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Abstract—1In this work, we develop efficient algorithms to
generate a rank-minimized 7H*-matrix to represent electrically
large surface integral operators for a prescribed accuracy.
We first generate an H>-matrix using the fast multipole method
(FMM), and hence, the complexity for 7?-construction is as
low as O(NlogN) for solving electrically large surface integral
equations. We then develop fast algorithms to convert the FMM-
based H?-matrix whose rank is full asymptotically to a new
‘H>-representation, whose rank is minimized based on accuracy.
The proposed algorithms cost O (k%) in time for each cluster
in cluster basis generation and O(k*) in memory, where k is
the minimal rank of the cluster basis required by accuracy.
When the rank of the H>-matrix is a constant, the complexity
of the proposed algorithms is O(N) in both time and memory
consumption. When the rank is a variable dependent on electrical
size, the total complexity can be evaluated based on the rank’s
behavior. The resultant rank-minimized 7{?-matrix has been
employed to accelerate both iterative and direct solutions. Numer-
ical experiments on large-scale surface integral equation-based
scattering analysis have demonstrated its accuracy and efficiency.

Index Terms—H?-matrix, electric field integral equations,
electrically large analysis, fast multipole method (FMM), surface
integral equations.

I. INTRODUCTION

HE H2-matrix [1] is a general mathematical framework

for compact storage and efficient computation of dense
matrices, using which fast solvers can be developed to speed
up a computational method. There exist methods for generat-
ing an H>-matrix to represent electrically large surface integral
operators (IEs). However, they are generally computationally
expensive. For example, in an interpolation-based method [1],
[2], the Green’s function is directly interpolated to obtain a
nested H>-representation. The resultant rank is of full rank
for electrically large kernels, and the transfer matrix and
coupling matrix are both dense. As a result, the complexity of
using an interpolation-based method to generate the 742-matrix
of an electrically large IE can be as high as O(N?) in
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computation time. The adaptive cross approximation (ACA)
[3], [4], in conjunction with reduced SVD, has also been
employed to generate an H’-representation of IE operators
[51, [6]. However, the complexity remains high for electrically
large analysis, scaling as O(N?) for electrically large SIEs
considering rank’s growth with electrical size. The methods
reported in [7]-[10] show a good complexity for electrically
small or moderate problems. Nevertheless, their computational
complexity increases for electrically large analysis and remains
to be studied in detail.

In this work, we propose to start from a fast multi-
pole method (FMM)-based [11]-[13] Hz—representation of an
electrically large IE operator and convert it to a new H*-
representation, whose rank is minimized based on accuracy.
In this way, the initial 7{2-matrix obtained from the FMM
has a low complexity of O(NlogN) for electrically large
surface IEs. The FMM and multilevel fast multipole algo-
rithm (MLFMA) have been widely used for solving electrically
large electromagnetic problems [14]. There exists research
to compress MLFMA to further reduce the matrix-vector
multiplication time and storage [15], the cost of which can
be high due to the initial high rank of the MLFMA. The
matrix structure resulting from an FMM is an HZ?-matrix.
Furthermore, the FMM-based HZ-matrix is special in the
sense that its coupling matrix is diagonal, and its transfer
matrix is sparse [16]. However, the resultant rank is a full
rank asymptotically for electrically large analysis since it
increases quadratically with the electrical size of a cluster in
a surface IE. Sometimes, the rank of a cluster in an FMM-
based representation can even be larger than the size of the
cluster. As a consequence, there is room to further improve the
efficiency of the FMM-based representation. In [17], a linear-
complexity algorithm is developed to convert a constant-rank
‘H2%-matrix, whose rank is not minimized for accuracy, into
a new rank-minimized 7{2-matrix. This algorithm is used in
[18] to generate an H2-matrix from the FMM. Even so, the
resultant complexity is high due to the large rank of FMM
in the electrically large analysis. In [19], a more efficient
conversion algorithm is developed, the complexity of which
is 0(k4) for each cluster, where k is the minimal rank of the
cluster basis required by accuracy.

In this work, we develop fast nested reduction algo-
rithms (NRAs) of further reduced complexity of O(k®) for
each cluster to convert the FMM-based representation into a
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new H2-matrix whose rank is minimized based on accuracy.
Different from the method reported in [19], the proposed new
algorithms are much simplified and take much less CPU run
time while retaining the same accuracy. Considering the rank’s
growth with electrical size, the overall time complexity of the
proposed algorithms is O(N!?) for electrically large SIEs.
The resultant rank-minimized H>-matrix can then be used
to accelerate both iterative and direct solutions. Comparisons
with analytical Mie series solutions and reference solutions
from a commercial tool have validated the accuracy and
efficiency of the proposed method for solving electrically large
surface IEs.

The rest of this article is organized as follows. In Section
II, we review the background of this article. In Section III,
we present the approach to generating an H2-matrix from the
FMM. In Section IV, we detail the proposed NRAs, which
converts an FMM-based ?-matrix into a rank-minimized H>-
matrix efficiently. In Section V, we show another algorithm
to further reduce the complexity of the NRA. In Section VI,
accuracy and complexity are analyzed. In Section VII, a num-
ber of numerical results are presented to validate the accuracy
and complexity of the proposed algorithms. In Section VIII,
conclusions are drawn.

II. BACKGROUND
A. Surface Electric Field Integral Equations (S-EFIEs)

The Method of Moments based discretization of a surface
electric field integral equation results in a dense system matrix
Z, the mnth entry of which can be written as

.. R R
Zonn = / / (fm-fn——zvs-ﬁnvs-fn)GdS’dS (1)
Su /s, kg

where G = e~ /%F /(47 R) is the Green’s function, k is the
wavenumber, R = |r — r/| is the distance between a source
point r’ and an observer point r, and f,, and f, are the vector
bases on triangular patches S, and S,, respectively. Here,
triangular elements are used to discretize a surface, and RWG
bases [20] are employed to expand unknown currents.

Z can be expressed as the sum of the electric scalar and
magnetic vector potential based components as follows:

Z = _Z¢ + ZAx + ZAy + ZAZ (2)

where
1 L.
Lo = / / (V- FouV, - J)GdSdS — (3)
kg Js, Js,
and

Lo = /S /S o r)GAS'dS, &=1{x,v,2). ()

B. H?-Matrix

An H?-matrix [1] represents the interaction between two
binary trees, an example of which is shown in Fig. 1. We call
the binary tree a cluster tree since each node in the tree
corresponds to a cluster of unknowns. All the source basis
functions form a column tree, whereas all the observer bases
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Fig. 1. Tllustration of an 7>-matrix.

form a row tree. When the testing function is chosen to
be the same as the basis function, the resultant matrix is
symmetric, whose row and column trees are identical. In an
H?-matrix, by checking the admissibility condition level by
level between a row cluster tree and a column cluster tree,
the original matrix is partitioned into multilevel admissible
and inadmissible blocks. The admissible block is represented
by a green submatrix, and the inadmissible one is shown
in red in Fig. 1. Physically, an admissible block represents
the interaction between separated sources (column cluster)
and observers (row cluster), which satisfies the following
admissibility condition:

d < nD )

where d denotes the maximal diameter of the row and column
cluster, D is the distance between two clusters, and # is a
positive parameter, which can be used to control the matrix
partition. An inadmissible block is stored in its original full
matrix format. An admissible block has compact storage. Take
an admissible block formed between a row cluster ¢ and a
column cluster s as an example. It is stored as V'S’ (VHH,
where S is called a coupling matrix and V is called a cluster
basis. V is nested in the sense that for a cluster  whose
children clusters are #; and f,, their cluster bases have the
following relationship:

. Vi T"
R L

in which T matrix is called a transfer matrix.

III. METHOD FOR GENERATING AN INITIAL H2-MATRIX
FroM FMM

According to the addition theorem, Green’s function G can
be written as
e—JikoR

47 R

N> wpe ST, (S)) (7)
4

where p refers to the index of the sampling point defined on
a unit spherical surface, S, and w,, are the position vector and
the quadrature weight of each sampling point, respectively, L
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is the truncation parameter used in the addition theorem, and

d=R—-X=r—1r — X, X = 0 — 0, with O; being the

center of an observer group whose points are denoted by r

and O, the center of a source group whose points are r’ and
L

_ Y - A
_ Jkoz( J) (2l+1)hfl)*(k0X)P;(Sp-X)

®)

where hl(l) stands for a spherical Hankel function of the
first kind, superscript * denotes a complex conjugate, P, are
Legendre polynomials, and X denotes a unit vector along X.
Substituting (7) into (3), we obtain

Zyij = Vi,pSp,ij,pH 9)
in which
Wig _i§S (F—0 PN
Vip = 2t S OON Gy (10)
0
q
Sp.p = diag(wpT,; 5,_5,(Sp)) (11)
w j —7 4 . r-.7 o) > -
Vip =2 e MW Om0V L fii ) (12)

q kO

where w, are weighting coefficients used for a numerical
surface integration on the source and field triangular patch.
It is clear that the number of the sampling points, i.e., the
number of p indexes, is the rank of cluster basis V. In the -
direction, the sampling points are chosen as Gauss—Legendre
points, whereas in the ¢-direction, a uniform sampling is used.

Consider a cluster i, whose parent cluster is i/, the V; is
related to V; by V;; = V; T, where T is called a transfer matrix
shown as the following:

Tpp = D Y0, §,) YO, $p)pe /05 0= 0D

m,l<K

where p’ is the index of the sampling points for V;,, K here
stands for the number of quadrature points in the d-direction
of V;, and Y,,; are spherical harmonics. T is sparse for a pre-
scribed accuracy, whose number of entries per column (row)
is a constant regardless of matrix size. This number can be
further reduced using a filter [13]. The 7 representation for
the vector magnetic potential term (4) can be generated in a
similar way as (9).

IV. PROPOSED NRA

For an arbitrary cluster ¢ in the cluster tree, let its original
cluster basis obtained from the FMM be V’. Such V' is of
size #t by kp, where #t denotes the number of unknowns
contained in cluster ¢ and kp is the rank resulting from the
FMM. Since kp is large, the algorithm presented here is to
generate a new cluster basis V' such that its rank k is the
minimal one required by accuracy and hence being much
smaller than kp. Certainly, such a rank reduction algorithm
must retain the original nested property of the V across the
cluster tree while keeping the computational complexity low.
In addition, for an electrically large analysis, both k and kg
are electrical size-dependent and, hence, tree-level dependent.
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For the simplicity of the notation, we would not add a tree-
level dependence for k and kr. However, it should be noted
that they are different at different tree levels. The kp scales
quadratically with the electrical size, whereas k scales linearly
with the electrical size [21].

We start from the leaf level | = £ (root level is at [ = 0)
of the cluster tree. For a leaf cluster 7, we perform an SVD
on V'. Based on prescribed accuracy ¢, we keep the singular
vectors whose singular values normalized by the maximum
one are no less than €. These singular vectors make the new
leaf cluster basis V. Thus, we obtain

€ ~ ~
Viexke ® Vi U, (13)
where the subscripts denote the matrix dimension and (U")7 is
the other factor resulting from the SVD. Since #¢ is bounded
by leafsize which is a constant, the cost of (13) is constant,
which is small.

We then proceed to the nonleaf level. For each nonleaf
cluster t, its cluster basis is related to its children clusters’
bases as shown in (6). Now, the children clusters’ bases have
been changed. Hence, the transfer matrices must be updated
for nonleaf cluster . To see how to update them, we can
substitute (13) into (6) to obtain

vy [T
V= [ (V) | @y (1
from which it can be seen that
R ["le HT"
ft — [EﬁthT’Z} (15)

makes the new transfer matrix of cluster . However, its rank
may not be the minimal one required by accuracy. Therefore,
we perform another SVD on (15) and truncate singular vectors
based on accuracy € to obtain the new transfer matrix T’. As a
result, we have

T ~ Tl e @] (16)
(ky+ko) xkp (ky+ky) x k kxkp

where the rank k; + k>, which is the sum of the rank of the
two children’s new cluster bases, is further reduced to k& based
on prescribed accuracy.

The aforementioned procedure at a nonleaf level is then
repeated level by level up, until we reach the minimal level
that has admissible blocks. At that level, we finish generating
the new cluster bases. After that, we update the original FMM-
based coupling matrix, S**, as follows for each admissible
block:

St,s — (ﬁt)HSt’Sﬁs. (17)

The overall procedure is a bottom-up tree traversal proce-
dure summarized as follows, which is termed the NRA.

At each tree level of the cluster tree, we do the following
computation.

1) For a leaf cluster 7, do (13) to obtain new cluster basis
V! based on required accuracy e.

2) For a nonleaf cluster #, compute (15) to obtain 17, then
factorize it to obtain (16), and hence new transfer matrix
T as well as (U")#, based on accuracy e.
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If column cluster bases are different from row cluster bases
such as those in an unsymmetrical matrix, Steps 1 and 2 are
repeated for column cluster bases. After cluster basis update,
for each admissible block, we update coupling matrix based
on (17).

At a nonleaf level, the cost of computing (15) is only of
O (kkr), which is O(k%), since transfer matrix T is sparse.
However, the subsequent step of computing the SVD of T’
can be costly, which is O(k?kr), and hence scaling as O (k*).
To circumvent this cost, we propose a fast algorithm as the
following. For a nonleaf cluster #, in (15), we randomly choose
O (ki +k7) columns to compute its low-rank factorization (16)
instead of operating on the full kr columns. This can be
done because the rank of T' is no greater than its row rank,
which is bounded by k; + k,. We then compute a full cross
approximation (FCA) [1] with prescribed accuracy on the
randomly selected O (k; + k») columns of ’i", obtaining row
pivots 7 and column pivots o. As a result, T’ is factorized to

i~ (1,) T (18)

whose new rank is k. Since the FCA is performed on the
O (ky; + ky) columns of T', the entire computational cost of
obtaining (18) is reduced to O(k*) compared to a brute-force
SVD-based low-rank compression of T’. In (18), T’o, denotes
the selected k columns of T’ , whose indexes are contained
ino. T’o, multiplied by the following small k& by k matrix,
(’i"m)_l, is nothing, but the new transfer matrix of 7, thus

-1

T =1 (i) (19)

whereas the

@) =1, (20)

is the k rows of T , whose row indexes are contained in 7.
In this way, (U')¥ can be obtained in O(k?) cost because it
involves k-rows of (U)" multiplied by a sparse T, as can be
seen from (15).

It is worth mentioning the FCA instead of ACA is employed
here because the accuracy of the former is better than the
latter. Furthermore, for a low-rank matrix, the accuracy of an
FCA is guaranteed. Certainly, the SVD can be directly used
on the selected O (k) columns to obtain new bases, which
has a reduced cost of 0(k3) as well. However, if we do that,
the subsequent step of obtaining (U")” would cost more than
O (k3).

The pseudocode of the aforementioned fast NRA is shown
in Algorithm 1. In line 2 of this algorithm, Algorithm 2 is
called starting from the leaf level of the cluster tree, which
factorizes V = V(U) for each leaf cluster and then factorizes
T = T(U)" for each nonleaf cluster. Algorithm 2 yields new
rank-minimized cluster bases based on accuracy. In line 3,
we apply Algorithm 3 to the root of the block cluster tree
of the H?-matrix, which updates the coupling matrix of each
admissible block.

From the aforementioned cost analysis given along with the
description of the algorithm, it can be seen that the time cost
of obtaining new cluster bases V' is low, which is O (k%) for
each cluster. Here, note that & is the minimal rank required by
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Algorithm 1 Nested_Reduction_Algorithm

1: procedure NESTED_REDUCTION_ALGORITHM(?, b)
2:  update_cluster_basis(t)

3:  update_coupling_matrix(b)

4: end procedure

Algorithm 2 Update_Cluster_Basis
This algorithm efficiently obtains new nested cluster bases
with rank minimized based on accuracy
1: procedure RANDOMIZED_UPDATE_CLUSTER_BASIS(?)
2:  if ¢ is a non-leaf cluster then
(ﬁtl)HTtl
(ﬁIZ)HTt2i|
Randomly select |¢’| columns from T to form T,,.
Do FCA based on € on T, to get 7 and o
Obtain (UH =T, T=T (1" )"
else
Do SVD on V' such that V' = V(U
9: end if
10: end procedure

3: Compute T= |:

® Nk

accuracy instead of the original FMM’s rank. However, the
storage of U’ would cost O(kky) units for each cluster, thus
being O (k?). In Section V, we propose another NRA to reduce
the memory cost.

V. NEST REDUCTION ALGORITHM WITH REDUCED
MEMORY COMPLEXITY

In this new algorithm, there are also two steps. One is
to generate new cluster basis whose rank is minimized, and
the other is to update coupling matrices, similar to the algo-
rithm presented in Section IV. However, we do not explicitly
compute or store U matrix for each cluster. As can be seen
from (13) and (16), if the new cluster basis V is made unitary,
then (U*)¥ is nothing, but the projection of the original basis
onto the new basis, thus

UH" = V)"V @D
Hence, whenever (U")” is involved in computation, we can
utilize the nested property of both the original basis V' and
the new basis (V') to compute it efficiently. Storage wise,
we only need to store the new cluster basis (V') whose rank
is minimized and the original cluster basis V' which is sparse,

Algorithm 3 Update_Coupling_Matrix

This algorithm updates coupling matrices

1: procedure UPDATE_COUPLING_MATRIX(b)
2:  if b is an admissible block then

3 St,s — (ﬁt)Hst,sﬁs

4 else if i is b’s child then

5: update_coupling_matrix(b’)
6 end if

7: end procedure
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thus bypassing the storage of (U")". Next, we elaborate this
algorithm.

At the leaf level, the computation is the same as that in
the previous algorithm, where SVD is used to obtain V' so
that each leaf cluster basis is unitary. At a nonleaf level, for
each cluster ¢, we randomly select O (k; + k») columns of T
to compute (15). Let this set be ¢’. Computing ¢'-columns of
T' is the same as computing ¢’-columns of (V')* V', where
(V')en is a block diagonal matrix containing ¢’s two children’s
new cluster bases. To see this more clearly, we can rewrite (15)

as
< (VII)H ViTh
T = (sz ) H || yoTn

which is nothing but

(22)

T = (VHE v, (23)

For each index c¢ in the set ¢/, we form a cardinal vector
e, which has only one nonzero element at the cth entry.
Multiplying (V')® V' by e¢ is the same as computing V'e®
first and then multiplying the resultant vector by (V' A,
each of which costs O(nlogn) complexity using the nested
property of both bases, where n is the size of cluster z.
After obtaining the ¢’ columns of T, we perform an SVD
on it based on prescribed accuracy € to obtain new transfer
matrix T' whose rank is reduced to k. The cost of this step is
O(k3). In addition, such a new transfer matrix is unitary. The
aforementioned procedure of computing new transfer matrix T
at a nonleaf level continues level by level up until the minimum
level having admissible block is reached.

The pseudocode of the new algorithm is shown in Algo-
rithm 4, in which the fast matrix-vector multiplication algo-
rithm for V* and (V))¥ is shown in Algorithms 5 and 6,
respectively.

Algorithm 4 New_Update_Cluster_Basis

This algorithm is for new cluster basis generation.

1: procedure NEW UPDATE CLUSTER BASIS(¢)

2:  if ¢ is a non-leaf cluster then

3: Randomly select ¢’ pivots from kg columns of
t’s original transfer matrix T’

4 for ¢ € ¢ do

5 ® = e

6: recursively_multi_old_trans(t, w,)

7 recursively_multi_new_trans(t, w,)

8 end for

9 Use the resultant ¢! columns of T’ to form T/,
10: Do SVD on T!, based on € to get T

11:  else

12: Do SVD on V! to obtain V*

13: end if

14: end procedure

After generating new cluster bases, next, we update the cou-
pling matrix of each admissible block. Similarly, using (21),
(17) becomes the computation of

St,s — (VI)HVIS[’S(VS)HVS. (24)
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Algorithm 5 recursively_Multi_Old_Trans

This algorithm performs a top-down tree travserval to compute
Vo

1: procedure RECURSIVELY_MULTI_OLD_TRANS(Z, ®)
2 if ¢ is a non-leaf cluster then

3 for i is t’s child do

4 o =Tw

5: recursively_multi_old_trans(t;, ®’)

6

7

8

end for
else
(0[ — Vt wt
9:  end if
10: end procedure

Algorithm 6 Recursively_Multi_New_Trans

This Algorithm performs a bottom-up tree travserval to com-
pute VAo

1: procedure RECURSIVELY_MULTI_NEW_TRANS(?, ®)

2. if r is a non-leaf cluster then

3 for i is t’s child do
4: recursively_multi_new_trans(t;, ')
5: end for
TH\H 1
6: ' <« [E%tzgf!zz}
7: else
8: o «— (VHf e
9: end if

10: end procedure

Since V basis is of rank k, V* has only k& columns. The
computation of (V)7 V* is the computation of k matrix-vector
multiplications of (V*)¥ multiplying the k columns in V*.
This can be done using Algorithm 6 where ~ on top of the
symbols is removed. This step costs O(nlogn) for one vector.
Hence, the total cost of (V¥)YV* is O(knlogn), which is
O (k3logk) since n scales as k2. Next, we multiply S by
the computed (V) V*. Since S"* is diagonal, the cost of
this step is O(krk), which is O (k?). After that, we multiply
(VH)HV' by the k vectors resulting from S*(V*)7V*  which
again can be computed by k matrix-vector multiplications
using V', followed by the other k matrix-vector multiplications
of (V/)H. The cost of this step is also O (knlogn) utilizing the
nest property of the cluster bases.

The memory requirement of the new algorithm for each
cluster is O(k?). This is because we do not store U for each
cluster. Instead, we store V and V. At the leaf level, the storage
is a constant for each cluster. At a nonleaf level, the storage
is a new transfer matrix of size k x k for each cluster. As for
the original cluster basis V, the storage is a transfer matrix of
size kr x kr for each cluster. However, this transfer matrix is
sparse, thus costing O (kr) ~ O(k?) units to store also.

VI. ACCURACY AND COMPLEXITY

A. Accuracy

In the algorithms proposed in this work, only the steps
of SVD and FCA involve approximations. However, they are
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performed subject to a prescribed accuracy. Hence, the overall
procedure is error controlled. In the FCA part, we randomly
select O (k;+ky) = c(ky+k,) columns to perform FCA, where
¢ is a constant coefficient greater than 1. Since the matrix upon
which FCA is performed is known to be bounded by k| + k»
in rank and ¢ is chosen to be greater than 1, the resultant
cross approximation yields an accurate rank-k representation.
As can be seen from [10], the choice of k£ columns is not
unique in an ACA or FCA algorithm for approximating a rank-
k matrix. As long as the k columns are linearly independent
for a prescribed accuracy, they produce an accurate rank-k
model. Different from ACA, in an FCA, at every step, the
maximum entry in the residual matrix is identified, whose row
and column pivots are chosen to generate a rank-1 model.
Hence, the accuracy of FCA is guaranteed [1]. If it happens
that the randomly selected ¢ (k| +k,) columns do not contain k
linearly independent columns, it can be identified in the FCA
process, and more columns can then be selected.

B. Time and Memory Complexity

The complexity analysis is dependent on the rank’s behav-
ior. Consider a rank that grows linearly with the electrical
size. This is also shown to be the minimal rank required by
accuracy in an electrically large IE analysis [21]. Let n be the
size of a cluster, and then, in an SIE, the rank k scales as

k= 0(/n).

As for the rank of FMM, it scales quadratically with the
electrical size, thus

(25)

kr = O(n). (26)

In the proposed fast NRA algorithm, every cluster basis
needs O (k*+kpk) ~ O (k) operations to be computed. Based
on (25) and (26), the total time complexity for new cluster
basis generation can be computed as

L
C = D 2 0(kkr + k)

=0
3
N
+(\/;) = O(N"™). (7

- NN
=2 20|55
=0

The time complexity for coupling matrix updates can be
computed as

L
Cs = 2 2'C,p O(K%kr)
=0

L 2
[N"N
- Zz’cs,,o( 7 5) = O(N?) (28)
=0

where Cy, denotes the maximal number of blocks formed by
a single cluster, which is a constant [1]. The total memory
complexity can be computed by adding the memory cost
of each cluster basis with that of each admissible block as
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follows:

L

Cu = D Q'OK) + Cp2' 0(K?)
=0
L

AN = 15
~ Zz 0(7) = O(N").

=0

(29)

Hence, O(N') memory is required during the rank reduction.
After the rank reduction is finished, the memory of storing the
new rank-minimized H2-matrix would be just O(NlogN) for
SIE since only O (k?) is required for storing each cluster basis
and each admissible block.

As for the new algorithm shown in Section V, the com-
plexity for every cluster is O(knlogn) in time and O(k?) in
memory. Adding the cost of every cluster across all tree levels,
we obtain the total time cost as

L
C = Z 2' O (knlogn)
1=0

L
— Zzlo(\/ggz) = O(N'").
=0

Similarly, updating all the admissible blocks has also O (N'?)
complexity since, at each tree level, there are 2! O(Cyp) admis-
sible blocks, each of which costs O(knlogn) operations to
update. The total memory consumption, including the memory
required for both cluster basis generation and coupling matrix
updates, scales as

(30)

L
Cn = D 200 +C,2' 0(K)
=0

L
/ N
=>2 0(5) = O(NlogN) 31
1=0
for electrically large SIE analyses.

It is worth mentioning that although the new algorithm
mentioned in Section V has the same time complexity in
cluster basis generation compared to that in Section IV, the
constant in front of the N'? is larger. As for the coupling
matrix update, the new algorithm in Section V has a reduced
complexity of O(N'-), but the constant is also larger. We note
that the absolute run time of the algorithm in Section V can
exceed that of the fast NRA algorithm in Section IV when
simulating medium-sized problems. However, memory and its
scaling rate are reduced. In addition, from the aforementioned
complexity analysis, it can be seen that for applications where
the rank is a constant, the total complexity of the proposed
algorithms is O(N).

C. Further Rank Reduction

In the proposed NRA algorithms, the original FMM-based
cluster bases are reduced in rank based on accuracy. To further
explore the redundancy in the matrix content, we employ the
algorithm in [16] on top of the new H>-matrix generated from
the proposed NRA algorithms to further reduce its rank. The
algorithm in [16] can be used to convert an H2-matrix whose
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rank is not minimized into a new one that is minimized based
on accuracy. However, if the algorithm in [16] is directly
applied to an FMM-based matrix, the conversion cost would be
too high since the starting rank is high. In contrast, when using
the H>-matrix generated from the proposed NRA algorithms to
do further compression using [16], the cost is as low as O (k?)
for each cluster and admissible block in time and O(k?) in
memory, thus not increasing the complexity of the proposed
NRA algorithms.

VII.

A common set of simulation parameters are used for all
examples simulated in this section. Specifically, in the FMM,
we set the truncation criterion of the addition theorem as
L = kod + 1.8d;" (kod)'3, where dy = logio(1/€r) and
€r = 1072, ko is the wavenumber, and d is the diameter
of the targeted cluster. When generating an H2-representation
of the FMM, we use six points along each of the - and
¢-directions in the Lagrange polynomial-based interpolation
to obtain transfer matrices. In addition, we choose # = 0.8 in
the admissibility condition and /eafsize to be 40. The choice
of n and leafsize follows the same rule discussed in [2]. The
only simulation parameter in the proposed NRA algorithm is
accuracy parameter €, which is a user-defined parameter. When
randomly choosing #c' = c(k; + k) columns from T’ in fast
NRA, the ¢ can be chosen as an arbitrary constant, but a larger
choice of ¢ would increase CPU run time. In the case that the
direct solver of [22] is used to solve the {2-matrix generated
from the proposed algorithm, the accuracy of the direct solver
is set to be 1073,

NUMERICAL RESULTS

A. Accuracy

We first validate the accuracy of the proposed algorithms
before examining their complexity in time and memory.

1) Accuracy Comparison Between the Proposed Fast NRA
Algorithm and the Proposed NRA: In Algorithm 2, a fast
algorithm is developed to bypass the cost of the SVD in the
proposed NRA algorithm. In this algorithm, O(k) columns
are randomly selected to perform FCA. Here, we examine
the accuracy of this approach compared to the brute-force
NRA. We take a random vector x and perform a matrix-
vector multiplication using the new H>-matrix generated by
the brute-force NRA to obtain Z4,2x. We also use the fast NRA
to generate an H>-matrix Z rasrr> and compute Zy,q90x.
The error is then assessed by comparing the result with
the original FMM-based matrix-vector multiplication, Z gy X.
The results for a sphere example whose diameter ranges from
2.21 wavelengths to 17.68 wavelengths are shown in Table I
for ¢ = 1072 and € = 1073, respectively. In this table,

errg = | Zrpx — Zpymx||/|Zrymx| represents the relative
error of the new H? generated by the brute-force NRA, and
erry = || ZpasireX —ZLrymx ||/ 1Ly x || represents that of the

fast NRA. As can be seen, the fast NRA is accurate, and its
accuracy is also controllable like the NRA. In this example,
we also simulate a larger sphere whose diameter is 35.36 m,
and the number of unknowns is 1179 648. With ¢ = 1072,
we find that the accuracies of the proposed NRA algorithm
and fast NRA are 2.42 x 1072 and 4.51 x 1072, respectively.

TABLE I
ACCURACY COMPARISON BETWEEN NRA AND FAST NRA
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N 4608 18432 73728 294912
erro(e = 10-2) | 7.44e3 | 1.07e2 | 1.66e2 | 2.07e-2
erri(e=10"2) | 6.92¢3 | 1.18e-2 | 1.83e2 | 2.4le2
erro(e = 10-3) | 1.03e-3 | 1.13e-3 | 1.79e-3 | 2.28¢-3
erri(e =1073) | 9.42-4 | 1.17e-3 | 1.95¢-3 | 2.71e-3
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Fig. 2. RCS of a conducting cube simulated using two different algorithms.
(a) Fast NRA. (b) NRA in Section V.

2) Scattering From a Conducting Cube: In this example,
we compute the bistatic RCS of a conducting cube of size
12.84 x 12.84 x 12.84 at 300 MHz, which has 294912
unknowns. The new 72-matrix generated from the proposed
method is solved using the direct solver of [22]. The resultant
bistatic RCS is compared with that from HFSS, which shows
very good agreement, as can be seen from Fig. 2(a). In this
example, the accuracy criterion used in the fast NRA is set
to be € = 1073, We also use the NRA with reduced memory
complexity, shown in Section V, to simulate the same example.
As can be seen from Fig. 2(b), the algorithm shows good
accuracy as well.

3) Scattering From a Conducting Plate: In this example,
we compute the bistatic RCS of a conducting plate of size
60.81 x 60.84 at 300 MHz, which has 1107776 unknowns.
A BiCGStab iterative solver with a diagonal preconditioner
is employed to solve the new 7{’-matrix generated from
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Fig. 3. (a) RCS of a conducting plate simulated using the new H2-matrix

generated from fast NRA. (b) RCS simulated using FMM.

the proposed fast NRA. The result is then compared with
HFSS and shown in Fig. 3(a). Again, very good agreement
is observed, which validates the accuracy of the proposed
algorithm. The simulation parameters are chosen the same as
in the previous cube example. For comparison, we also plot the
RCS obtained by using FMM with GMRES and € = 5 x 1073
in Fig. 3(b). As can be seen, the slight discrepancy between
the proposed method and HFSS is not due to the proposed
method.

4) Scattering From an Array of Spheres: In this example,
we simulate an array of spheres, having 4 x 4 x 4 spheres,
each of which has a diameter of 0.5525 m and is discretized
with 288 unknowns at 300 MHz. The distance between the two
adjacent spheres is 1.3820 m. The bistatic RCS is computed
with a direct solution of the new ?-matrix by the direct solver
in [22] and compared with HFSS’s result. Good agreement is
observed, as can be seen from Fig. 4(a). The accuracy criterion
used in the fast NRA is € = 1073,

We also simulate another array having 6 x 6 x 6 spheres,
each of which is of diameter 0.8288 m and is discretized
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Fig. 4. Simulated RCS of an array of conducting spheres using the new
‘H?-matrix generated from fast NRA, solved by a direct solver. (a) 4 x 4 x 4
array. (b) 6 x 6 x 6 array.

with 648 unknowns, yielding 139968 unknowns in total
at 300 MHz. The distance between two adjacent spheres is
2.0730 m. Again, the new ?-matrix generated from the Fast
NRA is directly solved using the solver in [22], and the bistatic
RCS is extracted and compared with HFSS. The comparison
is shown in Fig. 4(b), which further validates the accuracy
of the proposed algorithm. The simulation parameters are the
same as those in the previous example.

For comparison, we use an FMM with GMRES to iteratively
solve the 6 x 6 x 6 sphere array, the result of which is shown in
Fig. 5(a). Similarly, we use the new H>-matrix generated by
fast NRA and GMRES to iteratively solve the same example.
As can be seen from Fig. 5(b), a similar agreement is observed
in the RCS result.

5) Scattering From More Complicated Structures: We also
simulate a coil, whose shape is shown in Fig. 6(a). This coil
has a diameter of 14.156 m and illuminated by an incident field
at 300 MHz. After discretization, the number of unknowns is
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Fig. 5. RCS of the 6 x 6 x 6 sphere array simulated using (a) FMM with
a GMRES iterative solver. (b) New H2-matrix generated from the Fast NRA
with a GMRES solver.

121914. The new H>-matrix generated from the Fast NRA
is then solved using the fast direct solver mentioned in [22].
The resultant bistatic RCS is compared with HFSS’s result in
Fig. 6(b). As can be seen, the two agree well with each other.

Another example we simulated is shown in Fig. 7(a). The
structure has a diameter of 17.302 m and discretized into
172077 unknowns at 300 MHz. The new H>-matrix generated
from the Fast NRA is again solved using the fast direct solver
mentioned in [22]. The resultant bistatic RCS is compared with
HFESS’s result in Fig. 7(b). Good agreement can be observed.

B. Time and Memory Complexity

With the accuracy of the proposed algorithms validated,
next, we examine the complexity of the proposed algorithms
for generating a rank-minimized H>-matrix for electrically
large analysis.

1) Growth Rate of the Rank: First, we examine the growth
rate of the rank with electrical size since it is one of the key
parameters in the complexity analysis. We use a conducting
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Fig. 6. (a) Geometry and mesh of a coil. (b) Bistatic RCS.
TABLE II
RANK VERSUS TREE LEVEL USING NRA WITH ¢ = 1073
tree level €s n kp k ke
3 20.61 | 49152.00 | 42050 | 967 | 954
4 15.74 | 24576.00 | 25538 | 721 | 552
5 10.26 | 12288.00 | 11552 | 509 | 323
6 8.29 6144.00 7938 324 | 204
7 5.26 3072.00 3698 207 | 125
8 4.48 1536.00 2738 134 86
9 2.79 768.00 1250 90 57
10 2.46 384.00 1058 63 43
11 1.50 192.00 512 44 31
12 1.39 96.00 450 32 25
13 0.88 48.00 242 25 18
14 0.84 24.00 242 18 15

sphere as an example and find its rank level by level using
the proposed NRA algorithm with € = 1073, The results are
listed in Table II. In this table, e; denotes the largest electrical
size of all clusters at a tree level, n is the largest unknown
number of all clusters, kr is the FMM’s rank (note that in
FMM, all cluster bases at the same tree level share the same
rank in common), k is the rank of the new H2-matrix of the
entire SIE obtained from the proposed reduction algorithm,
and kg is the rank of the new H>-matrix for Z, part only.
We also plot the new rank as a function of electrical size in
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Fig. 8. New rank’s growth rate with electrical size in a sphere example.

Fig. 8. From this figure, it can also be seen clearly that the
rank scales linearly with electrical size, which agrees with the
one used in our complexity analysis.

2) Complexity Analysis: A suite of conducting spheres of
various diameters at 300 MHz is then simulated to examine
the time and memory complexity of the proposed fast NRA
algorithm. First, as a sanity check of the accuracy, we simulate
one case, which is a sphere of 17.68 m diameter, whose
number of unknowns is 294912. The accuracy criterion is
chosen to be € = 1072 in the fast NRA algorithm. We then
use the direct solver in [22] to solve the > matrix generated
from the proposed algorithm. In Fig. 9, the simulated bistatic
RCS is plotted as a function of 6, which reveals an excellent
agreement with MIE series solution [23].
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Fig. 9. Simulated RCS of a conducting sphere using the new H2-matrix
generated from Fast NRA in comparison with Mie series solution.
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Fig. 10. Complexity of the proposed fast NRA. (a) Time. (b) Memory.

We then vary the size of the sphere and examine the time
and memory scaling of the proposed fast NRA algorithm. The
scaling data are listed in Table III. In this table, N is the
number of unknowns, D is the diameter of the conducting
sphere, ey denotes the relative error between the result of
an FMM-based matrix multiplied by a vector and the new
H>-matrix multiplied by the same vector, fc, is the time
for converting the ¢ part of Z matrix, 7 is the time for
converting the whole Z matrix, and tgy(s) is the assembly
time of FMM. kr 4 is the rank of the FMM H?-matrix’s ¢
part, ky is the rank of the new H’-matrix’s ¢ part, tr pv
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TABLE III

TIME, RANK, AND MEMORY SCALING OF THE PROPOSED FAST NRA
WITH € = 102 AND COMPARISON WITH THE
FMM-BASED REPRESENTATION
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the proposed work has a much reduced rank, memory, and
matrix-vector multiplication time compared with the FMM-
based representation. We also plot the time and memory usage
in log scale in Fig. 10 for the minimal-rank #>-generation
time. They are shown to agree very well with our theoretical
complexity analysis.

In addition, we plot the memory required to store an FMM
matrix and the new H’-matrix generated by Fast NRA in
Fig. 11(a) and the CPU time of one matrix-vector multiplica-
tion of the two methods in Fig. 11(b). It is obvious that due to
its minimal-rank representation, the new H2-matrix generated
by the proposed algorithms has a much reduced storage and
CPU run time while scaling with N in the same way.

VIII. CONCLUSION

We present new algorithms to generate a rank-minimized
H?-matrix to represent electrically large surface IE operators.
First, the FMM is leveraged to obtain an initial H2-matrix in
low complexity. Fast NRAs are then developed to convert the
FMM-based H>-representation into a new H>-matrix whose
rank is minimized based on accuracy. The resultant new 7>-
matrix is found to have a much reduced rank without sac-
rificing prescribed accuracy, which accelerates both iterative
and direct solutions. The proposed work has been applied to
solve electrically large SIE equations for scattering analysis.
Its accuracy and efficiency are demonstrated by numerical
experiments. In addition to surface IEs, it is also applicable
to volume IEs and other IE operators.
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