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Abstract—An algorithm is presented to implement perfectly
matched layers (PMLs) for the time-domain finite-element
(TDFE) simulation of two-dimensional open-region electromag-
netic scattering and radiation problems. The proposed algorithm
is based on the TDFE solution of a special vector wave equation
similar to the one in an anisotropic and dispersive medium. The
impact of the PML on the stability of the resultant TDFE solution
is studied for a variety of temporal discretization schemes, and
it is shown that the proposed algorithm for implementing PML
can support unconditionally stable TDFE schemes. Both the total-
and the scattered-field formulations are described, and numerical
simulations of radiation and scattering problems are presented to
validate the proposed PML algorithm for the mesh truncation of
the TDFE solution.

Index Terms—Electromagnetic scattering, finite-element
method (FEM), numerical analysis, numerical stability, time
domain analysis.

I. INTRODUCTION

NUMERICAL simulations of open-region wave propaga-
tion problems based on partial differential equation (PDE)

solvers usually require an absorbing boundary condition (ABC)
to properly truncate the computational domain. Among a variety
of ABCs developed in the past decades, the perfectly matched
layer (PML) [1]–[13] is a popular choice since it allows for
the absorption of outgoing waves with any polarizations and at
any frequencies and angles of incidence. The PML can be for-
mulated by using field splitting [1]–[3], coordinate stretching
[4]–[7], or by constructing anisotropic permittivity and perme-
ability tensors [8]–[11]. These formulations are shown to be
equivalent. The PML was utilized for the grid truncation of
the finite-difference time-domain (FDTD) method [1]–[4], [9],
[12]. In particular, Roden and Gedney [13] proposed recently an
approach to implement PML in the FDTD based on a recursive
convolution. The PML was also used for the mesh truncation
in the frequency-domain finite-element method (FDFEM) [5],
[8], [10], [11]. To the best of the authors’ knowledge, the PML
has not been applied to the time-domain finite-element method
(TDFEM) because of difficulties associated with the modeling
of both dispersive and anisotropic medium.
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Recently, a considerable amount of effort has been devoted
to the development of time-domain numerical techniques,
as these techniques permit the generation of broadband data
and the modeling of nonlinear devices. A variety of TDFEM
approaches have been proposed [14]–[30]. One class of ap-
proaches directly solves Maxwell’s equations [14]–[22]. These
approaches usually operate in a leapfrog fashion similar to the
FDTD method, which does not leverage our extensive knowl-
edge of frequency-domain finite-element solvers. Another class
of TDFEM approaches tackles the second-order vector wave
equation [23]–[29]. These approaches have a disadvantage in
that they require the solution of a matrix equation at each time
step. However, this problem can be eliminated by employing
orthogonal vector basis functions [28], [31], which render a
diagonal mass matrix, and hence a purely explicit scheme.
The problem can also be mitigated by adopting higher order
vector basis functions [32] to expedite the TDFEM numerical
convergence.

An important issue in the finite-element solution of open-re-
gion problems is the treatment of the artificial truncation
boundary. One approach is to represent the exterior field using
a boundary integral (BI) expression. This leads to the FE-BI
method (see [33] and references therein). This approach was
initially developed within the context of frequency domain
solvers. It has been recently extended to the time domain [32],
[34]. The BI approach is numerically exact, and it allows the
truncation boundary to take on any shape and to be placed to the
object as close as possible. However, the evaluation of the BIs
is computationally expensive. Although this evaluation can be
accelerated by invoking the multilevel plane-wave time-domain
(PWTD) algorithm [32], [35] its efficiency benefits mostly the
analysis of electrically large and concave objects. For convex
objects, the local ABCs such as the PML, often prove to be
more efficient. However, unlike the situation in the FDTD
method, the development of ABCs, especially the PMLs for
TDFEMs, has not received much attention. To date, only first-
and second-order ABCs have been implemented [36]–[38].

The major difficulty in the implementation of PMLs in the
framework of TDFEM lies in the modeling of both disper-
sive and anisotropic medium. A recent work [39] provides a
guideline for the TDFEM modeling of dispersive media. By
following this guideline and incorporating the correct handling
of anisotropic media, an algorithm is developed in this paper
for the PML implementation in the TDFEM. The proposed
algorithm is based on seeking the TDFEM solution of a special
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Fig. 1. Illustration of the solution domain truncated by the PML.

vector-wave equation similar to the one in an anisotropic and
dispersive medium. The approach to handle both dispersive and
anisotropic medium is addressed. The impact of the PML on the
stability of the entire TDFEM procedure is analyzed. It is shown
that the proposed algorithm can support unconditionally stable
TDFEM schemes. Since the proposed PML implementation is
similar to that for an anisotropic and dispersive medium, it can
readily be incorporated into the existing TDFEMs. Numerical
results are presented to demonstrate its validity.

In this paper, the proposed algorithm for PML implementation
in the TDFEM is described in Section II. Both the total- and
scattered-field formulations are presented. Section III examines
the stability of the resulting TDFEM-PML numerical scheme.
Section IV demonstrates the capabilities and accuracy of the
proposed TDFEM-PML through a host of examples. Finally,
Section V relates our conclusions.

II. FORMULATION

This section describes the TDFEM-PML formulation for
analyzing two-dimensional (2-D) open-region radiation and
scattering problems. Throughout, all fields are assumed to be
TEz polarized; the proposed scheme, however, also applies to
TMz problems with minor modifications. Although the 2-D
problem can be solved more easily using the axial component
of the magnetic field as the unknown variable, the formulation
and implementation are carried out here using the transverse
components of the electric field so that the method can be
extended to three-dimensional (3-D) vector problems.

Consider the problem of modeling the electric field
generated by an internal source in the presence of
an object residing in a region . To formulate a FE scheme
that permits the computation of , we introduce a perfectly
matched layer outside of to truncate the computational
domain (Fig. 1). In the PML region bounded by and , a
conductivity is specified for the PML walls perpendicular
to the axis; similarly, a conductivity is specified for the
PML walls perpendicular to the axis. A perfectly electric or
magnetic conducting wall or any type of ABCs can be used

Fig. 2. Magnetic fieldH at ��� = �0:23x̂ + 0:002ŷ m radiated by a line
source.

to terminate the PML at . Inside the PML, the fields and
satisfy the following modified Maxwell’s equations [1]

(1)

in which . Obviously, inside , (1) reduces
to the original Maxwell’s equations. Hence, (1) is valid for both

and the PML region. By eliminating and from (1),
and assuming, , and are constant within each element,
we obtain the second-order vector wave equation

(2)

where stands for the convolution, and are tensors given
by

(3)

and

(4)
In (4), and denote the Kronecker delta function and the
unit step function, respectively. Equation (2) can also be derived
based on the coordinate stretching [4] or the modeling of the
PML as an anisotropic medium characterized by frequency-de-
pendent permittivity and permeability tensors [8], [9]. However,
despite a certain similarity, it is not identical to the wave equa-
tion in an anisotropic medium.

To seek the TDFEM solution of (2), we employ Galerkin’s
method. Assuming a Dirichlet-type boundary condition on,
we obtain a weak-form solution shown in (5), shown at the
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bottom of the page, where denotes the whole simulation
domain consisting of both and the PML region, and
denotes the vector basis function. Expanding the electric field
as

(6)

with denoting the total number of expansion functions, and
substituting (6) into (5), we obtain an ordinary differential equa-
tion as

(7)
where denotes the total number of FEs,, , , , and

are square matrices whose elements are given by

(8)

and

(9)

In the above, denotes the integral over element. Also,
is the unknown vector given by , is
the excitation vector given by

(10)

and and are vectors whose elements can be expressed as

(11)

In (11), the convolution can be recursively evaluated as

(12)

in which the field is assumed to be constant within each time
step, or

(13)

in which a linear variation of the field is assumed for better
accuracy.

Once the summation is carried out, (7) can be written as

(14)

where the sign denotes a matrix operator which scales the
element in the first matrix by the element residing at the same
location in the second matrix, is a constant vector given by

, and and are matrices whose elements
can be recursively evaluated as

(15)
if (12) is used, or

(16)

if (13) is employed. In (15) and (16), permittivity and
conductivity are defined on the triangular element that
contains both th and th edge basis functions; permittivity

and conductivity comprise those of the two triangular
elements associated with theth edge basis function. The self
terms in matrices and consist of two parts contributed by
the two-triangular elements associated with the corresponding
edge basis function. Here, and are considered as matrices
rather than vectors, since the conductivity and vary
from element to element in the PML region. The separation of
temporal signature from spatial signature facilitates
the efficient simulation of dispersion. Otherwise, the matrices
relating to the spatial signature require them to be refilled at
each time step.

The formulation described above is for the radiation case.
When the scattering problem is considered, the scattered field
should be employed as the working variable in the PML region,
as the PML is designed for the absorption of outgoing waves.
One approach is to separate the entire computational domain
into two regions. In the interior region, the total field formula-
tion is used; whereas in the exterior region, the scattered field
formulation is employed. By using this approach, the tangential
field continuity can be naturally satisfied at the dielectric inter-
face. However, the total-field and the scattered-field data must
be exchanged with each other at the separation boundary, which
is computationally cumbersome. In this work, we propose an
efficient scattered-field formulation in the entire computational
domain.

The scattered-electric field in the entire computational do-
main, which includes both solution domain and the PML re-
gion, satisfies

(17)

where denotes the incident field, and the permittivityat
the right-hand side reverts to its free-space valuein the PML
region so that the incident source vanishes therein.

Assuming a Dirichlet-type boundary condition on, we ob-
tain a weak-form solution as in (18), shown at the bottom of the
next page. Apparently, the area integrals related to the incident
field in (18) require to be recalculated at each time step, which is
computationally expensive. Certainly, we can simplify (18) and

(5)
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reduce the support of these area integrals from the entire domain
to the dielectric-only region. However, the recalculation is inef-
ficient even if the dielectric region is small. This problem can be
solved efficiently using the approach proposed as follows: We
expand the incident field using the same vector basis func-
tions as those used to expand the unknown scattered field,
thus the spatial signature can be decoupled from the temporal
signature. The matrices and , which are generated for the
use of the scattered field, thereby can be directly applied to the
incident field. Hence, the resultant ordinary differential equa-
tion becomes

(19)

where the vector is the projection of the incident field
along the tangential direction of each edge, which is known and
can be efficiently updated at each time step.

It now remains to choose proper spatial and temporal dis-
cretization schemes. For the spatial discretization, the unknown
fields can be expanded using the linear edge elements [15],
higher order edge elements [40], or orthogonal vector basis
functions [28], [34]. For the temporal discretization, we can
employ the central difference scheme, the backward difference
scheme, and the Newmark method [27], [38]. The forward
difference is not used since it leads to definite instability [25],
[41].

III. STABILITY ANALYSIS

This section analyzes the stability behavior of the
TDFEM-PML scheme. Since the stability depends on the
temporal discretization, its analysis is addressed for the
Newmark method, the backward difference, and the central
difference, respectively.

A. Newmark Method

Applying the Newmark method [27], [38] with to
discretize (14) and discarding the contribution from the source,
we obtain

(20)

where , and represents the
time step.

By performing the transform on (20), we obtain

(21)

where represents the transform of , and

(22)

in which

(23)

Since matrix is positive definite, its contribution in (14) is
equivalent to introducing a loss into the system. As shown in
[41], the introduction of loss does not affect the stability crite-
rion of the TDFEM procedure. Hence, in the following stability
analysis, we ignore the term related to .

After removing the second term from (21), we obtain

(24)

Instead of analyzing the stability of the above equation, we con-
sider the following one

(25)

which is obtained by filling the PML region with the maximum
conductivity . If the stability of the time-marching process
for (25) is satisfied, the stability of the process for (24) is gur-
ranteed to be satisfied, since the former requires a smaller time
step to ensure stability. This is because the terms associated with

and , when they are combined with matrix, increase the
eigenvalue of the resultant matrix and thereby decrease the max-
imum allowed time step [41].

Clearly, (25) corresponds to an eigenvalue problem. Denoting
the eigenvalue of matrix system as , (25) can be
written as

(26)

which is termed as the characteristic equation of (25). Since ma-
trix is positive definite, and matrix is semipositive definite,
the eigenvalue is nonnegative. By changing, we trace the
roots of (26) in the complex plane. It can be shown that when

, the roots are never outside the unit circle. Hence, the
maximum value of can reach infinity. As a result, there is no

(18)
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constraint on . In other words, using the Newmark method
with and , the TDFEM procedure together
with the PML can be made unconditionally stable. This is veri-
fied by our numerical experiments.

B. Backward Difference

Applying the backward difference to discretize (14), we
obtain

(27)

The pertinent transform becomes

(28)

with matrices and defined by

(29)

in which the value of at time step is used.
Removing the term related to in (28), we obtain

(30)

Instead of investigating the above equation to analyze the sta-
bility, we consider the following one:

(31)
in which represents the maximum conductivity. The char-
acteristic equation of (31) can be identified as

(32)

Obviously, the roots of (32) can never go beyond the unit
circle in the complex plane. Hence, using the backward
difference, the TDFEM procedure in conjunction with the PML
is unconditionally stable. This is also verified by our numerical
experiments.

C. Central Difference

The central difference scheme is a special case of the New-
mark method with and . Hence, by setting in
(24) to zero, we obtain

(33)

(a)

(b)

Fig. 3. Electric field scattered by a perfectly conducting cylinder of radius
0.2 m. (a)E at��� = �0:23x̂+0:002ŷm. (b)E at��� = �0:356x̂�0:08ŷm.

For a discrete system described by (33), the pole flees from
the unit circle at . Following the stability analysis pro-
posed in [41], we deduce the stability criterion

(34)
where denotes the spectral radius of matrix. Denote
the maximum time step allowed by the TDFEM in free space
as , which is equal to [41]. Obviously, the
current time step is smaller than . Hence, in the PML
region, the TDFEM numerical scheme requires a smaller time
step to ensure stability. However, in the general case that the
PML region only accounts for a small fraction in the entire com-
putational domain, the matrix is slightly perturbed by and
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(a)

(b)

Fig. 4. Electric field E � t at ��� = �0:22x̂ � 0:015ŷ m with
t = �0:74x̂ � 0:67ŷ scattered by a dielectric cylinder of radius 0.2 m and a
relative permittivity� . (a) � = 4. (b) � = 16.

. As a result, the introduction of PML into the TDFEM solu-
tion does not affect the stability significantly.

IV. NUMERICAL EXAMPLES

To validate the proposed PML implementation for the mesh
truncation of the TDFEM, we examine several numerical ex-
amples here. For all of these examples, the zeroth-order edge
element is used to expand the unknown field, and the Newmark
method with is chosen for the temporal discretization
over the backward difference for its better accuracy and over
the central difference for its unconditional stability. The multi-
frontal method [42]–[44] is used to solve the sparse FEM matrix
equation, which is a sparse LU decompostion technique. Note
that the factorization is performed only once and that only for-
ward and backward substitutions are needed in each time step,

(a)

(b)

Fig. 5. Electric field scattered by a dielectric cylinder with radius 0.2 m and
� = 16. (a)E � t at��� = �0:11x̂+ 0:054ŷ m with t = �0:81x̂+ 0:58ŷ.
(b) Normalized global rms error versus time.

since matrices , , and are time independent.
The first example is the radiation from an infinitely long elec-

tric-current line source with the electric current is given by

(35)

where ns and ns. The line source is
placed at the center of the computational domain having a size of
2 m 2 m, which is discretized into 3686 triangular elements,
yielding 5609 unknowns. The average edge length is 0.05 m.
The PML has a thickness of 0.5 m and is terminated by a per-
fectly magnetic wall. The conductivity in the PML is assumed to
have a quadratic profile, with the maximum conductivity
chosen to be or 0.0385 s/m in this example. The pro-
file of this PML and its parameters are also used in the other ex-
amples. The magnetic field observed at m
is shown in Fig. 2. Clearly, the simulation results agree very well
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(a)

(b)

Fig. 6. Scattering from a coated cylinder with radius 0.1 m, coating thickness
0.1 m, and� = 12. (a) Scattered fieldE � t at��� = �0:196x̂+0:1ŷ m with
t = �0:93x̂�0:37ŷ. (b) Total magnetic fieldH at��� = 0:066x̂+0:168ŷm.

with the exact data. It should be noted that during the simulation
time, the wave has already traveled 15 times between the source
and the truncation boundary. Hence, the PML effectively emu-
lates an unbounded space.

The second example is the scattering from a conducting
cylinder having a radius of 0.2 m, which is illuminated by a
TE-polarized Neumann pulse

(36)

whose parameters are given by , ns,
m, and ns. The computational domain is subdi-

vided into 3500 elements, generating 5342 unknowns. The PML

has a thickness of 0.5 m and is placed 0.5 m away from the
center of the conducting cylinder. A vanished scattered field is
enforced at the outer boundary to terminate the PML. The
simulation is carried out by using the scattered field formula-
tion. The calculated electric fields at m
and m are shown in Fig. 3. Again, the
numerical result is in good agreement with the exact data. The
slightly worse agreement in Fig. 3(b) is due to the smaller dis-
tance between the observation point and the PML, and thereby,
the stronger evanescent waves which cannot be effectively ab-
sorbed. The numerical results simulated without using the PML
are also shown for comparison in Fig. 3.

Next, to examine the capability of the proposed method to
handle materials, we simulate a dielectric cylinder having a
radius of 0.2 m and a relative permittivity 4. The computational
domain, having a same size as in the previous example, is
divided into 3606 elements, yielding 5489 unknowns. The
cylinder is illuminated by the same TE-polarized Neumann
pulse as specified in (36). Fig. 4(a) shows the calculated scat-
tered electric field at m, together with
the exact data and the numerical result generated without using
PML. Fig. 4(b) shows the calculated scattered electric field at
the same location with the relative permittivity of the cylinder
increased to 16. Again, the simulation result agrees very
well with the theoretical data. Fig. 5(a) shows the calculated
scattered electric field at another observation point, simulated
over a longer period. To investigate the global accuracy of the
proposed PML implementation, we plot the normalized global
rms error with respect to time in Fig. 5(b). The global error was
obtained for the calculated field at each edge on the surface of
the cylinder.

Finally, we simulate a conducting cylinder of radius 0.1 m,
coated with a 0.1-m thick dielectric with a relative permit-
tivity equal to 12. The computational region is subdivided
into 3564 triangular elements, yielding 5432 unknowns. The
incident Neumann pulse is specified in (36). The calculated
electric field at m and magnetic field at

m are shown in Fig. 6. Next, we change
the incident pulse parameters to ns and ns,
which increase the maximum incident frequency to 1 GHz.
The mesh is correspondingly refined, which yields 22 086
elements and 33 345 unknowns. The maximum conductivity

is chosen to be 0.11 s/m. Fig. 7 shows the calculated
electric field at m and magnetic field at

m. Clearly, the proposed TDFEM-PML
scheme correctly characterizes the multiple interaction among
the multiply reflected and creeping waves. The simulation
results agree very well with the theoretical data.

V. CONCLUSION

This paper presented an algorithm for implementing PMLs
for the TDFEM simulation of 2-D open-region electromagnetic
scattering and radiation problems. The proposed algorithm is
based on seeking the TDFEM solution of a special vector wave
equation similar to that in an anisotropic and dispersive medium.
The specific modeling of the PML was described in detail for
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(a)

(b)

Fig. 7. Scattering from a coated cylinder with radius 0.1 m, coating thickness
0.1 m, and� = 12, with the incident Neumann pulse specified byt = 7:8 ns
and� = 1:58ns. (a) Scattered electric fieldE �t at��� = 0:13x̂+0:07ŷm with
t = 0:22x̂�0:97ŷ. (b) Scattered magnetic fieldH at��� = 0:06x̂+0:13ŷm.

both total and scattered fields. The impact of the PML on the
stability of the resultant TDFEM was analyzed. It was shown
that by adopting the backward differencing or the Newmark
method for temporal discretization, the proposed PML imple-
mentation leads to an implicit, unconditionally stable TDFEM.
If the central differencing is employed, the resulting TDFEM
is conditionally stable. Numerical simulations of radiation and
scattering problems were presented to demonstrate the validity
of the proposed PML algorithm for the mesh truncation of the
TDFEM solution.
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