2404

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 59, NO. 10, OCTOBER 2011

Dense Matrix Inversion of Linear Complexity
for Integral-Equation-Based Large-Scale
3-D Capacitance Extraction

Wenwen Chai, Member, IEEE, and Dan Jiao, Senior Member, IEEE

Abstract—State-of-the-art integral-equation-based solvers rely
on techniques that can perform a dense matrix—vector multipli-
cation in linear complexity. We introduce the > matrix as a
mathematical framework to enable a highly efficient computation
of dense matrices. Under this mathematical framework, as yet,
no linear complexity has been established for matrix inversion.
In this work, we developed a matrix inverse of linear complexity
to directly solve the dense system of linear equations for the
3-D capacitance extraction involving arbitrary geometry and
nonuniform materials. We theoretically proved the existence of
the 7> matrix representation of the inverse of the dense system
matrix, and revealed the relationship between the block cluster
tree of the original matrix and that of its inverse. We analyzed the
complexity and the accuracy of the proposed inverse, and proved
its linear complexity, as well as controlled accuracy. The proposed
inverse-based direct solver has demonstrated clear advantages
over state-of-the-art capacitance solvers such as FastCap and
HiCap: with fast CPU time and modest memory consumption,
and without sacrificing accuracy. It successfully inverts a dense
matrix that involves more than one million unknowns associated
with a large-scale on-chip 3-D interconnect embedded in inhomo-
geneous materials with fast CPU time and less than 5-GB memory.

Index Terms—Capacitance extraction, direct solver, 2 matrix,
integral-equation-based methods, matrix inversion.

I. INTRODUCTION

NTEGRAL-EQUATION-BASED (IE-based) methods

have been a popular choice in extracting the capacitive
parameters of 3-D interconnects since they reduce the solution
domain by one dimension, and they model an infinite domain
without the need of introducing a truncation boundary con-
dition. Compared to their partial-differential-equation-based
counterparts, however, IE-based methods generally lead to
dense systems of linear equations. Using a naive direct method
to solve a dense system takes O(NN?) operations and requires
O(N?) space, with N being the matrix size. When an iterative
solver is used, the memory requirement remains the same,
and the time complexity is O(N,ps Nit N2), where Nj; denotes

Manuscript received January 29, 2011; accepted June 13, 2011. Date of pub-
lication July 29, 2011; date of current version October 12, 2011. This work was
supported by the National Science Foundation (NSF) under Award 0747578 and
Award 0702567.

The authors are with the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907 USA (e-mail: djiao @purdue.edu;
wchai @purdue.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMTT.2011.2160964

the total number of iterations required to reach convergence,
and Ny is the number of right-hand sides. In state-of-the-art
IE-based solvers [1]-[9], [22], fast multipole method and
hierarchical algorithms were used to perform a matrix—vector
multiplication in O(N) complexity, thereby significantly
reducing the complexity of iterative solvers; efficient precon-
ditioners [8], [9] were also developed to reduce the number of
iterations. In the limited work reported on the direct IE solu-
tions [6], [10], [22], [24], [25], the best complexity is shown
to be O(N log® N). No linear complexity has been achieved
for general 3-D problems. Compared to iterative solvers, direct
solvers have advantages when the number of iterations is large
or the number of right-hand sides is large. A linear-complexity
inverse-based direct solver has an additional advantage in
memory compared to iterative solvers. Consider a system of IV,
conductors. Using existing fast iterative solvers, even if each
matrix solve is of linear complexity, to store the capacitance
matrix one has to use O(NN?2) storage units. In contrast, with
an inverse having linear complexity in both CPU time and
memory consumption, the capacitance matrix can be stored in
O(N,) units.

The contribution of this paper is the development of a
linear-complexity inverse-based direct IE solver. To be specific,
the inverse of a dense system matrix arising from a capacitance
extraction problem is obtained in linear CPU time and memory
consumption without sacrificing accuracy. Our solution hinges
on the observation that the matrices resulting from an IE-based
method, although dense, can be thought of as data sparse,
i.e., they can be specified by few parameters. There exists a
general mathematical framework, called the “Hierarchical (H)
Matrix” framework [10]-[12], which enables a highly compact
representation and efficient numerical computation of dense
matrices. Both storage requirements and matrix—vector multi-
plications using H matrices are of complexity O(N log™ N).
‘H?-matrices, which are a specialized subclass of hierarchical
matrices, were later introduced in [13]-[16]. It was shown
that the storage requirements and matrix—vector products
are of complexity O(N) for H2-based computation of both
quasi-static [10] and electrodynamic problems [17], [18]
from small to tens of wavelengths. It was also shown that an
H2-based matrix—-matrix multiplication can be performed in
linear complexity [16]. The nested structure is the key differ-
ence between H-matrices and H2-matrices since it permits an
efficient reuse of information across the entire hierarchy.

The H2-matrix-based direct matrix solution of linear com-
plexity has not been established in the literature. In this work,
we developed an H2-matrix-based inverse of linear complexity

0018-9480/$26.00 © 2011 IEEE

CHAI AND JIAO: DENSE MATRIX INVERSION OF LINEAR COMPLEXITY FOR IE-BASED LARGE-SCALE 3-D CAPACITANCE EXTRACTION

for large-scale capacitance extraction. In [19], we outlined the
basic idea of this work. In this paper, we complete the work from
both theoretical and numerical perspectives. The significant ex-
tension over [19] is as follows.

First, we prove the existence of an H?-matrix-based represen-
tation of the dense system matrix as well as its inverse for ca-
pacitance extraction involving arbitrary inhomogeneity and ar-
bitrary geometry. We show that the H2-based representation of
the original matrix is error bounded, and the same is true for the
H2-based representation of its inverse. Moreover, we prove that
the inverse and the original matrix share the same block cluster
tree structure, and the cluster bases constructed from the orig-
inal matrix can be used for the H?-based representation of its
inverse. This proof serves as a theoretical basis for developing
H?2-matrix-based fast direct solutions of controlled accuracy for
capacitance extraction.

Second, we show how to construct a block cluster tree to effi-
ciently represent both the original matrix and its inverse for the
capacitance extraction in inhomogeneous media.

Third, we present detailed linear-complexity algorithms in
the proposed inverse and analyze their complexity. In [19], we
only gave a very high-level picture of the algorithm, and the
complexity analysis is only for the multiplications involved
in the inverse procedure. In this work, we provide a complete
inverse algorithm and its complexity analysis. To help better
understand the proposed linear-complexity inverse, we use an
analogy between a matrix—matrix multiplication and a matrix
inverse to present the proposed algorithm since the 72-based
matrix—matrix multiplication has been shown to have a linear
complexity [16]. We first make a comparison between a matrix
inverse and a matrix—matrix multiplication to reveal their
similarity, as well as their difference. We show that although
the two operations share the same number of block matrix
multiplications, there is a major difference that prevents one
from directly using the linear-time matrix—matrix multiplica-
tion algorithm to achieve a linear complexity in inverse. The
major difference is that in the level-by-level computation of the
inverse, at each level, the computation is performed based on
updated matrix blocks obtained from the computation at the
previous level instead of the original matrix. In contrast, in the
level-by-level computation of the matrix—matrix multiplication,
at each level, the computation is always performed based on
the original matrix, which is never updated. This difference
would render the inverse complexity higher than linear if one
does not address it properly. We then detail the algorithms in
the proposed inverse that overcome this issue. In addition, we
greatly enrich the section of numerical results.

This paper is organized as follows. In Section II, we derive
the H2-matrix-based representation of the dense system ma-
trix resulting from capacitance extraction and show that this
representation is error bounded. In addition, we prove the ex-
istence of the H? representation of the inverse and reveal its
relationship with the H? representation of the original matrix.
In Section III, we construct a block cluster tree for an efficient
H2-based representation of the dense system matrix and its in-
verse. In Section IV, we provide an overall procedure of the
proposed direct solver. In Section V, we make a comparison
between a matrix—matrix product and a matrix inverse, from

2405

which one can clearly see the difference between these two. In
Section VI, we detail the linear-complexity algorithms in the
proposed inverse. In Section VII, we give numerical results to
demonstrate the accuracy and linear complexity of the proposed
direct IE solver for capacitance extraction. Comparisons with
state-of-the-art capacitance solvers such as FastCap and HiCap
are also presented. We conclude in Section VIII.

To help make this paper concise, in what follows, we do not
repeat mathematics that can be referred to in the H2-matrix lit-
erature. We only keep those mathematical definitions that are
necessary for the completeness of this paper so that we can focus
on the proposed new algorithms.

II. H2 MATRIX REPRESENTATION OF THE DENSE SYSTEM
MATRIX AND ITS INVERSE FOR CAPACITANCE EXTRACTION

Consider a multiconductor structure embedded in an inhomo-
geneous material. An IE-based solution for capacitance extrac-
tion results in the following dense system of equations [3], [19]:

Gg=wv (D

Pcc Pcd qc Ve
where G = |:Edc Edd],q = [qd},andv = 1o
which ¢. and g4 are the charge vectors of the conductor panels
and dielectric—dielectric interface panels, respectively, and v.. is
the potential vector associated with the conductor panels. The
entries of P and E are

i 5)drid
a7a1// i, 7j)dr;dr;
0 11
// g(ri,rj)dridr; (2)

ana a; a;
where a; and a; are the areas of panel S; and S, respectively, g
is the static Green’s function, and ¢, and ¢, are the permittivity
of two different materials. The diagonal entries of E4q are ¢;; =
(ea + €b)/(2ai€0).
In a uniform dielectric, (1) is reduced to

, 1n

Eij = (E 6},

Pccqc = Ve- (3)

Next, we show that the dense system matrix G shown in (1)
can be represented by an 2 matrix with error well controlled.
Moreover, the inverse of G- also has an H? representation. Such
a property holds true for any G, i.e., [E-based capacitance ex-
traction involving arbitrary geometry and inhomogeneity.

First we introduce the definitions of an matrix and an H>
matrix. An H? matrix is generally associated with a strong ad-
missibility condition [10, pp. 145]. To define a strong admissi-
bility condition, we denote the full index set of all the panels
by Z :={1,2,..., N}, where N is the total number of panels,
and hence, unknowns. Considering two subsets ¢ and s of Z, the
strong admissibility condition is defined as

max{diam(Q;), diam(Q;)} < n dist(Q4, Qs) 4

where €2, and 2, are the supports of the union of all the panels in
t and s, respectively, diam(.) is the Euclidean diameter of a set,
dist(+, -) is the Euclidean distance between two sets, and 7 is a

2406

positive parameter. If subsets ¢ and s satisfy (4), they are admis-
sible, in other words, they are well separated; otherwise, they
are inadmissible. Generally, it is not practical to directly mea-
sure the Euclidean diameter and Euclidean distance. We thus
use an axis-parallel bounding box @; 2 €2, which is the tensor
product of intervals [10, pp 46—48], to represent the support of
the union of all the panels in .

Denoting the matrix block formed by ¢ and s by G%#, if all
the blocks G* formed by the admissible (¢, s) in G can be
represented by a low-rank matrix, G is an H matrix. In other
words, if G possesses the following property:

G € R#*TX#T . G is low rank for all admissible (¢, s) (5)

it is an A matrix.
If G can be further written as a factorized form

Gt,s - Vtst,sVsT
Vt c R#txk
St,s € kak

V* e R#XE (6)
where V' is nested, then G is an 2 matrix. In (6), V* is called
a cluster basis, St* is called a coupling matrix, k is the rank of
V', and “#” denotes the cardinality of a set. The nested prop-
erty of V* enables O(N) storage of a dense matrix and O(N)
matrix—vector multiplication [10, p. 146].

A. 'H%-Matrix Representation of G With Error Well Controlled

1) H?-Matrix Representation of G-: If two subsets ¢ and s
of 7 satisfy the strong admissibility condition (4), the original
kernel function g(r;,7;) in (2) can be replaced by a degenerate
approximation

*(ri,75) Z Z SVLy(ri) L3 (r) (D)
veKt peKs
where K := {v € N? : v; < pforallie {1,...,d}} =

{1,...,p}¢; d = 1,2,3, for 1-D, 2-D, and 3-D problems, re-
spectively; pis the number of interpolation points; (£!) e+ and
(&) uex - are two families of interpolation points, respectively,
int and s; and (L}),ex: and (L7,) ek are the corresponding
Lagrange polynomials. The 1nterpolat10n in (7) is performed on
the axis-parallel bounding boxes Q; and Q5.

With (7), the double integrals in (2) are separated into two

single integrals
&) [Lhar,

S;

. 11
Pi=2 2 o

a;
vEKt peK* @i]

. / LZ(Tj)de (8)
S

3 a . . '
oS li(ga_gb)q(f_a)/s Lt (r;)dr;

a; a; on
vEKt peK* g

. / LZ(Tj)de.
S

J

Et,’.s =

)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 59, NO. 10, OCTOBER 2011

Hence, the submatrix G%* can be written in a factorized form
as

ét,s — Vt St,s VST Vt e R#tx#Kt

Sts e R#E X#KT s ¢ R#sx#KS (10)
where
Vio= [L Vio= [L,
Si S
t S
M, t contains conductor panels
St,s — (aiaj)

o (e

(aia;)

—ep) Og(&F, &8
a—¢0) 9(51;, &) , t contains dielectric panels
Na

Y

fori€t,j€s, ve Kandp € K°.

If we use the same space of polynomials for all clusters, then
V' is nested. To explain, consider a set ¢/, which is a subset of
t, LY (r) in (11) can be written as

= > Tl

v eEK?Y

12)

where
T, = L4 (&) (13)

As aresult, V! in (11) can be written as

/ LE(7)dr

U v /
v GK“

:ZT Vi,

v eKt
= (Vt/ Tt/)'iq)

t
Viv_

(F)dr

(14)

where Tt € R#EY X#K' ig called a transfer matrix for the
subset ¢'. Hence, assuming that the set ¢ is the union of two
subsets ¢ and ¢5, we have

Vt: (thTﬂ) _ <Vt1 > <Tt1>
Vt2Tt2 Vt2 Tt2 .
Thus, V? is nested.

From (10) and (15), we prove that the dense system matrix G
for capacitance extraction can be represented by an 72 matrix.
In Section II-A.2, we show that such a representation is error
bounded.

2) Error Bound: Following the derivation in [18], if the ad-
missibility condition given in (4) is satisfied, the error of (7) is
bounded by

15)

lg(r,7") =5 (r, 1) loo, @ <.

ded
(A 2d
= (p) p

—p

V2

< 1421 1+ (16)

rromenl
dist(Q:, Q)

CHAI AND JIAO: DENSE MATRIX INVERSION OF LINEAR COMPLEXITY FOR IE-BASED LARGE-SCALE 3-D CAPACITANCE EXTRACTION

where A, is a constant related to p and the interpolation scheme.
Clearly, exponential convergence with respect to p can be ob-
tained irrespective of the choice of 7. Since Gl(»;-’s) is propor-
tional to 1/dist(Q:, @s), the relative error becomes a constant
related to 7 and p. The smaller the 7, the smaller the error; the
larger the p, the smaller the error. In addition, all block entries
represented by (10) can be kept to the same order of accuracy
across the levels of a block cluster tree.

B. H2-Matrix Representation of G™1

In this section, to help better understand the existence of the
H2-matrix representation of G 1, we provide a mathematical
proof.

Consider a 3-D problem involving arbitrarily shaped conduc-
tors embedded in nonuniform materials. The electrostatic phe-
nomena in such a problem are governed by Poisson’s equation

=V - (eVv) = ps (17)
where v is electric potential and p; is charge density. By using
a differencing scheme to discretize the space derivatives in
Poisson’s equations, like what is done in a partial differen-
tial-equation-based solution of (17), we obtain the following
system of equations:

CV=aQ (18)
where V' is a vector consisting of the electric potential at each
discretized point in the 3-D computational domain, and @ is a
vector containing the charge density at each discretized point.
Due to the nature of the partial differential operator, the charge
density at each discretized point only needs to be evaluated from
the electric potentials that are adjacent to the point. As a result,
in each row of C, there are only a few nonzero elements, which
are contributed by the electric potentials close to the point cor-
responding to the row index. Thus, C in (18) is a sparse matrix,
and also its blocks satisfying admissibility condition (4) are all
ZerO0.

Each row of (1) states that the total electric potential at one
point in space is the superposition of the electric potential gener-
ated by all of the discrete charges. Therefore, if (1) is formulated
for all of the discretized points in a 3-D volumetric domain, then
G~ is nothing but C, and hence, a sparse matrix.

However, due to a surface integral based formulation, in (1),
the right-hand side v is not the complete V'; instead, it is a subset
of V', which only consists of the electric potential on the con-
ducting surface and that on the dielectric—dielectric interface.
Therefore, G ! is not directly C in (18). However, there exists
arelationship between G~ and C, which dictates the existence
of the H?-matrix representation of G~!. To see this relation-
ship, we rewrite (18) as

o e -{y

Co
where v and ¢ are the same as those in (1), and vese denotes
the electric potential elsewhere, which is not associated with the
conducting surfaces and dielectric interfaces. Since the charge
density is zero in a purely dielectric region, the right-hand side

(19)

2407

corresponding to the second row in (19) is zero. From (19), we
immediately obtain

(C11 — C12C55 Coy)v = ¢. (20)
Comparing (20) to (1), it is clear that

G™' =Cy; — C13C;,) Coy. 1)
The second row of (19), Coove1e = —Ca1v, is what is tradi-

tionally solved by a partial differential-equation-based method:
solving vese Subject to boundary condition v. It is clear that 02_21
is the inverse of the matrix resulting from the discretization of a
Poisson’s operator. It is proven in [23] that the inverse of the ma-
trix resulting from the discretization of an elliptic partial differ-
ential operator has an H-matrix representation. Therefore, Cy'
also has an H-matrix representation, and hence, an ‘H2-matrix
representation (an H-matrix representation can be converted to
an H>2-matrix representation [10]). This can also be seen clearly
from the fact that C2_21 is nothing but G2, the G matrix whose
row/column dimension is the same as the length of s, and
each column of G, represents the electric potential vese gener-
ated by one charge configuration (the —C»; v is in fact an equiv-
alent charge vector). The G matrix’s H? matrix representation
has already been shown in Section II-A. Therefore, C5," has an
H? matrix representation.

To prove the existence of the 7{2-matrix representation of
G 1, we need to prove that all the blocks (G ~1)%* formed by
the admissible (¢, s) in G™! can be represented by a factorized
low-rank form shown in (6).

Consider a (, s) block in G~! that satisfies the admissibility
condition (4). Since unknowns in subset ¢ and those in s are well
separated based on the definition of the admissibility condition,
we have

cii” =0 (22)
because Cj; is a sparse matrix whose nonzero elements only
appear in the close-interaction blocks. Therefore, from (21),

(Gil)(t’s) = —(01202_21021)(t’5). (23)

The (¢, 5) block of (C12C5, Ca1) can be evaluated as
(C12C35 Ca1)") = (C12)M*)(C35)) (Con)) (24)

where ¢ denotes the subset that is physically close to ¢, s’ de-
notes the subset that is physically close to s. As shown in Fig. 1,
(012)(t’t’) denotes the nonzero block in C15 that occupies rows
corresponding to subset £, and (Ca1)*) denotes the nonzero
block in Cs; that has columns corresponding to subset s. In
(24), we only need to consider (Cy2)("*) among all of the
(C12)"9(i =1,2,...) blocks because all the other blocks are
zero since the unknowns in the corresponding two subsets are
well separated from each other. This is the same reason why we
only need to consider the (021)(5175) block in Ca;. As a result,
among all the blocks in C35, only the (¢, s’) block participates
in the computation of 0120521 Cs1, asillustrated in Fig. 1. Since
the subset ¢’ is close to subset ¢, subset s’ is adjacent to subset s,
and subsets ¢ and s are well separated; the subset ¢’ and subset
s’ also satisfy the admissibility condition (4). Thus, (C,!)®"s")

2408

¢ s’ K
1
X 0
o T x - %] H
Tr L 0
1T 1r
C, sz_] C,
=0Ox 0O x .
. . (C’_’])(XV\)
(CIZ)(’J' (sz—])(l,s')

Fig. 1. Tllustration of the actual operation involved in C1,C5, Co;.

has an H? representation since (C;)(**") is Ggg’sl). By using
the H? representation of the admissible block G% ") we have

(C12C35 Cop) ¥

— (012)(t,t')v#t'stkxk(vT)kX#s/<C21)(s',s)

_ V#txkskxk(\”[T)kx#s. (25)
Thus, from (23) and (25), we prove that (G —1)** has an H? ma-
trix representation. Since (¢, s) is an arbitrary admissible block,
we conclude that, for all the admissible blocks in G~1, there
exists an H2 representation. With that, we prove the existence
of H? representation for G™1.

Two important findings can be identified from the above
proof. First, G and G~! share the same block cluster tree
structure in common. A block cluster tree determines which
matrix block has an H? form, which is a full matrix. As can be
seen from the above proof, given an admissibility condition (4),
if a block is admissible in G, it must also be admissible in G 1
(i.e., has a factorized low rank form); if a block is inadmissible
in G, it must also be inadmissible in G~!. Therefore, G and
G ! share the same block cluster tree structure. In addition,
they share the same rank distribution as can be seen from (25).
The second finding is that the same cluster basis constructed
from the original matrix can be used to represent its inverse as
can be seen from (25). If the first-order differencing scheme
is used to discretize Poisson’s equations, Cy; and Ci, are, in
fact, diagonal matrices. For nondiagonal Cs; and Cj 5, the Vin
(25) can always be spanned in the space of V as the following:

\”/#txk — V#txkzkxk

where
kak _ [(V#txk)TV#txk]—l (V#th)T(Clg)(t’t,)V#t,Xk .

Thus, with V being the cluster basis of the inverse, the only dif-
ference is that the coupling matrix will be modified correspond-
ingly from that in (25) to ZS"**ZT This is similar to the fact
that given a set of cluster bases, one can always orthogonalize it
to construct a new set of cluster bases without losing accuracy.

III. BLOCK CLUSTER TREE CONSTRUCTION FOR EFFICIENT
STORAGE AND PROCESSING OF H2-BASED G AND G~}

In this section, we show how to construct a block cluster tree
for the capacitance extraction problem. A block cluster tree is a

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 59, NO. 10, OCTOBER 2011

@

1
112 8

. :
314 516 7
.

N\ N\ N\ /i\
ENEREREREARD
®)

Fig. 2. (a) Example of a structure having four conductors. (b) Resultant cluster
tree.

tree structure that can be used to efficiently capture the nested hi-
erarchical dependence present in an H? matrix [10, pp. 13-15].
Here, special care needs to be taken to make the H>-based rep-
resentation of G- and G ~? efficient for capacitance extraction.

A. Block Cluster Tree Construction for H?-Based G

To make the explanation clear, we use a simple example to
show the procedure of constructing a block cluster tree without
loss of generality of the procedure. Consider a capacitance
system made of four conductors, as shown in Fig. 2(a). We
discretize each conductor into two panels, resulting in a panel
setof Z := {1,2,...,N}, where N is 8 in this example. We
start from Z and split it into two subsets, as shown in Fig. 2(b).
We continue to split until the number of panels involved in each
subset is less than or equal to leafsize, which is a parameter
to control the tree depth. For the specific example shown in
Fig. 2(a), leafsize is 1. As a result, we generate a cluster tree,
as shown in Fig. 2(b). The cluster tree constructed for panel
set Z is denoted by Tz. All the nodes of the tree are called as
clusters. The full panel set Z is called the root cluster, denoted
by Root(T7). Clusters with indices no more than leafsize are
leaves. The set of leaves of 17 is denoted by L£7. Each nonleaf
cluster has two children in our tree construction.

The block cluster tree is recursively constructed from cluster
trees T’z and T'7 and a given admissibility condition, the process
of which is shown in Fig. 3. We start from Root(77) and
Root(7T7), and test the admissibility condition between clusters
t € T7 and s € 17 level by level. Once two clusters ¢ and s
are found to be admissible based on (4), a cross link is formed
between them, which is called an admissible link. Once two
clusters are linked, we do not check the admissibility condition
for the combination of their children. If clusters ¢ and s are
both leaf clusters, but not admissible, they are also linked. For
example, cluster {1} and cluster {1}, shown in Fig. 3. This link
is called an inadmissible link.

The aforementioned procedure results in a block cluster tree.
Each link represents a leaf block cluster. The block cluster tree
can be mapped to a matrix structure shown in Fig. 4. Each leaf

CHAI AND JIAO: DENSE MATRIX INVERSION OF LINEAR COMPLEXITY FOR IE-BASED LARGE-SCALE 3-D CAPACITANCE EXTRACTION

teT;
{1,2,3,4,5,6,7,8}

seT;
{1,2,3,4,5,6,7,8}

{1,2,3,4} {5,6,7,8} {1,2,3,4} {5,6,7,8}

bS5 Ee Se 6 TN

M RBAOONE (RGO O N

Admissiblé link --= inadmissible link ——

Fig. 3. Construction of a block cluster tree.

0o N 0O g B~ W DN

B full matrix block
[] admissible block

Fig. 4. H?-matrix structure.

T I

—
I I

: \
HINEE

Fig. 5. Illustration of the treatment of the unbalanced case encountered in
nonuniform dielectrics.

block cluster corresponds to a matrix block. The unshaded ma-
trix blocks are admissible blocks in which the H2-matrix-based
representation is used; the shaded ones are inadmissible blocks
in which a full matrix representation is employed.

Special treatment is required for structures involving multiple
dielectrics. After discretizing the structure, the whole set that in-
cludes all the panels is divided into two subsets. One includes
all the conductor panels, and the other includes all the dielectric
panels, as shown in Fig. 5. The conductor set is denoted by Z¢,
and the dielectric set is denoted by Zp,. If the two subsets are al-
most balanced, we can directly use the procedure above to con-
struct the block cluster tree. If not, for example, if the number
of conductor panels is much larger than that of dielectric panels,
the subset Zp constructed for dielectric panels is pushed down
to the level where the size of clusters in Z¢ is almost the same
as that in Zp. We then start to check the admissibility condition
from that level. By doing so, the H2-based representation of G
can be made more efficient.

2409

B. Block Cluster Tree Construction for H?-Based G—!

As proven in Section II-B, G~ is an ‘H? matrix, and also,
has the same block cluster tree as G. Thus, using the H? tree
of G to represent that of G~! is theoretically rigorous for the
integral operator encountered in the capacitance extraction.

IV. OVERALL PROCEDURE

In this section, we give the overall procedure of the proposed
linear-complexity direct solver for capacitance extraction.

First, we introduce the concepts, notations, and parameters
that are used throughout this paper.

 For each cluster ¢ € Tr, the cardinality of the sets {s €

17 - (t,S) € szz} and {t eTr: (t,S) € szz} is
bounded by a constant Cy, [22, p. 124]. Graphically, Cs,
is the maximum number of links that can be formed by a
cluster at each level of a block cluster tree, as shown in
Fig. 3.

* Each nonleaf cluster ¢ has two child nodes.

* Each nonleaf block b has four children blocks.

¢ The rank of V = (V?%);cr, is denoted by k.

* The parameter leafsize is denoted by nyin, and #t < npin

ift € L.

. k1 = max(Nmin, k).

There are three steps in the proposed direct solver. At the first
step, to enable linear-time matrix inversion, we orthogonalize
cluster basis V¢ while still preserving the nested property of V¢,
Mathematically, the new basis V* should satisfy the following
two properties:

(VHIVE =1 (26)
and
" th ri\tl
V= [WTQ} 27)

where t1,ts € children(¢). We employ the method in [14, pp.
254-258] to construct orthogonal bases V', which is shown to
have a linear complexity.

To give an example on how the orthogonalization helps
achieve a linear complexity, consider one multiplication
G x G2 — G involved in the inverse procedure, where
GY = VI!SMVs' and GP? = V*SP2V"' and b = (¢,r) is
an admissible block in the inverse. Then,

G'" x G? = VISV x VISV (28)
Since V is orthogonalized, we have
G_bl % Gb2 — Vtsbl]:slﬂ{/r'l‘ — Vt(sblst)VrT' (29)

Thus, the multiplication cost becomes the cost of multiplying
two coupling matrices S*! and S*2, each of which is a k by &
matrix. Hence, the complexity of computing G*! x G2 — G
is made O(k?), which is independent of the row dimension (#t)
and the column dimension (#7) of G®. Notice that an H? matrix
is stored in the format of the cluster basis V and the coupling

2410

matrix S, and we always use the factorized form VISV to
perform efficient computation. Thus, we do not need to compute
VtSV™' out to obtain a matrix of dimension #t by #r. In
addition, from (29), it can be seen that the cluster basis of the
matrix product G, which is an admissible block (t,7)in G™1,
is the same as that of the block (¢,7) in G. Thus, the cluster
bases of G are preserved in G~ during the computation.

At the second step, we perform a fast inverse of linear com-
plexity. Rewriting the system matrix G as

G = [G“ (30)

G12}
Ga1

Gao

we can recursively obtain its inverse. In [10, p. 118], the inverse
of (30) is performed in O(N log? N) complexity. No linear
complexity inverse has been reported in the literature. The con-
tribution of this paper is a successful development of O(N) in-
verse, which is described in Sections V and VI.

After the inverse is done, we obtain all the capacitance data
because G~ is, in fact, the capacitance matrix formed for the
system consisting of each discretized panel. As an H? matrix,
G ! is stored in linear complexity. The capacitance matrix is,
in general, not the end goal of the analysis. It is often used in the
simulation stage after capacitance extraction is done. The G 1
resulting from the proposed method can then be directly used
for the simulation without any post-processing. If one needs
to know explicitly the capacitances formed between one con-
ductor and the other conductors, the G ! can be post-processed
to obtain them. For example, we can compute ¢ = G~ !v. By
adding all the entries of ¢ in each conductor, the capacitances
can be obtained. Since the inverse is an H2 matrix, and an
H?2-based matrix—vector multiplication has linear complexity,
we can compute ¢ = G~ in linear time. For N, conduc-
tors, we do not need to perform an H2-based matrix—vector
multiplication N,. times. Instead, we can perform an H2-based
matrix—matrix multiplication RTG =1V to obtain the capaci-
tance matrix directly in which R contains all the right-hand-side
vectors. Since an H?-based matrix-matrix multiplication can
be performed in linear complexity, we can also obtain the ca-
pacitance matrix for N, right-hand sides in O(N) time. With
this, the capacitance matrix can also be directly stored in an >
format, which only requires O(N..) units. In contrast, using the
conventional method, even if each solve is of linear complexity,
to compute N.. solutions, one has to use O(N.N) time; to store
N, solutions, i.e., the capacitance matrix for N, conductors, one
has to use O(N?) storage units.

V. COMPARISON BETWEEN MATRIX INVERSION AND
MATRIX—MATRIX MULTIPLICATION

The 7H2-based matrix—matrix multiplication is shown to
have a linear complexity in [16]. To help better understand the
linear-time algorithms in the proposed inverse, in this section,
we first make a comparison between a matrix inverse and a ma-
trix—matrix multiplication to reveal their similarity, as well as
difference. We then show that if one straightforwardly uses the
H?-based matrix—matrix multiplication algorithm for inverse,
the complexity would be greater than linear. In Section VI, we

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 59, NO. 10, OCTOBER 2011

detail the proposed inverse that addresses the issue of increased
complexity, and renders the overall cost linear.
A. Matrix Inverse

For matrix G shown in (30), we can recursively obtain its
inverse by using the Matrix Inversion Lemma [21]

G G xG12axST ' xGo1 xG T
—-S71xG2i xGTY

—G'xG2x8™!

-1 _
G = g1

€19
where S = G22 + (—G21 X Gl_ll X Glg).
The above recursive inverse can be realized level by level by
the following pseudocode:

Recursive Inverse (X is temporarily used for storage)
Procedure H?-inverse, (G, X) (G is input matrix,
output G is its inverse)

If matrix G is a nonleaf matrix block

HZ-inverse (G, X11)
Goy X Gy; — Xo1, Gy X G2 — Xy,
G2 + (—Xa21 X G12) — G,
H2-inverse (Gyy, X22)
— Gyy X X1 — Gap, — X2 X Gyy — Gy,
Gy + (—Gyp X Xo1) — Gy,

else

DirectInverse(G) (normal full matrix inverse)

(32)
in which the G that is different from the original G is under-
lined. The underlined G is overwritten by G ! in the recursive
computation.

As can be seen from (32), we compute the inverse level by
level. We start from the root level. We descend the block cluster
tree of G to the first level, the second level, and continue until
we reach the leaf level. At this level, we perform a number
of inverses and matrix—matrix multiplications. As can be seen
from (32), first, we compute (Gll)_l, and use it to overwrite
G11. We then use the updated G, denoted by G4, to com-
pute two matrix multiplications: Ga; X G;; — X231 and G;; X
G2 — Xjo. We then compute Gog + (—X2; X Gi2) to up-
date Gaz. (G22)~! can then be directly computed, which over-
writes Goo. We then use the updated Gog, denoted by G,
to compute two matrix multiplications: —G,y X X217 — Goyy
and — X3 X G4y — G5, which update G2 and Gz;. We then
compute G, + (—G;, x Xa1) to update Gy;. At this point,
the inverse of the parent block of leaf-level G is obtained. We
repeat the above procedure across all the levels from bottom to
top until the inverse at the root level is obtained.

From the aforementioned procedure, it can be seen that in the
level-by-level computation of G !, the matrix blocks of G are
kept updated to their counterparts in G~!. At each level, the
computation is performed based on updated G obtained from
the computation at the previous level instead of original G. To
highlight this fact, we underline the updated G in (32). All the

CHAI AND JIAO: DENSE MATRIX INVERSION OF LINEAR COMPLEXITY FOR IE-BASED LARGE-SCALE 3-D CAPACITANCE EXTRACTION

underlined G blocks in (32) are different from those in the orig-
inal G.
B. Matrix—Matrix Multiplication

Similar to matrix inverse, a matrix—matrix multiplication G x
G can be recursively obtained from

G111 XG11+G12XGay
G21 XG11+G22 X G2y

G111 XG12+G12XGa22
G21 XG12+G22XGa22

GxG= (33)

which can be realized by the following pseudocode:

Procedure H2-multiplication (G, X) (G is input matrix,
X is output)

If matrix G is a nonleaf matrix block

HZ-multiplication (G 11, X11)
Go1 X G11 — Xo1,G11 X G2 — X9,
X11 + (G12 X Ga1) — X1,
H%-multiplication (Ggs, X22)
Xo1 4+ Gaz2 X Ga1 — Xo1, X12 + G2 X G2z — X2,
X2z 4+ (G21 X Gi2) — Xoao,
else

DirectMultiply(G) (normal full matrix multiplication)
(34)

C. Comparison

Comparing (32) with (34), it can be seen that the total
number of block multiplications involved in a matrix inverse
is exactly the same as that involved in a matrix—matrix multi-
plication; in addition, only a half number of additions in the
matrix—matrix multiplication are involved in the inverse. In
[16], it is shown that an H2-based matrix—matrix multiplication
can be performed in linear complexity. Apparently, the inverse
can also be obtained in linear complexity using the ?-based
matrix—matrix multiplication algorithm. However, there exists
a major difference between these two operations, which pre-
vents one from directly using the matrix—matrix multiplication
algorithm to achieve a linear-complexity inverse.

The major difference is that in the level-by-level computation
of the inverse, at each level, the matrix blocks in G are updated by
their counterparts in G~'. Thus, one has to use updated matrix
blocks to perform computation as highlighted by the underlined
G in (32). In contrast, in the level-by-level computation of
the matrix—matrix multiplication, at each level, one always
uses the original G to perform computation. Once the product
is computed, it will be stored in the corresponding target
block in X, as can be seen from (34), and never be used
again in the following computations. Unlike (32), in (34),
none of the G is underlined, i.e., all of them come from
the original matrix.

This major difference does not cause any difference in
operation counts if one performs a conventional matrix inverse
or matrix—matrix multiplication that has a cubic complexity.
However, this difference leads to a significant difference in

2411

devising a linear-complexity algorithm. The reasons are given
below.

The linear-complexity matrix—matrix multiplication is
achieved by a matrix forward transformation algorithm, a
matrix backward transformation algorithm, and a recursive
multiplication algorithm, as shown in [16, p. 21, Algorithm 10].
The matrix forward transformation used in the linear-time
matrix—matrix multiplication cannot be used for inverse in the
same way because in the inverse procedure, the matrix blocks
in G are kept updated in the level-by-level computation.
The matrix forward transformation [16, p. 13, Algorithm
4] is used to prepare an auxiliary admissible block form of
each block in A and B, i.e., SA and éB. It is applicable
to a matrix-matrix multiplication because all the matrix
blocks involved in the multiplication are from the original
matrix. They are never updated, and hence, a collected
admissible block form S can be prepared in advance and
can be directly used in the “RecursiveMultiply” function
for the recursive multiplication. However, for inverse, the
blocks at each level are kept updated and then are used to
update other blocks, and hence, it is not possible to use the
forward transformation to prepare the auxiliary admissible
block forms ahead of the recursive inverse procedure.

A block matrix multiplication, when the target product block
b is a nonleaf block, may generate a product that has an
auxiliary admissible block form, i.e., st as shown in [16, p.
21, Algorithm 9]. To get the real matrix in b, Sbc should be split
to b’s leaf blocks. However, since Sf is never involved in the
subsequent computations in the matrix—matrix multiplication,
it can be stored in the nonleaf block without being split
immediately. After the matrix—matrix multiplication is done,
a backward transformation [16, p. 14, Algorithm 5] can be
used to split each S¢ to the leaf blocks. Such a backward
transformation, however, cannot be employed in the same
way in the inverse procedure either. This is because in the
inverse, gbc has to be used in the subsequent computations.
We cannot wait until the inverse is done to process it. A
straightforward way to overcome this problem is to split gf
to b’s leaf blocks immediately after it is generated. However,
this would, in general, result in a complexity greater than
linear. Thus, one has to do it properly.

If the two essential operations, matrix forward transforma-
tion and matrix backward transformation, cannot be used in
the same way in the inverse, each block matrix multiplication
cannot be done in constant time. For example, when we do the
block matrix multiplication based on [16, Algorithm 7], without
the preparation of auxiliary admissible matrix S, the cost for
directly computing a block matrix multiplication would not be
O(k?). Instead, it would be proportional to the row and column
dimension of the target block.

Our strategy to solve the problem facing matrix forward trans-
formation is that, instead of preparing the admissible block form
for each block b by a forward transformation in advance be-
fore the inverse, we will create it and update it level by level
during the recursive inverse procedure. To solve the problem
facing matrix backward transformation, when an auxiliary ad-
missible block R? (this can be viewed as a counterpart of S§
used in a matrix—matrix multiplication) is generated during the

2412

block-block multiplication, instead of splitting R® directly to
its leaf blocks, we use R? 4+ G? as the real matrix block to per-
form next-level computation. The computation can be a R? +
G? based block matrix multiplication; it can also be a R? +
G? based inverse involved in the G, part. For the former,
we modify the block matrix multiplication algorithms. For the
latter, we perform an instantaneous split procedure that has a
linear complexity.

Along the above line of thought, we develop three new
algorithms in the proposed inverse to render the total cost linear.
The first algorithm is an instantaneous collect operation for
generating the auxiliary admissible block form of G~1, Xy,
and Xs;. The second algorithm is a modified block matrix
multiplication algorithm. The third one is an instantaneous
split operation for computing the inverse of Gas. To help better
understand these three algorithms, the first algorithm can be
viewed as the counterpart of the matrix forward multiplication.
They fulfill the same task: when performing G x G2 — G*
or G’ + G%?2 — G?, the auxiliary admissible block form of
G*!' and G*? should be ready so that each block matrix
product or addition can be performed in constant complexity.
The third algorithm can be viewed as the counterpart of matrix
backward multiplication. Since the matrix forward and backward
operations are modified, the block matrix multiplication should
be modified correspondingly. That is the origin of the proposed
second algorithm. In Section VI, we detail these three algorithms.
Their corresponding pseudocodes are also given.

VI. ALGORITHMS IN THE PROPOSED INVERSE AND
COMPLEXITY ANALYSIS

A. Instantaneous Collect Operation to Prepare the Auxiliary
Admissible Block Form of G™', Xy, and Xa; in
O(N) Complexity

This operation can be viewed as the counterpart of the matrix
forward transformation in [16], except that the collect operation
is done instantaneously in the inverse procedure. As can be seen
from (32), we need to perform a number of block matrix mul-
tiplications such as Gy X G;; — Xa1, G;; X Gia — X2,
X1 X G12 — Gao, etc. Here, the underlined G is G~L. (Re-
call that, in the inverse procedure, after the computation at each
level is done, G is overwritten by its inverse.) Take Go; X
G;; — X1 as an example, to achieve the same complexity as
that achieved in the linear-time matrix—matrix multiplication,
we need to prepare for the auxiliary admissible block form of
G2 and (G71)11(Gy; is (G™1)), respectively, denoting the
two auxiliary admissible block forms by QGQI and gGl—ll. The
former can still be prepared in advance, i.e., before the inverse
procedure since Go; is the original matrix. The latter, however,
cannot be prepared in advance since (G~1);; is updated level
by level during the computation. To overcome this problem, our
strategy is to generate QG# instantaneously through collect op-
eration when (G_l)n is computed. The procedure of a collect
operation can be referred to [16, Algorithm 2].

As can be seen from (32), there are three matrices for which
we need to collect their auxiliary admissible block form instan-
taneously during the inverse procedure: G~! (including Gﬁl,

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 59, NO. 10, OCTOBER 2011

G2_21, and Gl_zl), X132, and Xs1. Since these matrices are ob-
tained by block matrix multiplications, the instantaneous col-
lect operation can be performed in the level-by-level block ma-
trix multiplication procedure that is given in Section VI-B. At
each level, once the inadmissible block or a nonleaf block of the
G~1, X5, 0or Xoy is computed, we perform a collect operation
to obtain its auxiliary admissible block form. The algorithm for
a collect operation used in the inverse is as follows:

Procedure Collectinv (b)
Form S’ based on Algorithm 2 in [16]
If b is a nonleaf block

S*=S"+R"

(35)

The collect operation is done level by level from bottom to
top. The admissible form of each block at level [can be directly
obtained from the four children blocks at level [+ 1, instead of
the blocks from level [+ 1 all the way down to the leaf level.
Therefore, each collect operation only costs O(k?) time. There
are O(NN) blocks in G~1, X5, and Xs;. Each block is associ-
ated with one collect operation. Hence, the total complexity of
performing the instantaneous collect operation for G =1, X,
and X is linear.

For the original G5 and original Go; that are involved in the
matrix multiplication, and the original G, involved in the ma-
trix addition of (32), since they are from the original matrix, we
can prepare an auxiliary admissible block form of G in advance
before the inverse procedure by using the matrix forward trans-
formation [16, Algorithm 4], which has a linear complexity.

B. Modified Block Matrix Multiplication Algorithm of O(N)
Complexity for Inverse

Since neither matrix forward transformation, nor matrix
backward transformation can be directly used in the proposed
inverse, the algorithm for block matrix multiplications should
also be modified. The matrix forward transformation is re-
placed by the instantaneous collect operation. Thus, when
performing G*' x G"2 — G?, we need to collect an admissible
form for the target block b, Sb, for the use of b-involved block
matrix multiplication. In addition, for a nonleaf block b, the
real matrix block stored in it could have a form of G® + R’
instead of only G® (this will become clear in Section VI-C).
We cannot wait until the inverse is done to process R’ by
matrix backward transformation because R’ is immediately in-
volved in the next-level computation. Thus, we need to perform
(G** +R") x (G??2 + R?) — G instead of G*! x G*? — G?
in the block matrix multiplication.

There are three basic block multiplication cases, i.e.: 1)
admissible leaf as target; 2) inadmissible leaf as target; and
3) nonleaf as target. They correspond, respectively, to [16, Al-
gorithms 7-9]. For the first case, we next show how to modify
the block matrix multiplication algorithm to accommodate the
need in the matrix inverse. Consider G*' x G'2 — G* with
by = (t,8), by = (s,r),and b = (t,r). The blocks by, b, and
b can be in any form: an admissible form R, an inadmissible

CHAI AND JIAO: DENSE MATRIX INVERSION OF LINEAR COMPLEXITY FOR IE-BASED LARGE-SCALE 3-D CAPACITANCE EXTRACTION

form F, or a nonleaf form NL. The possible b; and b combi-
nations that are involved in the block matrix multiplications are
R-R,NL-NL,F-F,F—-NL (or NL-F), R - NL
(or NL—-R),and R — F (or F — R).

The algorithm for the modified block matrix multiplication
with a target admissible leaf is developed as follows:

Procedure TargetAdmissible;yy (b) (b is an admissible leaf)
If b; — by combination is R-R, or F-F, or R-F
Compute G** x G*2 — G based on Algorithm 7
If by — by combination is NL-NL
Compute G x G*? — GP’based on
TargetAdmissible - (b)
Compute R"! x G"? — G?, G x R"?> — G’ and
R" x R — G? based on Algorithm 7
If b; — by combination is R-NL or F-NL
Compute G** x G2 — G® based on Algorithm 7
Compute G** x R*? — G? based on Algorithm 7

(36)

As shown in the above, if the b; — by combinationis R — R, or
F —F,or R — F type, [16, Algorithm 7] can be directly used
to compute the block matrix multiplication, the cost of which
is at most O(k3). Once we meet the combination NL — NL,
or R — NL, or F — NL, the block matrix multiplication has to
be performed in a way that is different from that in [16, Algo-
rithm 7]. If the by — by combination is NL — NL type, R*' and
R?2 may be stored in b; and b, respectively. Therefore, the real
blocks that should be used are G** + R*! and G*? + R? in-
stead of G’ and G*2. The block multiplication then becomes
(GP' + R¥) x (G2 + R*?) — G®. To handle this multipli-
cation, we separate it into two parts. One part is the original
block multiplication G x G2 — G?, which belongs to the
NL — NL — R multiplication case. As shown in [16, Algo-
rithm 7], the computation of G x GY2 — G? in this case in-
volves recursive descendent-block matrix multiplications, each
of which can be categorized into the basic block multiplication
with an admissible leaf being a target and can be computed by
recursively calling [16, Algorithm 7]. In the modified algorithm
for inverse, we call the TargetAdmissibleyyy, recursively shown
in (36). The other part is the three additional multiplications as-
sociated with R*'(*?) je., G xR"? — G*, R*"' x G? — G?,
and R" x R'?2 — G?. They, in fact, belong to the multiplica-
tion cases of NL — R, R — NL, and R — R, respectively, with
target being an admissible block. Each of these three cases can
be performed in O(k?) complexity using [16, Algorithm 7].

If the by — by combination is R — NL or F — NL type, sim-
ilar to NL — NL type, we separate the computation to G*! x
G2 — G’ and G*' x R"? — G®. The latterisacase of R — R
or F — R multiplication with the target block being an admis-
sible block. It again can be performed in O(k3) complexity
based on [16, Algorithm 7].

Since G? itself is an admissible block, we do not need to
perform a collect operation to prepare its auxiliary admissible
block form S°.

Consider the block matrix multiplication with an inadmis-
sible block being a target block. We develop the following

2413
pseudocode:
Procedure TargetDense -+ (b) (b is an admissible leaf)
If by — by combination is F-F, or R-F, or R-R
Compute G*! x G*2—G? based on Algorithm 8 (37

If by — by combination is R-NL or F-NL
Compute G"* x G"?> - G?" based on TargetDense,y+; ()
Compute G*! x R*2—G? based on Algorithm 8
Collectiny (b)

As can be seen from the above, if b1 —bs combination is F-NL
or R-NL, we separate the computation to G*! x G*2 — G and
G'! x R"? — G®. The latter one can be directly handled by [16,
Algorithm 8]. G*! x G2 — G involves recursive descendent-
block matrix multiplications with inadmissible targets, each of
which can be computed by recursively calling (37) instead of
[16, Algorithm 8]. In addition, since the target is a full matrix
block, for efficient computation, during the recursive computa-
tion, we do not perform the collect operation on the block inter-
mediate results, but do the collect operation on the target block
when the block matrix multiplication is done, as can be seen
from (37). All the other b1 — by combinations in (37) can be di-
rectly computed based on [16, Algorithm 8]. In (37), each block
matrix multiplication costs O(k}) time. After the full matrix
target block is computed, we compute its S? form by performing
a collect operation, the cost of which is at most O(n?, k).

The modification to the third block multiplication case, i.e.,
the case with nonleaf as a target, can be derived in a similar
way. Basically, the computation of (G*' + Rb!) x (G*2 +
R’) — G? is separated into two parts. One part is the original
G%! x G'2 — G®. The other part is R-based computation. The
second part involves three multiplications, each of which can
be categorized as one case of the block multiplications that are
handled by [16, Algorithms 7-9]. The procedure for this basic
multiplication case is shown as follows:

Procedure TargetNonleaf -+ (b)(b is a nonleaf)
If b;— by combination is R-R or R-F
Compute G"'xG"?2— R® based on (36)
S=S4R?
else
If b;— bs combination is F-F
Compute G"' xG"*— G based on TargetDensey+, ()
If b;—bs combination is R-NL
Compute G’ x R"? — R based on (36)
Compute G"'xG"%— G" based on TargetDensepyy ()
If b;—bo combination is NL-NL
Compute R*'xG"2— G?, G*'xR">— G® based on
TargetNonleafyy (b) and R*'xR"? — R" based on (36)
Compute G"' xG"%— G" based on TargetNonleafyy (b)
Collectinv (b) (38)

2414

The instantaneous collect operation for each target block is done
during the block matrix multiplication.

In the modified block matrix multiplication derived in this
work, we employ (36)—(38) to handle a block matrix multipli-
cation with the target block being any form. The computation for
each b; — by multiplication case performed by calling (36)—(38)
has the same order of complexity as the corresponding multi-
plication case handled by [16, Algorithms 7-9]. As proven in
[16], for matrix—matrix multiplication, the three basic multipli-
cation algorithms (admissible leaf as target, inadmissible leaf as
target, and nonleaf as target) are called no more than O(SCssz)
times. The same is true in matrix inverse since it shares the same
number of block multiplications with a matrix—matrix product,
as analyzed in Section V-C. The computation involved in each
call costs at most O(k?) operations. This includes the cost of the
additional multiplications associated with R®. The total cost of
the modified block matrix multiplications in the proposed in-
verse is, hence, O(CZ,k?)N, which is linear. The cost of the
instantaneous collect operation has already been counted in Sec-
tion VI-A.

C. O(N) Instantaneous Split Operation for Computing G 55

As mentioned before, a block multiplication can generate an
auxiliary block R? for a nonleaf block G?, and hence, R® + G*
is used as the real matrix for b. If Gos is a nonleaf block, to
compute its inverse, we need to compute (G + R) ™! instead
of G, . Unlike the R-associated computation in a block ma-
trix multiplication, it is difficult to separate (G, + R)~! into
G3-associated and R-associated computation. In order to com-
pute (Goo + R) ™! efficiently, based on a Split operation [16,
Algorithm 1], we first obtain G2 + R by splitting R to G2’s
children blocks. The pseudocode of this procedure is shown as
follows:

Procedure Split;y (b, R”) (b is a 22-position nonleaf block)
Apply Algorithm 1 to R? to form four children R
fori =1,2and j = 1,2
if b;; is an admissible block
Sbi = 8% 4 RYJ (update the coupling matrix)
else

if b;; is a full matrix block
Fbi = Fbii 4 VRV (update the full matrix)
if b;; is a nonleaf block 39)
RY = RY 4+ R (update R block at children level)
Stii =St 4 RY (update the collected admissible block)
Clear R®

Based on (39), R is superposed with G2y. We can then com-
pute G, . Since the inverse procedure is recursive, in order to
compute the inverse of the nonleaf G2, we have to first com-
pute the inverse of Goy’s 11 child block and 22 child block.
If 11 and 22 blocks are both nonleaf blocks, in order to com-
pute their inverses, we again need to split the R blocks in the 11

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 59, NO. 10, OCTOBER 2011

Fig. 6. Tlustration of the instantaneous split operation for computing G5 .

and 22 blocks, respectively, to their children. This process con-
tinues until 11 and 22 blocks become full matrices, the inverse
of which can be directly computed. The aforementioned proce-
dure is illustrated in Fig. 6, and its corresponding pseudocode is
shown as follows:

Procedure H%-inverseys (G, X)(Gis a 22-position nonleaf block)
if matrix G is a nonleaf matrix block

Splitixy (G, R)

H2-inversess (G, X11)

G2 X Gy — X021, Gy X G2 — X9,

G2 + (—Xo1 X G12) — G,

HZ-inverseay (Gaa, Xo2)

— Gy X Xa1 — Ga1, —X12 X Gyy — G,

G+ (G5 x X91) — Gy,

else
DirectInverse(G) (normal full matrix inverse)

(40)
As can be seen from Fig. 6 and (40), the nonleaf G5 blocks and
all their descendant nonleaf 11 and 22 blocks each is associated
with one “Split” operation denoted by “1S.”

The cost of each Split operation from the parent level to the
children that is one level down is at most O(k3) [16]. This op-
eration is only done for the nonleaf G, at each level [and its
descendant nonleaf 11 and 22 blocks. Therefore, the processed
blocks only cover a part of the entire 2 partition, as can be
seen from Fig. 6. Since the total number of blocks is O(C, N)
and each Split operation costs O(k?) time, the complexity of
the instantaneous split in the inverse procedure is bounded by
O(Cypk3)N, which is linear.

D. O(N) Backward Transformation After the
Inverse Procedure

After the inverse procedure is done, R may be stored for a
nonleaf block b in a block cluster tree. For an H? matrix, all the
matrix elements are actually stored in leaf blocks. Therefore,
R stored in each nonleaf block should be distributed back to
leaf blocks to obtain a final 72 matrix. This can be achieved by
the matrix backward transformation after the inverse procedure,
which has a linear complexity.

VII. ACCURACY ANALYSIS

There exist three error sources in the proposed direct solver,
i.e.: 1) H2-based representation of the original matrix; 2) or-

CHAI AND JIAO: DENSE MATRIX INVERSION OF LINEAR COMPLEXITY FOR IE-BASED LARGE-SCALE 3-D CAPACITANCE EXTRACTION

thogonalization; and 3) ‘H2-based inverse. Next, we analyze the
three errors one by one.

First, the H2-based representation of the dense matrix re-
sulting from an IE-based analysis of capacitance extraction
problem is error bounded, as shown in Section II. Exponential
convergence with respect to the number of interpolation points,
p, can be achieved irrespective of the problem size.

Second, the orthogonalization error can be minimized to zero.
In Section IV, orthogonal bases V! are constructed. The best
approximation of a general V* in the space VvVt is given by
VH(VH)TV?. The error of this approximation is

IVE = VEVHTVIS = Mg (41)
where Ay 1 is the (k' + 1)th eigenvalue of V*' V*, in which
k! is the rank of cluster basis V. Clearly, if k" is chosen the
same as the rank of V!, the error of (41) is zero. Therefore,
ViVtTGVsVsT is the best approximation of a matrix block
G"* in the bases V* and V*.

Third, the inverse has a controlled accuracy. If one agrees
with the fact that the linear-time matrix—matrix multiplication
developed in [16] has a controlled accuracy, the same is true
for the proposed inverse since the inverse procedure is essen-
tially a full matrix inverse at leaf level, and a level-by-level block
matrix multiplication procedure at nonleaf levels. The new in-
stantaneous collect algorithm added for inverse has the same
accuracy as the matrix forward transformation since the basic
operations are the same. Similarly, the new instantaneous split
operation has the same accuracy as the matrix backward trans-
formation in the linear-time matrix—matrix multiplication algo-
rithm. The modified block matrix multiplication algorithm has
the same accuracy as the original one since although three ad-
ditional multiplications are added; they are done with the same
accuracy. In addition, it is worth mentioning that no pivoting is
needed in the proposed inverse since capacitance matrix is a di-
agonally dominant matrix.

The inverse accuracy can also be analyzed from another per-
spective. The inverse procedure is essentially a number of block
matrix multiplications. The multiplication is performed by a for-
matted multiplication in which the H? tree of G~! is repre-
sented by the H? tree of G. In addition, the same cluster basis
used for G is used for G ~1. Both have been theoretically proven
to be true in Section II-B.

From the aforementioned three facts, the accuracy of the pro-
posed direct solver is well controlled.

VIII. NUMERICAL RESULTS

A number of examples were simulated to validate the accu-
racy and demonstrate the linear complexity of the proposed di-
rect IE solver. For all these simulations, a Dell 1950 Server was
used, except for the comparison with HiCap [20], where a com-
puter having a 1593-MHz SPARC v9 processor was used since
HiCap available in the public domain can only be run on a Sun
SPARC platform.

There are only three simulation parameters: 7, leafsize nyiy,
and p to choose in the proposed method. From (16), it can be
seen that the smaller the 7 and the larger the p, the better the
accuracy. For static problems, 1 < n < 2 is generally sufficient

2415

Fig. 7. m X m crossing bus structure.

for achieving good accuracy. With 7 chosen, based on accuracy
requirements, one can choose p accordingly. The leafsize, nyin,
can be chosen based on 1y, > 0.5 pd. This can help make
the H2-approximation more efficient in both memory and CPU
time.

The first example is an m X m crossing bus structure em-
bedded in free space [3], as shown in Fig. 7, where m is from 4
to 16. The dimension of each bus is scaled to 1x 1x (2m+1) m3.
The spacing between buses in the same layer is 1 m, and the dis-
tance between the two bus layers is 1 m. Although meter is not
a realistic on-chip length unit, it should be noticed that capaci-
tances are scalable with respect to the length unit.

We first compared the performance of the proposed direct
solver with FastCap 2.0. The discretization in FastCap 2.0 re-
sulted in 2736-38 592 unknowns for the extraction of the m xm
bus from m = 4 to m = 16. A similar number of unknowns
were also generated in the proposed solver for a fair comparison.
The convergence tolerance was set to 1% when using FastCap.
The simulation parameters in the proposed solver were chosen
as Nmin = 10 and n = 1.6. The number of interpolation points
p was determined by a function p = a + b(l — 1), with a = 2,
b = 1, and L being the maximum number of tree level, and [
being tree level. Such a choice of p reduces the H?-approxima-
tion error without affecting the linear cost [18].

In Fig. 8, we plot the original matrix error, which is the error
of the H2-based representation of the original matrix G, as well
as the error of the capacitance matrix with respect to the number
of unknowns. The original matrix error is measured by |G —
G|r/||G||r, where G is the H>2-matrix representation shown
in (10), and || - || r is the Frobenius norm; the capacitance error
is measured by ||C — C’||¢/||C||r, where C is the capacitance
matrix obtained from a full-matrix-based direct solver, and C’
is that generated by the proposed solver. As can be seen clearly
from Fig. 8, excellent accuracy of the proposed direct solver can
be observed in both G and capacitance matrix C’. In addition,
the error of G is shown to reduce with the number of unknowns.
This is because of increased p with respect to tree level, and
hence, increased accuracy, as can be seen from (16). In addition,
we are able to keep the accuracy of the capacitance to the same
order in the entire range.

With the accuracy of the proposed direct solver validated, in
Fig. 9, we plot the total CPU time and memory consumption of
the proposed direct solver for the m X m bus structure in free
space. As can be clearly seen, both time and memory complexity
of the proposed solver are linear. In addition, in Fig. 9, we plot
the CPU time and memory cost of FastCap2.0. It is clear that
the proposed direct solver outperforms FastCap2.0. In addition,
FastCap2.0 does not exhibit a linear scaling with respect to the

2416

107
—8- Capacitance error
—©— Original matrix error
S B—8—a—8 =
= -2
5 10
10

0 1 2 3 4
Number of unknowns x 10*

Fig. 8. Original matrix error and capacitance error of the proposed solver with
respect to N for the free-space case.

500
—8— FastCap
400 | | —©— Proposed Solver
)
& 300
[&]
Q
&
.g 200
|_
100
0 1
0 1 2 3 4
Number of unknowns x10*
(@
600 T
—&— FastCap
500 1| —e— Proposed Solver
o 400
=3
2 300
§
s 200
100
0 L
0 1 2 3 4
Number of unknowns X 104
(b)

Fig. 9. Comparison of time and memory complexity in simulating the bus
structure in free space. (a) Time complexity. (b) Memory complexity.

number of unknowns although it performs matrix—vector mul-
tiplication in linear complexity. This could be attributed to the
increased number of iterations when the number of unknowns
increases.

Next, we simulated the same bus structure embedded in
nonuniform dielectrics. The dielectric surrounding the upper
layer conductors has relative permittivity of 3.9, and that sur-
rounding the lower layer has relative permittivity 7.5. Each bus
is again scaled to 1 x 1 x (2m + 1) m?>. The distance between
buses in the same layer is 1 m, and the distance between the two
bus layers is 2 m. The discretization in FastCap 2.0 resulted in
3636 to 23 552 unknowns for the extraction of the m X m bus
from m = 4 to m = 16. A similar number of unknowns were
generated in the proposed solver.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 59, NO. 10, OCTOBER 2011

10 . .
—8— Proposed solver
—8— Fastcap
S
©
8 102} i
C
S
‘o
©
o
©
(6]
1078 s .
0 1 2 3

Number of unknowns x 10%

Fig. 10. Capacitance error of the proposed solver and that of FastCap2.0 for
the nonuniform dielectric case.

600 T
—8—FastCap
500} |-o~ Proposed Solver 1
T 400]
o]
[&]
@ 300 g
£
£ 200 1
100 1
0 "
0 1 2 3
4
Number of unknowns x 10
(a)
600 T
—8— FastCap
500 1 | —e— Proposed Solver 1
m 400 1
=3
g 300]
§
s 200 i
100 M/e——e
0 L n
0 1 2 3
Number of unknowns n
x 10

(b)

Fig. 11. Comparison of time and memory complexity in simulating the bus
structure embedded in multiple dielectrics. (a) Time complexity. (b) Memory
complexity.

The simulation parameters of the proposed solver can be
chosen to achieve a various level of accuracy. For a fair com-
parison with FastCap2.0, we chose the simulation parameters in
such a way that the proposed solver and FastCap2.0 produced
similar accuracy in capacitance, as shown in Fig. 10, where the
reference capacitance matrix C for both solvers was chosen
as that generated by a full-matrix-based direct calculation.
The resultant simulation parameters were leafsize n,;, = 10,
a = 2,and b = 1. We then compared the time and memory
performance of the two solvers. In Fig. 11, we plot the total
CPU time and memory consumption of the proposed direct
solver for the m X m bus structure in nonuniform dielectrics,

CHAI AND JIAO: DENSE MATRIX INVERSION OF LINEAR COMPLEXITY FOR IE-BASED LARGE-SCALE 3-D CAPACITANCE EXTRACTION

-GG/
10"

10° - : -
0 1 2 3 4
Number of unknowns X 104
(@)
I-GG™|/|
10"
o f—_e/—e—e\e
10°

0 0.5 1 1.5 2 25 3
Number of unknowns

(b)

x10°

Fig. 12. Inverse error of the proposed direct solver. (a) Free-space case.
(b) Nonuniform case.

and compare the performance with FastCap2.0. Once again,
the linear complexity of the proposed direct IE solver can be
clearly seen in both CPU time and memory consumption. It is
also worth mentioning that the proposed solver used double
precision to carry out the computation. If single precision
was used, more CPU time and memory usage can be saved.
In addition, we notice that for capacitance extraction, single
precision is generally sufficient to achieve good accuracy.

Since capacitance extraction does not involve all the columns
of G~1, to assess the accuracy of the entire inverse, in Fig. 12,
we plot the inverse error versus unknown number for both
free-space and nonuniform dielectric cases. Good accuracy
is observed in the entire range. The inverse error is assessed
by |- GG~'||¢/|[I]|p. The simulation parameters were
Nmin = 10 and 7 = 1.6. The number of interpolation points,
p, was 2.

Next, we compared the performance of the proposed direct
solver with HiCap downloaded from [20]. This version of HiCap
is for simulating free-space examples, and allows for at most
a 20 x 20 bus. We hence compared the performance of simu-
lating the free-space m X m bus from m = 4 to m = 20.
The number of unknowns used in HiCap was from 1104 to
20880. A similar number of unknowns were generated in the
proposed direct solver for a fair comparison. The number of un-
knowns used in the proposed direct solver was from 1216 to
26 560. The simulation parameters in the proposed solver were
chosen as leafsize = 8, n = 1.2, and p = 1. Fig. 13 shows
the inverse error in the entire range. Good accuracy can be ob-
served. In Fig. 14(a)—(c), we plot the total CPU time, memory

2417

10

107

10°

0 0.5 1 1.5 2 2.5 43
Number of unknowns x10

Fig. 13. Inverse error ||[I — GG*||/||T|| versus N.

200
—6—Proposed Solver
—B-Hicap
—~ 150
12}
©
=
Q
O
g 100
T
£
=
50
0 h 1 n I I
0 0.5 1 1.5 2 25 3
4
Number of unknowns x 10
(@
30
—6— Proposed Solver
251 | =8 Hicap
m 20
=3
2 15
§
= 10
5
0
0 1 2 3
Number of unknowns X 104
(b)
10"
s
©
Q
é -e—-Proposed Solver
S —&-Hicap
©
Q.
©
O
2

0 0.5 1 1.5 2 25 3

Number of unknowns x 10

(©)

Fig. 14. Comparison with HiCap in simulating an m X m bus with m being
from 4 to 20. (a) CPU time. (b) Memory. (c) Capacitance error.

consumption, and capacitance error of the proposed solver and
those of HiCap. The capacitance error was measured by ||C —
C'||lF/||C|| 7, where the reference C was obtained from a full-
matrix-based direct solver. The simulation parameters of the

2418

-

¥ T T T T T T T T T T
M8 2um|

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 59, NO. 10, OCTOBER 2011

M7 2pum|

M6 lpm

M5 lum}l
M4 Lym§
M3 lumgl
M2 l;tm_
M

Substrate ¢,=11.8 Substrate

Fig. 15. Large-scale 3-D M1-M8 on-chip interconnect embedded in inhomogeneos media.

proposed solver were chosen such that both solvers yielded a
similar level of accuracy, as can be seen from Fig. 14(c). From
Figs. 14(a) and (b), it can be seen that HiCap starts to become
more expensive in both CPU time and memory consumption
when problem size becomes large. In addition, the accuracy of
the proposed solver is shown to be better than HiCap on average.
Considering the fact that HiCap only solved the matrix for 4-20
right-hand sides in simulating this bus structure, whereas the
proposed solver computed the entire inverse, the performance
of the proposed direct solver is satisfactory.

To test the performance of the proposed direct solver in
simulating very large examples, we simulated a multilayer 3-D
on-chip interconnect structure [3] shown in Fig. 15. We also
compared the performance of the proposed direct solver with a
HiCap-based solver in this simulation. The relative permittivity
of the interconnect structure is 3.9 in M1, 2.5 from M2 to M6,
and 7.0 from M7 to MS8. The structure involves 48 conductors,
the discretization of which results in 25 556 unknowns. To test
the large-scale modeling capability of the proposed solver, the
48-conductor structure was duplicated horizontally, resulting
in 72, 96, 120, 144, 192, 240, 288, and 336 conductors, the dis-
cretization of which leads to more than one million unknowns
including both conducting-surface unknowns and dielectric-in-
terface unknowns.

The simulation parameters in the proposed solver were
chosen as leafsize = 10, n = 1, and p = 1. Since it is not
feasible to assess the error of 2-matrix-based representation
based on |G — G||r/||G||F due to the need of storing the
original dense matrix G, we plot the maximal admissible
block error of the proposed solver in Fig. 16(a). The maximal
admissible block error is defined as

HG(t,s) _ é(t,s)H
GE|

max

which constitutes an upper bound of the entire matrix error || G—
G|lr/||G||F. As can be seen from Fig. 16(a), less than 2%
error is observed in the entire range from 25 556 unknowns to
1047236 unknowns. In Fig. 16(b), we plot the inverse time
and the total CPU time of the proposed direct solver with re-
spect to the number of unknowns. Clearly, a linear complexity
can be observed. The total CPU time of the proposed direct
solver includes orthogonalization time, inverse time, and ma-
trix—vector multiplication time for computing unknown charge
vector and capacitances. For comparison, the solution time of a

g, =118 Substrate ¢,=11.8
% 10"
<]
Kl
)
2
[
L
E [eeee—e—o—2
© 2
= 10
£
X
@
£
G
=
2 -3
w10 . :
0 5 10 15
5
Number of unknowns x 10
(a)
4
25719 . : : :
—&— Total time of our direct sovler
2 —6— Direct inverse time i
=¥ HiCap algorithm based solver
=)
c 4
Q
O
(7
L2
(5
£
=
0 2 4 6 8 10 12
Number of unknowns x 10
(®)
5000
4000
£ 3000
2
g
@ 2000
=
1000
0
0 2 4 6 8 10 12

Number of unknowns
©

Fig. 16. Simulation of a large-scale 3-D MI-MS8 on-chip interconnect.
(a) Error of maximal admissible block. (b) CPU time. (c) Memory.

HiCap-based solver is also plotted in Fig. 16(b). Since HiCap for
inhomogeneous dielectrics is not available in public domain, we
generated the HiCap time in the following way to make the com-
parison as fair as possible. We first constructed an 2-based rep-
resentation of G with p = 1 since the center-point based scheme
in HiCap can be viewed as a rank 1 scheme. We then performed

CHAI AND JIAO: DENSE MATRIX INVERSION OF LINEAR COMPLEXITY FOR IE-BASED LARGE-SCALE 3-D CAPACITANCE EXTRACTION

TABLE I
SOLUTION ERROR VERSUS THE UNKNOWN NUMBER
Num. of Unknowns | Solution Error (%)
25,556 333
53,400 5.01
94,752 5.06
164,672 7.26
253,792 6.63
362,122 5.28
605,472 5.59
802,272 6.23
1,047,236 5.98
55 x10°
—©—Proposed solver
2 | —B—H-based direct solver

Time(second)

0 2 4 6 8 10 12
Number of unknowns

Fig. 17. Inverse time comparison between the proposed solver and an 7 -based
direct solver.

a matrix—vector multiplication based on the H2-based represen-
tation, which has a similar CPU time as that reported in [3] if
run on the same computer platform. With the CPU time per ma-
trix—vector multiplication matched, we chose the same number
of iterations as reported in [3] to generate the CPU time required
by a HiCap algorithm based solver.

As can be seen from Fig. 16, the advantage of the proposed
direct solver is clearly demonstrated even though a HiCap-based
solver only calculated the results for m right-hand sides with m
being the number of conductors, whereas the proposed solver
obtained the entire inverse, i.e., the results for N right-hand
sides. In Fig. 16(c), we plot the memory complexity of the pro-
posed solver, which again demonstrates a linear complexity.

Since we need to use the capacitance C generated from a full-
matrix based direct computation to assess the accuracy of the
capacitance C’ extracted by the proposed solver, and C is not
available within feasible computational resources for this large
example, we tested the solution error of the proposed solver,
which is defined as ||Gq — v|| / ||v]|- Table I shows the solution
error in the entire range. Good accuracy is observed even with
p =1

The best complexity reported for the IE-based direct solver
is O(N log™ N) [10], [24]-[26], which is higher than O(N).
Next, we compare the proposed linear direct solver with an
O(N log2 N) complexity H-based direct solver [10]-[12], [26].
In order to have a fair comparison, we employ the same matrix
partition to form an H-based matrix. In addition, the interpola-
tion-based rank used in the H-based block is the same as that
in the H2-based block. The direct inverse of such an H-based
matrix can be developed based on the direct inverse algorithm

2419

10
5 10°
5]
3
§ 10°
2 oﬁ\e/s\e/e—o
©
] .5
o 10
10°
0 1 2 3 4
Number of unknowns ><1O4
(@
200
__ 150
k)
c
o
(5]
3 100
@
£
=
50
0
0 1 2 3 4
Number of unknowns X 104
(b)
250
200
)
= 150
Fa
g
$ 100
=
50
0
0 1 2 3 4
Number of unknowns X 10*
(©
50
45
:E 40
35
30
0 1 2 3 4
Number of unknowns X 104

(d

Fig. 18. Performance of the proposed solver in achieving a higher order of
accuracy. (a) Capacitance error. (b) Time complexity. (c) Memory. (d) Sparsity
constant.

given in [26], which has an O(N log® N') complexity. Fig. 17
compares the inverse time of the proposed solver with that of the
‘H-based direct solver. Clearly, the proposed solver is shown to
be much faster than the H-based direct solver. When the number
of unknowns is larger, the advantage of the proposed solver will
be even more obvious.

2420

In the last example, we tested the capability of the proposed
solver in achieving a higher order of accuracy. We set the
required level of accuracy measured by capacitance error to
be 107°. The structure was the 3-D bus shown in Fig. 7. The
simulation parameters of the proposed solver were chosen
as Nmin = 32,,7 = 1,a = 3,and b = 1 to satisfy the
required accuracy. As shown in Fig. 18(a), the required accu-
racy is achieved across the entire range of unknowns without
sacrificing the linear complexity in CPU time and memory
consumption. This is clearly demonstrated in Fig. 18(b) and
(c). We tried to use either FastCap or HiCap that can be ac-
cessed from the public domain to produce 107° accuracy in
capacitances so that we can compare the performance for the
same accuracy. However, when we decreased the convergence
tolerance or increased the expansion order to a certain extent,
the accuracy of the two solvers became saturated. They failed to
produce a 10~° level of accuracy in capacitances. In Fig. 18(d),
we plot C,q, the maximal number of admissible blocks formed
by a cluster, which is a good measurement of Cg,. The Clygq is
almost a constant in the entire range of unknowns, as can be
seen from Fig. 18(d).

IX. CONCLUSION

In this paper, we have shown that the dense matrix arising
from the IE-based analysis of capacitance problems can be rep-
resented by an ‘H? matrix with error well controlled. In addition,
we have theoretically proven that the inverse of this dense ma-
trix, also, has an H? representation. More important, the same
block cluster tree and cluster bases constructed from the original
dense matrix can be used for the 72 representation of its inverse.
Based on this finding, we develop a direct inverse of linear com-
plexity for large-scale capacitance extraction involving arbitrary
inhomogeneity and arbitrary geometry. To help better convey
the idea of the proposed linear-time inverse, we use an analogy
between a matrix—matrix product and a matrix inverse to present
the proposed algorithm. We show that these two matrix opera-
tions share the same number of block matrix multiplications.
However, in the matrix inversion procedure, the matrix blocks
used for computation are kept updated level by level. In con-
trast, in a matrix—matrix multiplication, the matrix blocks used
for computation at each level are always from the original ma-
trix. They are never updated. This difference makes it not fea-
sible to achieve a linear complexity in inverse by directly using
the linear-time matrix—matrix multiplication algorithm. We then
present the proposed algorithms that achieve a linear complexity
in inverse. Both theoretical analysis and numerical results have
demonstrated the accuracy and linear complexity of the pro-
posed direct IE solver. In addition, the proposed direct solver is
shown to outperform existing iterative IE solvers of linear com-
plexity. The proposed solver is kernel independent in the sense
that it does not rely on an analytical expansion of kernels, and
the underlying fast techniques are algebraic methods that are not
kernel specific. Moreover, it is applicable to arbitrary inhomo-
geneity and arbitrary structures.

In this paper, we demonstrate that it is feasible to obtain an in-
verse of a dense matrix in linear time and memory consumption
with controllable accuracy. Inverse is a fundamental building

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 59, NO. 10, OCTOBER 2011

block in computation. The significance of the proposed work
goes beyond just capacitance extraction.

ACKNOWLEDGMENT

The authors would like to thank Prof. C.-K. Koh, Purdue
University, West Lafayette, IN, for valuable suggestions to
this work. The authors also appreciate the interaction with
Prof. J. White, Massachusetts Institute of Technology, Boston,
on FastCap.

REFERENCES

[1] K. Nabors and J. White, “FastCap: A multipole accelerated 3-D capac-
itance extraction program,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 10, no. 11, pp. 1447-1459, Nov. 1991.

[2] W. Shi, J. Liu, N. Kakani, and T. Yu, “A fast hierarchical algorithm
for 3-D capacitance extraction,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 21, no. 3, pp. 330-336, Mar. 2002.

[3] S. Yan, V. Saren, and W. Shi, “Sparse transformations and precondi-
tioners for hierarchical 3-D capacitance extraction with multiple di-
electrics,” in DAC, 2004, pp. 788-793.

[4] S. Kapur and D. E. Long, “I ES3: A fast integral equation solver for
efficient 3-dimensional extraction,” in Proc. ICCAD, Nov. 1997, pp.
448-455.

[5] J.R.Phillips and J. White, “A precorrected FFT method for capacitance
extraction of complicated 3-D structures,” in Proc. ICCAD, 1994, pp.
268-271.

[6] D. Gope, I. Chowdhury, and V. Jandhyala, “DiMES: Multilevel fast
direct solver based on multipole expansions for parasitic extraction of
massively coupled 3-D microelectronic structures,” in DAC, 2005, pp.
159-162.

[7]1 Y. C. Pan, W. C. Chew, and L. X. Wan, “A fast multipole-method

basedcalculation of the capacitance matrix for multiple conductors

above stratified dielectric media,” IEEE Trans. Microw. Theory Tech.,

vol. 49, no. 3, pp. 480490, Mar. 2001.

R.Jiang, Y.-H. Chang, and C. C.-P. Chen, “ICCAP: A linear time spar-

sification and reordering algorithm for 3D BEM capacitance extrac-

tion,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 3060-3068,

Jul. 2006.

[9] W. Yu and Z. Wang, “Enhanced QMM-BEM solver for three-dimen-
sional multiple-dielectric capacitance extraction within the finite do-
main,” IEEE Trans. Microw. Theory Tech, vol. 52, no. 2, pp. 560-566,
Feb. 2004.

[10] S.Borm, L. Grasedyck, and W. Hackbusch, Hierarchical Matrices, ser.
Lecture Note 21. Bonn, Germany: Max Planck Inst. Math., 2003.

[11] W. Hackbusch and B. Khoromskij, “A sparse matrix arithmetic based
on H-matrices. Part I: Introduction to H-matrices,” Computing, vol.
62, pp. 89-108, 1999.

[12] W. Hackbusch and B. N. Khoromskij, “A sparse /-matrix arithmetic.
Part II: Application to multi-dimensional problems,” Computing, vol.
64, pp. 21-47, 2000.

[13] S.Borm and W. Hackbusch, “H?2-matrix approximation of integral op-
erators by interpolation,” Appl. Numer. Math., vol. 43, pp. 129-143,
2002.

[14] S. Borm, “Approximation of integral operators by 7{2-matrices with
adaptive bases,” Computing, vol. 74, pp. 249-271, 2005.

[15] S.Borm, “H?-matrices—Multilevel methods for the approximation of
integral operators,” Comput. Visual. Sci., vol. 7, pp. 173-181, 2004.

[16] S. Bérm, “H?-matrix arithmetics in linear complexity,” Computing,
vol. 77, pp. 1-28, 2006.

[17] W. Chai and D. Jiao, “An H?-matrix-based integral-equation solver of
linear-complexity for large-scale full-wave modeling of 3-D circuits,”
in IEEE 17th Elect. Perform. Electron. Packag. Conf., Oct. 2008, pp.
283-286.

[18] W. Chai and D. Jiao, “An H?-matrix-based integral-equation solver
of reduced complexity and controlled accuracy for solving electrody-
namic problems,” IEEE Trans. Antennas Propag., vol. 57, no. 10, pp.
3147-3159, Oct. 2009.

[19] W. Chai, D. Jiao, and C. C. Koh, “A direct integral-equation solver
of linear complexity for large-scale 3-D capacitance and impedance
extraction,” in 46th ACM/EDAC/IEEE DAC, Jul. 2009, pp. 752-757.

[20] HiCap. Texas A&M Univ., College Station, TX, Feb. 2010. [Online].
Available: http://dropzone.tamu.edu~wshi/pub.html

[21] H. Boltz, “Matrix inversion lemma,” Wikipedia 2011. [Online]. Avail-
able: http://en.wikipedia.org/wiki/Invertible_matrix

[8

[l

CHAI AND JIAO: DENSE MATRIX INVERSION OF LINEAR COMPLEXITY FOR IE-BASED LARGE-SCALE 3-D CAPACITANCE EXTRACTION

[22] J. Shaeffer, “Direct solve of electrically large integral equations for
problem sizes to 1 M unknowns,” IEEE Trans. Antennas Propag., vol.
56, no. 8, pp. 2306-2313, Aug. 2008.

[23] M. Bebendorf and W. Hackbusch, “Existence of 7{-matrix approxi-
mants to the inverse fe-matrix of elliptic operators with L °°-coeffi-
cients,” Numer. Math., vol. 95, pp. 1-28, 2003.

[24] R.J. Adams, Y. Xu, X. Xu, S. D. Gedney, and F. X. Canning, “Modular
fast direct electromagnetic analysis using local-global solution modes,”
IEEE Trans. Antennas Propag., vol. 56, no. 8, pp. 2427-2441, Aug.
2008.

[25] L. Greengard, D. Gueyffier, P.-G. Martinnson, and V. Rokhlin, “Fast
direct solvers for integral equations in complex three-dimensional do-
mains,” Acta Numer., pp. 261-288, 2009.

[26] W. Chai and D. Jiao, “A complexity-reduced h-matrix based direct in-
tegral equation solver with prescribed accuracy for large-scale electro-
dynamic analysis,” in /EEE Int. Antennas Propag. Symp., Jul. 2010.,
(see also Purdue ECE Tech. Rep. [Online]. Available: http://docs.lib.
purdue.edu/ecetr/411).

Wenwen Chai (S’09-M’11) received the B.S. degree
from the University of Science and Technology of
China, Hefei, China, in 2004, the M.S. degree from
the Chinese Academy of Sciences, Beijing, China, in
2007, both in electrical engineering, and is currently
working toward the Ph.D. degree at Purdue Univer-
sity, West Lafayette, IN.
She is currently with the School of Electrical
o and Computer Engineering, Purdue University,
‘ J as a member of the On-Chip Electromagnetics
B Group. Her research is focused on computational
electromagnetics, high-performance very large scale integration (VLSI) com-
puter-aided design (CAD), and fast and high-capacity numerical methods.
Ms. Chai was the recipient of the IEEE Antennas and Propagation Society
Doctoral Research Award for 2009-2010.

2421

Dan Jiao (S’00-M’02-SM’06) received the Ph.D.
degree in electrical engineering from the University
of Illinois, Urbana-Champaign, in 2001.

She was then a Senior Computer-Aided Design
(CAD) Engineer, Staff Engineer, and Senior Staff
Engineer with the Technology CAD Division, Intel
Corporation, until September 2005. In September
2005, she joined Purdue University, West Lafayette,
IN, as an Assistant Professor with the School of
Electrical and Computer Engineering. In 2009, she
became a Tenured Associate Professor. She has
authored two book chapters and over 140 papers in refereed journals and
international conferences. Her current research interests include computa-
tional electromagnetics, high-frequency digital, analog, mixed-signal, and RF
integrated circuit (IC) design and analysis, high-performance VLSI CAD,
modeling of microscale and nanoscale circuits, applied electromagnetics, fast
and high-capacity numerical methods, fast time-domain analysis, scattering
and antenna analysis, RF, microwave, and millimeter-wave circuits, wireless
communication, and bio-electromagnetics.

Dr. Jiao was among 100 engineers chosen for the National Academy of Engi-
neering’s 2011 U.S. Frontiers of Engineering Symposium. She was the recipient
of the 2010 Ruth and Joel Spira Outstanding Teaching Award, the 2008 Na-
tional Science Foundation (NSF) CAREER Award, the 2006 Jack and Cathie
Kozik Faculty Start Up Award (which recognizes an outstanding new faculty
member with the Electrical and Computer Engineering (ECE) Staff, Purdue
University), the Office of Naval Research (ONR) Award under Young Inves-
tigator Program in 2006, the 2004 Best Paper Award of the Intel Corporation
Annual Corporate-Wide Technology Conference (Design and Test Technology
Conference) for her work on generic broadband model of high-speed circuits,
the 2003 Intel Corporation Logic Technology Development (LTD) Divisional
Achievement Award in recognition of her work on the industry-leading Broad-
Spice modeling/simulation capability for designing high-speed microproces-
sors, packages, and circuit boards, the Intel Corporation Technology CAD Divi-
sional Achievement Award for the development of innovative full-wave solvers
for high-frequency IC design, the 2002 Intel Corporation Components Research
the Intel Hero Award (Intel-wide she was the tenth recipient) for the timely and
accurate 2-D and 3-D full-wave simulations, the Intel Corporation LTD Team
Quality Award for her outstanding contribution to the development of the mea-
surement capability and simulation tools for high-frequency on-chip crosstalk,
and the 2000 Raj Mittra Outstanding Research Award of the University of Illi-
nois at Urbana-Champaign.

