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An Explicit and Unconditionally Stable FDTD
Method for the Analysis of General
3-D Lossy Problems

Md Gaffar and Dan Jiao, Senior Member, IEEE

Abstract—The root cause of the instability of an explicit finite
difference time-domain (FDTD) method is quantitatively iden-
tified for the analysis of general lossy problems where both
dielectrics and conductors can be lossy and inhomogeneous. Based
on the root cause analysis, an efficient algorithm is developed to
eradicate the root cause of instability, and subsequently achieve
unconditional stability in an explicit FDTD-based simulation of
general lossy problems. Numerical experiments have demon-
strated the unconditional stability, accuracy, and efficiency of the
proposed method.

Index Terms—Explicit methods, finite difference time-domain
(FDTD) method, inhomogeneous media, lossy media, time-domain
methods, unconditionally stable methods.

I. INTRODUCTION

HE FINITE difference time-domain (FDTD) method has
been one of the most popular methods for time-domain
analyses [1], [2]. It has gained a wide-spread popularity not
only in electromagnetic simulations but also for photonic, ther-
mal, biological, aerodynamic, and many other applications. An
explicit FDTD method requires no matrix solution. However,
its time step is traditionally restricted by the smallest space
step to ensure the stability of a time-domain simulation, as dic-
tated by the Courant—Friedrich-Levy (CFL) condition. When
the space step of a given problem can be determined solely from
an accuracy point of view, the time step required by the CFL
condition has a good correlation with the time step determined
by accuracy. However, when the problem involves fine space
features relative to working wavelength, which is common in
many engineering problems, the time step dictated by the stabil-
ity condition can be orders of magnitude smaller than the time
step required by accuracy. As a result, a tremendous number of
time steps need to be simulated to complete one simulation, ren-
dering the overall FDTD simulation computationally expensive,
although the computational cost at each time step is trivial.
In contrast to traditional explicit methods that are condi-
tionally stable, in an unconditionally stable method, the choice
of time step does not depend on space step, and one can use
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an infinitely large time step without making a time-domain
simulation unstable. In the past decade, a number of implicit
unconditionally stable methods have been developed such as
the alternating-direction implicit (ADI) method [3], [4], the
Crank—Nicolson (CN) method [5], the CN-based split step (SS)
scheme [6], the pseudospectral time-domain (PSTD) method
[7], the locally one-dimensional (LOD) FDTD [8], [9], the
Laguerre FDTD method [10], [11], the associated Hermite
(AH) type FDTD [13], a series of fundamental schemes [14],
a recent one-step unconditionally stable method [24], and oth-
ers. In these methods, the time discretization scheme is different
from that of an explicit FDTD. It yields an error amplification
factor bounded by one irrespective of time step, thus ensuring
stability. However, unlike an explicit FDTD method that is free
of matrix solution, an implicit FDTD requires solving a matrix.
Therefore, it suffers from the issue of computational efficiency
when the problem size, and hence matrix size, is large. In [16],
a spatial filtering technique has been developed to extend the
CFL limit for electromagnetic analysis. The filtering techniques
in [15] and [16] have not produced an unconditionally stable
method.

Recently, based on the success of an explicit and uncon-
ditionally stable time-domain finite-element method [19], an
explicit and unconditionally stable FDTD method has been
successfully developed in [20] and [21]. This method is sta-
ble for an arbitrarily large time step irrespective of space step,
and accurate for a time step solely determined by sampling
accuracy. Furthermore, it retains the matrix-free property of
the original FDTD method, and hence no matrix solution is
required. The method does not belong to the class of commonly
understood unconditionally stable methods. The essential idea
of this method to achieve unconditional stability is to iden-
tify the root cause of the instability associated with an explicit
marching, and subsequently adapt the underlying numerical
system to eradicate the root cause of the instability. As a result,
an explicit method can also be made unconditionally stable. On
the contrary, the root cause of instability has not been elim-
inated in existing implicit methods, which is the set of the
eigenmodes of the underlying numerical system, whose eigen-
values (characterizing the rate of the space variations of the
eigenmodes) are so high that they cannot be accurately simu-
lated by the given time step. This set of unstable eigenmodes
exists because of fine discretizations. The fine discretizations
cannot be avoided in a structure having fine features relative to
working wavelengths. As a consequence, an implicit method
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has to rely on various time integration techniques that have
a bounded error amplification factor to control the stability.
However, even though the stability is controlled, the presence
of these unstable modes, since they cannot be accurately sim-
ulated, can still negatively impact the overall solution accuracy
and stability in time domain. This will become clear in the
sequel.

Despite the success in removing the dependence of the time
step on space step, neither [19] nor [20], [21] has addressed the
analysis of general lossy problems where dielectrics and con-
ductors are not only inhomogeneous but also lossy. Different
from lossless problems where the field solution is governed
by a symmetric positive definite generalized eigenvalue prob-
lem, whose eigenvalue solutions are real, the field solution of
a lossy problem is governed by a quadratic eigenvalue prob-
lem whose eigenvalues and eigenvectors are complex-valued.
The over-damped eigenmodes, critically damped eigenmodes,
and damped oscillations could coexist in the numerical system.
Traditionally, the stability analysis of either a purely lossless
system or a lossy problem having a uniform conductivity is
used to estimate the stability of a lossy problem. However,
this approach is not suitable for analyzing the root cause of
the instability of an explicit scheme in a general lossy setting,
where the lossy materials are inhomogeneous. The root cause
of the instability, thus, remains to be thoroughly understood
for the analysis of general lossy problems. Furthermore, based
on the theory given in [19]-[21], we need to remove certain
eigenmodes for the given time step. However, the governing
quadratic eigenvalue problem of a lossy problem yields many
complex-valued eigenvalues and eigenvectors. Which eigen-
values, and thereby eigenvectors, to remove is unknown for
ensuring stability without sacrificing accuracy. In addition, new
explicit algorithms need to be devised to achieve unconditional
stability for general lossy problems. This paper is written to
address these unsolved problems. Numerical examples involv-
ing lossy and inhomogeneous dielectrics and conductors, in
both closed- and open-region settings, are presented to demon-
strate the accuracy, efficiency, and unconditional stability of the
proposed explicit method.

The preliminary work of this paper has been reported in our
conference papers [22] and [23]. In this paper, we provide a
comprehensive and thorough description of the proposed work
from theory to methods to numerical experiments. The disper-
sion error of the proposed method is also theoretically analyzed
for not only free-space scenario but also inhomogeneous set-
tings. In addition, we have compared the proposed method
with two representative implicit unconditionally stable meth-
ods in accuracy, dispersion error, stability, and computational
efficiency.

II. PROPOSED THEORY ON MAKING AN EXPLICIT FDTD
UNCONDITIONALLY STABLE FOR ANALYZING GENERAL
LOSSsY PROBLEMS

A. Root Cause of Instability

Consider Maxwell’s
lossy problem having

equations governing a general
space-dependent conductivity o,
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permittivity u, and permittivity e in a source-free region

OH
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In the FDTD method, the above continuous equations are
essentially discretized into

H" 2 = "2 — AtDRE" 2)

At At .

(I + 2Dc,) Entl = (1 — 2Dc,> E" + AtDyH" 2
3)

where H denotes the vector of unknown magnetic field compo-
nents, F the vector of unknown electric field components, At
is the time step, D, is a diagonal matrix of element o /¢, D is
the sparse matrix representing the discretized 1/uV x operator,
Dy represents the discretized 1/eV x operator, and I stands
for an identity matrix. The superscripts n, n &+ 1/2, and n + 1
denote the time instants. Following (3), the E’s value at the nth
time step can be written as

<I + ;AtDU> E" = (I - ;Ath) E" ' £ AtDy H" /2,
4)

Subtracting the above from (3), and substituting (2) into the
resultant, we obtain

1 1
(I + QAtDJ) Etl =92oF" — (I - 2Ath> En!
— At’DyDgE" (3)

which is nothing but a central-difference-based discretization of
the following second-order vector wave equation for £/

0’E oF
— +D,— + ME =
pre + D, BN + 0 (6)
where
M=DygDg. @)

Therefore, from the aforementioned derivation, it can also be
seen that the leap-frog based FDTD solution of the first-order
Maxwell’s equations is essentially a central-difference-based
discretization of the second-order wave equation.

The solution of (6), and thereby (5), is governed by the
following quadratic eigenvalue problem

(A +DoA+M)V =0 (8)

in which A denotes the eigenvalue and V' is the eigenvector.
Since D,, is positive semidefinite, so is IM, the \ of (8) is either
real or comes with complex conjugate pairs, and the real part
of A is no greater than zero [17]. The eigenvectors V' of (8) are
also either real or come with complex conjugate pairs. We can
represent F' at any time instant rigorously by

E(t) = Vy(t) )
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with V being the eigenvector matrix which represents the col-
umn space of the space variation of the field, and y(t) the
unknown coefficient vector that is time dependent. In other
words, the field solution at any time is a linear superposition
of the eigenvectors of the quadratic eigenvalue problem (8).

Now, let us consider an arbitrary eigenvector (eigenmode) of
(8) V; and examine which condition is necessary and sufficient
to make this mode be stably simulated in the FDTD-based time
marching. For the V; mode, (5) becomes

(I + ;AtDU) Viyith = 2V — (I - ;AtDU> Viyrt
— At*DyDgpViy?. (10

Front multiplying the above by V., we have

1 1
(1 + 2Atbi> it =2y - (1 - 2Atbi> i - Aoy

(1)
in which b; and ¢; are scalars given by
, _ VD,V
VEMY;,
= 12
=y (12)

K2

Since both D, and M are positive semidefinites, b; and ¢; are
real and no less than zero.
Performing a z-transform of (11), we obtain
(z—1)2 + 0.5A0;(2% — 1) + At’c;z=0.  (13)

The roots of the above quadratic equation of z can be readily
found as follows:

(2 — Atzci) + \/At4012 + At2(b12 - 402)
2(1+ 0.5b;At) '

(14)

To make (11) stable, |z| < 1 needs to be satisfied. To obtain
the modulus of z, we need to consider all possible scenarios of
b? — 4c; as follows.

Since eigenpair (\;, V;) satisfies (8), after front multiplying
(8) by ViH , we obtain

M 4 bidi+ ¢ =0. (15)
Thus, the eigenvalue \; can be written as
—b; £ /b? — 4c;
A = fc (16)

There are three kinds of eigenvalues corresponding to the
case of b? — 4dc; > 0, b? — 4¢; = 0, and b? — 4¢; < 0, respec-
tively. The corresponding time-domain solution represents an
over-damped, a critically damped, and an under-damped solu-
tion, respectively. All of these three cases can exist in the
eigenvalue solution of (8). Hence, we must consider all of the
three cases when analyzing the roots of z in (14). For each
case, we have derived the necessary and sufficient condition
that ensures the modulus of (14) bounded by 1, from which we
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have found that for any given time step At, no matter how large
it is, the eigenmodes whose eigenvalues satisfy the following
condition can be stably simulated by the given time step:
NEE- a7

Ci S —.

At
To understand the meaning of (17) more clearly, it is neces-
sary to reveal the relationship between ,/c; and the magnitude

of eigenvalues. Consider the under-damped case where b? —
4c¢; < 0, from (16), it is evident that

Ve = [l (18)

i.e., y/c; is nothing but the magnitude of A;. For the critically
damped case where bf —4¢; = 0, we have

(Ai = bi/2 = /e

Hence, ./c; is also the magnitude of \;. As for the over-
damped case of b? —4c¢; >0, (16) has two distinct val-

—bi++/b2—4c; —b;— /b2 —4c; .
ues \jj = ——5—— and \jp = ———5"——, respectively,

both of which are negative. It is clear that the following equation
holds true:

19)

VAl i) = Ve

The above relationship also holds true for the cases shown in
(18) and (19). As a result, (17) can be rewritten as

2
Vit | Aiz| <

At
To understand what happens when (21) is violated and
thereby the root cause of instability, it is important to realize
that (11) is nothing but a central-difference-based discretization
of the following second-order differential equation in time

(20)

21)

d?y

dt?

dy
bi— 2y = 0. 22
+ 7 + ciy 22)

Based on the value of b? — 4c;, there are three types of
solutions of the above equation as follows:

Aerint  Beti2t (over-damped)

y(t) = { (A+ Bt)ert, (critically damped)
e~ Yi/2 [ A cos(w;t) + Bsin(w;t)], (under-damped)
(23)
/ _h2
where w; = 405 b ; A and B are arbitrary coefficients.

Now it is ready to analyze the root cause of the instability of
an explicit FDTD-based simulation of general lossy problems.
To make it clear, we analyze the root cause for each of the three
cases one by one.

1) Critically Damped Case: For the critically damped case,
v/ |Ai1][Ai2| = | Al Tt can be seen from (23) that |);| denotes
the decay rate of the time-domain solution. As a result, the
eigenmodes whose eigenvalues violate (21) have a decay rate
faster than that can be accurately sampled by the given time
step, and hence they cannot be accurately simulated, thus
causing instability. These eigenmodes are the root cause of
instability.



4006

2) Under-Damped Case: For the under-damped case, we
have /|Ai1||Ai2| = |Ai|]- The |\;| represents the upper bound
of the oscillation frequency w;. The eigenmodes that violate
(21) are also those modes whose oscillation frequencies are too
high to be accurately simulated by the given time step At, thus
causing instability.

3) Over-Damped Case: For the over-damped case, if both
Ain and Ao satisfy |A\;| < 2/At, (21) would hold true.
Therefore, when (21) is violated, at least one of them, specif-
ically \;2, has a magnitude beyond 2/At. Since A; for the
over-damped case represents the decay rate of the time-domain
solution, when |);| > 2/At, the corresponding mode decays so
fast in time domain that it cannot be accurately captured by the
given time step At, causing instability.

As a result, we have found that the eigenmodes whose
eigenvalues’ magnitude exceed 2/At are the root cause of the
instability in an explicit FDTD-based simulation of general
lossy problems. These eigenmodes exist because of fine space
discretization relative to working wavelength. The smaller the
space step, the higher the modulus of the eigenvalue of (8).
The fine discretization cannot be avoided in structures having
small features relative to working wavelength such as integrated
circuits operating from zero to microwave frequencies.

B. Making an Explicit FDTD Solution of General Lossy
Problems Unconditionally Stable

When the time step is chosen based on accuracy, we have

At <
o 2fmax

(24)

where fi.x denotes the maximum frequency that exists in the
system response based on a prescribed accuracy. The eigen-
modes violating (21) have

[Ai| > 2/At. (25)
Substituting (24) into (25), we obtain
|)\z| > 4fmax- (26)

By performing a Fourier transform of (23), it is evident
that the unstable eigenmodes satisfying (26) have a frequency
beyond the maximum frequency required to be captured by
accuracy, and hence they can be removed without sacrificing
accuracy. As a result, to make an explicit FDTD-based solution
of a general lossy problem unconditionally stable, what we only
need to do is to discard the unstable eigenmodes for the given
time step. By doing so, we obtain stability without sacrificing
accuracy. It is important to note that this statement does not hold
true for the spatial Fourier-mode-based expansion like the one
used in the Von—Neumann stability analysis, as analyzed in the
following section. In addition, if an infinitely large time step is
the time step required by accuracy such as simulating a dc prob-
lem, we only need to keep the eigenmodes whose eigenvalues
are zero, and discard others.
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C. Comparison With Von—-Neumann Analysis and Accuracy
Analysis

In the Von—-Neumann stability analysis, the field solution at
any time is essentially expanded into the following form:

N

E(r,t) =Y e F(k,t)

i=1

27

where the space dependence of the field solution is expanded
into Fourier modes. Since the time-dependence of each Fourier
mode F'(k;,t) is not analytically known in a general nonfree-
space problem, theoretically, it is not feasible to truncate spatial
Fourier modes without affecting the accuracy. Take the dc mode
whose \; = 0 as an example, this single eigenmode would also
have to be represented by many spatial Fourier modes since it
has a complicated space dependence in a general inhomoge-
neous problem. With (27), it is not feasible to use an infinitely
large time step to simulate \; = 0 mode stably. In contrast, in
the proposed method, the dc mode, whose c¢; is zero because a
dc mode V' has a zero curl and hence satisfying MV = 0, can
be simulated by an infinitely large time step without becoming
unstable. As can be seen from (17), the time step required for
stably simulating ¢; = 0 modes is infinity.

In the proposed method, by expanding the space depen-
dence of the field solution using the eigenmodes of a governing
eigenvalue problem, the time dependence of each mode has
an analytical expression as shown in (23). As a result, the
modes whose \; exceed the maximum frequency required to
be captured by accuracy can be removed without affecting
the desired accuracy. The aforementioned accuracy analysis
is for a source-free problem. For a problem with sources,
following the same analysis given in [19], it can be shown
that removing eigenmodes that satisfy (26) does not affect
the accuracy desired for simulating an f,.-based numerical
system.

III. PROPOSED METHODS

Based on the aforementioned theoretical analysis, the pro-
posed explicit and unconditionally stable FDTD method has
two straightforward steps for the analysis of general lossy
problems. The first step is a preprocessing step to find the eigen-
modes that can be stably simulated by the given time step no
matter how large the time step is. In this step, we develop an
efficient algorithm to find the stable eigenmodes instead of solv-
ing (8) as it is. This step retains the advantage of the original
FDTD in being matrix free. In the second step, we expand the
field solution in the solution domain strictly in the space of
the stable eigenmodes, and also project the FDTD numerical
system onto the space of the stable eigenmodes. As a result,
the FDTD-based explicit time marching is absolutely stable for
the given time step regardless of the time step size. Next, we
first explain the second step, then proceed to elaborate the algo-
rithm of the preprocessing step. In the third part of this section,
we also present a diagonal-preserving method to achieve the
desired features.



GAFFAR AND JIAO: EXPLICIT AND UNCONDITIONALLY STABLE FDTD METHOD

A. Explicit FDTD Marching With Unconditional Stability

We divide the E and H unknowns into two groups. One
group is inside the solution domain denoted by subscript .5, and
the other is outside the solution domain denoted by subscript
O, such as unknowns on the boundary or inside an artificial
absorber like perfectly matched layer (PML). Subsequently, the
sparse matrices Dy and Dy can be cast into the following
form:

Dy — Dgss Deso Dy = Dyss Du.so
Dk os Deoo|’ Dr,0s Dr.oo| "’
(28)

With the above, (2) can be rewritten for H, and Hp as
follows:

HyTY? = HE'? — AIDp g5 B — AtDp soES - (29)
Hg+1/2 _ H8—1/2 — AtDg.ooEH — AtDgosEg. (30)

Similarly, (3) can be rewritten as
1
T+ %AtDU) Byt = (1- %Ath) Bl + AtDy gsHo 2

+ AtDy 5o HET? — AtD 712
(31)

1
(I I %Ath) ERt = (1 - %Ath) E} + AtDy oo Hyy '

1
+ AtDy ogHy 2 (32)

where D, is a diagonal matrix of element e. The arrangement
shown in (29)—(32) is made in view of the fact that the artificial-
absorber region such as PML is filled with a single material
whose space discretization can be performed solely based on
accuracy, while it is the fine feature present in the solution
domain that makes the time step smaller than that required
by accuracy. Hence, we leave the FDTD solution in the PML
region as it is, while performing the time marching in the solu-
tion domain strictly in the space of the stable modes for the
given time step.

For an unconditionally stable simulation of (29) and (31), we
expand the unknown fields Hg and Eg strictly in the space of
stable eigenmodes for the given time step as follows:

Es(t) = VE,stye(t)

Hs(t) = Vi syn(t) (33)

where . and y;, are unknown coefficient vectors which are time
dependent, Vg 4 is the matrix whose columns are the stable
eigenmodes for F, and Vg 4 is the same for . Both Vg
and V g 4 are independent of time, representing the space vari-
ation of the fields only. From (1), it can be seen that the H’s
space dependence is related to E’s dependence by D g operator.
Therefore, V i 5 can be written as
Vus =DeVE o. (34)

We also orthogonalize Vg to obtain v E,st SO that
Vg «+ VE,st = L. The same is performed on Vg 4 to obtain
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orthogonalized \Y% H,st- Substituting (33) with orthogonalized
stable eigenmodes into (29) and (31), we obtain

=y - AV Dp sV ayl
— AtV DpsoEd (35)
yott = VE (T4 0.5AtD,) " (I - 0.5AtD,) Vi gyl
+AIVE (14 0.5AtD,) ' Dy ssVaayy '’
+AIVE L (140.5AD,) ' Dy soHE

+AtVE L (I-05AtD,) ' D120 (36)

After the unknown coefficient vectors y. and y; are found
from (35) and (36), the entire field solution can be recovered at
any point of interest from (33).

B. Preprocessing for Finding Stable Eigenmodes for the Given
Time Step

In the proposed algorithm for finding stable eigenmodes, we
start the conventional FDTD simulation of (29)—(32), which is
only done for a small time window [when to stop is adaptively
controlled by the following (42) and (43)]. At selected time
instants such as every pth step (p > 1 and it is usually chosen as
the ratio of the time step determined by sampling accuracy and
the time step dictated by stability), we add £ field solution E'g
in matrix F g (initialized to be zero) as one column vector, and
also orthogonalize F g. The column dimension of the orthogo-
nalized F g is denoted by &’ and its row dimension is denoted by
N,. With F g, we transform the original large-scale eigenvalue
problem (8) to a reduced eigenvalue problem as follows:

(A2 42D, + M,)V, =0 (37

in which both D, ,- and M, are small matrices of size k', which
are given by
D, ,=FLD,Fg

M, = FLMFp. (38)

The small quadratic eigenvalue problem (37) can be rigor-
ously transformed to a standard eigenvalue problem

Oprsnr Tirscnr

- Mr - Do’,r ‘/7" =\ Vr (39)
e AV, AV,
k'Xk" k<K’

which can be solved with negligible cost due to its small size.
When progressively adding a solution vector into Fg in
the above process, repeating eigenvalues will appear from the
eigenvalue solution of (39). These repeating eigenvalues, when
the weights of their eigenvectors become dominant in the field
solution, can be identified as the physically important eigenval-
ues of the original system as analyzed in [19]. To determine the
weights, denote the upper half (k' rows) of the eigenmodes of
(39) corresponding to the repeating eigenvalues by V,.;, and
those of the rest eigenmodes by V,.;,. As the matrix in (39)
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is not symmetric positive semidefinite, V,; and V,.;, are not
orthogonal by themselves. To find their weights in the field
solution, we cannot use the same procedure as that in [21]
developed for the lossless problems. Therefore, we first orthog-
onalize V,; to obtain \7“, and then exclude the projection
of V., onto V,.; by computing V., = V., — \N/'T,l\?fanh,
which is then orthogonalized to a new VT, n- The weights of the
repeating eigenmodes and the nonrepeating ones, y.; and ycp,
can then be determined from

et ven]” = VIFLEEg (40)

where

Vo= [Vi Vil (41
The dominance of the repeating eigenmodes V,; can be
assessed by the ratio of their weights to the weights of the
nonrepeating ones as the following:
yehyen| / [yl yer] < 1. (42)
The preprocessing step is terminated when the above, as well
as the following, is satisfied:

< €y

(43)

Jj+1 J
)‘i,l - )‘i,l

/

J
/\i,l

in which )‘g,l is the ith nonzero repeating eigenvalue observed
at the jth step.

When the preprocessing step is terminated, a complete and
accurate set of the stable eigenmodes has been identified.
Among the repeating eigenmodes observed from (39) step after
step, we simply select those whose eigenvalues satisfy (17) to
form Vg g in (33). As aresult, we obtain

Viest =FpVig (44)
where V,. ,; are the repeating eigenmodes identified from the

small generalized eigenvalue problem (39) whose eigenvalues
satisfy (17).

C. Diagonal-Preserving Formulation

The updating equations shown in (35) and (36) involve the
orthogonalization of Vg ¢, Vi s, and a few matrix—matrix
multiplications in the right-hand side. These computations do
not depend on time, and hence can be prepared in advance
and used for all time steps. The computational complexity of
the orthogonalization as well as one matrix—matrix product
involved in (35) and (36) is O(k*N), where k is the number
of stable eigenmodes, which is much smaller than the number
of E or H unknowns N as analyzed in [21]. In addition, the
matrices in (35) and (36) associated with inverses are diagonal
matrices, thus the inversion cost is negligible. Despite the afore-
mentioned facts, the computational efficiency of (35) and (36)
is still not desirable when k is large. In this section, we present
a diagonal-preserving formulation to facilitate the analysis of
problems with a large k.
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Basically, in lossless problems, the eigenmodes are orthogo-
nal by themselves. They also diagonalize the underlying system
matrix. As a result, the resultant time-marching equation is a
fully decoupled diagonal system of equations when the FDTD
numerical system is projected onto the space of stable eigen-
modes. Unlike lossless problems, the eigenmodes in a general
lossy problem are not orthogonal by themselves; they do not
diagonalize the underlying system matrix either. These are the
sources of the additional computational cost incurred in (35)
and (36) as compared to the updating equations of lossless
problems given in [20] and [21].

To overcome the aforementioned problem, we first rewrite
(6) as a first-order system as follows:

0| FE 0 1 E 0
THEERS RPN

which can further be compactly written as

ou

T MpU = f (46)
where
0 I
M, = [_M _DU] 47)
and
E
U= { oE } (48)
ot

Meanwhile, we can cast (8) into the following generalized
eigenvalue problem:

o I 1)V 1V 49)
-M -D,| AV [ TV
which can be rewritten in short as
MaVy = AVy. (50)

From (49), it can be seen that the upper half of the eigen-
vector of M 4, V, is the eigenvector of the original (8). If we
expand U in (46) by V 4 4, the stable subset of 'V 4 satisfying
(17), and front multiply (46) by VZ - Utilizing the property
of M4V 4 ot = Va s Ag, where Ay, is the diagonal matrix of
stable eigenvalues, we can obtain

dy _
T Asty = (Vg,stVAﬁt) 1V£I,stf

dt D

which is a diagonal system of equation. Therefore, the diagonal
property is preserved in the projected space of stable modes.
Furthermore, the computation involved in the right hand side
can be done once for all time steps. More important, the over-
all cost of (51) is less than that of (35) and (36). If there are
many stable eigenmodes, as given in [21], we can divide the
frequency band of interest into multiple smaller bands. We then
find the stable eigenmodes in each small band, the number of
which is not large so that the product V¥ [ /'V 4 ;4 of O(k* N)
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computational cost can be efficiently computed, and the resul-
tant k x k£ matrix can be readily inverted. The union of the
sable eigenmodes found in each small band forms the stable
eigenmodes in the entire frequency band of interest.

To find V 4 4 efficiently without solving (50), similar to the
preprocessing algorithm described in the previous section, we
first obtain a set of time-domain solutions. From these solutions
and the system matrix, we determine the stable eigenmodes. To
be specific, we perform the time marching of (45) in a leap-frog
way, obtaining

I+ ng wrtl = (1— HDJ wn
2 2
— AtME™ 2 — Atf' (52)
ErHEtl = grts g Apnt! (53)

oB

where W denotes 9Z. The resultant solution [E W] is
then stored as a column vector in F g, and Fg is orthogonal-
ized, which is then used to obtain a reduced matrix M 4,. =
FLM 4F . When progressively adding a solution vector into
F g, repeating eigenvalues will be observed from the eigenvalue
solution of M 4,.. These repeating eigenmodes that satisfy (17),
when their weights become dominant in the field solution based
on (42), and the difference between repeating eigenvalues iden-
tified at adjacent steps that is within an error tolerance €2 shown
in (43), can be multiplied in front by F g to obtain a complete
set of stable modes V 4 ;.

D. Dispersion Analysis

In a vacuum or free space, the following dispersion relation
holds true:

w? =P (kI + k, + k2) (54)
where w is angular frequency; c is the speed of light; k., k,,, and
k, are wavenumber along z-, y-, and z-directions, respectively.

However, the above relationship does not hold true in an
inhomogeneous problem because the solution of Maxwell’s
equations subject to all the boundary conditions at the material
interfaces is not a plane wave. In fact, for a lossless inhomo-
geneous problem, we can derive the following relationship for
dispersion analysis:

w?=¢ (55)
where ¢ is the eigenvalue of the 1/eVx (1/uV x) operator
obtained from the inhomogeneous problem. This relationship
can be readily obtained by starting from the second-order vec-
tor wave equation in an inhomogeneous problem, and finding
its source-free solution in frequency domain. Numerically, this
leads to a frequency-domain counterpart of (6) except that D,
term is not present in lossless cases. Hence, the eigenvalue &
is the eigenvalue of M only shown in (7). In a vacuum or free
space, the £ would revert to the right-hand side of the commonly
used dispersion relation (54). But for general inhomogeneous
problems, it does not. For lossy inhomogeneous problems, from
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the frequency-domain counterpart of (6) which is the same as
(46), we can see the following relationship holds true:

Jw=A (56)
where A is the eigenvalue of the quadratic eigenvalue problem
shown in (8).

Now, we can analyze the dispersion error of the proposed
method for both single-material and inhomogeneous cases.
For lossless problems, we solve the following equation in the
proposed explicit time marching:

d2yi
dt?

as shown in [21], where &; is the ith eigenvalue. To obtain the
above, we expand the field solution E(t) by stable eigenmodes
found in the preprocessing step as Vg 5y(t), and multiply
the numerical system (6) by Vgst on both sides. The leap-
frog-based first-order solution given in [21] also naturally leads
to (57) by eliminating the magnetic field unknown. Since the
central-difference scheme is used in the proposed method,
for a time-harmonic input of e/“!, we obtain the following
discretization of (57)

+&yi =0 (57)

—4sin®(WAL/2) + At?¢; = 0. (58)

When wAt approaches zero, i.e., the time step is chosen
based on good sampling accuracy, it is evident that we will
obtain (55). In addition, it can be seen that if ¢; is large, a very
small time step needs to be used to control dispersion error.
However, if the modes having large ¢; are completely removed
as done in the proposed method, a large time step can be used
without degrading the dispersion accuracy. For inhomogeneous
lossy problems, similarly, by discretizing (51) in time, we can
see when wAt approaches zero, we obtain (56). As for the
accuracy of ¢ in (55) and )\ in (56), they are obtained by central-
difference-based space discretization since the FDTD scheme is
used. Hence, the accuracy obeys the accuracy of the central dif-
ference. For example, in free space, £ in the proposed method

4sin? (k, Ax/2) + 4sin® (k, Ay/2) + 4sirlz(szz/2))
Ax? Ay? Az? ’

is equal to c2(
As a result, it becomes ¢*(k2 + k; + k2) when the space step
is small. Similarly, it also approéches to the exact value in
homogeneous problems when space discretization is refined.

IV. NUMERICAL RESULTS
A. Demonstration of Unconditional Stability

First, we demonstrate the unconditional stability of the pro-
posed method by simulating an example that has an analytical
solution. The example is a three-dimensional (3-D) parallel-
plate structure filled with a lossy dielectric of conductivity
0.3 S/m. The height, width, and length of the structure are 1,
6, and 900 pm, along each of which the space step is 0.2, 1.2,
and 100 pm, respectively. A current source is launched from the
bottom plate to the top plate at the near end of the parallel plate
structure, while voltages are sampled at both the near end and
the far end. The current waveform is a Gaussian derivative pulse
of I(t) = 2(t — to)e~¢=10)*/7" with 7 = 0.2 s and t, = 47 s.
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Fig. 1. Simulation of a lossy parallel-plate structure.

Due to the small space step of the structure, the traditional
FDTD must use a time step as small as 6.58¢ — 16 s to ensure
the stability of the time-domain simulation. In contrast, for the
same space step, the proposed method can use an arbitrarily
large time step without becoming unstable. For example, to
use an infinitely large time step, we only need to keep zero-
eigenvalue modes while discarding others. In Fig. 1, we plot the
results generated with the time step of 0.1, 0.01, and 0.001 s,
respectively, in comparison with analytical data. It is evident
that the proposed method is stable, while with the same time
steps, the conventional FDTD simply diverges. Moreover, when
the time step satisfies accuracy requirements for the given input
spectrum, such as At = 0.01 s and At = 0.001 s, the results
generated by the proposed method are not only stable but also
accurate, as can be seen from Fig. 1. Notice that the time step of
0.01 s is 13 orders of magnitude larger than that of the CFL time
step, which also verifies the capability of the proposed method
in controlling dispersion error. Both the algorithm described in
Sections III-A and III-B and the diagonal-preserving algorithm
in Section III-C are used to simulate this example. The results
are on top of each other.

B. Demonstration of the Efficiency and Accuracy of the
Proposed Method

We have simulated a suite of examples to examine the per-
formance of the proposed methods. The algorithm described
in Sections III-A and III-B is used to simulate all examples.
Some examples are also simulated by the diagonal-preserving
algorithm described in Section III-C.

1) Inhomogenous On-Chip Lossy Interconnect: The sec-
ond example is a 3-D inhomogeneous on-chip interconnect
structure with a large metal conductivity of 5e + 7 S/m and
multiple layers of dielectrics. The dimension of the structure is
2000 pmx300 pmx 100 pm, along which the mesh size is 200,
50, and 16.67 pum, respectively. The input current source is the
same as that in the first example, but with 7 = 3e — 11 s. In the
preprocessing step, the accuracy-control parameters €; and eg
are chosen as 10~% and 10~°, respectively. The FDTD solutions
are sampled every 20 steps, i.e., p = 20. Six stable modes are
identified from the preprocessing step, whose eigenvalues are
—3.044 x 1013, —1.979 x 102, —3.098 x 10° £ 6.317 x 1085,
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Fig. 2. Simulation of a lossy on-chip interconnect of metal conductivity o =
5e + 7 S/m.

and —2.92 x 10% & 4.8 x 1014, respectively. In conventional
FDTD, the time step, constrained by the smallest space step,
must be chosen as small as 5.2577 x 10~* s for a stable
simulation. In contrast, the time step in the proposed method
is 2.9412 x 107'2 s solely determined by accuracy. The
total CPU time of the proposed method including both the
preprocessing step and the explicit marching step is 28.422 s,
whereas the total time of the conventional FDTD is 362.588 s.
In Fig. 2, we compare the solution obtained from the proposed
method with that from the FDTD at the near and far end of
the interconnect. Excellent agreement is observed at both
ends. Notice that in this example, the near-end and far-end
waveforms are different due to a relatively high frequency, and
hence a nonstatic effect. We also compare the entire solution
with the FDTD solution by assessing ||u — wrer||/||tres]]
across the whole time window, where « denotes the vector of
the electric and magnetic field solutions at all points obtained
from the proposed method, and .y is the same but from
the conventional FDTD. The average ||u — wpes||/||tres]| is
shown to be 0.226%, revealing an excellent agreement between
the proposed method and the conventional FDTD at all points
in space and across the whole time window.

2) Lossy Parallel Plate Structure Excited by a High-
Frequency Pulse: In this example, we consider the same 3-D
parallel plate structure simulated in Section IV-A but with o =
0.1 S/m, and a fast Gaussian derivative pulse having a max-
imum input frequency of 34 GHz. To simulate this example,
a conventional explicit FDTD method requires a time step as
small as 6.5805 x 10716 s to maintain the stability of the time-
domain simulation because the smallest space step is 0.1 pm.
In contrast, the proposed explicit method is able to use a large
time step of 2.9412 x 10712 s solely determined by accuracy
to generate accurate and stable results. In the preprocessing
step, the FDTD solutions are sampled every 40 steps, i.e., p =
40. The accuracy-control parameters ¢; and €2 are chosen as
10~* and 1075, respectively. Two stable eigenmodes are iden-
tified, whose eigenvalues are —1.0993 x 108 and —1.1184 x
100, respectively. In Fig. 3, the voltage waveforms simulated
by the proposed method are shown to agree very well with
those generated by the conventional explicit FDTD. The total
CPU time required by the proposed method is 113.50898 s
including both the preprocessing step and the explicit marching
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Fig. 4. Simulation of an antenna with a lossy dielectric cylinder.

step, whereas the CPU time of the conventional FDTD is
19079.793260 s, yielding a speedup of approximately 170. The
diagonal-preserving formulation described in Section III-C was
also used to simulate this example, the speedup of which is
shown to be about 186.

3) Radiation of a Dipole Antenna in the Presence of Lossy
Dielectrics: Next example is the radiation of a dipole antenna
in the presence of a lossy dielectric cylinder of conductivity
0.1 S/m, the computational domain of which is truncated by
a PML. The dipole of length 75 um is placed at the center
of a solution domain of dimension 900 wmx300 pmx100
pum. The PML region has 20 grid cells all around the solution
domain with a uniform cell size of 81.8, 33.33, and 25 um in
x-, y-, and z-directions, respectively. The lossy rectangular
cylinder has a length of 81.8 wm, width 33.33 wm, and height
75 pm. The smallest mesh size is approximately 1.6364 um.
The source is the same as that in the second example. The
solutions are sampled every nine steps in the preprocessing.
The €; and e, are chosen as 1073 and 1072, respectively. The
conventional FDTD uses a time step of 5.44 x 10~%® s and
takes 12592.07 s to complete the whole simulation, whereas
the proposed method uses a time step of 6.4805 x 10~'* s and
takes 1053.05 s to complete the simulation. There are 32 stable
eigenmodes identified from the proposed method, whose eigen-
values are —7.23 x 10° 4 2.31990 x 102, —2.8007 x 107 &+
4.1638 x 10'25,—3.0126 x 10° & 5.2944 x 10'25, —6.8298 x
107 4 6.782805 x 1025, —2.16576 x 106 4 7.522289 x 10'27,
and others. The speedup of the proposed method is
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Fig. 5. Simulation of a phantom head beside a wire antenna. (a) Relative per-
mittivity distribution in a cross section of the phantom head at a height of 8.4 cm
(XY-cut). (b) Electric conductivity distribution in a cross section of the phantom
head at a height of 8.4 cm (XY-cut). (c) Simulated electric field at two points of
the phantom head in comparison with reference FDTD solutions.

approximately 12, without sacrificing accuracy as can be
seen from Fig. 4.

4) Phantom Head Beside a Wire Antenna: In previous
examples, the structures simulated involve fine features rela-
tive to working wavelength. This is understood because only in
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TABLE I
CPU TIME AND MEMORY COMPARISON
Example N CPU time (s) (conventional)| CPU time (s) (proposed)| Memory (conventional) Memory (proposed)
On-chip interconnect 1729 362.59 28.42 152.74 kB 659.62 kB
Lossy parallel plate 933 19 079.79 113.51 79.24 kB 191.29 kB
Dipole antenna 1 863 12 592.07 1053.05 33.13 MB 33.53 MB
Phantom head 49 160 302 2.03e+6 90 106 6.23 GB 9.17 GB

these structures, there is a need to enlarge the time step, since
the time step required by the CFL stability condition is smaller
than that required by accuracy. In the last example, to examine
the performance of the proposed method in a comprehensive
fashion, we simulate an example in two settings: without fine
features relative to working wavelength and with fine features.
This example is also much larger than previous examples in
both unknown number and electrical size.

The example is a large-scale phantom head example
[18] beside a wire antenna, having more than 48 mil-
lion unknowns. The dimension of the phantom head is
28.16 cmx28.16 cmx 17.92 cm. The relative permittivity and
conductivity distributions of the phantom head are shown
in Fig. 5(a) and (b), respectively, at the height of 8.4 cm.
The number of discretization cells in the solution domain is
255%255% 127, while the number of cells used in PML is
30 along each direction. The total number of cells is thus
315x315x187. The smallest space step along x-, y-, and z-
directions is, respectively, 1.1, 1.1, and 1.4 mm. The input
current source has a waveform of Gaussian derivative, located
at x = 14.52 cm and y = 26.18 cm. In the first simulation,
we do not consider fine tissues in this example, and let the
space step solely determined by accuracy. As a result, the
time step required by stability and that by accuracy are at
the same level. Thus, both traditional FDTD and the pro-
posed method employ the same time step of 2.2680e — 12 s.
In the preprocessing step, 74 stable eigenmodes are identi-
fied with a choice of ¢; = 107° and e = 10~7. The small-
est eight nonzero eigenvalues are, respectively, —8.5423e6 £
15474e105, —1.489e7 £ 5.414e1075, —3.612e7 £ 1.2275e11y,
and —1.859e7 £ 1.708e11j5. The total CPU time cost by the
traditional FDTD is 68 881.738268 s, whereas the total CPU
time of the proposed method including both preprocessing
and explicit time-marching is only 38 343.45917 s. Thus, the
speedup of the proposed method is 1.7937, although the struc-
ture does not involve fine features and the same time step is
used in the proposed method. The theoretical reason for this
speedup is the same as that analyzed in [21] for lossless cases.
The electric field waveforms simulated from the proposed
method at point (14.52, 27.72, 10.92) cm and point (14.52, 0.22,
10.92) cm are compared with that of the conventional FDTD in
Fig. 5(c). Excellent agreement is observed.

Next, we consider the small tissues involved in the human
head, for which the smallest space step is reduced to 0.044 mm.
As a result, the conventional FDTD has to reduce the time step
accordingly to 1.4672e — 13 s, whereas the proposed method
is able to use the same time step as before. It takes the pro-
posed method 90 106 s to finish the entire simulation, whereas
the conventional FDTD cannot finish the simulation in 10

days even though we enlarge the cell size in the regions with-
out fine tissues by two times. Based on the CPU time cost
of the FDTD at each time step, the projected run time of
FDTD is 2.0330e + 06 s; thus, the speedup of the proposed
method over the conventional FDTD is greater than 23 in this
example.

In Table 1, we summarize the CPU time and memory used
by the proposed method in comparison with the conventional
FDTD for each example, where N denotes the total number
of electric field and magnetic field unknowns. The additional
memory used in the proposed method is mainly the storage of
F. matrix, whose size is N. by k’. Notice that the Vg 4 in
(44) is stored in F, and V, 4 (a small matrix of size k" x k),
instead of being separately stored as a new matrix. The expres-
sion of (44) is used for computation instead of forming Vg g
explicitly. For example, the v E,st 10 (35) and (36) is nothing
but F. multiplied by orthogonalized V. ;. Furthermore, it is
worth mentioning that the reduced eigenvalue problem formu-
lated in this work is of a small size O(k’), and hence its storage
is negligible as compared to the storage of F..

5) Comparisons With Implicit Unconditionally Stable FDTD
Methods: 1In this section, we compare the accuracy, stability,
and efficiency of the proposed explicit method with those of two
implicit FDTD methods. One is the ADI-FDTD method [3],
[4], the other is a recently developed one-step implicit uncondi-
tionally stable FDTD method [24]. This new implicit method is
very convenient for implementation since only one time instant
needs to be changed in the conventional FDTD method to make
the FDTD unconditionally stable. The unconditional stability
of this new method is also theoretically proved in [24].

The example considered is a free-space wave propagation
problem, the analytical solution of which is known. Hence, we
can use this example to accurately assess the performance of
the three unconditionally stable methods. The computational
domain has a length (L) of 9 mm and a width (W) of 9 mm. The
incident field is a g-polarized electric field propagating along
x-direction, whose expression is E = ¢ f(¢t — z/c), where the
pulse f(t) = exp(—(t — tg)?/7?), with 7 = (1/3) x 10710 s,
and ¢ty = 47 s. Since the computational domain is filled by air,
the boundary condition on the four outermost boundaries is
analytically known, which is the tangential incident field since
the scattered field is zero. Hence, we impose such an analyt-
ical absorbing boundary condition on x =0, L, and y = 0,
W, respectively. The computational domain is discretized into
50 cells along both z- and y-directions, which is determined
based on the input spectrum. The 26th cell size along x and y
directions is 20 times smaller than the rest of the cell size that
is L/50, and hence being L/1000. As a result, the time step
required by CFL stability condition is 20 times smaller than the
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time step required by accuracy. We define the following time
step:

_ CFLN
c/1/min(dz)? + 1/min(dy)?

where CFLN is clearly the ratio between the time step used
in simulation to the time step required by the CFL condition.
Based on the time step required by accuracy, the CFLN can
be as large as 20. The observation point is chosen at the center
of the computational domain, specifically, point (x = 4.32,y =
4.41) mm, to examine the dispersion error, as well as entire
solution accuracy of the three unconditionally stable methods.

In Fig. 6(a), we plot the F, fields obtained from the ADI
method at the observation point, with CFLN = 2 and 4, respec-
tively. If we enlarge CFLN to be 5 or larger, the ADI scheme is
found to be unstable in this example, which may be attributed
to the relatively rapid change in the space step in the com-
putational domain, as the scheme is found to be stable if the
discretization is made uniform. When the ADI is stable, as can
be seen from Fig. 6(a), the ADI results agree well with the ref-
erence solution which is the analytical solution in this example.
In Fig. 6(b), we plot the F, field obtained from the proposed
method at the same observation point. Obviously, the proposed
method is stable, and also accurate not only for CFLN = 4 but
also for large CFLN such as 10, 15, and 20. In Fig. 6(c), we
plot the fields obtained from the one-step implicit method [24]
with CFLN ranging from 4 to 20. The results are also shown
to be stable and accurate. However, compared to the proposed
method, the accuracy is lower.

In addition to comparing the time-domain waveforms, we
have also quantitatively examined the dispersion error of the
three methods. The time-domain field at the observation point
and the incident field at the left boundary are Fourier trans-
formed, and the phase difference is extracted between the two
Fourier transforms, from which we find the average phase
velocity in a range of frequencies from 3 to 15 GHz as a func-
tion of CFLN. In Fig. 7, we plot the ratio of the numerical phase
velocity (V},) to the ideal phase velocity for proposed method
in comparison with the ADI and the one-step implicit uncon-
ditionally stable method. The dispersion error of the proposed
method is shown to be much less than that of the other two
methods, with phase velocity ratio in the range of 0.9924 and
0.9969. As far as the theoretical reason is concerned, in the pro-
posed explicit unconditionally stable time marching, only stable
eigenmodes are kept in the numerical system, and these stable
eigenmodes have an eigenvalue £ that can be accurately sam-
pled by the given time step, and hence ensuring accuracy. In
contrast, in implicit unconditionally stable methods, the unsta-
ble eigenmodes for the given time step that have large £ are not
removed. Instead, they are kept in the numerical system, and
present at each time instant. When a large time step is used,
although the unstable modes are suppressed to be stable by an
implicit time integration scheme, they cannot be accurately sim-
ulated by the given time step based on sampling accuracy, and
hence deteriorating the overall accuracy of the field solution. As
can be observed from Fig. 7, the dispersion error of the implicit
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methods increases when CFLN increases, whereas the proposed
method has a well-controlled dispersion error.

Dispersion error is only one aspect of the time-domain solu-
tion error. To assess the entire error, in Fig. 8, we plot the
solution error measured by ||E(t) — Eyes(t)||/||Eres(t)]| as a
function of CFLN for three different methods, where E,.. (t) is
the analytical solution at the observation point at all time. Less
than 0.35% error is observed in the proposed method, whereas
the two implicit methods are shown to have a larger error, which
also increases with CFLN.

In addition to stability and accuracy, we have also com-
pared the computational efficiency of the proposed method with
the implicit unconditionally stable methods. For the phantom
head example having over 48 million unknowns, the one-step
implicit method [24] with a GMRES-based iterative matrix
solver takes 86 656.4 s to finish the entire simulation, whereas
the proposed method only costs 38 343.4 s. Therefore, preserv-
ing the matrix-free property of the original FDTD is another
important advantage one can benefit from the proposed explicit
and unconditionally stable method. For the phantom head
example having fine tissues simulated in Section IV-B4, the
implicit method [24] is found to be unstable at the late time.
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V. CONCLUSION

In this paper, we have theoretically analyzed the root cause
of the instability of an explicit FDTD method for the analysis of
general 3-D lossy problems, where the materials are inhomoge-
neous, and both dielectrics and conductors can be lossy. Based
on this root cause analysis, we develop an explicit FDTD that is
unconditionally stable for analyzing general 3-D lossy electro-
magnetic problems. In this method, we fix the instability from
the root by completely eliminating the source of instability; and
we retain the strength of an explicit FDTD in avoiding matrix
solutions. The dispersion error of the proposed method is also
theoretically analyzed for general inhomogeneous settings and
numerically examined. Numerical experiments and compar-
isons with implicit unconditionally stable methods, as well as
the conventional FDTD, have demonstrated the unconditional
stability, accuracy, and efficiency of the proposed method.
The essential idea of the proposed method for handling gen-
eral lossy problems is also applicable to other time-domain
methods.
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