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ABSTRACT 
State-of-the-art integral-equation-based solvers rely on techniques 

that can perform a matrix-vector multiplication in O(N) 

complexity. In this work, a fast inverse of linear complexity was 

developed to solve a dense system of linear equations directly for 

the capacitance extraction of any arbitrary shaped 3D structure.  

The proposed direct solver has demonstrated clear advantages 

over state-of-the-art solvers such as FastCap and HiCap; with fast 

CPU time and modest memory consumption, and without 

sacrificing accuracy. It successfully inverts a dense matrix that 

involves more than one million unknowns associated with a large-

scale on-chip 3D interconnect embedded in inhomogeneous 

materials. Moreover, we have successfully applied the proposed 

solver to full-wave extraction. 

Categories and Subject Descriptors 
B.7.2 [Integrating Circuits]: Design Aids - simulation, 

verification 

General Terms 

Algorithms 

Keywords 

Integral-equation-based methods, direct solver, capacitance 

extraction, full wave.  

1. INTRODUCTION 
Integral-equation-based (IE-based) methods have been methods of 

choice in extracting the capacitive parameters of 3D interconnects 

since they reduce the solution domain by one dimension, and they 

model an infinite domain without the need of introducing an 

absorbing boundary condition. Compared to their partial-

differential-equation-based counterparts, however, IE-based 

methods generally lead to dense systems of linear equations. 

Using a naïve direct method to solve a dense system takes O(N3) 

operations and requires O(N2) space, with N being the matrix size. 

When an iterative solver is used, the memory requirement remains 

the same, and the time complexity is O(NitN
2), where Nit denotes 

the total number of iterations required to reach convergence. In 

state-of-the-art IE-based capacitance solvers, Fast Multipole 

Method (FMM) and hierarchical algorithms [1-3] were used to 

perform a matrix-vector multiplication in O(N) complexity, 

thereby significantly reducing the complexity of iterative solvers. 

In the limited work reported on the direct IE solutions for 

capacitance extraction [4], no linear complexity has been 

achieved. Compared to iterative solvers, direct solvers have 

advantages when the number of iterations is large or the number 

of right hand sides is large. For example, if there exist N right 

hand sides, each solve of which costs O(N) operations, the total 

cost is still O(N2), which is expensive. 

The contribution of this paper is the development of a linear-

complexity direct IE solver that is kernel independent, and hence 

suitable for solving both quasi-static and full-wave problems. To 

be specific, the inverse of a dense system matrix arising from a 

quasi-static or full-wave problem is obtained in linear CPU time 

and memory consumption without sacrificing accuracy. Our 

solution hinges on the observation that the matrices resulting from 

an IE-based method, although dense, can be thought of as data-

sparse, i.e., they can be specified by few parameters. There exists 

a general mathematical framework, called the ―Hierarchical () 

Matrix‖ framework [5], which enables a highly compact 

representation and efficient numerical computation of dense 

matrices. Both Storage requirements and matrix-vector 

multiplications using -matrices are of complexity O(NlogN). 

2-matrices, which are a specialized subclass of hierarchical 

matrices, were later introduced in [6].  It was shown that the 

storage requirements and matrix-vector products are of 

complexity O(N) for 2-based representation of both quasi-static 

and electrodynamic problems [7-8]. The nested structure is the 

key difference between -matrices and 2-matrices, since it 

permits an efficient reuse of information across the entire 

hierarchy. Solvers based on - and 2-matrices are kernel 

independent, and are therefore suitable for any IE-based 

formulation.   

Although the matrix-vector product involving an 2-matrix can 

be performed in O(N) complexity, the complexity of 2-matrix-

based inverse has not been clearly established in the literature. In 

this work, we developed a direct IE solver of linear complexity for 

solving large-scale quasi-static and electrodynamic problems.  

The remainder of this paper is organized as follows. In Section II, 

IE formulations for capacitance extraction in both uniform and 

non-uniform materials are presented. An 2-matrix-based 

representation of the dense system matrix is constructed, and its 

error bound derived. We show that exponential convergence with 

respect to the number of interpolation points can be achieved 

irrespective of the problem size. In Section III, we provide the 

details of the linear-complexity direct inverse, which includes the 

orthogonalization of cluster bases, a recursive inverse formula, 

and fast matrix-matrix multiplication in linear complexity. In 
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Section IV, numerical results are given to demonstrate the 

accuracy and efficiency of the proposed IE solver for both 

capacitance and full-wave extraction. We conclude in Section V. 

2. IE FORMULATION WITH 2
 MATRIX 

2.1 IE Formulation  

An integral-equation-based analysis of a multi-conductor structure 

embedded in inhomogeneous materials results in the following 

linear system [3]  
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where cq  and dq  are the charge vectors of the conductor panels 

and dielectric-dielectric interface panels, respectively, and cv  is 

the potential vector associated with the conductor panels. The 

entries of P  and E  are 
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where ia  and ja  are the areas of panel iS  and jS , respectively,  

n̂  is a unit vector normal to the dielectric interface, and a  and 

b  are the permittivity in the two dielectric regions separated by 

the interface. The diagonal entries of ddE  are 

0( ) /(2 )ij a b ie a    . In a uniform dielectric, (1) is reduced to  

 cc c cq vP .                                        (3)                                                          

2.2 Cluster Tree and Block Cluster Tree 

In order to capture the nested hierarchical dependence present in 

G shown in (1), we explore the use of a cluster tree and a block 

cluster tree. Denoting the full index set of all the panels by  := {1, 

2, , N}. A representative cluster tree T  is shown in Fig. 1(a). 

Clusters with indices no more than leafsize are leaves. The set of 

leaves of T is denoted by  . 

 

 

 

 

 

 

                 Fig. 1 (a) A cluster tree. (b) An 2-matrix structure. 

 Consider two subsets t and s of .  We define a strong 

admissibility condition as follows [5]: 

 

True if max{ ( ), ( )}

, are admissible: ( , )

False otherwise

t s
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  (4)                     

in which t  and s  are the supports of the union of all the 

panels in t and s respectively, and  is a parameter that controls 

the solution accuracy. Constructing an admissible block cluster 

tree from the cluster trees T and T  
itself (the testing and basis 

functions are the same in Galerkin-based IE solvers) and a given 

admissibility condition can be done recursively [5], in which the 

constructing procedure results in an admissible block cluster tree 

which can be mapped to a matrix structure shown in Fig. 1(b). 

Each leaf block cluster corresponds to a matrix block. The shaded 

matrix blocks are admissible blocks in which the 2-matrix 

representation is used; the un-shaded ones are inadmissible blocks 

in which a full matrix representation is employed. 

2.3 2-Matrix Representation and Its Error Bound  

If two subsets t and s of  satisfy the strong admissibility 

condition (4), the original kernel function ( , )i jg r r
 

 in (2) can be 

replaced by a degenerate approximation 

, ( , ') ( , ) ( ) ( ')
t s

t s t s t s

v v

v K K

g r r g L r L r 



 
 

 
   

                       (5)  

where : { : {1,..., }} {1,..., }d d

iK v v p i d p      , d = 1, 2, 3, for 1-, 

2-, and 3-D problems, respectively; p is the number of 

interpolation points in one dimension; ( ) t

t
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families of interpolation points, respectively, in t and s; and 
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are the corresponding Lagrange polynomials. 

With (5), (2) are separated into two single integrals:  
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Hence, the submatrix ,t s
G  can be written in a factorized form as: 
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for i t , j s , tv K , and .sK   The matrix G in (7) forms an 

2-matrix representation if the same space of polynomials are 

used across t and s. After a detailed error analysis, we found that 

if the admissibility condition given in (4) is satisfied, the error of 

(5) is bounded by 

( , ) 24 1 2
|| ( , ') ( , ') || ( ) [1 2 ][1 ] (8)
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 where p  is a constant related to p and the interpolation scheme, 

and ( , )t sdist Q Q is the Euclidean distance between cluster t and 

cluster s. Clearly, exponential convergence with respect to p can 

be obtained irrespective of the choice of  . The larger p is, the 

smaller the error is.  In addition, the block entries represented by 

(7) can be kept to the same order of accuracy across tree levels. 
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3. Direct Inverse of Linear Complexity 
The algorithms in the proposed direct solver are outlined below: 

Before we provide the details, we introduce the following 

concepts and notation: 1) For each cluster t T  , the cardinality 

of the sets  ( ) : { : ( , ) }col t s T t s T       
and  

( ) : { : ( , ) }row s t T t s T       is bounded by a constant 
spC [5]. 

2) Each non-leaf cluster t has two child nodes. 3) The rank of 

( )t

t TV V


is denoted by k. 4) The parameter leafsize is denoted 

by minn , and min#t n  if t  . 

3.1 Orthogonalization of the Nested Cluster Basis 

Recall that when constructing the 2-matrix representation of 

system matrix G, we use the same space of polynomials for all 

clusters. Consider a cluster 't , which is a child of t, ( )t

vL r

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where 
'' t tt K KT   is called transfer matrix for cluster 't . Hence, 

assuming that 1 2children( ) { , }t t t
 
with 1 2t t , we have  

1 1 1 1
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This means that we only need to store the matrices t
V for leaf 

clusters t  and use the transfer matrices T  to represent all other 

clusters. This nested property of t
V  as shown in (9) enables O(N) 

storage of  G and O(N) matrix vector multiplication [6-8].  

To make the inverse calculation efficient, we first orthogonalize 
t

V while still preserving the nested property of t
V . 

 For leaf cluster bases, we can construct an orthogonal matrix 
tZ  such that 

t t tV V Z     and  ( ) ( )t t t t t t t t t    V V V Z V Z Z G Z I   

with t t t

G V V . To find tZ , we first perform Schur 

decomposition t G PDP , where P contains the eigenvectors of 
t

G  and the diagonal matrix 1( ,  ..., )kdiag  D contains the 

corresponding eigenvalues 1 2  ... 0k      . We fix a rank 

{0,  ... , }tk k such that 0i   holds for all {1,  ... , }ti k . Define 

matrix 
tk kD  by /ij ij i D . If t Z PD , we obtain 

( )t t t t t         V V Z G Z D P PDP PD D DD I       

Hence, t Z PD  is the matrix that can orthogonalize leaf cluster 

bases t
V . Based on the nested property of t

V , the total 

complexity of obtaining tZ  using the above procedure is O(N).  

The non-leaf clusters can be orthogonalized in a similar fashion 

with the nested property preserved.  

 

3.2 Fast Inversion of Linear Complexity 

 (1) Recursive Inversion Equation: Casting the2-matrix 

representation of G into the following form 
 

  
 

11 12

21 22

G G
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G G
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inverse can be recursively computed by using the equation  
1 1 1 1 1 1

11 11 12 21 11 11 121

1 1 1

21 11

     



  

        
  

    

G G G S G G G G S
G
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where 1

22 21 11 12( )    S G G G G , and  ,   are respectively 

addition and multiplication defined for the 2 matrix to be 

elaborated soon. The recursive inverse equation (10) can be 

realized by the pseudo-code shown below 

From (11), it can be seen that the computation of inverse involves 

a full-matrix inverse at the leaf level and a number of matrix-

matrix multiplications at other levels. Hence, efficient matrix-

matrix multiplication is essential to an efficient inverse in linear 

time, which is elaborated in next section.   

(2) Fast Matrix-Matrix Multiplication in Linear Time 

The fast multiplication in (11) can be done recursively.  

Assuming 1 ( , ) Gb t s T     , 2 ( , ) Gb s r T     , and the multiplication 

target block is ( , ) Gb t r T     . Matrix blocks 1b
G , 2b

G ,  and 

b
G can be admissible blocks, non-admissible blocks, or non-leaf 

blocks. The 1 2b b b G G G encountered in (11) can be divided 

into the following cases, each of which has a constant complexity.   

 1bG  2bG  bG  complexity 

1 admissible admissible admissible O(k1
3) 

2 
admissible admissible non-leaf O(k1

3) 

3 
admissible non-leaf admissible O(k1

3) 

4 admissible non-leaf non-leaf O(k1
3) 

5 admissible non-admissible admissible O(k1
3) 

6 non-admissible 

(full matrix) 

non-admissible 

(full matrix) 

non-admissible 

(full matrix) 
O(k1

3) 

7 
non-leaf non-leaf admissible O(k1

3) 

8 
non-leaf non-leaf non-leaf O(k1

3) 

Recursive inverse algorithm (X is used for temporary storage) 

Procedure 2-inverse(G, X)   (G is input matrix, X is inverse) 

  If  matrix G is a non-leaf matrix block  

2-inverse (G11, X11) 

      
21 11 21 11 12 12 22 21 12 22,   ,  ( )       G X X X G X X X G X          (11) 

2-inverse (X22,
1

22( )G )                                     

1 1 1 1 1

22 21 21 12 22 12 11 12 21 11( ) ( ) ,   ( ) ( ) ,   ( ) ( )             G X G X G G X G X G

else 

       Inverse (G)   (normal full matrix inverse) 

Direct IE solver of linear complexity 

1. Orthogonalize the cluster basis t
V

 
    2. Compute the inverse of 2–based G 

 Recursive inversion 

 Linear-time matrix multiplication 

   3. Compute the capacitance matrix by q=G
-1v 



In the Table above, 1 minmax( , )k k n  is a constant that is 

independent of N for quasi-static applications.  

Next, we will use only cases 1, 2 and 3 to explain how the fast 

multiplication is performed and omit other cases due to space 

constraint. 

Case 1: 1

1

b t s

b



G V S V and 2

2

b s r

b



G V S V .  Then,   

    1 2

1 2 1 2 1 2( )b b t s s r t r t r

b b b b b b

 

    G G V S V V S V V S IS V V S S V                           

1 2

1 2 1 2( ) ( )new b b b t r t r t r

b b b b b b b

 

      G G G G V S V V S S V V S S S V  

with 1 2

new

b b b b S S S S . This process does not involve any 

approximation. Since the dimension of each of 1 2, ,b b bS S S is k×k, 

the complexity of computing new

bS  is at most 3( )O k .  

Case 2: 1

1

b t s

b



G V S V  and 2

2

b s r

b



G V S V , while b
G  is a non-

leaf block. We first compute the multiplication as in Case (1) to 

get an admissible block as shown in step (a) in Fig. 2.  We then 

split the resultant admissible block into four small admissible 

blocks as shown in step (b). However, the sub-blocks in b
G  are 

not necessarily all admissible blocks. Based on the block structure 

in the target matrix, we may convert an admissible block to a full 

matrix block as shown in step (c).  We add the resultant matrix 

upon b
G .  

 

Fig.2. A scheme to compute the product of two admissible blocks and 

format the product to be a non-leaf. (R—an admissible block, F—an 

inadmissible block. 

Steps (b) and (c) are called split operation and conversion 

operation respectively, which are performed as follows:  

Split operation:  A split operation is in fact a transformation from 

parents to children, which does not involve any approximation.  

For one block 
  G( , )b t s T     , we  perform 

1 1 1 1 1 1 2 21 1 1 1

2 2 2 2 2 2 1 1 2 2 2 2

( )    ( )
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( )   ( )

t t s s t t s st t s s

b bt s
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where 1 2children( ) { , }t t t , and 1 2children( ) { , }s s s . It can be seen 

that one admissible block is divided into four admissible blocks 

with ji

ij

st

b bS T S T


  in (12). Hence, one split operation costs 3( )O k .  

Conversion operation: If we convert the admissible block to a full 

matrix block as shown in step (c), we just need to compute 
2 2

22

t r

b



V S V . Since the largest dimension of a full matrix block is 

min minn n ,  the cost is at most 2

min( )O n k . If we convert a full 

matrix block to an admissible block, the best approximation of 
( 2, 2)t r

fullG  for the admissible block is   2 2 ( 2, 2) 2 2 2 2

22( )t t t r r r t r

full b

  

V V G V V V S V  

with  2 ( 2, 2) 2

22 ( )t t r r

b full



S V G V  . Hence, each conversion operation at 

most costs 2

min( )O n k . In summary, each of steps (a), (b), and (c) 

shown in Fig. 2 has complexity 3

1( )O k , and hence the total 

complexity is 3

1( )O k . 

Case 3: If 1b
G  is an admissible block, 2b

G  is a non-leaf block, 

and b
G  is an admissible block, we first do split operations on 1b

G  

and get a new block 1b
G as shown in step (a) of Fig. 3. We then 

use simple recursive multiplication to compute 1 2b bG G  and 

obtain a non-leaf block with four admissible sub-blocks in step 

(b). In step (c), a collect operation is performed to get a single 

admissible block, which is depicted below. After obtaining the 

single admissible block, we directly add it to original matrix block 
b

G  and get new

bG . The only approximation in this case is from the 

collect operation done in step (c), the accuracy of which is 

controllable. 

                                            
Fig. 3. A scheme to compute the product of an admissible block with a 

non-leaf block with the target block being an admissible block. 

Collect operation: This process is a transformation from children 

to parents, which involves an approximation since we are not able 

to express the cluster bases of children in terms of the parent 

cluster bases. However, we can get the best approximation of the 

children blocks in the cluster bases corresponding to the parent 

using the orthogonal cluster basis.  

We approximate the child matrix block ijb  by the parent block 

b .The best approximation in the cluster bases t
V and s

V is 
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              (13) 

It can be seen that four admissible blocks are collected to be one 

admissible block with 
children( ) children( )

ji

ij

st

b b

i t j s



 

  S T S T . Hence, one 

collect operation costs 3( )O k . The total complexity of steps (a)-

(c) shown in Fig. 3 is 3

1( )O k . 

3.3 Compute Capacitance Matrix  

Since the inverse obtained from (11) is also an 2 matrix, and 2-

matrix-vector multiplication has linear complexity [6-8], we can 

compute 1q vG in O(N) time. By adding all the entries of q in 

each conductor, the capacitance matrix element can be obtained.  

3.4 Complexity Analysis and Error Analysis 

Complexity Analysis: The cost of orthgonalization of the cluster 

basis described in Section 3.1 is O(N). The cost of direct inverse 

shown in (11) can be analyzed below 

1 3 3

1 1

0 0

3 3

1 1

( ) (# ) ( ) 2 ( )

( )# ( )

L L
l

sp

l l

sp sp

Comp G blocks at level l O k C O k

C O k T C k O N



 

 

 

 
.     (14)

 

in which L is the number of tree levels. The inverse procedure 

shown in (11) essentially traverses a block cluster tree from 

bottom to top. At each tree level, the matrix block at that level is 

formed by a matrix-matrix multiplication. Since each matrix-


(c) (b) (a) 

  (b)  

 

(a) 
 

  (c) 



matrix multiplication has an 3

1( )O k complexity as shown in 

Section 3.3, and there are at most 2l

spC matrix blocks in level l, we 

obtain a linear cost for matrix inverse as shown in (14). 

Computing the capacitance matrix described in Section 3.3 also 

costs O(N).  Therefore, the total CPU cost of the proposed direct 

inverse is O(N). It is worth mentioning that if the linear system is 

symmetric, we can compute only half of the entries in the inverse, 

further reducing the CPU cost.  

Accuracy Analysis: In Section 3.1, orthogonal bases 
t

V  are 

constructed. The best approximation of a general 
t

V  in the space 
t

V is given by ( )t t tV V V  . The error of this approximation is:  

2

2 1
|| ( ) || t

t t t

k



 t

V V V V   ,                         (15) 

where
1tk




is the ( 1)tk th eigenvalue of t t

V V , in which kt is the 

rank of cluster basis t
V . Clearly, if kt is chosen to be the same as 

the rank of t
V , the error of (15) is zero. Therefore t t s s 

V V GV V    is 

the best approximation of a matrix block ( , )t s
G in the bases t

V  

and s
V . In Section 3.2, the inverse is performed by using 

formatted multiplication. For example, when computing 

21 11 21 G X X in (11), the block structure of 
21X  is assumed to be 

the same as that of
21G . The goal of a formatted multiplication is 

to represent the 2 tree of 
1

G by the same 2 tree used to 

represent G . Certainly, one can assume a different tree to 

represent the tree of 
1

G , or perform unformatted multiplication, 

i.e. without specifying the target matrix. However, using the 2 

tree of G  to represent that of 
1

G is an ideal choice based on 

physical understanding. Here, the capacitance matrix 
1

G is a 

sparse matrix. In the 2 tree constructed for G  and hence 
1

G , 

the blocks formed by clusters that satisfy admissibility condition 

(4) (i.e., they are far away) are represented by low rank matrices. 

In real 
1

G , these blocks can even be considered as zero. Hence, 

using the 2 tree of G  to represent that of 
1

G is indeed an ideal 

choice. The same argument holds true for full-wave cases. This 

has been verified by our numerical experiments. Therefore, the 

inverse performed here can be considered as an exact inverse if 

one neglects the round off error incurred in numerical 

computation. 

4. Numerical Results 
The first example is a m m  crossing bus structure embedded in 

free space or dielectric materials as shown in Fig. 4 [3]. Two 

methods are compared: FastCap 2.0 and the proposed direct IE 

solver. The m in this bus structure varies from 4 to 16. The 

dimension of each bus is scaled to
31 1 (2 1) mm   . The distance 

between buses in the same layer is 1 m, and the distance between 

the two bus layers is 1 m.  For this bus structure, we simulated 

both free-space case and non-uniform dielectric case. For the case 

involving non-uniform dielectrics, the dielectric surrounding the 

upper layer conductors has relative permittivity of 3.9, and the 

lower layer conductors are in the dielectric having relative 

permittivity 7.5. Each bus is also scaled to 31 1 (2 1) mm   . The 

distance between buses in the same layer is 1 m, and the distance 

between the two bus layers is 2 m. (Note that capacitances are 

scalable with respect to the length unit). In the proposed solver, 

the parameters used to construct the cluster tree and block cluster 

tree are leafsize=10 and  =1.6. The number of interpolation 

points p is determined by a function p= ( )a b L l  , with a=2, 

b=1, and L being the maximum number of tree level, and l tree 

level.  In Fig. 5(a), we plot the error of 2-matrix representation 

of system matrix G (so called as original matrix error), and the 

error of extracted capacitances with respect to the number of 

unknowns. The former is measured by || || / || ||F FG G G , where 

G is shown in (7), and || ||F is the Frobenius norm; the latter is 

measured by || ' || / || ||F FC C C , where C is the capacitance 

matrix obtained from FastCap 2.0, and C’ is that generated by the 

proposed solver. As can be seen clearly from Fig. 5(b), very good 

accuracy of the proposed direct solver can be observed in both 

G and capacitance matrix C’. In addition, the error of G  reduces 

with the number of unknowns because of increased p and hence 

increased accuracy as can be seen from (8). In addition, we are 

able to keep the accuracy of the capacitance matrix to the same 

order in the entire range. 

 In Fig. 6, we plot the total CPU time and memory consumption 

of the proposed direct inverse for the m m  bus structure in free 

space. In Fig. 7, we plot the same for the m m  bus structure 

embedded in multiple dielectrics. The performance of FastCap 2.0 

is also plotted for comparison, the convergence tolerance of which 

is set to 1%. Compared with FastCap 2.0, the proposed direct 

solver is 9–25 times faster and reduces memory usage by 85–95%.  

Dell 1950 Server was used for all simulations in this paper. 

Fig. 5 Original matrix error and capacitance error with respect to N. (a) 

Uniform  dielectric. (b)  Non-uniform dielectric. 

 

Fig. 6. Comparison of time and memory complexity in simulating the bus 

structure in free space. 
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Fig. 4. (a) A bus structure. (b) An on-chip interconnect. 



 

Fig. 9. Simulation of a 4–20 plate. 

 

Fig. 7 Comparison of time and memory complexity in simulating the bus 

structure embedded in multiple dielectrics.  

To test the performance of the proposed solver in simulating 

very large examples, we simulated a structure shown in Fig. 4(b) 

[3]. The relative permittivity is 3.9 in M1, 2.5 from M2 to M6, 

and 7.0 from M7 to M8. The discretization of this 48-conductor 

structure results in 25,556 unknowns. To test the large-scale 

modeling capability of the proposed solver, the 48-conductor 

structure shown in Fig. 4(b) is duplicated horizontally, resulting 

in 72, 96, 120, 144, 192, 240, 288, and 336 conductors, which 

lead to more than 1 million unknowns. The simulation parameters 

are chosen as leafsize=10,  =1, and p=1. The error of the 2-

matrix representation of system matrix G in the maximal 

admissible block is shown in Fig. 8(a), with the number of 

unknowns varying from 25,556 to 1,047,236. Good accuracy is 

observed in the entire range. In Fig. 8(b), we show the capacitance 

error with respect to N. Again, good accuracy is observed. Since 

we need to use the capacitance C generated from an existing 

solver such as FastCap to assess the accuracy of the capacitance 

C’ extracted by the proposed solver based on || ' || / || ||F FC C C , 

and C is not available 

within feasible 

computational resources 

when the number of 

unknowns is too large, 

the error in Fig. 8(b) was 

only plotted up to 253792 

unknowns. In Fig. 8(c), 

we plot the inverse time 

and the total CPU time of 

the proposed direct solver with respect to N.  Clearly a linear 

complexity can be observed. For comparison, the solution time of 

the HiCap [2] is also plotted. The advantage of the proposed 

direct solver is clearly demonstrated even though HiCap only 

calculated the results for m right hand sides with m being the 

number of conductors, whereas the proposed solver obtained the 

entire inverse, i.e., the results for N right hand sides.  In Fig. 8(d), 

we plot the memory complexity of the proposed solver, which 

again demonstrates a linear complexity.  

The proposed 2-matrix-based method is kernel independent, 

and hence is equally applicable to electrodynamic problems. 

Using the proposed solver, we simulated a square plate having 

electric size from 4  wavelengths to 20 wavelengths. The 

simulation parameters were chosen as  =1, leafsize=20, and 

p=10. In Fig. 9, the CPU time was plotted with respect to the 

number of unknowns. Again, linear complexity is observed. In 

addition, the error || || / || ||F FG G G  across all the electric sizes 

is smaller than 3.5e-3; and the error of the inverse matrix, which 

is 
1|| ||I G G , is smaller than 3.3%. For full-wave cases, the 

rank k used in the 2-based representation needs to be determined 

adaptively [8] in order to keep a constant order of accuracy across 

electric sizes without compromising the computational 

complexity. 

 

5. CONCLUSIONS 
A linear-complexity direct inverse was developed for fast integral-

equation-based analysis of quasi-static and electro-dynamic 

systems. Numerical results demonstrated its superior performance. 
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Fig. 8. (a) Error of maximal admissible block.  (b)  Error of Capacitance. (c) 

Time Complexity. (d) Memory Complexity. 

 

 

 

 

 


