
A Direct Integral-Equation Solver of Linear Complexity for

Large-Scale 3D Capacitance and Impedance Extraction
Wenwen Chai, Dan Jiao, and Cheng-Kok Koh

School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, IN
47907, USA (phone: 765-494-5240; fax: 765-494-3371; e-mails: {wchai, djiao, chengkok}@purdue.edu)

ABSTRACT
State-of-the-art integral-equation-based solvers rely on techniques

that can perform a matrix-vector multiplication in O(N)

complexity. In this work, a fast inverse of linear complexity was

developed to solve a dense system of linear equations directly for

the capacitance extraction of any arbitrary shaped 3D structure.

The proposed direct solver has demonstrated clear advantages

over state-of-the-art solvers such as FastCap and HiCap; with fast

CPU time and modest memory consumption, and without

sacrificing accuracy. It successfully inverts a dense matrix that

involves more than one million unknowns associated with a large-

scale on-chip 3D interconnect embedded in inhomogeneous

materials. Moreover, we have successfully applied the proposed

solver to full-wave extraction.

Categories and Subject Descriptors
B.7.2 [Integrating Circuits]: Design Aids - simulation,

verification

General Terms

Algorithms

Keywords

Integral-equation-based methods, direct solver, capacitance

extraction, full wave.

1. INTRODUCTION
Integral-equation-based (IE-based) methods have been methods of

choice in extracting the capacitive parameters of 3D interconnects

since they reduce the solution domain by one dimension, and they

model an infinite domain without the need of introducing an

absorbing boundary condition. Compared to their partial-

differential-equation-based counterparts, however, IE-based

methods generally lead to dense systems of linear equations.

Using a naïve direct method to solve a dense system takes O(N3)

operations and requires O(N2) space, with N being the matrix size.

When an iterative solver is used, the memory requirement remains

the same, and the time complexity is O(NitN
2), where Nit denotes

the total number of iterations required to reach convergence. In

state-of-the-art IE-based capacitance solvers, Fast Multipole

Method (FMM) and hierarchical algorithms [1-3] were used to

perform a matrix-vector multiplication in O(N) complexity,

thereby significantly reducing the complexity of iterative solvers.

In the limited work reported on the direct IE solutions for

capacitance extraction [4], no linear complexity has been

achieved. Compared to iterative solvers, direct solvers have

advantages when the number of iterations is large or the number

of right hand sides is large. For example, if there exist N right

hand sides, each solve of which costs O(N) operations, the total

cost is still O(N2), which is expensive.

The contribution of this paper is the development of a linear-

complexity direct IE solver that is kernel independent, and hence

suitable for solving both quasi-static and full-wave problems. To

be specific, the inverse of a dense system matrix arising from a

quasi-static or full-wave problem is obtained in linear CPU time

and memory consumption without sacrificing accuracy. Our

solution hinges on the observation that the matrices resulting from

an IE-based method, although dense, can be thought of as data-

sparse, i.e., they can be specified by few parameters. There exists

a general mathematical framework, called the ―Hierarchical ()

Matrix‖ framework [5], which enables a highly compact

representation and efficient numerical computation of dense

matrices. Both Storage requirements and matrix-vector

multiplications using -matrices are of complexity O(NlogN).

2-matrices, which are a specialized subclass of hierarchical

matrices, were later introduced in [6]. It was shown that the

storage requirements and matrix-vector products are of

complexity O(N) for 2-based representation of both quasi-static

and electrodynamic problems [7-8]. The nested structure is the

key difference between -matrices and 2-matrices, since it

permits an efficient reuse of information across the entire

hierarchy. Solvers based on - and 2-matrices are kernel

independent, and are therefore suitable for any IE-based

formulation.

Although the matrix-vector product involving an 2-matrix can

be performed in O(N) complexity, the complexity of 2-matrix-

based inverse has not been clearly established in the literature. In

this work, we developed a direct IE solver of linear complexity for

solving large-scale quasi-static and electrodynamic problems.

The remainder of this paper is organized as follows. In Section II,

IE formulations for capacitance extraction in both uniform and

non-uniform materials are presented. An 2-matrix-based

representation of the dense system matrix is constructed, and its

error bound derived. We show that exponential convergence with

respect to the number of interpolation points can be achieved

irrespective of the problem size. In Section III, we provide the

details of the linear-complexity direct inverse, which includes the

orthogonalization of cluster bases, a recursive inverse formula,

and fast matrix-matrix multiplication in linear complexity. In

This work was supported by NSF under award No. 0747578 and No.

0702567.

mailto:djiao,%20chengkok%7d@purdue.edu

Section IV, numerical results are given to demonstrate the

accuracy and efficiency of the proposed IE solver for both

capacitance and full-wave extraction. We conclude in Section V.

2. IE FORMULATION WITH 2
 MATRIX

2.1 IE Formulation

An integral-equation-based analysis of a multi-conductor structure

embedded in inhomogeneous materials results in the following

linear system [3]

 

 0

cc cd c c

dc dd d

vq

q v

q

     
     
    

G

P P

E E


 (1)

where cq and dq are the charge vectors of the conductor panels

and dielectric-dielectric interface panels, respectively, and cv is

the potential vector associated with the conductor panels. The

entries of P and E are

1 1
(, ')

i j
ij i j

S S
i j

g r r drdr
a a

  P
 

1 1
() (, ')

i j
ij a b i j

S S
a i j

g r r drdr
n a a


 

  E
 

  (2)

where ia and ja are the areas of panel iS and jS , respectively,

n̂ is a unit vector normal to the dielectric interface, and a and

b are the permittivity in the two dielectric regions separated by

the interface. The diagonal entries of ddE are

0() /(2)ij a b ie a    . In a uniform dielectric, (1) is reduced to

 cc c cq vP . (3)

2.2 Cluster Tree and Block Cluster Tree

In order to capture the nested hierarchical dependence present in

G shown in (1), we explore the use of a cluster tree and a block

cluster tree. Denoting the full index set of all the panels by  := {1,

2, , N}. A representative cluster tree T is shown in Fig. 1(a).

Clusters with indices no more than leafsize are leaves. The set of

leaves of T is denoted by  .

 Fig. 1 (a) A cluster tree. (b) An 2-matrix structure.

 Consider two subsets t and s of . We define a strong

admissibility condition as follows [5]:

 

True if max{ (), ()}

, are admissible: (,)

False otherwise

t s

t s

diam diam

t s dist

  


  



 (4)

in which t and s are the supports of the union of all the

panels in t and s respectively, and  is a parameter that controls

the solution accuracy. Constructing an admissible block cluster

tree from the cluster trees T and T
itself (the testing and basis

functions are the same in Galerkin-based IE solvers) and a given

admissibility condition can be done recursively [5], in which the

constructing procedure results in an admissible block cluster tree

which can be mapped to a matrix structure shown in Fig. 1(b).

Each leaf block cluster corresponds to a matrix block. The shaded

matrix blocks are admissible blocks in which the 2-matrix

representation is used; the un-shaded ones are inadmissible blocks

in which a full matrix representation is employed.

2.3 2-Matrix Representation and Its Error Bound

If two subsets t and s of  satisfy the strong admissibility

condition (4), the original kernel function (,)i jg r r
 

 in (2) can be

replaced by a degenerate approximation

, (, ') (,) () (')
t s

t s t s t s

v v

v K K

g r r g L r L r 



 
 

 
   

 (5)

where : { : {1,..., }} {1,..., }d d

iK v v p i d p      , d = 1, 2, 3, for 1-,

2-, and 3-D problems, respectively; p is the number of

interpolation points in one dimension; () t

t

v v K



and () s

s

K 



are two

families of interpolation points, respectively, in t and s; and

() t

t

v v K
L


 and () s

s

v K
L 

are the corresponding Lagrange polynomials.

With (5), (2) are separated into two single integrals:

,

,

: 1/() (,) () (') '

1/() () (,) () (') '

i jt s

i jt s

t s t s t s

ij i j v v
S S

v K K

t s t s t s

ij i j a b v v
S S

v K K a

a a g L r dr L r dr

a a g L r dr L r dr
n

 



 



 

   

 

 

  


   



   

   

P

E

 

 
 (6)

Hence, the submatrix ,t s
G can be written in a factorized form as:

, , ,

,

 : , , , (7)

, () , (') '

(,) /() (contains conductor panels)

(

t t s s

i j

v

t s t t s s t t K t s K K s s K

t t s s

iv v j
S S

t s

v i j

t s

where L r dr L r dr

g a a t



 

 



      

 



 

G V S V V S V

V V

S



 
  

(,)
) /() (contains dielectric panels)

t s

v

a b i j

a

g
a a t

n

 




 




for i t , j s , tv K , and .sK  The matrix G in (7) forms an

2-matrix representation if the same space of polynomials are

used across t and s. After a detailed error analysis, we found that

if the admissibility condition given in (4) is satisfied, the error of

(5) is bounded by

(,) 24 1 2
|| (, ') (, ') || () [1 2][1] (8)

(,)

t s d p

p

t s

ed
g r r g r r p

dist Q Q



     
 

 where p is a constant related to p and the interpolation scheme,

and (,)t sdist Q Q is the Euclidean distance between cluster t and

cluster s. Clearly, exponential convergence with respect to p can

be obtained irrespective of the choice of  . The larger p is, the

smaller the error is. In addition, the block entries represented by

(7) can be kept to the same order of accuracy across tree levels.

{0, 1, 2, 3, 4, 5, 6, 7}

{0, 1, 2, 3} {4, 5, 6, 7}

{0, 1} {2, 3} {4, 5} {6, 7}

{0} {1} {2} {3} {4} {5} {6} {7}

{0, 1, 2, 3, 4, 5, 6, 7}

{0, 1, 2, 3} {4, 5, 6, 7}

{0, 1} {2, 3} {4, 5} {6, 7}

{0} {1} {2} {3} {4} {5} {6} {7}

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

3. Direct Inverse of Linear Complexity
The algorithms in the proposed direct solver are outlined below:

Before we provide the details, we introduce the following

concepts and notation: 1) For each cluster t T  , the cardinality

of the sets () : { : (,) }col t s T t s T     
and

() : { : (,) }row s t T t s T      is bounded by a constant
spC [5].

2) Each non-leaf cluster t has two child nodes. 3) The rank of

()t

t TV V


is denoted by k. 4) The parameter leafsize is denoted

by minn , and min#t n if t  .

3.1 Orthogonalization of the Nested Cluster Basis

Recall that when constructing the 2-matrix representation of

system matrix G, we use the same space of polynomials for all

clusters. Consider a cluster 't , which is a child of t, ()t

vL r


 in (5)

can be written as
'

' '

' '

'

() ()
t

t t t

v v v v

v K

L r L r


  T
 

, with ' '

' '()t t t

v v v vL T . As a

result,

' '

' ' ' ' ' '

' ' ' '

' '

() () () ,
i it t

t t t t t t t t

iv v v v v v v iv iv
S S

v K v K

L r dr L r dr
 

     V T T V V T
 

where
'' t tt K KT  is called transfer matrix for cluster 't . Hence,

assuming that 1 2children() { , }t t t

with 1 2t t , we have

1 1 1 1

2 2 2 2

t t t t

t

t t t t

    
         
    

V T V T
V

V T V T
 (9)

This means that we only need to store the matrices t
V for leaf

clusters t and use the transfer matrices T to represent all other

clusters. This nested property of t
V as shown in (9) enables O(N)

storage of G and O(N) matrix vector multiplication [6-8].

To make the inverse calculation efficient, we first orthogonalize
t

V while still preserving the nested property of t
V .

 For leaf cluster bases, we can construct an orthogonal matrix
tZ such that

t t tV V Z and () ()t t t t t t t t t    V V V Z V Z Z G Z I 

with t t t

G V V . To find tZ , we first perform Schur

decomposition t G PDP , where P contains the eigenvectors of
t

G and the diagonal matrix 1(, ...,)kdiag  D contains the

corresponding eigenvalues 1 2 ... 0k      . We fix a rank

{0, ... , }tk k such that 0i  holds for all {1, ... , }ti k . Define

matrix
tk kD  by /ij ij i D . If t Z PD , we obtain

()t t t t t         V V Z G Z D P PDP PD D DD I     

Hence, t Z PD is the matrix that can orthogonalize leaf cluster

bases t
V . Based on the nested property of t

V , the total

complexity of obtaining tZ using the above procedure is O(N).

The non-leaf clusters can be orthogonalized in a similar fashion

with the nested property preserved.

3.2 Fast Inversion of Linear Complexity

 (1) Recursive Inversion Equation: Casting the2-matrix

representation of G into the following form
 

  
 

11 12

21 22

G G
G

G G
 . Its

inverse can be recursively computed by using the equation
1 1 1 1 1 1

11 11 12 21 11 11 121

1 1 1

21 11

     



  

        
  

    

G G G S G G G G S
G

S G G S
 (10)

where 1

22 21 11 12()    S G G G G , and  ,  are respectively

addition and multiplication defined for the 2 matrix to be

elaborated soon. The recursive inverse equation (10) can be

realized by the pseudo-code shown below

From (11), it can be seen that the computation of inverse involves

a full-matrix inverse at the leaf level and a number of matrix-

matrix multiplications at other levels. Hence, efficient matrix-

matrix multiplication is essential to an efficient inverse in linear

time, which is elaborated in next section.

(2) Fast Matrix-Matrix Multiplication in Linear Time

The fast multiplication in (11) can be done recursively.

Assuming 1 (,) Gb t s T     , 2 (,) Gb s r T     , and the multiplication

target block is (,) Gb t r T     . Matrix blocks 1b
G , 2b

G , and

b
G can be admissible blocks, non-admissible blocks, or non-leaf

blocks. The 1 2b b b G G G encountered in (11) can be divided

into the following cases, each of which has a constant complexity.

 1bG 2bG bG complexity

1 admissible admissible admissible O(k1
3)

2
admissible admissible non-leaf O(k1

3)

3
admissible non-leaf admissible O(k1

3)

4 admissible non-leaf non-leaf O(k1
3)

5 admissible non-admissible admissible O(k1
3)

6 non-admissible

(full matrix)

non-admissible

(full matrix)

non-admissible

(full matrix)
O(k1

3)

7
non-leaf non-leaf admissible O(k1

3)

8
non-leaf non-leaf non-leaf O(k1

3)

Recursive inverse algorithm (X is used for temporary storage)

Procedure 2-inverse(G, X) (G is input matrix, X is inverse)

 If matrix G is a non-leaf matrix block

2-inverse (G11, X11)

21 11 21 11 12 12 22 21 12 22, , ()       G X X X G X X X G X (11)

2-inverse (X22,
1

22()G)

1 1 1 1 1

22 21 21 12 22 12 11 12 21 11() () , () () , () ()             G X G X G G X G X G

else

 Inverse (G) (normal full matrix inverse)

Direct IE solver of linear complexity

1. Orthogonalize the cluster basis t
V

 2. Compute the inverse of 2–based G

 Recursive inversion

 Linear-time matrix multiplication

 3. Compute the capacitance matrix by q=G
-1v

In the Table above, 1 minmax(,)k k n is a constant that is

independent of N for quasi-static applications.

Next, we will use only cases 1, 2 and 3 to explain how the fast

multiplication is performed and omit other cases due to space

constraint.

Case 1: 1

1

b t s

b



G V S V and 2

2

b s r

b



G V S V . Then,

 1 2

1 2 1 2 1 2()b b t s s r t r t r

b b b b b b

 

    G G V S V V S V V S IS V V S S V

1 2

1 2 1 2() ()new b b b t r t r t r

b b b b b b b

 

      G G G G V S V V S S V V S S S V

with 1 2

new

b b b b S S S S . This process does not involve any

approximation. Since the dimension of each of 1 2, ,b b bS S S is k×k,

the complexity of computing new

bS is at most 3()O k .

Case 2: 1

1

b t s

b



G V S V and 2

2

b s r

b



G V S V , while b
G is a non-

leaf block. We first compute the multiplication as in Case (1) to

get an admissible block as shown in step (a) in Fig. 2. We then

split the resultant admissible block into four small admissible

blocks as shown in step (b). However, the sub-blocks in b
G are

not necessarily all admissible blocks. Based on the block structure

in the target matrix, we may convert an admissible block to a full

matrix block as shown in step (c). We add the resultant matrix

upon b
G .

Fig.2. A scheme to compute the product of two admissible blocks and

format the product to be a non-leaf. (R—an admissible block, F—an

inadmissible block.

Steps (b) and (c) are called split operation and conversion

operation respectively, which are performed as follows:

Split operation: A split operation is in fact a transformation from

parents to children, which does not involve any approximation.

For one block
 G(,)b t s T     , we perform

1 1 1 1 1 1 2 21 1 1 1

2 2 2 2 2 2 1 1 2 2 2 2

() ()
(12)

() ()

t t s s t t s st t s s

b bt s

b bt t s s t t s s t t s s

b b

   



   


    
     
         

V T S T V V T S T VV T V T
V S V S

V T V T V T S T V V T S T V

where 1 2children() { , }t t t , and 1 2children() { , }s s s . It can be seen

that one admissible block is divided into four admissible blocks

with ji

ij

st

b bS T S T


 in (12). Hence, one split operation costs 3()O k .

Conversion operation: If we convert the admissible block to a full

matrix block as shown in step (c), we just need to compute
2 2

22

t r

b



V S V . Since the largest dimension of a full matrix block is

min minn n , the cost is at most 2

min()O n k . If we convert a full

matrix block to an admissible block, the best approximation of
(2, 2)t r

fullG for the admissible block is 2 2 (2, 2) 2 2 2 2

22()t t t r r r t r

full b

  

V V G V V V S V

with 2 (2, 2) 2

22 ()t t r r

b full



S V G V . Hence, each conversion operation at

most costs 2

min()O n k . In summary, each of steps (a), (b), and (c)

shown in Fig. 2 has complexity 3

1()O k , and hence the total

complexity is 3

1()O k .

Case 3: If 1b
G is an admissible block, 2b

G is a non-leaf block,

and b
G is an admissible block, we first do split operations on 1b

G

and get a new block 1b
G as shown in step (a) of Fig. 3. We then

use simple recursive multiplication to compute 1 2b bG G and

obtain a non-leaf block with four admissible sub-blocks in step

(b). In step (c), a collect operation is performed to get a single

admissible block, which is depicted below. After obtaining the

single admissible block, we directly add it to original matrix block
b

G and get new

bG . The only approximation in this case is from the

collect operation done in step (c), the accuracy of which is

controllable.

Fig. 3. A scheme to compute the product of an admissible block with a

non-leaf block with the target block being an admissible block.

Collect operation: This process is a transformation from children

to parents, which involves an approximation since we are not able

to express the cluster bases of children in terms of the parent

cluster bases. However, we can get the best approximation of the

children blocks in the cluster bases corresponding to the parent

using the orthogonal cluster basis.

We approximate the child matrix block ijb by the parent block

b .The best approximation in the cluster bases t
V and s

V is

21

21

1 1 1 2

11 12

2 1 2 2

22

1 1 1 21 1 1 1
11 12

2 2 2 22 1 2 2

22

children()

()

()ji

ij

t s t s

b bt t s s

t s t s

b b

t s t st t s s
b bt s

t t s st s t s

b b

stt

b

j s

 

 

 

 



 







 
 
 
 

    
     
        



V S V V S V
V V V V

V S V V S V

V S V V S VV T V T
V V

V T V TV S V V S V

V T S T
children()

s

i t





  V

 (13)

It can be seen that four admissible blocks are collected to be one

admissible block with
children() children()

ji

ij

st

b b

i t j s



 

  S T S T . Hence, one

collect operation costs 3()O k . The total complexity of steps (a)-

(c) shown in Fig. 3 is 3

1()O k .

3.3 Compute Capacitance Matrix

Since the inverse obtained from (11) is also an 2 matrix, and 2-

matrix-vector multiplication has linear complexity [6-8], we can

compute 1q vG in O(N) time. By adding all the entries of q in

each conductor, the capacitance matrix element can be obtained.

3.4 Complexity Analysis and Error Analysis

Complexity Analysis: The cost of orthgonalization of the cluster

basis described in Section 3.1 is O(N). The cost of direct inverse

shown in (11) can be analyzed below

1 3 3

1 1

0 0

3 3

1 1

() (#) () 2 ()

()# ()

L L
l

sp

l l

sp sp

Comp G blocks at level l O k C O k

C O k T C k O N



 

 

 

 
. (14)

in which L is the number of tree levels. The inverse procedure

shown in (11) essentially traverses a block cluster tree from

bottom to top. At each tree level, the matrix block at that level is

formed by a matrix-matrix multiplication. Since each matrix-


(c) (b) (a)

 (b)  

(a)

 (c)

matrix multiplication has an 3

1()O k complexity as shown in

Section 3.3, and there are at most 2l

spC matrix blocks in level l, we

obtain a linear cost for matrix inverse as shown in (14).

Computing the capacitance matrix described in Section 3.3 also

costs O(N). Therefore, the total CPU cost of the proposed direct

inverse is O(N). It is worth mentioning that if the linear system is

symmetric, we can compute only half of the entries in the inverse,

further reducing the CPU cost.

Accuracy Analysis: In Section 3.1, orthogonal bases
t

V are

constructed. The best approximation of a general
t

V in the space
t

V is given by ()t t tV V V  . The error of this approximation is:

2

2 1
|| () || t

t t t

k



 t

V V V V  , (15)

where
1tk




is the (1)tk th eigenvalue of t t

V V , in which kt is the

rank of cluster basis t
V . Clearly, if kt is chosen to be the same as

the rank of t
V , the error of (15) is zero. Therefore t t s s 

V V GV V    is

the best approximation of a matrix block (,)t s
G in the bases t

V

and s
V . In Section 3.2, the inverse is performed by using

formatted multiplication. For example, when computing

21 11 21 G X X in (11), the block structure of
21X is assumed to be

the same as that of
21G . The goal of a formatted multiplication is

to represent the 2 tree of
1

G by the same 2 tree used to

represent G . Certainly, one can assume a different tree to

represent the tree of
1

G , or perform unformatted multiplication,

i.e. without specifying the target matrix. However, using the 2

tree of G to represent that of
1

G is an ideal choice based on

physical understanding. Here, the capacitance matrix
1

G is a

sparse matrix. In the 2 tree constructed for G and hence
1

G ,

the blocks formed by clusters that satisfy admissibility condition

(4) (i.e., they are far away) are represented by low rank matrices.

In real
1

G , these blocks can even be considered as zero. Hence,

using the 2 tree of G to represent that of
1

G is indeed an ideal

choice. The same argument holds true for full-wave cases. This

has been verified by our numerical experiments. Therefore, the

inverse performed here can be considered as an exact inverse if

one neglects the round off error incurred in numerical

computation.

4. Numerical Results
The first example is a m m crossing bus structure embedded in

free space or dielectric materials as shown in Fig. 4 [3]. Two

methods are compared: FastCap 2.0 and the proposed direct IE

solver. The m in this bus structure varies from 4 to 16. The

dimension of each bus is scaled to
31 1 (2 1) mm   . The distance

between buses in the same layer is 1 m, and the distance between

the two bus layers is 1 m. For this bus structure, we simulated

both free-space case and non-uniform dielectric case. For the case

involving non-uniform dielectrics, the dielectric surrounding the

upper layer conductors has relative permittivity of 3.9, and the

lower layer conductors are in the dielectric having relative

permittivity 7.5. Each bus is also scaled to 31 1 (2 1) mm   . The

distance between buses in the same layer is 1 m, and the distance

between the two bus layers is 2 m. (Note that capacitances are

scalable with respect to the length unit). In the proposed solver,

the parameters used to construct the cluster tree and block cluster

tree are leafsize=10 and  =1.6. The number of interpolation

points p is determined by a function p= ()a b L l  , with a=2,

b=1, and L being the maximum number of tree level, and l tree

level. In Fig. 5(a), we plot the error of 2-matrix representation

of system matrix G (so called as original matrix error), and the

error of extracted capacitances with respect to the number of

unknowns. The former is measured by || || / || ||F FG G G , where

G is shown in (7), and || ||F is the Frobenius norm; the latter is

measured by || ' || / || ||F FC C C , where C is the capacitance

matrix obtained from FastCap 2.0, and C’ is that generated by the

proposed solver. As can be seen clearly from Fig. 5(b), very good

accuracy of the proposed direct solver can be observed in both

G and capacitance matrix C’. In addition, the error of G reduces

with the number of unknowns because of increased p and hence

increased accuracy as can be seen from (8). In addition, we are

able to keep the accuracy of the capacitance matrix to the same

order in the entire range.

 In Fig. 6, we plot the total CPU time and memory consumption

of the proposed direct inverse for the m m bus structure in free

space. In Fig. 7, we plot the same for the m m bus structure

embedded in multiple dielectrics. The performance of FastCap 2.0

is also plotted for comparison, the convergence tolerance of which

is set to 1%. Compared with FastCap 2.0, the proposed direct

solver is 9–25 times faster and reduces memory usage by 85–95%.

Dell 1950 Server was used for all simulations in this paper.

Fig. 5 Original matrix error and capacitance error with respect to N. (a)

Uniform dielectric. (b) Non-uniform dielectric.

Fig. 6. Comparison of time and memory complexity in simulating the bus

structure in free space.

0 1 2 3 4

x 10
4

10
-3

10
-2

10
-1

Number of unknowns

E
rr

o
r

Capacitance error

Original matrix error

0 0.5 1 1.5 2 2.5 3

x 10
4

10
-4

10
-3

10
-2

10
-1

Number of unknowns

E
rr

o
r

Capacitance error

Original matrix error

0 1 2 3 4

x 10
4

0

100

200

300

400

500

Number of unknowns

T
im

e
(s

e
c
o

n
d

)

FastCap

H2-based direct solver

0 1 2 3 4

x 10
4

0

100

200

300

400

500

600

Number of unknowns

M
e

m
o

ry
(M

B
)

FastCap

H2-based direct solver

Fig. 4. (a) A bus structure. (b) An on-chip interconnect.

Fig. 9. Simulation of a 4–20 plate.

Fig. 7 Comparison of time and memory complexity in simulating the bus

structure embedded in multiple dielectrics.

To test the performance of the proposed solver in simulating

very large examples, we simulated a structure shown in Fig. 4(b)

[3]. The relative permittivity is 3.9 in M1, 2.5 from M2 to M6,

and 7.0 from M7 to M8. The discretization of this 48-conductor

structure results in 25,556 unknowns. To test the large-scale

modeling capability of the proposed solver, the 48-conductor

structure shown in Fig. 4(b) is duplicated horizontally, resulting

in 72, 96, 120, 144, 192, 240, 288, and 336 conductors, which

lead to more than 1 million unknowns. The simulation parameters

are chosen as leafsize=10,  =1, and p=1. The error of the 2-

matrix representation of system matrix G in the maximal

admissible block is shown in Fig. 8(a), with the number of

unknowns varying from 25,556 to 1,047,236. Good accuracy is

observed in the entire range. In Fig. 8(b), we show the capacitance

error with respect to N. Again, good accuracy is observed. Since

we need to use the capacitance C generated from an existing

solver such as FastCap to assess the accuracy of the capacitance

C’ extracted by the proposed solver based on || ' || / || ||F FC C C ,

and C is not available

within feasible

computational resources

when the number of

unknowns is too large,

the error in Fig. 8(b) was

only plotted up to 253792

unknowns. In Fig. 8(c),

we plot the inverse time

and the total CPU time of

the proposed direct solver with respect to N. Clearly a linear

complexity can be observed. For comparison, the solution time of

the HiCap [2] is also plotted. The advantage of the proposed

direct solver is clearly demonstrated even though HiCap only

calculated the results for m right hand sides with m being the

number of conductors, whereas the proposed solver obtained the

entire inverse, i.e., the results for N right hand sides. In Fig. 8(d),

we plot the memory complexity of the proposed solver, which

again demonstrates a linear complexity.

The proposed 2-matrix-based method is kernel independent,

and hence is equally applicable to electrodynamic problems.

Using the proposed solver, we simulated a square plate having

electric size from 4 wavelengths to 20 wavelengths. The

simulation parameters were chosen as  =1, leafsize=20, and

p=10. In Fig. 9, the CPU time was plotted with respect to the

number of unknowns. Again, linear complexity is observed. In

addition, the error || || / || ||F FG G G across all the electric sizes

is smaller than 3.5e-3; and the error of the inverse matrix, which

is
1|| ||I G G , is smaller than 3.3%. For full-wave cases, the

rank k used in the 2-based representation needs to be determined

adaptively [8] in order to keep a constant order of accuracy across

electric sizes without compromising the computational

complexity.

5. CONCLUSIONS
A linear-complexity direct inverse was developed for fast integral-

equation-based analysis of quasi-static and electro-dynamic

systems. Numerical results demonstrated its superior performance.

6. REFERENCES
[1] K. Nabors and J. White, ―FastCap: A multipole accelerated 3-d

capacitance extraction program,‖ IEEE Trans. on CAD, pp.1447–1459,

1991.

[2] W. Shi, J. Liu, N. Kakani, and T. Yu, ―A fast hierarchical algorithm

for 3-D capacitance extraction,‖ IEEE Trans. on CAD, pp. 330–336,

2002.

 [3] S. Yan, V. Saren, and W. Shi, ―Sparse Transformations and

Preconditioners for Hierarchical 3-D Capacitance Extraction with

Multiple Dielectrics,‖ DAC 2004, pp. 788-793.

[4] D. Gope, I. Chowdhury, and V. Jandhyala, ―DiMES: Multilevel fast

direct solver based on multipole expansions for parasitic extraction of

massively coupled 3D microelectronic structures," DAC 2005, pp. 159-

162.

[5] S. Borm, L. Grasedyck, and W. Hackbusch, ―Hierarchical matrices,‖

Lecture note 21 of the Max Planck Institute for Mathematics, 2003.

[6] S. Borm. ―2-matrix approximation of integral operators by

interpolation,‖ Applied Numerical Mathematics, 43: 129-143, 2002.

[7] W. Chai and D. Jiao, ―An 2-Matrix-Based Integral-Equation Solver

of Linear-Complexity for Large-Scale Full-Wave Modeling of 3D

Circuits,‖ IEEE 17th Conference on Electrical Performance of Electronic

Packaging (EPEP), pp. 283-286, Oct. 2008.

[8] W. Chai and D. Jiao, ―An 2-Matrix-Based Integral-Equation Solver

of Reduced Complexity and Controlled Accuracy for Solving

Electrodynamic Problems,‖ accepted for publication, IEEE Trans.

Antennas Propagat., 2009.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

100

200

300

400

500

600

Number of unknowns

T
im

e
(s

e
c
o

n
d

)

FastCap

H2-based direct solver

0 0.5 1 1.5 2 2.5 3

x 10
4

0

100

200

300

400

500

600

Number of unknowns

M
e

m
o

ry
(M

B
)

FastCap

H2-based direct solver

0 2 4 6 8 10 12

x 10
5

10
-3

10
-2

10
-1

Number of unknowns

E
rr

o
r

o
f
m

a
x
im

a
l a

d
m

is
s
ib

le
 b

lo
c
k

0 0.5 1 1.5 2 2.5 3

x 10
5

10
-2

10
-1

Number of unknowns

C
a
p
a
ci

ta
n
ce

 e
rr

o
r

0 2 4 6 8 10 12

x 10
5

0

0.5

1

1.5

2

2.5
x 10

4

Number of unknowns

T
im

e
(s

e
c
o

n
d

)

Total time of our direct sovler

Direct inverse time

Hi-cap

0 2 4 6 8 10 12

x 10
5

0

1000

2000

3000

4000

5000

Number of unknowns

M
e
m

o
ry

(M
B

)

Fig. 8. (a) Error of maximal admissible block. (b) Error of Capacitance. (c)

Time Complexity. (d) Memory Complexity.

