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Abstract—With a method developed in this work, we find the so-
lution of the original electric field integral equation (EFIE) at an
arbitrary frequency where the EFIE breaks down due to low fre-
quencies and/or dense discretizations. This solution is equally rig-
orous at frequencies where the EFIE does not break down and is
independent of the basis functions used.We also demonstrate, both
theoretically and numerically, the fact that although the problem
is commonly termed low-frequency breakdown, the solution at the
EFIE breakdown can be dominated by fullwave effects instead of
just static or quasi-static physics. The accuracy and efficiency of
the proposed method is demonstrated by numerical experiments
involving inductance, capacitance, RCS extraction, and a multi-
scale example with a seven-orders-of-magnitude ratio in geomet-
rical scales, at all breakdown frequencies of an EFIE. In addition to
the EFIE, the proposed method is also applicable to other integral
equations and numerical methods for solvingMaxwell’s equations.

Index Terms—Dense discretization breakdown, electric field in-
tegral equation, electromagnetic analysis, full-wave analysis, low-
frequency breakdown, scattering.

I. INTRODUCTION

E VER since the numerical methods were introduced for
electromagnetic (EM) analysis, researchers observed the

breakdown of a full-wave solution of Maxwell’s equations at
low frequencies [1]–[3]. The term “breakdown” refers to a
phenomenon that a numerical system becomes singular, pre-
venting even a direct solution. This problem is important and
becoming even more critical in today’s engineering problems
analyzed via EM simulators. As an example, in digital, analog,
and mixed-signal integrated circuit design where signals have
a wide bandwidth from zero to about the third harmonic
frequency, the breakdown frequency of full-wave solvers
(typically around tens of MHz) falls right within the range
of circuit operating frequencies. The breakdown due to dense
discretizations has also been observed and studied [4]–[8]. The
dense discretizations cannot be avoided in problems with fine
features relative to working wavelength. Although for this case,
apparently the breakdown is caused by dense discretizations,
the frequencies at which a full-wave solver breaks down are
still lower than those frequencies where it does not break down.
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Existing approaches for overcoming the low-frequency
breakdown problem can be categorized into two classes. One
class is to stitch a static- or quasi-static based electromagnetic
solver with a full-wave based electromagnetic solver. The accu-
racy of this approach is questionable because static/quasi-static
solvers involve fundamental approximations such as decoupled
and . In addition, at which frequency the switching be-

tween different solvers has to be done is an issue. In practice,
engineers often have to employ an approximation based model
to achieve a smooth transition between static, quasi-static, and
full-wave solvers, which introduces another level of inaccuracy.
Moreover, this approach is built on an underlying assumption
that there exists no such frequency, where the static and/or
quasi-static approximations are not valid and the fullwave
solvers still break down. The validity of this assumption needs
to be assessed for different applications.
The other class of methods for solving the low-frequency

breakdown problem is to extend the validity of full-wave solvers
to low frequencies. In integral equation solvers, the loop-tree
and loop-star basis function based methods separate the cur-
rent into a divergence-free current and a non-divergence-free
current [1], [2], [9]–[11]. The decoupling (or weak coupling)
between the two currents at low frequencies is utilized to con-
struct a better conditioned numerical system to solve when the
EFIE breaks down. The current-charge integral equation [12],
[13] and the augmented electric field integral equation [14],
[15] introduce charges as additional unknowns. The decoupling
(or weak coupling) between the current and the charge is uti-
lized to overcome the low-frequency breakdown. The current
solved from these methods, at low frequencies, is only a diver-
gence-free current. Similar to the first class of methods, when
the EFIE breaks down, whether the divergence-free current is
decoupled from the non-divergence-free current, and whether
the current is decoupled from the charge need to be examined
for different applications. There also exist preconditioned EFIE
methods for addressing the low-frequency breakdown problem
such as Calderón preconditioner (CP) based methods [5]–[8],
[16]. They have successfully improved the conditioning of the
EFIE operator, and greatly reduced the number of iterations re-
quired by an iterative solver when the EFIE is ill-conditioned.
However, at low frequencies, the original EFIE system matrix,
numerically, becomes singular when the contribution from the
vector potential is lost due to finite machine precision. Nomatter
how good the preconditioner is, a singular matrix remains sin-
gular. To overcome this problem, existing preconditioned EFIE
methods still rely on loop-star decomposition, thus switching
to a different system of equations to solve at low frequencies
rather than solving the original Rao–Wilton–Glisson (RWG)-
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based system of equations. Take the Calderón preconditioner as
an example, let denote the EFIE operator. Although does
not break down at low frequencies, a frequency-dependent term
is lost in , and the singular is also involved in the right-
hand side of the system of equations. The static limit of the
CP-EFIE is shown to yield a current that does not depend on
frequency at low frequencies [6], which is different from the
true solution of the original EFIE (this solution will be pre-
sented in this paper). The same holds true for the magnetic
field IE (MFIE). Although it is well-conditioned, once the fre-
quency-dependent terms are lost at low frequencies, the MFIE
solution becomes inaccurate, although it does not break down.
One common characteristic shared by the second class of

methods is that they all have changed the original EFIE system
of equations, resulting from the traditional MoM-based solution
with the RWG basis functions, to a new system of equations that
is better conditioned to solve when the EFIE breaks down. This
approach has its obvious advantage that a better-conditioned nu-
merical system facilitates fast large-scale solutions. However,
the solution to the original RWG-based EFIE, which has been
widely used to solve electromagnetic problems and is theoreti-
cally valid from low to high frequencies, is still unknown when
the EFIE breaks down. The root cause of the low-frequency
breakdown is finite machine precision, which has been recog-
nized by many papers on this topic. Once the breakdown occurs,
apparently, the only way forward is to change the EFIE system
to a different one that is solvable.
The contribution of this work is that we are able to overcome

the barrier imposed by the finite machine precision, and success-
fully find the solution to the original full-wave EFIE system of
equations from an arbitrarily high electrodynamic frequency all
thewaydown to zero frequency.Different fromexistingmethods
that tackle the low-frequency breakdown from the perspective
of how to change the original matrix, we derive a closed-form
expression of the EFIE system matrix inverse at any frequency.
By doing so, we avoid the breakdown caused by numerically
solving the original system matrix. The closed-form expression
of the EFIE inverse is rigorously derived from the eigenvectors
and eigenvalues of a generalized eigenvalue problem governing
the EFIE. This generalized eigenvalue problem can be solved at
an arbitrarily low frequency including dc without breakdown.
The proposed closed-form expression also demonstrates that
the EFIE solution at breakdown can be a full-wave solution for
which the divergence-free and non-divergence free currents, as
well as the currents and the charges, are strongly coupled, and
the static/quasi-static assumptions are invalid. This is especially
true for multiscale problems that span more than six orders of
magnitude in the ratio of geometrical scales. Such a phenomenon
has not been reported in open literature. The existing literature
on dense discretization breakdown and multiscale simulations
reports cases where the aspect ratio of electric sizes is less than
five orders of magnitude. For such an aspect ratio, the EFIE
solution at breakdown is still dominated by static effects, which
will become clear in the sequel.
In addition to the breakdown caused by the loss of the vector

potential in the EFIE system matrix, we have also found the
breakdown due to the loss of the frequency dependence of the
right-hand side in scattering analysis, and the breakdown caused
by the same loss in Green’s function for scattered field com-

putation. These two problems have been identified before [3],
[9], [19] and termed as numerical cancellation problems. If the
two breakdown issues are not resolved, the EFIE breakdown
cannot be completely eliminated. We hence developed an ana-
lytical method to remove these two breakdown problems. This
analytical method, again, is valid at any frequency.
Moreover, the proposed closed-form model of the EFIE’s in-

verse explicitly reveals the frequency dependence of the EFIE
solution when the EFIE solution at breakdown is dominated by
static effects. Based on this frequency dependence, with negli-
gible cost, one can find the solution of the EFIE when it breaks
down from a single solution obtained at one non-breakdown fre-
quency. For the case where the EFIE solution at breakdown is
dominated by full-wave effects, one can use the solutions ob-
tained from the traditional EFIE solver at a few non-breakdown
frequencies to synthesize the EFIE solution at breakdown, by a
fast method developed in this paper based on the essential idea
of the proposed rigorous method. In this way, we equally by-
pass the barrier of finite machine precision; preserve the theo-
retical rigor of the proposed solution; while obtaining the EFIE
solution when it breaks down without the need for solving the
original governing eigenvalue problem.
The proposed method is a generic method for solving

Maxwell equations based linear systems of equations com-
posed of , and constant terms, where denotes an angular
frequency. Besides the EFIE, the method can be applied to
other integral equations and numerical methods such as the
finite element method [17], [18]. In addition to the RWG bases
and Galerkin’s schemes, the proposed method is also applicable
to other basis functions and discretization methods.

II. LOW-FREQUENCY BREAKDOWN PROBLEM OF THE EFIE

A. MoM Solution of the EFIE

Consider a perfect electrically conducting object immersed in
a medium with permittivity and permeability . The object is
excited by an impressed source that induces current on the
conducting surface. The source can be a delta-gap voltage
source commonly used for analyzing radiation and circuit prob-
lems; it can also be an incident field employed for scattering
analysis. The current satisfies the following electric field in-
tegral equation:

(1)

in which and are, respectively, observation and source
points on the conducting surface, is a unit vector normal to
conducting surface, and is dynamic Green’s function

(2)

where is the wavenumber .
By expanding the unknown surface current density using

RWG basis functions [20], and applying Galerkin’s method to
(1), we obtain the following linear system of equations:

(3)
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where the system matrix is

(4)

in which and are frequency dependent, the elements of
which are given by

(5)

with being the vector basis used to expand unknown
current . The right-hand side of (3) has the following entries:

(6)

As can be seen from (4), matrix is composed of two
matrices and , each of which is associated with a different
frequency dependence. A careful examination of the matrix
properties of and reveals that is a full-rank matrix
while is rank deficient. The deficiency of rank in is due
to the nullspace of the divergence operator. Specifically, any
solenoidal vector satisfying would satisfy .
Therefore, is a singular matrix.

B. Analysis of the Low-Frequency Breakdown Problem

To analyze the breakdown problem of (3), consider the ratio
of to in (4). It is proportional to the square
of the electrical size of ,

(7)

where is proportional to the length of the th edge in a space
discretization. As an example, for state-of-the-art integrated
circuits with m-level geometrical dimensions, at and below
tens of MHz, is 16 orders of magnitude smaller than

. Even if one uses double-precision computing, is
essentially treated as zero by computers when performing the
addition of and in (4). As a result, the solution
of (3) breaks down. Furthermore, if a structure involves fine
discretizations relative to working wavelength such that the
electric size square of the finest mesh size is smaller than
machine precision, the EFIE also breaks down.
Based on (7), apparently, when the EFIE breaks down, the

electric size of the problem is small since , where de-
notes machine precision. This leads to the belief that the EFIE
solution at breakdown must be a static solution, and thus using
a static solution or incorporating static physics seems to be an
accurate way to solve the low-frequency breakdown problem.
However, as can be seen from (7), different feature sizes have
different electrical sizes. Consequently, they break down at dif-
ferent frequencies. When a highly multiscaled structure is con-
sidered due to either dense discretization or the nature of the
problem, the breakdown starts to occur at a frequency where (7)
is less thanmachine precision for the smallest feature size. How-

ever, at this frequency, the electrical size of the largest dimen-
sion can still be comparable to wavelength, thus requiring a full-
wave analysis. In other words, although the problem is termed
low-frequency breakdown, this does not mean the EFIE solu-
tion at breakdown must be a static/quasi-static solution. Com-
pletely or partially decoupling from or introducing other
static/quasi-static approximations may yield incorrect results.

III. PROPOSED METHOD

During the study of the low-frequency breakdown of
the EFIE, we found that one can encounter three types of
breakdown phenomena. If any one of these three breakdown
problems is not properly addressed, the EFIE breakdown
cannot be completely solved. The first breakdown is due to the
loss of the vector potential term in the EFIE system matrix at
low frequencies; the second breakdown is caused by the loss
of the frequency dependence of the right-hand side vector such
as an incident field used in scattering analysis; and the third
breakdown occurs when evaluating the scattered field or RCS
at low frequencies. In the following three subsections, we show
how each breakdown is overcome in this work.

A. Analytical Derivation of the EFIE System Matrix Inverse

Based on our work in [17], [18], [26], the solution of (3) re-
sulting from the discretization of the EFIE is governed by the
following generalized eigenvalue problem:

(8)

where and are the same as those in (5), is the frequency-
dependent eigenvalue, and is the corresponding frequency-
dependent eigenvector. Since and are nondefective, the
eigenvalues are finite numbers, including zeros due to the
nullspace of . The square root of the eigenvalue represents
the complex resonance frequency of the structure at the angular
frequency , the largest modulus of which is inversely propor-
tional to the smallest mesh size, while the smallest nonzeromod-
ulus is inversely proportional to the largest physical dimension
of the structure being simulated. The eigenvectors are linearly
independent of each other [21]. Different from the system ma-
trices resulting from a finite element based analysis, and
are both complex valued and frequency dependent due to the
inherent presence of Green’s function in IE based formulations.
Therefore, the generalized eigenvalue problem shown in (8) is
frequency dependent. Only at low frequencies, where
in (2) can be approximated as 1, and can be considered real,
and (8) becomes frequency independent.
Define the eigenvalues of (8) by and the cor-

responding eigenvectors by . Let be the ma-
trix whose column vectors are eigenvectors

(9)

and be the diagonal matrix of eigenvalues

. . . (10)



ZHU et al.: SOLUTION OF THE ELECTRIC FIELD INTEGRAL EQUATION WHEN IT BREAKS DOWN 4125

Since is full rank, its column vectors constitute a complete
set of bases in an dimensional space. Thus, we can use to
expand the unknown current vector in (3). We thereby obtain

(11)

in which is the unknown coefficient vector to be solved. Sub-
stituting (11) into (3), and multiplying (3) by on both sides,
we obtain

(12)

where

(13)

(14)

Since is the eigenvector matrix, and is the eigenvalue ma-
trix, from (8), we have

(15)

Multiplying both sides by , we obtain

(16)

From this and (13) we find

(17)

Substituting (17) into (12) we have

. . . (18)

Thus, the unknown coefficient vector can be found by solving
a diagonal system (18), from which the original solution can
be obtained using (11). The above derivation is for one right-
hand side in (3). If the right-hand side is an identity matrix
, we obtain the inverse of at an arbitrary , which is

(19)

In the above, by analytically deriving the inverse of the EFIE-
based system matrix , we avoid the breakdown caused by the
loss of the vector potential term when numerically solving .
However, the inverse shown in (19) can still break down at low
frequencies if the inexact zero eigenvalues of (8) are not fixed to
be exact zero. To explain, the eigenvalues of (8) can be divided
into two groups: one group is associated with the nullspace of
, and the other is associated with the nonzero complex reso-

nance frequencies of the structure at the given frequency. The
first group has zero eigenvalues. But numerically, they cannot

be computed as exact zeros. Instead, they can be computed as
very large numbers. For example, in a typical on-chip circuit
having m-level dimensions, the largest eigenvalue of (8) can
be as large as (rad/s) while the zero eigenvalues are nu-
merically obtained as (rad/s) . This is because in general,
eigenvalue solvers first converge to the largest eigenvalue of the
numerical system, the eigenvalues that are 16 orders of mag-
nitude smaller than the largest one are not distinguishable in
double-precision computing. Even though these inexact zero
eigenvalues do not induce much error at high frequencies, they
lead to a completely wrong frequency dependence of the EFIE
solution at low frequencies. A natural remedy to this problem
is to fix the inexact zero eigenvalues to be exact zeros. Since in
magnitude, zero eigenvalues are the smallest eigenvalues of (8)
and there is a clear gap between the zero eigenvalue and the first
nonzero eigenvalue as the structure being simulated is finite, the
zero eigenvalues can be readily identified and their inaccuracy
can be analytically fixed.
With the inexact zero eigenvalues fixed to be exact zeros,

(19) becomes (20), shown at the bottom of the page (the
argument is omitted for simplicity), where and ,
respectively, represent the eigenvectors of (8) corresponding to
zero and nonzero eigenvalues; is the union of and ,
i.e., is the diagonal matrix of nonzero
eigenvalues, and the represents the upper
block of matrix . The number of rows in

is the same as the number of columns
in . The is the remaining block of

. The in (20) is the nullspace of since
it corresponds to the zero eigenvalues of (8), and thus satisfies

(21)

In what follows, for convenience, we will refer to as the
dc eigenmodes while as the higher order eigenmodes since
the former corresponds to a zero resonance frequency, whereas
the latter has eigenvalues whose magnitude is higher.
It is worth mentioning that (20) is not a singular value decom-

position (SVD) of the EFIE inverse since is not unitary. In
fact, the SVD cannot solve the EFIE breakdown problem. To ex-
plain this, if one takes the SVD of directly, when is singular
so is its SVD. Since the singular values are frequency dependent
and their behavior is not analytically known, it is not feasible to
analytically correct wrong singular values to obtain a correct in-
verse. In addition, it can be seen that the proposed approach is
valid regardless of whether the system matrices in (4) are gener-
ated from RWG bases or other bases, from Galerkin’s schemes
or other schemes. The essential idea can also be applied to other
integral equation solvers and partial differential equation based
ones. Furthermore, the proposed method is not restricted to the
homogeneous materials. For inhomogeneous materials that can
be conveniently analyzed by the volume IE or finite element
methods, the proposed method is equally applicable.

(20)
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The inverse of the EFIE-based system matrix derived in (20)
is rigorous from electrodynamic frequencies all the way down
to zero frequency. It does not suffer from low-frequency break-
down. This is because given an arbitrary frequency including
zero, , and in (20) can be accurately found from (8)
without breakdown. Since is full rank and is invertible,

in (20) can also be obtained at any frequency. At
dc, the first term in (20) is singular for a right-hand side that is
constant, which, in fact, agrees with the theoretical result. This is
because for a constant voltage excitation, a perfectly conducting
loop structure modeled by the EFIE behaves as an ideal inductor
at low frequencies. In addition, it becomes a short circuit at zero
frequency and its impedance becomes zero. Thus, the current
tends to infinity as the excitation voltage is maintained at a con-
stant level and this agrees with the result shown in (20). For an
incident-field based excitation, the first term in (20) is not sin-
gular because the in the denominator will be canceled by the
factor present in the excitation, which will be discussed in

more detail in the following Section III-B.1.
At low frequencies where and become real, let be de-

noted by , and by . Since is positive definite,
is semipositive definite, (8) is said to be a symmetric positive
definite generalized eigenvalue problem [22, pp. 231–240]. For
this class of problem, the eigenvectors are both - and -or-
thogonal. Hence, we have

(22)

Thus, (20) can be reduced to

(23)

When compared to is negligible, it can be further reduced
to

(24)

B. Solution to the EFIE at an Arbitrary Frequency

Based on (20), the solution of the EFIE at an arbitrary can
be written as

(25)

Since is the nullspace of , whose eigenvectors are diver-
gence free, we can readily identify the divergence-free compo-
nent and the non-divergence-free component from (25) as
follows:

(26)

The above appears to be a separation (decoupling) of the
divergence-free and non-divergence-free currents. This is not
true. As shown in (26), although a current can be decomposed
into and at any frequency, the two are coupled as indicated
by the term, which is not identity but a densely
populated matrix. Both and have a complicated frequency
dependence. is determined by not only but also , and
the same is true for . Furthermore, for higher frequencies, the
contribution from even becomes negligible as compared to
that from , which explains why quasi-Helmholtz decomposi-
tion is not effective at high frequencies. Only when frequency is
low that (8) becomes real, and thereby becomes
an identity matrix, the two currents can be considered decou-
pled, i.e., independent of each other. In this case, we can obtain
their expressions from (26) as the following:

(27)

(28)

1) Solution to the Plane Wave Incidence in Scattering
Analysis: In scattering analysis, in (3) is related to an
incident field. The specific form considered in this paper is

, which represents a generic plane wave po-
larized in direction. Such an incident field is frequency
dependent. However, at low frequencies, it becomes a constant
with respect to frequency in a computer simulation when the
phase of the incident field is too small to be captured by the
finite machine precision. As a result, shown in (26) and
(27), which is the divergence-free current, becomes inversely
proportional to frequency, which is wrong [23]. To solve such a
breakdown problem originated from the right-hand side of the
EFIE, we develop the following analytical method that is valid
at all frequencies.
We rewrite the incident plane wave as the following:

(29)

Since has no space dependence, it is curl free. We hence can
represent it as a gradient field. With (29), the term in (27)
can be rewritten as

(30)

where

(31)

Since represents a divergence-free current, which can be
written as and hence [3] with being a
scalar, its inner product with a gradient field can be analytically
proved to be zero. As a result, , (30) becomes

(32)

If we do not utilize the analytical property of to
vanish the term in (30), at low frequencies where becomes
negligible, (30) will be dominated by . Thus the term
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will have a completely wrong frequency dependence at
low frequencies.
With (32), (27) becomes

constant (33)

At very low frequencies, scales linearly with frequency as
can be seen from (31). Hence, the divergence-free current
for an incident plane wave excitation is a constant that does not
change with frequency, which agrees with low-frequency elec-
tromagnetic field theory [23]. As for the nonsolenoidal compo-
nent of the current, from (28), we obtain

(34)

at low frequencies, which also agrees with the low-frequency
electromagnetic theory as it represents the current associated
with a charge having a constant magnitude, and hence scaling
with frequency linearly.
Since the inner product between a divergence-free current and

a gradient field is zero irrespective of frequency, the treatment
used in (32) is universal in the sense it is valid for all frequencies.
Hence, in (26) that is true for all frequencies, the term can
be corrected in the same way. As for the evaluation of ,
no special treatment is required.
2) Solution to the Delta-Gap Source-Based Right-Hand Side

V: In many applications such as circuit extraction and antenna
impedance calculation, the right-hand side used is a delta-gap
voltage source. In this case, the frequency dependence of and
can be readily recognized from (26), which is given below

(35)

Unlike the plane-wave incident case where is real and is
imaginary at low frequencies, both and are imaginary.
Furthermore, is inversely proportional to frequency, while
scales with frequency linearly. This reveals that repre-

sents the current through an inductor, while the is the current
through a capacitor, and the circuit model of (35) is a constant
source applied to an inductor in parallel with a capacitor. In ad-
dition, the weights of the higher order eigenmodes in the current
solution are proportional to , whereas that of the
dc eigenmodes scale as . When inductance and capacitance
co-exist, although the current through the capacitance, , can
be negligible as compared with the inductance current, the
field generated by the is important at low frequencies. This
will become clear from the following subsection.

C. Scattered Field and RCS Computation From Zero to
High Frequencies

The computation of scattered fields including both near and
far fields also breaks down at low frequencies if not done cor-
rectly. In this section, we present an analytical method to over-
come this breakdown. This method is valid at all frequencies.
The scattered field, , can be computed from the

current as the following:

(36)

The RCS is defined as

RCS (37)

where, in far field analysis, we consider - and -components
of the . The two components are contributed only by the
first term of (36), which is associated with the vector potential
and can be evaluated for the far field as

(38)

where

(39)

From (25), (26), it can be seen that at any frequency that is
either high or low, current can be written as

(40)

where is the divergence-free current associated with ,
and is the nonsolenoidal current associated with .
By substituting (40) into (38), we obtain for the far field

(41)

In the above, the computation of the first term breaks down
at low frequencies. This is because, due to finite machine
precision, the correct frequency dependence of the first term
will be lost when is treated as 1 in computation at
low frequencies. To fix this problem, again, like the approach
we developed to fix the low-frequency breakdown of in
Section III-B, we split into 1 and . We
then analytically vanish the gradient-field related component
of , which is 1, because the inner product of the
divergence-free current and a gradient field is analytically
known to be zero. Thus, (41) is corrected to be

(42)

As a result, the low-frequency breakdown of the first-term in
(41) is fixed analytically. Moreover, (42) is true at high fre-
quencies also. Thus, one can use it to obtain correct RCS at any
frequency. The and in (42) can be evaluated from (26),
with therein evaluated based on (31), without making
any approximation.
From (42), we can also analyze the frequency dependence

of at low frequencies. Since at low frequencies, is
a constant as can be seen from (33), while scales linearly
with frequency as shown in (34), both terms in (42) scale with
frequency quadratically. Note that in the first
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term of (42) scales with frequency linearly at low frequencies
since it becomes a function of frequency. In other words, the
scattered field generated by both the divergence-free current and
the nonsolenoidal current scales quadratially with frequency at
low frequencies, and at dc, the scattered field in the far field is
zero.
The aforementioned approach is equally applicable to the

computation in the near fields or at any point that is not far.
In this case, both terms in (36) are present. By substituting (40)
into (36), we obtain

(43)

where the divergence of is analytically vanished in the
second term. In the above, the computation of the first term
breaks down at low frequencies. Again, to fix it, we split

into 1 and . Equation (43) can then be
written as

(44)

which no longer breaks down at low frequencies, and is valid
at any frequency. At zero frequency, only the last term is left,
which is nothing but the gradient field generated by constant
charges [notice that obtained from the proposed method
scales linearly with frequency as shown in (34)]. Equation
(44) is equally applicable to the total field calculation for the
frequency-independent right-hand side . As can be seen from
(35), although in this case is negligible as compared with
at low frequencies, the field generated by is dominant.

IV. ANSWERS TO THEORETICAL QUESTIONS RELATED
TO LOW-FREQUENCY BREAKDOWN

The solution proposed in the previous section provides a rig-
orous solution to the original fullwave system of equations of
the EFIE at any frequency. With this solution known, we can
provide decisive answers to a few important theoretical ques-
tions relating to the low-frequency breakdown. To make our ex-
planation clear, in Fig. 1, we plot an axis of the absolute eigen-
values of (8), along which we illustrate the relative relationship
between zero eigenvalues 0, the square of the highest break-
down frequency , the smallest modulus of the nonzero
eigenvalues of (8), , and the largest modulus of the eigen-
values of (8), . The distances labeled by , and are
the ratios of the corresponding nonzero eigenvalues in log scale.
In double-precision computing, can be determined based
on

Fig. 1. Illustration of the relative relationship between , and , and
.

where denotes the spectral radius of a matrix, which is the
modulus of the largest eigenvalue of the matrix. This is because
at this frequency the contribution of starts to be neglected
due to finite machine precision. As a result, in Fig. 1,
in double-precision computation. The ratio of to is
proportional to the square of the largest physical dimension over
the smallest feature size present in the structure.

A. Dense Discretization Breakdown Versus Breakdown Due to
Low Frequencies

Fig. 1 can be used to understand the similarity and difference
between the breakdown due to dense discretizations and that
caused by low frequencies. For a given structure, if one fixes
the mesh, the eigenvalue distribution is determined, and thereby

and . When frequency decreases such that the ratio
of to is beyond machine precision ( in double-
precision computation), breakdown starts to occur. For a given
structure, if one fixes the frequency, but keeps refining the mesh,

will be pushed higher and higher along the axis. This is
because the square root of represents the largest complex
resonance frequency at the given frequency, which is inversely
proportional to the smallest mesh size. The ratio of to
hence will become smaller and smaller. Again, once this ratio
is beyond machine precision, breakdown occurs. So for both
cases, when the electric size square of the smallest mesh size is
less than machine precision, breakdown occurs.

B. At Which Frequency Fullwave Effects Become Important?

From (20), it can be seen clearly that the weight of a higher
order mode having eigenvalue in the EFIE solution is pro-
portional to ; and the weight of the dc mode in
the EFIE solution is proportional to . The former over the
latter is . Given an arbitrary 3-D structure, if
the ratio between and the first nonzero eigenvalue is less
than two orders of magnitude, then fullwave effects become im-
portant since at this frequency the contribution of higher order
modes in the field solution cannot be neglected for achieving
an accuracy higher than 1%. The (having the same unit as
) can be analytically estimated from the first nonzero com-

plex resonance frequency being simulated, which corresponds
to the largest physical dimension of the structure.

C. Is Solution at the EFIE Breakdown a Static Solution?

The breakdown of the EFIE is due to finite machine precision
instead of decoupled electric and magnetic fields. The precision
of today’s computers is not low. To make the EFIE break down,

must be orders of magnitude smaller than in
double-precision computation, while the ratio between and
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is much less than 16 orders of magnitude even in a struc-
ture that has a several-wavelengths difference in geometrical
scales. Taking an integrated circuit system as an example, where
the ratio between the largest geometrical scale and the smallest
scale can be viewed as one of the largest among today’s engi-
neering systems. In this system, the ratio between the largest
and the smallest feature size is approximately 1 cm versus 10
nm, which is . Thus, the ratio of to is . There-
fore, in Fig. 1, , and hence since in
double-precision computation. As a result, the contribution of
higher order modes in the EFIE solution at breakdown is negli-
gible, and hence the solution is dominated by static physics.
However, in applications where the ratio between and
is pushed close to machine precision such as problems

with dense discretizations or multiscale applications that cover
a more than six orders of magnitude in the ratio of geometrical
scales, then becomes close to , and hence when the
EFIE breaks down, the higher order eigenmodes will make im-
portant contributions to the EFIE solution. As a result, there ex-
ists a range of breakdown frequencies at which the solution is
dominated by fullwave effects. This theoretical prediction will
be verified by a multiscale example having a seven orders of
magnitude ratio in geometrical scales in the numerical result
section.

V. PROPOSED FAST METHOD FOR SOLVING EFIE BREAKDOWN

The proposed rigorous closed-form model of the EFIE’s in-
verse shown in Section III, together with the essential idea of the
proposed method for overcoming the barrier imposed by finite
machine precision, can be exploited to develop a fast method to
solve the EFIE breakdown without the need for solving the orig-
inal generalized eigenvalue problem shown in (8). It should be
noted that this method is not a fast algorithm for solving matrix
equations but a fast method for solving the breakdown problem.

A. Proposed Fast Method for the Case Where the EFIE
Solution at Breakdown is Dominated by Static Effects

The EFIE solution shown in (26) is true for all frequencies.
In the case where the EFIE solution at breakdown frequencies
is dominated by static physics, the entire structure being simu-
lated is electrically small, as can be deduced from the analysis
in Section IV-B. The matrices and become real, and (26)
is simplified to (27)–(28). The right-hand-side vector in (27)
and (28) can be either a delta-gap source or a plane wave inci-
dent field. Next, we present the proposed fast methods for both
cases.
1) Case 1—Delta-Gap Source-Based Right-Hand Side: For

a delta-gap source right-hand side , it is clear that the EFIE so-
lution is dominated by , as shown in (35). It has an explicit fre-
quency dependence. Therefore, we can use one solution vector

obtained at a non-breakdown frequency, denoted by , to
obtain the EFIE solution at any breakdown frequency as
the following:

(45)

The can be chosen in the following band:

with (46)

where is the first breakdown frequency, and is the
modulus of the first nonzero eigenvalue of (8), as illustrated in
Fig. 1. At such an , the weight of the higher order modes is at
least two orders of magnitude smaller than that of the dc eigen-
mode, and thereby negligible; and meanwhile, the EFIE solu-
tion has not yet broken down. In double-precision computing,
the can be estimated from the following together with

and :

(47)

where represents the smallest mesh size, and is the
largest physical dimension of the structure. When the break-
down solution is dominated by static effects, the electric size
corresponding to the largest physical size is small too. There-
fore, the shown in Fig. 1 is much less than 16 in double-preci-
sion computation. As a result, the range defined by (46) is fairly
large. Hence, it is not difficult to select . To apply an iterative
solver that requires a good condition number, one can select, in
the range of (46), a frequency that meets such a requirement to
generate the reference solution.
For capacitor structures where physical loop currents do not

exist, i.e., currents cannot form a loop physically; only of
(35) is of physical interest. Since has a known frequency
dependence, again, we can use the solution vector obtained
at one non-breakdown frequency to obtain the EFIE solution

at any breakdown frequency as the following:

(48)

Cost Analysis: The computational cost of the frequency
scaling shown in (45) and (48) is trivial. The complexity of
obtaining is the same as that of solving the traditional EFIE
at one frequency. After is obtained, the solutions at all
breakdown frequencies are obtained with negligible cost.
2) Case 2—Plane Wave Incidence in Scattering Analysis:

For the scattering analysis in which the right-hand side is
frequency dependent, at low frequencies, the EFIE solution has
both real and imaginary parts shown in (33) and (34). Neither
nor can be ignored as appears in the real part, and

appears in the imaginary part. However, their frequency depen-
dences have been explicitly revealed. Based on such a frequency
dependence of the EFIE solution at low frequencies, and using
just a single solution obtained at , we can obtain the
solution of the EFIE at any frequency where the EFIE breaks
down as follows:

(49)

Cost Analysis:The cost is the same as that in previous section.

B. Proposed Fast Method for the Case Where the EFIE
Solution at Breakdown Frequencies is a Full-Wave Solution

In cases, where the satisfying (46) cannot be found, the
EFIE solution is dominated by full-wave effects when the EFIE
breaks down. As analyzed in Section IV-C, such a case is not
frequently encountered and can only happen when the ratio be-
tween and is pushed so close to machine precision,
such as greater than in double-precision computing. For
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this case, we develop a method to find the EFIE solution as
follows.
Consider a breakdown frequency , we first obtain the solu-

tion of (3), with the system matrix replaced by the following
system matrix at a few frequencies where the solution does
not break down:

(50)

Denoting the union of these solutions to the above by ,
which is of size by , where is the number of frequencies
simulated. It is clear that the solutions in and the solution at
breakdown frequency being pursued are the superposition of
the same set of eigenvectors since they share the same governing
generalized eigenvalue problem in common. We then orthogo-
nalize to obtain , the size of which is by . With

, we transform (8) at to a reduced eigenvalue problem

(51)

where ,
both of which are of size by . After solving the above, we
obtain eigenvectors and eigenvalues. Let the matrix of the
eigenvectors be , the eigenvectors of (8), , can be ob-
tained as . This includes both dc eigenmodes (diver-
gence-free components) denoted by , and a few high-order
eigenmodes denoted by . The union of and can
then be used as the reduced space of to find the EFIE so-
lution at . Using it, (4) becomes

(52)

We then fix the low-frequency breakdown in the above reduced
system of by analytically vanishing and

.
Again, there are two different kinds of : one is frequency

dependent, the other is frequency independent. For frequency-
independent , the computation of in (52) can be
performed as it is without low-frequency breakdown. For fre-
quency-dependent encountered in the scattering analysis, the
computation of follows the samemethod described in
Section III-B.1 to avoid the low-frequency breakdown. Specif-
ically, since is the nullspace of representing a loop
current, is computed like (32).
As for the choice of frequencies used for simulating (50) to

build , these can be chosen above and progressively
added until the repeating high-order eigenvalues found from
(51) are beyond the range that makes a nontrivial contribution
to the solution at the simulation frequency. This is based on the
fact that the relative weight of a higher order mode having eigen-
value in the EFIE solution is proportional to .
Cost Analysis: We analyze the cost of the proposed method

step by step. 1) Solving (3) using (50) at non-breakdown fre-
quencies is the same as performing the traditional EFIE com-
putation at frequencies, where is . As shown in Fig. 1,
there are no additional eigenvalues between and 0, there-
fore, the number of modes that are important for the EFIE solu-
tion at breakdown is bounded by a constant. 2) Generating the

Fig. 2. Geometry of a ring inductor.

reduced matrices shown in (51) has the same complexity as per-
forming the EFIE-based matrix-vector multiplications times,
where is . 3) Solving the reduced eigenvalue problem
(51) takes negligible time because of its size. 4) Gener-
ating the reduced matrix in the left-hand side of (52) again has
the same complexity as -times matrix-vector multiplications,
while solving (52) is trivial because of its size. Overall,
the total cost is dominated by the first step: the traditional EFIE
solution of (50) at a few frequencies since the cost of the fol-
lowing steps is negligible as compared to the first step. As a
result, like the “static” breakdown presented in previous sec-
tion, for the “full-wave” breakdown case considered here, the
proposed method can also be used to solve the EFIE breakdown
with great ease.

VI. NUMERICAL RESULTS

The accuracy and efficiency of the proposed methods have
been validated by a number of circuit and scattering examples.
We give four examples as follows.

A. Ring Inductor

The first example is a ring inductor, the geometry of which is
shown in Fig. 2, where L is 1 m, andW is 0.25 m. A delta-gap
voltage source is applied across one edge of the triangular ele-
ment based discretization of the inductor, as illustrated in Fig. 2.
For this example, the traditional RWG-based EFIE solver breaks
down in the range of Hz. With the proposed method,
we are able to extract a correct inductance at any low frequency,
which agrees very well with the analytical result of 1.1443 pH
[24], as can be seen from Table I. Three methods are compared
in Table I from dc to 50GHz: the proposedmethod, the proposed
method without correcting the inaccurate zero eigenvalues, and
the traditional RWG-based MoM solution of the EFIE. Clearly,
the proposed method produces a correct inductance, whereas
the traditional method and the proposed method with inexact
zero eigenvalues both fail at low frequencies. For this example,
the inductance is shown to be a constant across the whole range
from 0 to 50 GHz because of the small physical dimension of the
structure. At 50GHz, the electric size is wavelengths;
while at Hz, the electric size is wavelengths.
In addition, for this example, we list the first 12 eigenvalues

of (8) computed at Hz in Table II. The first eigenvalue
in Table II appears to be a very large number, however, it is, in
fact, zero because there exists a greater than 16 orders of magni-
tude difference between the first eigenvalue (smallest one) and
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TABLE I
COMPARISON BETWEEN INDUCTANCES (H) CALCULATED BY THREE METHODS

TABLE II
FIRST 12 EIGENVALUES rad s OF THE RING INDUCTOR AT Hz

the largest one, which is e j (not shown
in the table) for this example. In double-precision computing,
any eigenvalue that is 16 orders of magnitude smaller than the
largest cannot be computed correctly. When this inexact zero is
involved in the computation at low frequencies, the frequency
dependence of the EFIE solution computed is completely
wrong, which is evident from the third column in Table I. From
Table II, it can also be seen that there is a clear gap between
nonzero eigenvalues corresponding to higher order eigenmodes
and the zero eigenvalue. The large gap for this example is due
to the fact that the structure being simulated is small, and hence
the first nonzero eigenvalue is high. In fact, as long as the
structure being simulated is finite, there exists a gap between
the first nonzero eigenvalue and the zero eigenvalues.

B. Parallel Plate Capacitor

Next, a parallel plate capacitor structure is simulated. The
capacitor length, width, and height, are set to be 5, 4, and
0.5 mm, respectively. The discretization results in 107 un-
knowns. A delta-gap voltage source is applied in the middle of
the post between the plates. The width of the post is 0.8 mm
as shown in Fig. 3. The simulation based on a conventional
RWG-based EFIE solver breaks down at 1 KHz, where the
2-norm condition number of the EFIE system matrix, which

Fig. 3. Geometry of a parallel plate capacitor.

is the ratio of the largest singular value to the smallest one, is
found to be e . In contrast, the proposed solutions
are valid at all frequencies. We extract the capacitance by the
proposed rigorous solution at , 100, 10, 1, and all
the way down to Hz, the capacitance obtained from the
part of (35) is found to be 0.459 pF. This result agrees with

the traditional EFIE solution at Hz, when the system matrix
is not singular yet.
The proposed fast method is also used to simulate this ex-

ample, where the solution of the EFIE at all the breakdown fre-
quencies is obtained by a simple scaling as shown in (48). The
relative difference between the solution from the proposed fast
method and that of the rigorous method is found to be less than

across all frequencies. The reference frequency
used is 100 MHz, where the condition number of the EFIE
system matrix is e . Since there exists a wide band
to select the reference frequency in a single-scaled problem or
problems with a small difference in geometrical scales, one can
also choose the reference frequency at 1 GHz for this example,
where the condition number is e .
Interestingly, when simulating a capacitor structure, one

may not observe the EFIE breakdown numerically since the
frequency scaling of the current would agree with that of the
capacitor current when the contribution of the magnetic vector
potential is lost. However, the system matrix is singular since
matrix is singular, thus its numerical solution still breaks
down.

C. Scattering From a Conducting Sphere

The third example is a PEC sphere with a radius of 1 m and
illuminated by a plane wave. We compare the far-field RCS
generated by the proposed method, the traditional RWG-based
EFIE method, and Mie Series at 1 Hz in Fig. 4(a). Clearly,
the result from the proposed method shows an excellent agree-
ment with the result produced by Mie series, whereas the tradi-
tional method obviously breaks down. In Fig. 4(b), we compare
the RCS generated by the proposed method and the conven-
tional method at a high frequency 1 GHz, where the conven-
tional method does not break down. The number of unknowns
is 12 150. It is clear from Fig. 4(b) that the proposed method cor-
relates very well with the conventional method, which demon-
strates the validity of the proposed method at both high and low
frequencies. In addition, one can use the proposed method to
generate correct fields and RCS at arbitrarily low frequencies
such as Hz [25]. At these low frequencies, we have found
that it becomes a must to correct the breakdown due to the loss
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Fig. 4. Bistatic RCS comparison. (a) 1 Hz. (b) 1 GHz.

of frequency dependence in the right-hand side as well as in the
scattered field calculation.

D. Multiscale Example

In the last example, we simulate a multiscaled loop inductor,
the detailed geometry of which is shown in Fig. 5(a), where the
width is 1 m, the length is 1 cm, and the finest feature size is
1 nm, which is also the smallest mesh size. The two 1 nm strips
shown in this figure are areas with fine discretizations. The ratio
of geometrical scales spans seven orders of magnitude. There
aremany other multiscale examples in open literature. However,
as analyzed in this paper, to observe the phenomenon that the
EFIE solution at breakdown frequencies is a full-wave solution,
even 3–5 orders of magnitude ratio in wavelengths would not
be sufficient. That is why we designed the example shown in
Fig. 5(a), the ratio of geometrical scales of which is seven orders
of magnitude. The structure is excited by a delta gap voltage
source applied at the horizontal edge located in the right center
area, as depicted in Fig. 5.
In Table III, we list the input impedance of the multiscaled

loop inductor computed from a conventional EFIE fullwave so-
lution in comparison with the proposed method from 1 Hz to
20 GHz. From the proposed method, it can be seen that at low
frequencies, the imaginary part of the input impedance scales

Fig. 5. Multiscaled structure. (a) Geometry (the two shaded 1 nm strips are
areas with fine discretizations). (b) Solution error.

with frequency linearly, which agrees with the physical prop-
erty of the structure since the structure behaves as an inductor
at low frequencies. Above e Hz, the impedance data sug-
gests that fullwave effects start to become important. In contrast,
the traditional fullwave solution fails to predict the correct fre-
quency dependence at low frequencies. More importantly, the
traditional fullwave solution breaks down even at 1 GHz, where
the fullwave effects are pronounced as can be seen from the
input impedance at this frequency. In Fig. 5(b), we plot the error
of the entire EFIE solution of the traditional fullwave solver
in comparison with the proposed solution across the entire fre-
quency band from 1 Hz to 20 GHz, it is clear that for this mul-
tiscale example in which fine feature sizes are seven orders of
magnitude smaller than the largest physical size, the breakdown
occurs at frequencies where the solution is no longer a static so-
lution. The EFIE solution error is more than 55% at 1 GHz.
In this example, we also use the proposed fast method to

compute the input impedance at 1 GHz where the traditional
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TABLE III
INPUT IMPEDANCE OF A MULTISCALE STRUCTURE

fullwave solution breaks down. We use 20 solutions uniformly
sampled between 8 GHz and 15 GHz where the EFIE solution
does not break down. The number of unknowns is 169. Since
the EFIE solution has not broken down at these frequencies,
the efficient EFIE solutions in the existing literature can all be
leveraged to obtain the solutions efficiently. Robust and fast di-
rect solutions can also be employed. These topics are not dis-
cussed here because the fast EFIE solution at non-breakdown
frequencies is not the research problem addressed in this paper.
We then solve a reduced system of shown in (52) and fix
the low-frequency breakdown in the reduced system. The input
impedance extracted from the proposed fast method at 1 GHz is
shown to be e e j, the error of which
is less than 0.2% compared to the impedance obtained from the
proposed rigorous method.

VII. CONCLUSION

In this paper, the solution to the original full-wave EFIE
system of equations is found from electrodynamic frequencies
all the way down to zero frequency, thus revealing the true
solution of the EFIE when it numerically breaks down due
to low frequencies and/or dense discretizations. This single
solution that is rigorous at all frequencies also suggests a
new phenomenon that the EFIE solution at breakdown can be
dominated by full-wave effects, in addition to the static solu-
tions commonly observed when the EFIE breaks down. Such
a theoretical prediction has also been verified by numerical
experiments. The proposed solution of the original EFIE can
also be used to find the quantitative answers to a number of
theoretical questions relating to low-frequency and/or dense
discretization breakdown.

The proposed closed-form expression of the EFIE’s inverse,
together with the essential idea of the proposed method for over-
coming the EFIE breakdown, has also been exploited to develop
a fast method that eliminates the EFIE breakdown efficiently.
In addition, we have detailed three breakdown phenomena one
can encounter in the EFIE-based low-frequency analysis, and
we show how each of them is rigorously solved in this work.
It is worth mentioning that the research problem of low-fre-

quency breakdown has certain differences from the problem
of solving an ill-conditioned numerical system. The former
could be solved naturally if a computer had infinite precision,
while the latter could not be solved via the same means.
Conversely, the latter can be well addressed by developing a
well-conditioned formulation up-front, while the former, in
general, cannot. This is because as long as the formulation is
frequency dependent, which is true since Maxwell’s equations
are frequency dependent, due to finite machine precision, this
formulation will inevitably lose its frequency dependence when
frequency is low enough, thus breaking down or yielding inac-
curate solutions. As shown in this paper, when the full-wave
formulation breaks down, the solution may still be dominated
by full-wave effects. Therefore, this problem can become very
severe. To solve it, one would have to figure out some ways to
bypass the root cause, which is the finite machine precision.
This is what has been pursued and fulfilled in this paper.
Besides the EFIE, the essential idea of the proposed method

is equally applicable to other integral equations and numerical
methods for solving Maxwell’s equations. It can also shed light
on other unsolved research problems, the root cause of which is
finite machine precision.
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