On the Difficulty of Scalably
Detecting Network Attacks

Kirill Levchenko Ramamohan Paturl (eorge Varghese
UC San Diego UC San Diego UC San Diego

klevchen@cs.ucsdedu patun@cs.ucsdedu varghese(@cs.ucsd.edu

Background

 Traditionally Firewall uses basic ACL rules
to control the network traffic

— Packet filtering : ACL rules based on packet
headers

— Stateful Inspection : ACL rules based on the
specific protocol states.

— Application Proxy : ACL rules based on the
application specific context

Firewall and NIDS

e Traditional Firewall is ineffective In
preventing attacks hiding in the legitimate
form of traffic.

— SYN Flooding
— Port Scanning
— Connection Hijacking

Firewall and NIDS

* People start improving the functions of the
Firewall. Many of the new functions come from
NIDS.

 |deally, one can combine NIDS and Firewall
altogether such that Firewall will be able to
prevent all kind of known malicious traffic.

e Practically, Firewall sits on the critical path, and
short processing time is important. NIDS, on the
other hand, can work asynchronously and is still
quite useful in terms of detecting attacks and
providing forensics data.

Firewall and NIDS

* People is still trying to find the balance
point between the two.

— If security Is the prime concern, financial
resource/engineering efforts can be spent on
making a powerful Firewall which has full
NIDS capabillity.

— Most likely, resource is limited. Therefore, a
trade-off is there.

Example of Firewalls with partial
NIDS functions

e SYN-Flood Attack

— Cisco PIX firewall

— Checkpoint Firewall-1 with SYNDefender
Equipped

Tahle B-15 tems Detected by the Cisco PIX Firewall Info Mediator Abnormal Behavior Definition File

Entry
Behavior Acquiescence |Threshold |Mumber
Type Message Behavior Definition Periodd Adjust in File Example
Source source Hitting 50+ different 30 10 1 Asingle IP address
Cheruse averuse destination machines. prohing a netwark far
machines to attack,
Machine machine 1000+ accepts between |10 10 2 Amachine making a
Cheruse overuse two machines. large numbhber of
connections to another
machine, possibly in an
atternpt to degrade its
performance.
Denial of BHCRESive 100+ Mb transferred by |10 10 3 A machine transferring a
Senice transfer check |a single machine. large amount of data over
the network,
HTTF port 100+ hits on port 80 10 10 G Amachine making many
averuse frarm ane machine to connection attempts to a
another. wel server to degrade its
performance.
FOP3 port 100+ hits on port 110 10 10 a Amachine making many
averuse frarm ane machine to connection attempts to a
another. FOFP3 serverto degrade
its perfarmance.
STMP port 100+ hits on port 25 10 10 7 Amachine making many
averuse frarm ane machine to connection attempts to a
another. mail server to degrade its
performance.
TCZF port a0+ TCP hits on any 10 10 9 Amachine making many
averuse single por from one connection attempts to a

machine to another.

TCP service running on a
machine to degrade its
performance.

LIDP port 20+ LIDP hits on any 10 3 10 A machine making many
overlse single port from one connection attermpts to a
machine to anaother. LIDF service to degrade
its perfarmance.
Telnet possible 20+ telnet (port 233 hits |10 10 11 Auser making multiple
Cweruse password fram ane machine to telnet connection
guessing another. attermpts to a maching,
passihly atternpting to
gquess the password.

FTP Overuse | possible 20+ FTP (port 217 hits 10 10 12 Auser making multiple

password fram ane machine to FTP connection attempts,
guessing another. possibly attempting to
guess a passward.

Fort Scanning | TCP port scan |90+ TCP hits on 10 20 4 Saomeone using a port
different ports fram ane scanner for example,
rmachine to another. Satan, 155) to find the

TCP semices running an
a particular machine.
LIDFP port scan | 80+ LIDP hits an 10 20) Someone using a port
different ports fram ane scanner {for example,
machine to anaother. Satan, 155} to find the
LIDP services running an
a particular machine.
Application large FTP 20+ hib between two 10 10 25 An FTP client transferring
Oweruse transfer check | machines. alot of information with a
Server,
large HTTP 10+ Wb between twio 10 10 26 Aweh hrowser
transfer check |machines. transferring too much
data.
large POP3 20+ hib between two 10 10 27 Ane-mail client
transfer check | machines. transferring tao much
data.
large SMTP a0+ hib between two 10 10 28 Twn SMTP servers

transfer check

machines.

transferring a large
amaount of data hetween
themsehes.

large TCF 10+ b between two 10 10 249 Aclientand a TCP
transfer check | machines. service transferring large
amounts of data.
large LIDP a+ Mb between two 10 10 30 Aclientand a UDP
transfer check |machines. semice transferting large
amounts of data.
[ChP echo replies 10+ ICHMP network echo |10 10 13 Mot applicable.
replies.
echo requests |10+ ICWMP network echo |10 10 14 Mot applicable.
replies.
ICMP network | 9+ [CMP network 10 10 14 A miscanfigured machine
Unavailahle unreachable events trving to access a netwarlk
hetween two machines. that does not exist.
[CMP port a+ 1CMP port 10 10 16 A miscanfigured machine
Unavailahble unreachable events trying to access a semvice
hetween two machines. (HTTF, SMTF, etc) on a
rmachine that does not
exist.
[CMP protocal |58+ ICMP machine 10 10 17 A miscanfigured machine
Unavailable unreachable events on trying to access a
a single machine. protocol (TCP, UDP, et
on & machine that does
not exist.
[CMP machine | 9+ [CWP machine 10 10 18 A miscanfigured machine
unavailahle unreachable events on trving to access a
a single machine. machine that does not
exist.
[CMP source 2+ ICMP source route 10 10 149 A machine is trying to find
route failed events hetween two its own route through the
machines. netwark, possiblky
maliciously trying to hide
itzalf.
ICMP source 2+|CMP zource gquench |10 10 20 A machine is overloading
quench events hetween two a router and is being

machines.

instructed to stop.

On the Difficulty of Scalably
Detecting Network Attacks

* Gives theoretical lower bound on the space
complexity required for detecting some well-
known network attacks

e Space Is an issue for a Firewall (or a NIDS
where detection speed is critical)

— 1Gbit/sec link may see up to 3 million SYN packets
per second

— High speed SRAM is still expensive.

— The bandwidth of the memory bus and the latency of
addressing logic have to grow up as well

Attacks v.s. Vendors

Detection Claim
Vendor SYN Flooding Port Scans Conn. Hijacking C'ontent Matching

Checkpoint [4] . N . .
Cisco 5] N N . .
ForeScount 9] . .
Fortinet [10] .
Juniper 1 4 . .

Mazu Networks [18] . . .
NetScreen [21] . .
Network Associates 20 . . .
TippingPoint [26] .

Table 1: Vendors offering network intrusion detection systems, or components
thereof., For each vendor, we indicate which of the four attacks considered in
this paper their products claim to detect. A blank entry indicates that we
could not find a specific claim to detect the attack in the literature provided
on the vendor’s web site, though the product may detect the attack.

Space Complexity : Is Per-Flow
State Necessary?

 When Per-Flow State Is necessary

— Means the Firewall (NIDS) has to keep track
of m concurrent flows. In terms of space
complexity, this means it requires €2(m)
space.

— Not scalable then.
 When Per-Flow State Is not necessary

— Means the space complexity is o(m).
— Scalable

Theoretical Tool : Set Disjointness

The Communication Complexity (see [17]) Set Disjointness
problem, DISJ, goes as follows. Two parties with unlimited
computational resources. canonically, Alice and Bob. each
have a set X C [n] and Y C [n], respectively. They would
like to determine whether and X and Y are disjoint or in-
tersect, while exchanging as few bits as possible,

Set Disjointness Problem

Trivially, Alice can send Bob n bits, where the i™ Dbt is
| it ieX and 0 otherwise. Bob can then determine whether
XY = 0. and communicate this to Alice. We may ask if
they can do better by communicating fewer than ©(n) bits.

6 (n) turns out to be exactly the lower bound for this problem. Proof
can be found in E. Kushilevitz and N. Nisan. Communication
Complexity, Cambridge University Press, 1997.

Ingress SYN Flood Detection

e Abstract Problem Formulation

— Define the packet set P to be [m]x{SYN, FIN}

e [m] : session identifier. A number in the range [1,m]. In
practice, this can be the TCP 4-tuple (src ip/port and dst

ip/port).
* {SYN,FIN} : packet type field, either SYN or FIN
— Call a packet (x, SYN) in a packet sequence matched
If (X, FIN) occurs in the remainder of the sequence.

— Call a packet unmatched if it is not matched.
Intuitively, unmatched SYN packets correspond to
unclosed connections.

Ingress SYN Flood Detection

 Let SYNMATCH be the problem of
detecting a packet sequence containing
one or more unmatched SYN packets.

e Lower Bound
— Any algorithm for SYNMATCH must use (2 (m)
space.

Ingress SYN Flood Detection :
Proof

* By reduction from DISJ (set disjointness
problem)

 Show that two parties, Alice and Bob, can
decide if two sets, X S[n]Jand Y < [n],
held by Alice and Bob respectively, are
disjoint using only S bits of communication,
where S Is the space used by the
SYNMATCH detection algorithm.

SYN Flood Detection Proof

The reduction work as follows. Alice forms the packet
sequence

(x1,SYN), (x2,SYN),....(x)x|. SYN),

where x1,22,...,x x| are the elements of X. She runs the
SYNMATCH detection algorithm (with parameter m set to n)
on this sequence, and suspends it immediately after reading
the last element. She then sends its state to Bob. Bob forms
the packet sequence

(3?1'} FIN)* (3—721 FIN)* .. ey (§|}_F|) FIN)*

where @1,¥2,...,9y| are the elements of Y = [n]\Y. He
then resumes the algorithm using the state received from
Alice, providing the remainder of his sequence as the rest
of the input. To the algorithm, the input appears as a con-
catenation of their two sequences.

SYN Flood Detection Proof

e If Xand Y are disjoint,
—Forall x e X, there willbeaxeY

— there will be a closed connection consisting of (X, SYN)
and (X, FIN) in the aggregate sequence seen by the
algorithm.

e If Xand Y Intersect at some element ¢

— there will be a packet (c, SYN) without a matching (c,
FIN) packet.

SYN Flood Detection Proof

 Thus, X and Y intersect if and only if the aggregate
packet sequence seen by the algorithm contains an
unmatched SYN.

e Using the result of the algorithm, Bob can determine if X
and Y are disjoint.

e Since the communication complexity is (n) and m =n, it
follows that S = (2 (m).

Egress SYN Flood Detection

 SYN Flood can also be detected by
considering the difference between the
number of SYN packets entering the
network and the FIN packets leaving the
network.

— Scalable solution

— Can we trust all the hosts inside the protected
zone”?

Ingress TCP Connection Hijacking

Detection

When U sends data to V via TCP, each of the packet
contains a monotonically increasing sequence number.

V accepts only those packets within a certain window
[t+1,t+w). A packet with a sequence number out of this
range is considered as ‘out-of-order’ and is considered
as an indication of a connection hijacking attack.

Let the kK-SEQMATCH be the problem of determining if
the packet stream contains a session with k or more out-
of-order packets.

Lower Bound
— Any algorithm for K-SEQMATCH must use (2 (m/k) space

Ingress TCP Connection Hijacking
Detection - Proof

PROOF. We establish the lower bound by reduction from
DISJ. As usual, let X C [n] be the set held by Alice and let
Y C [n]| be the set held by Bob. Alice forms the sequence

(r1,k+ 1), (z2,k+ 1) (x|, k+ 1),

qqqqq

where x1,x2,..., 7 x| are the elements of X. She runs the
k-SEQMATCH detection algorithm (with parameter m set to
n) on this sequence, suspending it immediately after reading
the last element, and then sends its state to Bob. Bob forms
the sequence

(y1,1),(y2,1),. .., (ypy), 1),
where y1,y2....,y;y| are the elements of Y. Bob runs the
algorithm, providing the above sequence as input, suspend-
ing it immediately after reading the last element. He then

sends the state of the k-SEQMATCH algorithm back to Alice,
who resumes it on the sequence

(z1,k+2), (22, k+2),...,

(I'|X|) k+ 2)

again suspending 1t immediately after reading the last ele-
ment. and then sends the state to Bob. Bob resumes th! e
simulation on the sequence

(y1,2), (v2.2),..., (yy, 2).

They do this £ times altogether, with Bob finishing the exe-
cution of the algorithm and determining its output. It X and
Y are disjoint, then the aggregate packet sequence provided
to the algorithm as input contains sessions whose sequence
numbers are strictly increasing. However if X and Y in-
tersect, say at an element ¢, then the packet sequence will
contain the session

(c,k+ 1), (c.1). (c, B+ 2),(c,2),...,
(c.k+ k). (c, k),

which contains exactly k& out-of-order packets. Thus, Bob
can use the result of the k-SEQMATCH to determine if X and
Y are disjoint. Since Alice and Bob exchanged the state of
the algorithm 2k — 1 times, we have S(2k — 1) = (n), so

S=Q(m/k). [

Egress TCP Connection Hijacking
Detection

o TCP specification specifies that the appropriate
response to a segment sequence number
outside the receiver’s window to be an
acknowledgement of the last valid packet
payload.

* Thus, If sender U sees an excessive number of
ACKs from V compared to the number of
packets he sent, it might be an indication of a
hijacking attack.

e This requires a per-flow ‘counter’ to track. Not
scalable.

Summary

Detection Problem | Scalable | Comment
SYN Flooding (§3) ingress | No Egress detection relies on
egress | Yes trust of protected network.
Port Scans (§4) ingress | No Scalable egress detection is possible
egress | Yes® by estimating the no. of distinct items.
Conn. Hijacking (§5) ingress | No No scalable detection possible if attacker
egress | No is outside the protected network.
Evasion (§6) ingress | No Workaround exists for IP fragmentation,
egress | No but not for TCP segmentation.

Table 2: A summary of our results and their practical implications. “Ingress”
refers to detection using only traffic entering the network, “egress” to detection
using traffic entering and leaving the network. “Scalable” means that there
is a detection scheme that does not use per-flow state. See the appropriate
section for discussion. *Additional empirical evidence is needed to test the
effectiveness of this approach.

Conclusion

e Based on existing architectures, ingress flow
based detection of some of the well-known
network attacks proves to be expensive (non
scalable)

— This Is an analysis under worst case conditions !
— However, in the war against cyber attacks, worst case
does happen.

 NIDS/Firewall design can be changed to
overcome the fundamental obstacles

— A distributed architecture design
— EXxploit more features from current infrastructure

o http://www.thereqister.co.uk/2001/08/25/d
efending against synflood dos attacks/

e http://www.cisco.com/en/US/products/sw/n
etmgtsw/psb5477/products administration
guide chapter09186a0080238c00.html

http://www.theregister.co.uk/2001/08/25/defending_against_synflood_dos_attacks/
http://www.theregister.co.uk/2001/08/25/defending_against_synflood_dos_attacks/
http://www.cisco.com/en/US/products/sw/netmgtsw/ps5477/products_administration_guide_chapter09186a0080238c00.html
http://www.cisco.com/en/US/products/sw/netmgtsw/ps5477/products_administration_guide_chapter09186a0080238c00.html
http://www.cisco.com/en/US/products/sw/netmgtsw/ps5477/products_administration_guide_chapter09186a0080238c00.html

	On the Difficulty of Scalably Detecting Network Attacks
	Background
	Firewall and NIDS
	Firewall and NIDS
	Firewall and NIDS
	Example of Firewalls with partial NIDS functions
	On the Difficulty of Scalably Detecting Network Attacks
	Attacks v.s. Vendors
	Space Complexity : Is Per-Flow State Necessary?
	Theoretical Tool : Set Disjointness
	Set Disjointness Problem
	Ingress SYN Flood Detection
	Ingress SYN Flood Detection
	Ingress SYN Flood Detection : Proof
	SYN Flood Detection Proof
	SYN Flood Detection Proof
	SYN Flood Detection Proof
	Egress SYN Flood Detection
	Ingress TCP Connection Hijacking Detection
	Ingress TCP Connection Hijacking Detection - Proof
	Egress TCP Connection Hijacking Detection
	Summary
	Conclusion

