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ABSTRACT 
A linear-complexity direct matrix solution is developed for the 
surface-integral based impedance extraction of arbitrarily-shaped 
3-D non-ideal conductors embedded in dielectric materials. It 
outperforms state-of-the-art impedance solvers with fast CPU-
time, modest memory-consumption, and without sacrificing 
accuracy. The inverse of a 2.6-million-unknown matrix arising 
from the extraction of large-scale 3-D interconnects was obtained 
in 1.5 GB memory and 1.3 hours on a 3 GHz CPU.   

Categories and Subject Descriptors 
B.7.2 [Integrating Circuits]: Design Aids - Simulation, 
Verification 

General Terms 
Algorithms 

Keywords 
Impedance extraction, interconnect, fast integral equation solvers, 
direct solvers. 

1. INTRODUCTION 
With the increase in the processing power of the CPU, the 
memory and system interconnect links connected to a CPU need 
to have an exponentially increased bandwidth in order to fully 
utilize the computing power. This leads to higher speed signals on 
each data line as well as an increase in the number of data lines. It 
also becomes necessary to move chips closer to each other by 
revolutionary technologies such as 3-D stacking via TSVs etc. 
Enabling higher bandwidth brings significant challenges to the 
analysis and design of interconnects. To address these challenges, 
a full-wave modeling technology is required that can rapidly 
characterize the interaction between a large number of I/Os in the 
face of large problem sizes.  

Existing fast full-wave solvers for solving large-scale problems 
are, in general, iterative solvers [1-4] since traditional direct 
solvers are computationally expensive. The optimal complexity of 
an iterative solver is O(NrhsNitN), where Nrhs is the number of right 
hand sides, Nit is the number of iterations, and N is the matrix 
size. To analyze the interaction between I/Os, the number of right 

hand sides is proportional to the I/O count. Clearly, when the 
number of I/Os is large, iterative solvers become inefficient since 
an entire iteration procedure has to be repeated for each port. 
There has been much recent progress in direct solvers [5-8]. In 
[6], an H2-matrix based mathematical framework [11-12] was 
introduced and further developed to reduce the computational 
complexity of direct matrix solutions. It is shown that a dense 
matrix of size N can be inverted in O(N) complexity for 
capacitance extraction involving arbitrary geometry and non-
uniform materials. However, the impedance extraction developed 
in [6] was only for ideal conductors in a uniform material. To the 
best of our knowledge, the impedance extraction of realistic 
interconnects involving 3-D non-ideal conductors and non-
uniform materials has not been accomplished with a linear-
complexity direct solution. 

The contribution of this paper is the development of a linear-
complexity direct solution for the surface integral equation based 
impedance extraction involving arbitrarily shaped 3-D non-ideal 
conductors. A surface integral formulation is attractive for 
impedance extraction compared to a volume integral formulation 
since the number of unknowns is greatly reduced. The surface 
integral formulation used in this work is based on [9]. This 
formulation is shown to be accurate and robust over a broad band 
of frequencies. The resultant system matrix is composed of both 
dense and sparse matrix blocks. Some of these blocks are not 
square matrices either. Although such a complicated matrix 
pattern does not create an additional challenge to the fast 
computation of a matrix-vector multiplication, it does render the 
fast computation of a matrix inverse or LU particularly 
challenging. The unknowns solved by the new surface integral 
formulation in [9] are tangential E, tangential H, scalar potential, 
and charge density on the conducting surfaces. The entire system 
matrix cannot be represented as one H2 matrix. The same is true 
for its inverse. As a result, the method developed in [6] is not 
directly applicable to the impedance extraction concerned in this 
work. In the following sections, we demonstrate how to overcome 
the numerical challenge of directly solving a highly irregular 
system that is mixed with both dense and sparse blocks, achieving 
a linear-complexity direct solution for the impedance extraction 
of general 3-D structures with lossy conductors under the H2-
matrix based mathematical framework. 

2. BACKGROUND 
2.1 Surface Integral Formulation  
Consider a union of conductors of finite conductivity σ  
immersed in a dielectric material characterized by permittivity μ  
and permeability ε , we employ the surface integral-equation 
based formulation derived in [9] to extract the impedance of the 
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structure in a broad band of frequencies. The formulation 
comprises the following five equations:  
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where E


 is electric field intensity, H


 is magnetic field intensity, 
n̂  is the unit vector normal to the conductor surface and pointing 
away from the conductor, G0 and G1 are full-wave Green’s 
functions in the background material, and the conducting region, 
respectively. They are given by 
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with 2,  ,Ck K jω με ω με ωμσ= = −  and ω  is the angular 

frequency.  In (1-5),  /C cZ Kωμ= , r


 denotes an observation 

point, 'r


denotes a source point, S is the conducting surface, ϕ  is 

electric scalar potential, ρ  is charge density, cr


 denotes a point 

on the contact surfaces where the voltage source Cψ  is supplied, 

and ncr


 denotes a point on the non-contact surface. The first 

equation is an electric field integral equation (EFIE) that describes 
the interaction of equivalent electric and magnetic currents on the 
conductor surfaces via the background material; the second 
integral equation is a magnetic field integral equation formulated 

inside each conductor. The unknowns involved in (1-5) are n̂ E×


, 

n̂ H×


, ϕ , and ρ  on the conducting surfaces. After n̂ H×


 is 
solved, we can use it to compute the current and the impedance of 
the conductor as follows. 
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, and Z=V/I.    (7) 

2.2 H2-matrix Framework  
An H2 matrix is generally associated with a strong admissibility 
condition [11, pp. 145]. Denoting the full index set of all the basis 
functions by   = {1, 2, …, N}, where N is the total number of 

basis functions, consider two subsets t and s of the , the strong 

admissibility condition is defined as 
max{diam(Ωt), diam(Ωs)} ≤ η dist(Ωt, Ωs),            (8)                                  

where tΩ  and sΩ  are the supports of the union of all the basis 

functions in t and s respectively, diam(.) is the  Euclidean 
diameter of a set, dist(. , .) is the Euclidean distance between two 
sets, and η is a positive parameter that can be used to control the 
admissibility condition. If subsets t and s satisfy (8), they are 
admissible; otherwise, they are inadmissible. Denoting the matrix 
block formed by t and s by Zt, s, if all the blocks Zt,s formed by the 
admissible (t, s) in matrix Z can be represented by a factorized 
form 

, , # , #: , , ,t s t t s s t t k t s k k s s kΤ × × ×= ∈ ∈ ∈Z V S V V S V   ,         (9)  

where tV is nested, then Z is an H2 matrix. In (9), tV  is called a 

cluster basis, ,t sS  is called a coupling matrix, k is the rank of tV , 
and “#” denotes the cardinality of a set. The nested property of 

tV  enables linear-time arithmetics of H2 matrices. Storage 
requirements, matrix-vector multiplications, and matrix-matrix 
multiplications using H2-matrices have been shown to be of 
complexity O(N) [12]. In [6-7], it is also shown that an 2-based 

inverse and LU can be performed in linear complexity.  
 

3. SYSTEM MATRIX AND ITS REDUCTION  
3.1 Formulation of the System Matrix  
We discretize the conducting surface into triangular elements to 
accurately model arbitrarily-shaped conductors. In each triangular 

element, the equivalent magnetic current n̂ E×


 and the equivalent 

electric current n̂ H×


are expanded by using RWG vector basis 

functions nJ


 [3] as follows 
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The charge density ρ  and the potential ϕ  are expanded by 

scalar pulse basis function in each element. We denote the total 
number of RWG bases by N, and the total number of triangular 
panels by NT. The Galerkin method is applied to test (1) and (2). 
The centroid collocation method is applied to test (3) and (4).  
The resultant system of linear equations can be written as  
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[ ] ,C Cϕ ψ=                                             (15) 

where the subscripts ”C” and  “NC” denote the quantities on the 
contact surfaces and  non-contact surfaces, respectively. The L0, 
K0, L1, K1, P0 in (11-15) are dense matrices given below 
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with i = 0, 1. The spφ  in (11) is a sparse matrix of dimension 

N×NT. For each sp( )mnφ , m is the index of the RWG basis 

function, the degree of freedom of which is assigned to each edge, 
and n is the index of the pulse basis function, the degree of 
freedom of which is assigned to each triangular panel. The spJ  

has a dimension of NC×N, which is also sparse. The elements of  

spφ  and spJ  are given by: 

2
sp sp( )  ( ) ,   ( ) / ( ) .

m
mn m n mn C n mS

ds J r K J rσμ= − ∇ ⋅ = ∇ ⋅φ J
  

       (17) 

The total number of unknowns in the system (11-15) is 2N+2NT, 
where 2N unknowns are associated with RWG basis functions, 
and 2NT unknowns are associated with pulse basis functions. 

As can be seen from (16), L0 and L1 are very similar to those 
resulting from the discretization of the conventional EFIE. The 
EFIE suffers from the well-known low-frequency break-down 
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problem [3]. However, this problem is significantly alleviated in 
L0 and L1. This is because although the first term and the second 
term in L0 and L1 scale with frequency differently, the matrix 
norm of the first term over that of the second term is in the order 
of 2 2

CK l , where l  is the average edge length used in the 

discretization. Compared to the ratio of 2 2k l  present in a 

conventional EFIE, 2 2
CK l  is orders of magnitude larger since CK  

is ( )O ωμσ , and hence the breakdown frequency experienced 

by L0 and L1 is orders of magnitude smaller. Based on our 
quantitative analysis, for on-chip circuits the geometrical 
dimension of which is at μm level, one has to go to a frequency as 
low as 10−5 Hz to observe the breakdown of L0 and L1 in double 
precision computing. For package problems, this frequency is 
even lower. Therefore, one can safely use the formulation 
presented in this work for any low frequency of practical interest. 
However, special care still needs to be taken for the numerical 
integration of the near-field interaction in L0, L1, and P0 in the 
frequency range where the integrand varies very rapidly, as 
shown in [1].  

3.2 Matrix Reduction  
The matrix system shown in (11-15) consists of both sparse and 
dense blocks, which cannot be represented as an H2 matrix as a 
whole. To develop an H2-based direct solution of (11-15), our 
strategy is to eliminate all the [ ]nII , [ ]ρ , and [ ]ϕ unknowns 

from (11-15) to reduce the system to a small one that only 
involves [ ]nI . Using (12) to eliminate [ ]nII , (11) becomes 

1
0 0 1 1 sp sp( )[ ] [ ] 0 [ ] [ ] 0c n nZ I Iϕ ϕ−+ ⋅ ⋅ + =  + =LKL K L K φ H φ

1
0 0 1 1 with ( )cZ −= + ⋅ ⋅LKH L K L K .                                    (18) 

Based on (13), the charge [ ]ρ  on the non-contact surface can be 

represented by [ ]ϕ  as  
1 1
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The number of unknowns involved in (22) is N, which is the total 
number of RWG bases used in the discretization.  

In general, the unknown elimination has a cube complexity. In 
this work, we make sure that the elimination of [ ]nII , [ ]ρ , and 

[ ]ϕ  is performed in linear complexity, and also the reduced [ ]nI -

system is solved in linear complexity, holding the complexity of 
the entire solution to linear. The linear-complexity computation is 
presented in the following Section 5. 

4. NEW H2 PARTITION  
An H2-based partition is to separate a matrix into admissible 
blocks and inadmissible blocks. This is generally done by a 
cardinality based splitting method [11]. Although this method is 
general, it is not efficient in the context of the surface integral 
based impedance extraction. In this work, we propose a new 
partition method that significantly improves the efficiency of the 
resultant H2-based computation for wideband impedance 
extraction. We first show the proposed scheme for constructing a 
cluster tree, from which we build an H2-partition. Assuming (t1, t2, 
t3) to be a coordinate system, the arbitrarily-shaped conductors 
can be orientated in any direction in the 3-D space. We first find 
out the direction along which the structure being simulated has 
the maximal size, we then split the entire system into two sub-
systems along this direction. We repeat the process, during which 
each conductor is treated as the smallest splitting-unit, and we do 
not split any single conductor. We continue to split in this way 
until one conductor is left in each sub-system. After that, we 
switch to another strategy to split a single conductor. We separate 
the single conductor into three groups that respectively contain 
the panels on t1t2-, t2t3-, t1t3- surfaces, and place each group as a 
top cluster of the conductor. We then use the conventional 
splitting method to construct the descendant clusters of the three 
top clusters. We keep such a splitting until the number of bases 
involved in each cluster is less than or equal to leafsize, which is a 
parameter to control the tree depth. The major advantage of the 
aforementioned scheme for constructing a cluster tree is that each 
cluster is made two dimensional, and hence fully taking 
advantage of the surface-based formulation to speed up the H2-
based computation of 3-D problems.  

Based on the cluster tree and the admissibility condition (8), we 
construct an H2 partition. There are two different basis functions 
used for discretization: one is RWG basis and the other is 
triangular-panel-based pulse basis. Therefore, we should construct 
a cluster tree-R and a cluster tree-T for RWG bases and pulse 
bases, respectively. The cluster tree-R is used to construct an H2 
partition of L0, K0, L1, K1, and the cluster tree-T is used to 
construct the H2 partition of P0. Fig. 1(a) shows one example of 
such an H2 partition. Although L0, K0, L1, K1 share the same H2 
partition, the H2 partition of L1 and K1 is different from that of L0 
and K0. This difference lies in the fact that Eqn. (2) is only 
satisfied in each conductor, and hence the matrix block formed for 
one conductor does not couple with that formed for another 
conductor that is physically disconnected. Thus, only the diagonal 
blocks that are formed by the same conductor cluster are nonzero 
and all the other blocks are zero as shown in Fig. 1(b). 

  
Fig. 1. An 2-matrix partition: (a) Partition for L0, K0 (   full matrix 

block,  admissible block). (b) Diagonal partition for L1, K1: grey blocks 
represent non-zero blocks, white blocks represent zero blocks. 
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5. LINEAR-COMPLEXITY DIRECT 
SOLUTION 
In this section, we present a linear-complexity direct solution to 
(11-15) for full-wave based impedance extraction.  

5.1 H2 Representation of L0, K0, L1, K1, P0,   
P0

-1, and 1
1
−L  

First, we obtain an H2 representation of all dense matrices L0, K0, 
L1, K1, and P0 involved in the computation of (11-15). These 
matrices are given in (16). For an admissible block (t, s), we 
replace the 1G  and 0G  in (16) by a degenerate approximation 
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t
v v K

L
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are the 

corresponding Lagrange polynomials. The number of 
interpolation points in each cluster is dp  , where d is reduced to 2 
by the proposed method although the problem to be solved is 3-D 
in nature. This is because the underlying integral equation 
formulation is surface based and, also, each cluster is made two 
dimensional by the new partition scheme. The accuracy of (24) 
can be controlled to any order as proved in [6] and [10]. 

By substituting (24) into (16), the double integrals in (16) can be 
separated into two single integrals, from which we obtain an H2 –
representation of L0, K0, L1, K1, and P0 as  
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The coupling matrices shown in (25) satisfy: 
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with # # , # #,
t t st t K t s K K× ×∈ ∈V S  , and ( )# t sK << #t (#s) is the rank 

in the cluster t or s determined by the number of interpolation 
points. L,K,SV  denotes cluster basis formed by the cluster tree-R, 

and 1, 2( ) p p
TV  denotes cluster basis formed by the cluster tree-T. 

Cluster bases L,K,SV and 1, 2( ) p p
TV are all nested cluster bases.  

After the H2 representations of P0  and 1L have been constructed, 

we compute their inverses P0
−1 and 1

1
−L  to facilitate efficient 

computation of (22). As can be seen from (16), the P0 is similar to 
the dense system obtained from capacitance extraction problem; 
and the 1L  is similar to the dense system formulated for an EFIE. 

Therefore, their inverses can be computed directly in linear 
complexity by the inverse algorithm in [6], and stored in H2 

matrices. It is worth mentioning that due to the block diagonal 
nature of 1L , as shown in Fig. 1(b), to compute 1

1
−L , we only 

need to compute the inverse of each diagonal block.  

From (26) and (27), it can be seen that L0 and L1 share the same 
cluster basis LV , and they are only different in coupling matrix S; 

similarly, K0 and K1 share the same cluster basis KV  but with 

different coupling matrices S. However, LV is different from KV . 

The P0 even has different row and column cluster bases. 
Therefore, for efficient computation of (22), in what follows, we 
propose an algorithm to convert different cluster bases into the 
same set of cluster basis with nested property preserved. 

5.2 Unifying Cluster Bases in Linear Time 
We propose to use orthogonalization to unify the cluster bases. 
Take LV  shown in (26) as an example, it is composed of a 

vector-based KV  and a scalar-based SV . Given a cluster t, we 

first expand the vector-based t
LV

 into a scalar based form, 

i.e., expand      t t t t t
x y z s =  L K K KV V V V V . We then orthogonalize 

expand
t
LV , which results in an orthogonal cluster t

LV
 that contains 

all the independent column vectors of the original t
LV . We use 

the orthogonalization algorithm in [14] to perform this task, which 

has a linear complexity. With t
LV  obtained, the cluster bases of 

0L , 1L , 0K , and 1K
 can be accurately unified by t

LV . For 

example, based on t
LV , 0L can be updated based on the following 

equation: 
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with , , , ,
t t t
x y z x y z

Τ

= L KW V V . 0K  can be updated in a similar way. 

 
5.3 H2 Representation of LKH  and SPH

 After we obtain the H2 representation of 0L , 1L , 0K , 1K as well 

as 1
1
−L  based on the above procedure, the H2 representation of 

LKH  shown in (23) can be constructed based on an H2-based 

matrix-matrix multiplication algorithm given in [12]. To be 
specific, by performing an H2-based matrix-matrix multiplication 
in the diagonal blocks, we can obtain an H2 based representation 

of 1
1 1
− ⋅L K  . By performing 1

0 1 1( )−⋅K L K    and adding it upon 0L , 

we can obtain an H2 based representation of LKH . All these 

operations have a linear complexity since an H2-based matrix-
matrix multiplication as well as addition has a linear complexity. 

In order to represent SPH in (23) as an H2 matrix, we need to 

compute an H2-based product based on a sparse matrix spφ
 
(or 

spJ ) and an H2 matrix P0. In order to make use of the linear-time 

matrix-matrix multiplication algorithm, we represent both sparse 
matrices spφ

 
and spJ as an H2 matrix. To do so, we first construct 

an H2 partition for spφ . As can be seen from (17), the row cluster 

of spφ is formed by RWG bases, and the column cluster of spφ
 
is 

formed by triangular panel based pulse basis. Hence, we choose 
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Fig. 2.  Impedance of a straight conductor wire from 1 Hz to 1 GHz. 

(a) Imaginary part. (b) Real part. 
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Fig. 3. Simulation of an array composed of rectangular spirals. (a) One  

rectangular spiral. (b) Memory. (c) Total solution time. (d) Solution error. 

the cluster tree-R as its row cluster tree and cluster tree-T as its 
column cluster tree, and build an H2 partition based on the two 
cluster trees and the same admissibility condition (8).  We then 
fill in the matrix entry in each H2-block. Based on (17), it can be 
seen that for an RWG edge i, only sp , 1( )i tφ and sp , 2( )i tφ  are non-

zero, and all the other sp ,( ) 0i ⋅∗ =φ . In other words, only adjacent  

RWG edges and triangular panels can have interactions in spφ . 

Therefore, all the admissible blocks become zero, only a few 
inadmissible blocks are nonzero. Furthermore, in each nonzero 
block, only several elements are nonzero. Thus, we only need to 
record all the nonzero elements and their locations in the H2 
partition. The H2 representation of spJ

 
can be formed similarly. 

After obtaining the H2 form of spφ
 
and spJ , we use them to 

compute sp 0 sp( ) ( )N NC NC NC NC N× × ×⋅ ⋅φ P J  in (23), where all the 

operations are only associated with the nonzero elements in the 
H2-based sparse matrix. The computation of such a matrix-
matrix multiplication is equivalent to a few matrix-vector 
multiplications. When computing an H2-based matrix-matrix 
multiplication, we choose the partition formed by the first 
matrix’s row cluster and the second matrix’s column cluster as the 
product’s partition. 

5.4 Direct Solution of Z 
With the steps described in previous sections completed, we 

obtain an H2 matrix Z  to represent the Z matrix in (22). We then 

employ the O(N) H2-inverse algorithm [6] to compute 1−Z  and 
employ the O(N) H2-based matrix-vector or matrix-matrix 

multiplication [12] to compute rhs as well as [ ]nI = 1− ⋅Z rhs . 

Based on [ ]nI , the current and impedance of the system can be 

extracted from (7).  It should be noted that an H2-based inverse is 
different from an H2-based matrix-matrix multiplication. In a 
matrix-matrix multiplication, the computation is always 
performed based on the original matrix; whereas, in a matrix 
inverse, the computation at each step has to be performed based 
on updated matrices obtained from previous steps. Therefore, the 
linear-complexity algorithm of an H2-based matrix-matrix 
multiplication cannot be directly applied to an H2-based inverse.  

5.5 Complexity Analysis 
The storage of an H2-matrix is O(N). The total computational 
cost for solving the impedance system (22) includes two parts: 
one is the H2-based construction of P0

-1, L1
-1, HSP and HLK, 

which is the cost of eliminating unknowns [ ]nII , [ ]ρ , and [ ]ϕ  
from (11-15), and the other is the direct solution of (22) by 
computing Z-1, each of which is performed in linear complexity 
as analyzed in the subsections above. In addition, since P0 and Z 
are both symmetric, we only need to store and compute half of 
them.   

6. NUMERICAL RESULTS 
For all the examples simulated in this work, we choose leafsize = 
8 and η = 1 for the construction of H2 partition; and we use p = 3 
for the interpolation along each dimension.  

6.1 A Straight Conductor Wire 
We first use a simple conductor wire to test the accuracy of the 
proposed method for wideband impedance extraction.  The wire 

has a cross section of 1 mm by 1 mm and a length of 25 mm. The 
conductivity of the wire is 5.8e+7 S/m. A single discretisation 
resulting in 630 triangular panels is used across the entire 
frequency band from 1 Hz to 109 Hz. Both real part and imaginary 
part of the impedance computed by the proposed method are 
compared with those extracted by FastHenry [15], which is based 
on a volume integral equation method accelerated by fast 
multipole algorithm. The inductances generated by both methods 

agree with each other very well as can be seen from Fig. 2(a). For 
the real part of the impedance as shown in Fig. 2(b), FastHenry 
has to use a denser mesh with 7200 filaments to capture the skin 
effect in the higher frequency band, while the proposed surface-
based method can still capture the frequency dependency with the 
same discretization.   

6.2 Large-scale Spiral Inductor Array 
In this example, we consider an inductor array composed of 
rectangular spirals, each of which has 4 full turns. The width, 
thickness, and spacing of the rectangular spiral are 1, 1, and 1µm, 
respectively, and the inner diameter of the rectangular spiral is 10 
µm. The array includes 2×2, 2×4, 2×8, 2×16 rectangular spirals, 
which respectively results in 72692, 145384, 290768, 581536 
number of unknowns. For a fair comparison, a similar 
discretisation is used in FastImp [13] and the residual error of 
GMRES used by FastImp is set as 10-2. The frequency is 1 GHz. 
Fig. 3(b) and (c) show the memory and the total solution time for 
both methods. As can be clearly seen, the total solution time of 
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Fig. 4. Simulation of a 3-D bus. (a) Memory. (b) Time for one matrix-vector 
product. (c) Total solution time. (d) Impedance error compared to FastImp.

the proposed method scales linearly with the number of 
unknowns, whereas the total solution time of FastImp is affected 
by the number of iterations and the number of right hand sides, 
and hence FastImp failed to show linear complexity although its 
matrix-vector multiplication achieved almost linear complexity. 
In Fig. 3(d), we plot the solution error measured 

by /I −Z rhs rhs  of the proposed method. Good accuracy is 

observed in the entire unknown range. 

6.3 Large-scale 3-D Buses in Multiple Layers 
The third example is a crossover bus structure in two layers and 
each layer has m conductors. Each conductor has a size of 
1 μm 1 μm (2 1) μmm× × +  and a conductivity of 5.8e+7 S/m. The 
m is chosen as 1, 2, 4, 8, 16, 32, 64, which respectively results in 
800, 4480, 14080, 48640, 179200, 686080, 2,682,880 number of 
unknowns. The impedance is extracted at 1 GHz.  We test the 
efficiency of the proposed direct solver and compare its 
performance with FastImp. For a fair comparison, a similar 
discretization is used in both methods. The relative residual in 
GMRES used by FastImp is set as 10−3. The FastImp is only used 
to simulate the bus structure with m up to 32 since the advantage 
of the proposed solver is already obvious. Fig. 4(a) shows the 
memory consumption by both methods. It can be seen that the 
memory required by the proposed method is 8 times less than that 
required by FastImp. The time for one matrix-vector 
multiplication is plotted in Fig. 4(b), which shows that the 
proposed scheme is about 18 times faster than FastImp. Fig. 4(c) 
shows the total solution time of the proposed method that includes 
the matrix reduction, the construction of the H2 representation, 
and the direction solution of (22). As can be seen clearly, the total 
solution time of the proposed method scales linearly with the 
number of unknowns. It is also much faster than FastImp even 
though the proposed method computes the entire inverse, whereas 
FastImp only solves for 2m right hand sides. In addition, we test 
the accuracy of the extracted impedance. One column of the 
impedance matrix is extracted. We test the solution accuracy of 
both the proposed method and FastImp based 
on 1 1 1|| ' || / || ||−Z Z Z , where 1Z is a vector of impedances between 

port 1 and other ports computed by a full-matrix based direct 
solver, while 1'Z  is computed by either the proposed method or 

FastImp. Since the full-matrix-based direct solver is very 
expensive, we only use this approach to assess error for small bus 
structures. It is shown that the accuracy of the proposed method is 
0.32%, and 0.47% respectively for the bus structure with m=1 and 
m=2. For the same two structures, the accuracy of FastImp is 
0.70%, and 0.89% respectively. Since both methods achieve very 
good accuracy, we use FastImp to benchmark the accuracy of the 
proposed method for larger buses based on 

1, 1, 1,/this fastimp fastimp−Z Z Z  , where 1,thisZ
 

is computed by the 

proposed method, and  1, fastimpZ
 
is computed by FastImp. As can 

be seen from Fig. 4(d), an excellent accuracy is observed in the 
entire unknown range.  

7. CONCLUSIONS 
A direct solver of linear complexity is developed for the surface 
integral based impedance extraction of arbitrarily-shaped non-
ideal 3-D conductors embedded in materials. Numerical results 
demonstrate its superior performance.  
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