/

14 f o r each window w i n abnormalWindows :

15 Add code r eg i on s in w to histogram

16

17 Pr int the most f r equent code r eg i on s in histogram

Fig. 6.6.: Algorithm to select the suspicious code regions from traces of failed run.
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aggregates of its values: average, standard deviation, minimum, maximum and sum.

These aggregates become the features of a window. Orion then finds the dissimilarity

between two windows by computing the Euclidean distance using these aggregates as

features.

6.4 Evaluation

In this section, we describe how we debugged seven performance bugs in different

distributed applications: Hadoop, HBase, a distributed system heavily used in IBM

as regression framework, and a distributed application used by students in a large

university. We present in detail the first 4 cases and provide a summary of the

results of cases 5–7. In all of the cases, Orion reduces substantially the time spent

in localizing the problem origin by showing the metric most perturbed by the fault,

and if needed further, the abnormal code region. The process is fully automated so

users do not need to have full understanding of the application and its components

dependencies.

6.4.1 Case 1: Hadoop DFS

Hadoop is an open-source framework that supports data-intensive distributed ap-

plications [119]. It enables applications to work with thousands of computational

nodes and a large amount of data. We use Orion to diagnose a file descriptor-leak

bug that occurred in the Hadoop Distributed File System (HDFS) in version 0.17.

The bug report is HADOOP-3067.

We collect all the OS and hardware level metrics given in Table 6.4 via synchronous

profiling. All the Java classes and public methods within each class are instrumented.

Since we are debugging the Hadoop DFS, we only consider the java/org/apache/

hadoop/dfs package. A total of 45 Java classes and 358 methods in these classes

are instrumented.
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Fig. 6.7.: Results from Orion for the HDFS bug.

This bug is manifested as a failure in one of the HDFS tests (the TestCrcCor-

ruption test.) The bug origin is that subclasses DFSInputStream and DFSOut-

putStream of the main class DFSClient did not handle open sockets correctly

by not closing them when they are not used anymore. The patch that developers

suggested to fix the bug included changes to the following code: class DFSClient,

subclasses DFSInputStream and BlockReader (which is used internally by DF-

SOutputStream). We used the buggy version and revision 0.17 to obtain traces

of a failed run, and code from a previous revision where the TestCrcCorruption

test passed to get traces of a normal run.

Figure 6.7 shows Orion’s results. The top-three abnormal metrics presented by

Orion are: (1) minor faults (No. minor page faults), (2) num file desc (No.

open file descriptors), (3) L2 LDM (level-2 load miss). The 2nd metric is associated

with the problem’s origin since an increase in the number of open sockets caused by

the bug affects directly the number of open file descriptors. Metrics (1) and (3) are

both memory related and they are pinpointed as suspect because the bug also causes

abnormal memory consumption patterns.

Orion also presents abnormal code regions, first, based on Java classes and sec-

ond, based on subclasses (of the abnormal classes) and methods within them. Orion

correctly pinpoints DFClient as the most abnormal class. Within DFClient,

Orion highlights DFSOutputStream as the main abnormal subclass. This is only
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Table 6.2.: Average use of file descriptors per class in HDFS for the specific bug discussed

in Section 6.4.1.

Rank Class Average # File Descriptors

1 NamespaceInfo 6.0

2 INodeDirectory 1.31

3 INode 1.29

4 UnderReplicatedBlocks 1.25

5 DatanodeInfo 1.24

6 DataNode 1.21

7 DatanodeBlockInfo 1.2

8 DFSClient 1.16

9 DataBlockScanner 1.14

10 NameNode 1.13

partially correct— part of the bug fix is in BlockReader which is used internally by

DFSOutputStream and DFSInputStream; however, DFSOutputStream does

not require changes to fix the bug.

To see if a simpler, and currently practiced, approach can lead the developer to

the origin of the bug faster, we set up the following hypothetical steps for hunting this

bug. Suppose that a simple profiling tool indicates a high number of file descriptors

in use. The developer then proceeds to examine which classes use file descriptors

most. The answer to this question is shown in Table 6.2. The average number of file

descriptors used per method is calculated by taking an average across all invocations

of the methods of that class. From this, the developer would be likely to inspect

the classes appearing near the top. It is only when one gets to the 8th ranked class

that one gets to the class where the bug lies, DFSClient. Thus, this will lead to

significant time manually inspecting classes 1–7 and ruling them out as the source of

the bug.
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Fig. 6.8.: Results from Orion for the HBase bug.

6.4.2 Case 2: HBase

HBase is an open-source, distributed, column-oriented database [118]. It operates

on top of distributed file systems like the HDFS and is capable of processing very large

scale of data with MapReduce. We use Orion to collect and analyze the metrics of a

deadlock bug in HBase 0.20.3 (bug report HBASE-2097). We collect all the OS-level

metrics shown in Table 6.4. There are 27 java classes that are instrumented from the

hadoop/hbase/regionserver/ package. They include classes to handle region

columns, store data files, logs and many other abstractions. These classes include 184

methods which are all instrumented.

The bug, which manifests as an application’s hang, is the result of two locks being

acquired in an incorrect order. The bug lies in two methods, HRegion.put and

HRegion.close. It is activated by running the HBase PerformanceEvalua-

tion testing tool which is used to evaluate HBase’s performance and its scalability.

The bug manifestation is intermittent—it manifests on average 75% of the time—

making it particularly difficult to localize.

We ran a previous bug-free version to generate normal-behavior traces and applied

Orion against the traces of a failed run when the deadlock manifests. Figure 6.8
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shows the results. The top abnormal metric, i.e., user time, is the amount of user-

level CPU time. This metric per se does not provide much insight into the failure

origin since it is difficult to correlate that to a code region. We observe that, using

user time as our abnormal metric, the most abnormal code region is HRegion

class, which is where the bug lies. Further, considering the 2nd most abnormal

metric wchar (the number of bytes which the program has caused, or will cause to

be written to disk), the flagged code region is also the HRegion class. This confirms

that HRegion is where the developer needs to focus her attention.

The bug patch shows that the bug resides in the HRegion class. This class stores

data for a certain table region and all columns for each row—a given table consists

of one or more HRegions. The patch flips the order of acquiring the two locks (a

write lock and then a read lock) and consequently the order of releasing them. It

puts the change in both the HRegion.put and the HRegion.close methods. We

speculate that spinning on locks in the deadlock situation causes the user time

metric to go awry.

The abnormal methods within HRegion that are flagged by Orion are getRe-

gionName, isClosed and toString (Figure 6.8). They do not correspond to the

methods where the bug lies (put and close). Through a detailed investigation,

we identify the cause of this. The three flagged methods are invoked much more

often within HRegion than are the erroneous methods. However, the three flagged

methods and the erroneous methods occur close together in time. The algorithm in

Orion, after it has zoomed into a time window where the fault manifested itself,

considers frequencies of methods within that suspect time window to decide which

methods to flag. This causes it to flag the most frequently invoked getRegionName,

isClosed and toString methods.



124

6.4.3 Case 3: StationsStat

StationsStat is a Java multi-tier application that is used to check the availability of

workstations on Purdue’s computing labs. Students on the campus use StationsStat

daily to check the number of available Windows or Mac workstations for each lab

on campus. StationsStat is managed by Purdue’s IT department (ITaP) and runs in

Apache Tomcat 5.5 on RedHat Enterprise Linux 5 with an in-memory SQL DB.

Due to an unknown bug, periodic failures were observed in which the application

became unresponsive. System administrators received failure reports from their mon-

itoring system, Nagios, or from user phone calls. Since the problem root cause was

unknown, the application was restarted and the problem appeared to go away tem-

porarily. StationsStat’s administrators tracked 495 metrics from the OS, middleware,

and application layers at 1 minute intervals (using asynchronous profiling) for more

than two months. We collect the application, OS and middleware metrics in Table

6.4.

StationsStat was a challenging scenario, not only because the problem’s root-cause

was unknown, but also because there was no error-free data available to create the

normal-behavior hyper-sphere. Fortunately, Orion can still work in this scenario

by using almost error-free data. The administrators noticed that, after restarting

StationsStat, the next failure was often seen only after a week or more—symptoms

seemed to suggest that the problem, possibly a resource exhaustion bug, grew pro-

gressively from a service restart to a failure. Orion therefore used a data segment

collected right after a restart to build the hyper-sphere representing normality. Orion

also filtered out constant metrics in this phase which resulted in 70 non-constant met-

rics for the rest of the analysis.

In contrast with the previous cases, we conducted a blind experiment in which

Orion gives us the suspicious metrics without us knowing the actual root-cause

of the problem. Figure 6.9 shows the abnormal metrics that Orion finds. We then

comparedGriffin’s answer to the application developers best guess of the root-cause.
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Fig. 6.9.: Results from Orion for the StationsStat case.
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Fig. 6.10.: Mambo Health Monitoring system.

The results show that the suspicious metrics given by Orion matched well with what

the developer thought to be the origin of the problem. The 2nd abnormal metric

is the number of active SQL connections. The application had only one localized

region where it made calls to the SQL driver that Tomcat used to handle database

connections. The developer concluded that the SQL driver code was buggy since it

was obvious that the few lines of SQL driver invocation code in his application was

not. Upgrading the SQL driver fixed the problem and the application continues to

run today providing an important function to students all over campus. Interestingly,

the top metric flagged by Orion—the processing time of a servlet— had nothing to

do with the bug. We found that this is due to large differences in workload between

our normal and abnormal data sets (normal data were collected right after the server

restart, while abnormal data were collected after the server has been up for a while).

This negative result highlights the importance of getting the normal and the abnormal

data sets under similar workload conditions.

In this case study, there was no need for the additional step of Orion where it

maps the abnormal metric to a code region. This is because only one small localized

region of the application code had anything to do with SQL, which was implicated

by the metric.

6.4.4 Case 4: Mambo Health Monitor

The Mambo Health Monitor (MHM) is a regression test system for the IBM Full

System Simulator, commonly known as Mambo. Mambo is a computer architecture
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simulator for systems based on IBM’s Power(TM) architecture. Mambo has been

used in the development and testing of a wide range of systems, including IBM’s

Power line of server systems (Power5, Power6, Power7), the Cell(TM) processor used

in the Sony Playstation3(TM), and IBM’s BlueGene systems. The MHM executes

tests on the simulator to detect regressions in behavior that may be introduced by new

development. The tests are drawn from a test suite that covers the key functionality

in all the major target systems. Test results are stored in an SQL database and are

accessed through a web-based interface. Figure 6.10 shows the system’s elements.

There is a servers farm which serve as MHM clients. Each client accesses a

database to determine which tests have to be run. The client then checks out the

code from a CVS repository (after authentication) and proceeds to run the test. The

test execution sometimes requires specialized resources from the node on which it is

executing, such as, a virtual network port. Upon completion, the client writes results

in the database (success or failure) along with some informational items, such as,

performance results.

Failures. A test-case can fail due to a problem in the environment or a problem

with the architecture being simulated. Examples of environment-related problems

causing a test to fail are many: a NFS connection that fails intermittently, a cron job

fails to get authenticated with the LDAP server, Linux failing to map the simulator’s

network port to the machine’s network port, /tmp filled up. A problem like this

can make a developer falsely believe that her architecture code is buggy when in

reality the problem lies in the environment. A key source of difficulty is that these

problems are often transient and the software elements do not have error messages

that correspond to the actual problem. We choose the problem of losing NFS mount

as it has been a frequent problem for users over its seven year lifespan. We emulate

NFS problems by dropping outgoing NFS packets with a probability of 0.1. The NFS

packet dropping functionality is implemented by adding an iptables rule at the start

of the faulty run.
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Fig. 6.11.: Results from Orion for the MHM problem.

Code annotations. We run Orion in an asynchronous mode. The profiling

process collects metrics at a 1 sec granularity. MHM was instrumented at 48 instru-

mentation points in 1400 lines of Tcl source code, which resulted in 2227 records.

The Tcl script invokes Perl and bash scripts. Since these had been rigorously tested,

we were told that they should be kept out of scope of our problem localization effort.

The instrumentation code records a timestamp and an identifier for the code region.

Unlike in the other applications, this code did not have finely granular methods (and

of course no classes). Therefore, the points to insert instrumentation was a subjec-

tive decision and this was done based on the amount of comments in the code. Our

instrumentation covers the starts and the ends of crucial operations, such as, CVS

operations, NFS operations, and database operations, also other structures, such as

if-then-else blocks.

Results. We collect traces of a normal and of a failed run. We use the same

machine as the MHM client and keep the workload pattern the same. Figure 6.11

shows the results of applying Orion. First, notice that the two top abnormal metrics

are metrics related to I/O, i.e., wchar and read bytes (written characters to disk

and read bytes from disk, respectively). Next, we find abnormal code regions using

wchar as our abnormal metric—Orion ranks equally four different code regions as
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the figure shows. Notice that none of the pinpointed regions perform any operation

that makes use of NFS, the root cause. However, when we look at the code (Figure

6.11), we notice that these regions are short and are always executed together inside

a loop, so they can be grouped into one region. We also notice that, right after

this (grouped) region, there is a code region that makes use of the NFS, i.e., the

Checking-the-existence-of-lock-file region. This region performs I/O

to access a file that is mounted using NFS and is affected by the injected fault.

The reason the NFS region is not ranked as an abnormal region (in fact is ranked

4) is that measurement inaccuracies emerge from asynchronous profiling. These code

regions (demarcated by our instrumentation points) are small compared to the fre-

quency of metric collection. Hence, it becomes difficult to accurately map the metric

collection points to within an instrumented code region. In these cases, Orion pin-

points to the user not only the abnormal code region but also one region before and

one region after the abnormal one. Hence, a design decision in Orion is that when

asynchronous profiling is used and the instrumented code region is “small”, Orion

pinpoints to the user not only the abnormal code region but also one region before

and one region after the abnormal one. This strategy works well here since the code

region that is affected by the fault is right after the region that Orion selects as

abnormal.

6.4.5 Summary of Cases 5–7

Case 5. This bug (HBASE-3098 report) manifests itself as an application hang in

HBase version 0.90. Orion results suggest using the vsize metric as the abnormal

metric to find the abnormal code regions. Orion ranks the following classes as the

top-3 most abnormal: HRegionServer, ZooKeeperWatcher, HBaseServer.

The fixing patch for this bug (suggested by the developers) contains changes to 12

Java classes, one of this being HRegionServer. We noticed that the the Hmaster

class, which is ranked as number 4 in Orion, is also part of the patch. Two buggy
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code regions showed up in top 5 results. There are a total of 131 classes that the

developer would need to analyze to fix this bug. Orion reduces the search space

substantially to a handful of classes.

Case 6. This bug (HBASE-6305 report) manifests itself as a hang in the Test-

LocalHBaseCluster test in Hbase version 0.94.3. According to the bug report, the

origin of the fault appears to be a stack overflow error. Using Orion we find the fol-

lowing top-3 abnormal code regions: HBaseServer, HRegionServer, Server-

Name. The suggested patch fixes only two classes—one of those is HRegionServer

which was ranked by Orion as the second most abnormal class. There is a total

155 classes that the developer would need to analyze in order to fix this bug without

Orion.

Case 7. This bug (HBASE-7578) was one of the most difficult to debug since it

only manifested occasionally (in the TestCatalogTracker test case) as a hang.

The top-3 abnormal classes given by Orion did not contain the origin of the bug, i.e.,

they were not changed by the suggested patch. However, Orion was able to show

CatalogTracker which was part of the patch, in its top-5 results. Also notice that

the developer would have had to analyze more than 44 classes to fix this bug without

the use of Orion.

6.4.6 Performance

We measure the time Orion spends in bug localization. This involves creating

the hyper-sphere based on normal-behavior traces, finding the abnormal metric and,

subsequently, the abnormal code region. Table 6.3 shows our measurements. The

localization time depends on the amount of traces and metrics that are collected in

a bug case. The amount of traces depends on the number of instrumented functions

and their call frequency.
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Table 6.3.: Performance measurements.

Case No. Bug-report ID Bug localization time (min)

1 Hadoop-3067 4.06

2 HBase-2097 15.32

3 StationsStat 31.04

4 MHM 0.48

5 HBase-3098 4.90

6 HBase-6305 10.35

7 HBase-7578 2.10
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6.5 Discussion

We discuss practical limitations of this work:

• We observe that, as Orion drills down deeper looking for problematic code

regions (class→subclasses→method), it provides less accurate results. An ex-

ample is the Hadoop bug in which we are able to identify the abnormal code

region at a Java class granularity but not at a method granularity.

• Applications that do not provide code-region delimiters would require manual

effort from the developer (like with the MHM system) to indicate what are good

instrumentation points. For most applications, however, Orion automatically

annotates entry and exit points of methods.

• A trade-off of our asynchronous profiling approach is the difficulty of mapping

metric samples to code regions accurately, when the code region is short relative

to the time it takes to sample metrics. However, this comes with the advantage

of minimal perturbation of the application. For asynchronous profiling, Orion

provides code regions that are adjacent to whatever code region it finds as

abnormal. For example, if the bug arises only when a particular package is

updated, she could only instrument that package to look for the bug.

• Although in bug cases 1, 2 ,5–7 we collect metrics from a single node (due to

the nature of the test cases), our approach also works for multi-node metrics.

In such a case, Orion would have to label metrics from different nodes and

treat them as different metrics (or features). Cases 3 and 4 are fully distributed

and do not need this special treatment.

In this work, we proposed Orion to perform root cause analysis for failures in

distributed applications. From a comprehensive set of monitored metrics, Orion

pinpoints the metric and a window that is most highly affected by a failure and sub-

sequently highlights the code region that is associated with the problem’s origin. Our

algorithm models the application behavior through pairwise correlations of multiple
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metrics, and when failure occurs, it finds the correlations (and hence the metrics)

that deviate from normality. Our case studies with different distributed applications

show the utility of the tool—Orion can localize the origin of real-world failures at a

granularity of metrics and code regions in few minutes.

Appendix
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Table 6.4.: Some of the used metrics.

Hardware Metrics OS Metrics

L1 DCM minor faults

L2 DCM major faults

L2 ICM user cpu time

L1 TCM sys cpu time

L2 TCM num threads

CA SHR virt mem size

CA CLN rss mem size

CA ITV processor

TLB DM stack size

TLB IM read chars

L1 LDM write chars

L1 STM read bytes

L2 LDM write bytes

L2 STM canceled write bytes

HW INT num file desc

BR CN nicRcvBytes

BR TKN nicRcvPckts

BR NTK nicSentBytes

BR MSP nicSentPckts

BR PRC IPInTruncatedPkts

TOT IIS IPInOctets

TOT INS IPOutOctets

VEC DP Application Metrics

FP INS servlet processingTime

LD INS servlet maxTime

SR INS servlet requestCount

BR INS servlet errorCount

VEC INS datasource maxWait

RES STL datasource numIdle

TOT CYC datasource maxActive

L1 DCH datasource numActive

VEC SP Middleware Metrics

L1 DCA request handler bytesSent

L2 DCA request handler bytesReceived

L2 DCR request handler requestCount

L2 DCW request handler maxTime

L1 ICH request handler processingTime

L2 ICH request handler errorCount

L1 ICA cache hits

L2 ICA cache accesses

L2 TCH number threads
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7. CONCLUSION

With the increasing scale and complexity of distributed systems, characterization

and detection of software bugs is becoming increasingly challenging. Due to the mar-

ket pressure, often software is pushed into a production environment with little or

no failure characterization. Detection mechanisms have a greater impact, if charac-

terization data, is used to build the detection techniques. Additionally, providing

diagnostic-context for the programmers helps in the manual process of debugging.

Our work on characterization and detection of both programming and configura-

tion bugs give key insights for providing reliability to web applications and their un-

derlying infrastructure. For programming bugs, we characterized silent and non-silent

failures, using a fault-injection methodology, in a three-tier web service application.

An important lesson learned is that a caller method should flag a returned null as an

incorrect operation and indicate a failure notification to the end user. An application

developer should log the failure case, thus causing a non-silent error. While this hap-

pens with some methods, further validation that the returned object type is correct

and its values are reasonable, is not done natively in the studied application. Such

validation should also be a part of careful application development. The validation

can be created through static analysis of source code, but for increased reliability,

there is a need of application-specific checks inserted by the developer similar to the

ones we show in our work.

For configuration bugs, our analysis using bug-repositories, in four orthogonal di-

mensions: problem-type, problem-time , problem-manifestation, and problem-culprit

revealed key findings for Java EE application servers: (1). More than one-third of

problems reported by users are configuration-related, implying that configuration-

perspective in software development requires considerable attention. (2). Inter-

version problems are majorly parameter related, thus requiring more consistency
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in configuration-design from version-to-version. (3). Intra-version configuration-

problems have an almost equal share for each of the parameter, compatibility, missing-

component subtypes. (4). Code refactoring or re-implementation results in an in-

creased number of compatibility issues. Our subsequent configuration robustness

testing tool, ConfGauge helps in choosing a server that will be prone to lesser

configuration problems.

Besides detecting programming mistakes by developers and configuration mistakes

by operators, we also make contributions in detecting duplicate client requests that

can cause performance problems in heavily loaded web sites. Duplicate requests

cause an artificially high load on servers and can corrupt server and client state. The

two root causes of duplicate client browser requests are incorrect handling of certain

HTML tags by browsers, when tag values are empty, and unintentional inclusion

of same JavaScript more than one time. Since there is no obvious manifestation of

duplicate web requests, this problem has received little attention in the literature. Our

work, Griffin addresses this problem by capturing a signature, in form of a signal for

each web request and using an autocorrelation-based algorithm to detect unneeded

web requests from clients. Griffin detects with an accuracy of 78% and with a

low overhead of 29%. More importantly, Griffin did not give any false-positives,

a characteristic that is taken into consideration when deploying it in environments

where subsequent remedial actions are taken.

In addition to detecting performance problems, automated solutions for finding

the root cause of performance problems is addressed by our work called, Orion. By

capturing metrics across system layers, Orion provides diagnostic-context. It asso-

ciates these metrics to code regions and builds a normal application profile based on

pair-wise metric correlation. Our correlation-based analysis technique first pinpoints

the metrics that show abnormal temporal patterns and deviate from the normal appli-

cation profile. Orion then determines the code-region responsible for the abnormal

deviation. We present the top three code regions to the developer as the diagnostic-

context.
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8. FUTURE WORK

Our observations and insights from this work create the investigation of the following

important research questions for the future:

• Do data races give both silent and non-silent manifestations? If

yes, what is the typical failure distribution? Our current work does not

apply to failures as a result of data races. We hypothesize that, given a data

race happens, it can give either a silent or a non-silent manifestation. Further,

each of the silent and non-silent data races could possibly be harmful or benign.

A harmful data-race in an enterprise application can result in an unintentional

financial loss to an entity, while a benign data race does not cause a financial

loss, though it still results in an incorrect functionality of the application. An

investigation of this hypothesis for concurrency bugs can provide important

characterization data that can subsequently lead to more accurate detection

schemes for concurrency bugs.

• Given source code or even bytecode, can useful detection rules be

extracted statically? Currently, for application-specific checks, we require

a normal run of an application workload to extract the normal length. Us-

ing control-flow and data-flow analysis on source code can help to build rules

and eliminate the dependency on a normal run of workload. Another related

question for the future is, can comments within source code help in detection of

configuration bugs? A typical Java EE application has several configurations at

different layers in the software stack, e.g., application, application server, JVM

and OS. Programmers often write important information as free text within

program source code. An investigation on whether rules can be learned, from
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comments, to detect misconfigurations can help improve configuration robust-

ness.

• Can the process of finding the configuration bug to be injected be

automated? Currently, parsing through the bug reports to find the string

value to inject for a given type of configuration is a manual process. In the

future, automatically finding a string value which is known to be a common

cause of the configuration bug can significantly reduce the time for which a

configuration injecting tool runs.

• Can sampling help to reduce the runtime overhead of Griffin? Cur-

rently, we intercept all function calls and track all the function call depths for

the given runtime (PHP). Another parameter that can reduce the current over-

head of 29% will be to sample the intercepted functions with the design goal of

keeping the false-positives at 0%.

• How can the workload changes be incorporated into performance

debugging? Significant changes in workload patterns can raise false-alarms

in Orion. Currently, the changes to workload are handled by using pair-wise

correlations of metrics with the hope that the correlation patterns of metrics

stays the same even if the workload changes. In the future, detecting workload

changes and retrainingOrion for the “new” normal workload will help to reduce

the false-positives.

• How to manage the scalability challenge in the performance debug-

ging algorithms? As the size of the monitored application increases with

multiples processes and threads across a large number of hosts, computing pair-

wise metric correlations across time windows of multiple sizes gets increasingly

expensive. To deal with this in the future, either the input data to the algo-

rithm should be aggregated, or approaches to finding an optimum window-size

should be designed.
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