IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 33, NO. 4, NOVEMBER 2010

1043

A Theoretically Rigorous Full-Wave
Finite-Element-Based Solution of Maxwell’s
Equations From dc to High Frequencies

Jianfang Zhu, Student Member, IEEE, and Dan Jiao, Senior Member, IEEE

Abstract—It has been observed that finite element based solu-
tions of full-wave Maxwell’s equations break down at low frequen-
cies. In this paper, we present a theoretically rigorous method to
fundamentally eliminate the low-frequency breakdown problem.
The key idea of this method is that the original frequency-depen-
dent deterministic problem can be rigorously solved from a gener-
alized eigenvalue problem that is frequency independent. In addi-
tion, we found that the zero eigenvalues of the generalized eigen-
value problem cannot be obtained as zeros because of finite ma-
chine precision. We hence correct the inexact zero eigenvalues to
be exact zeros. The validity and accuracy of the proposed method
have been demonstrated by the analysis of both lossless and lossy
problems having on-chip circuit dimensions from dc to high fre-
quencies. The proposed method is applicable to any frequency.
Hence it constitutes a universal solution of Maxwell’s equations in
a full electromagnetic spectrum. The proposed method can be used
to not only fundamentally eliminate the low-frequency breakdown
problem, but also benchmark the accuracy of existing electromag-
netic solvers at low frequencies including static solvers. Such a
benchmark does not exist yet because full-wave solvers break down
while static solvers involve theoretical approximations.

Index Terms—Electromagnetic analysis, finite element methods,
full-wave analysis, low-frequency breakdown, very large scale in-
tegrated (VLSI) circuits.

I. INTRODUCTION

HE finite-element method (FEM) has been widely used

for electromagnetic analysis due to its great capability
in handling arbitrary inhomogeneous materials and irregularly
shaped structures. In recent years, the method has been used for
the design and analysis of very large scale integrated (VLSI) cir-
cuits because process scaling and frequency scaling necessitate
a full-wave based analysis [1]-[3]. However, it has been found
that a full-wave FEM-based solver, i.e., an FEM-based solution
of full-wave Maxwell’s equations, breaks down at low frequen-
cies [4]-[9]. The typical breakdown frequency is tens of mega-

Manuscript received January 30, 2010; revised May 27, 2010; accepted June
27,2010. Date of publication August 09, 2010; date of current version January
07,2011. This work was supported in part by a grant from Intel Corporation, in
part by the National Science Foundation under Award 0747578, and in part by
the Office of Naval Research under Award N00014-10-1-0482. This work was
recommended for publication by Associate Editor J. Tan upon evaluation of the
reviewers comments.

The authors are with the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TADVP.2010.2057428

hertz in VLSI circuit applications, which falls right into the fre-
quency range in which a VLSI circuit works. Thus, the low-fre-
quency breakdown problem becomes a very critical problem
that demands an effective solution. The low-frequency break-
down problem has also been observed in integral-equation based
solvers [10]-[14].

In order to overcome the low-frequency breakdown problem,
a natural solution is to stitch a static- or quasistatic-based
electromagnetic solver with a full-wave-based electromagnetic
solver. However, this solution is cumbersome and inaccurate.
First, one has to develop and accommodate both tools and
switch between these two when necessary. More importantly, at
which frequency such a switching is necessary is questionable.
The starting frequency point at which a full-wave solution
breaks down is different for different problems. For simple
structures, given a frequency, designers can still use their
physical intuitions to judge whether the breakdown occurs or
not; for complicated circuits, however, it is difficult to make
such judgment. Third, static or quasi-static solvers by them-
selves involve theoretical approximations because they assume
that E and H are decoupled at low frequencies. However, in
Maxwell’s equations, E and H are always coupled as long
as frequency is not zero. Although static solvers have been
successful at low frequencies in practical applications, one also
has to admit the fact that they are not theoretically rigorous.
Decoupling E and H can result in a different level of accuracy
at different frequencies.

The other popular solution to the low-frequency breakdown
problem is to switch basis functions. For example, the loop-tree
and loop-star basis functions [10], [12] were used to achieve a
natural Helmholtz decomposition of the current to overcome the
low-frequency breakdown problem in integral-equation-based
methods. As another example, the tree-cotree splitting scheme
[5], [6] was used to provide an approximate Helmholtz decom-
position for edge elements in finite-element-based methods. The
edge basis functions were used on the cotree edges, whereas the
scalar basis functions were incorporated on the free nodes asso-
ciated with the tree edges to represent the gradient field. Again,
this solution is not convenient since one has to change basis
functions, and hence the system matrix, to extend the applica-
bility of a full-wave solver to low frequencies. In addition, the
same approach can not be applied to high frequencies. In other
words, the solution is not universal across all frequencies. More-
over, Helmholtz decomposition of the field by itself is not theo-
retically rigorous since it is exact only at dc. In addition, existing
tree-cotree splitting based FEM solutions of vector wave equa-
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tions have not fundamentally solved the low-frequency break-
down problem. For example, it was shown that a tree-cotree
splitting scheme can be used to extend a full-wave finite-ele-
ment-based solution to 1 MHz for typical on-chip dimensions
[6]. However, for frequencies lower than 1 MHz, extrapolation
techniques are required.

In [8], we developed a solution in the framework of a 2.5-D
eigenvalue-based FEM method for the modeling of on-chip
interconnects from dc to high frequencies. In [9], we developed
a method to eliminate the low-frequency breakdown problem
for the 3-D FEM-based solution of vector wave equations.
Both solutions have two important advantages. First, they
avoid switching basis functions. The same system matrix is
used across all frequencies. Second, the solutions are valid at
frequencies as low as dc. With the two advantages achieved,
the solutions can be incorporated into any existing FEM solver
to remove the low-frequency problem with great ease. The
solutions developed in [8] and [9] both have an underlying
assumption that at low frequencies where a full-wave solution
breaks down, E and H are decoupled. While they continue to
be effective and efficient in practical applications, in this work,
we aim to develop a theoretically rigorous approach that does
not require such a static assumption.

There are two reasons for us to consider a theoretically rig-
orous approach to solving Maxwell’s coupled equations from
dc to any high frequency. First, such an approach can be used to
completely eliminate the low-frequency breakdown problem.
Second, such an approach can be used as a golden reference
to benchmark the accuracy of any electromagnetic solver at
low frequencies. Such a golden reference in fact does not exist
yet because full-wave solvers break down at low frequencies,
while static solvers involve theoretical approximations. One
might argue that the accuracy of an electromagnetic solver
at low frequencies can always be tested out by checking the
solution error using the relative residual. However, the system
matrix resulting from a full-wave analysis at low frequencies
has such a high condition number that a slight error in matrix
solution can result in a big difference in the residual, and hence
the relative residual cannot be used as a criterion to validate the
electromagnetic solver at low frequencies. Certainly, there exist
a few structures that have analytical solutions. However, for
complicated structures, one still have to rely on a numerical so-
lution that is theoretically rigorous to benchmark the accuracy.

In this work, we first perform a theoretical analysis of the
low-frequency breakdown problem. We conclude that as long
as computers have finite precision, the conventional FEM-based
solution of full-wave Maxwell’s equations would break down
at certain frequency. This is true not only for VLSI circuits,
but also for traditional millimeter and microwave circuits. The
problem is not important in the latter because the breakdown fre-
quency typically is out of the frequency range in which a mil-
limeter or microwave circuit works. However, for the former,
the breakdown problem is very significant because a full-wave
solution breaks down at the working frequencies of a VLSI cir-
cuit.

Therefore, the question here is: given finite machine pre-
cision, how to bypass the low-frequency breakdown problem
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without decoupling E and H? The proposed method is devel-
oped to answer this question. In this method, we rigorously
transform the original frequency-dependent deterministic
problem to a generalized eigenvalue problem that is frequency
independent. From the solution of the generalized eigenvalue
problem, we can use the modal superposition method [15]-[17]
to rigorously obtain the solution of the original frequency
dependent problem. Since the transformed eigenvalue problem
does not depend on frequency, the low-frequency breakdown
problem is naturally bypassed. However, this does not com-
pletely solve the problem because the zero eigenvalues of the
resultant eigenvalue system due to either the null space of the
stiffness matrix or the dc mode of the physical circuit cannot be
obtained as exact zeros numerically. This is because the largest
eigenvalue, i.e., the highest resonance frequency of a VLSI
circuit, is extremely large due to micrometer level physical
dimensions. And hence any eigenvalue that is 1076 smaller
than the largest eigenvalue is in fact zero in double precision
computing. Thus, the problem of inexact zero eigenvalues can
be fixed easily by correcting them to be zeros.

The proposed theoretically rigorous approach has the fol-
lowing important merits. 1) It does not involve any theoret-
ical approximation. 2) It avoids switching basis functions. The
edge basis that is traditionally used for vector finite element
analysis is employed across all frequencies. 3) It preserves the
system matrix. The same mass and stiffness matrices that are
constructed in a traditional full-wave FEM solver are used from
dc to high frequencies. 4) The approach is equally applicable
to any high frequency in addition to low frequencies, and hence
constituting a universal solution to Maxwell’s equations in a full
electromagnetic spectrum.

II. ANALYSIS OF THE LOW-FREQUENCY
BREAKDOWN PROBLEM
A. 3D Full-Wave Finite-Element-Based Solution

Consider the second-order vector wave equation
V x [p; 'V x E] — w?e, /¢’E = —jwped (1)

where p,. is relative permeability, €, is relative permittivity, w
is angular frequency, c is the speed of light, and J represents a
current source.

By expanding the unknown E using vector basis function N
as

E = Z uiNi (2)

a finite-element-based analysis of (1) subject to the Dirichlet- or
Neumann-type boundary condition yields the following matrix
equation [18]:

(S —w’T)u=5b 3)
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where S is known to be a stiffness matrix, T is known to be a
mass matrix, and b is an excitation vector. The S, T, and b are
assembled from their elemental contributions as follows:

sgj:///(vXNi)-(vXNj)dv
U
Tfj = M€ // Ni . deV
Ve
bS:—jw/L///Ni-JdV. 4)
VG

In vector finite element analysis, the most widely used basis is
the edge basis [18], [19].

It was shown by our numerical experiments that, in general,
the solution of (3) breaks down at tens of megahertz in typical
on-chip problems, the electric size of which can be smaller than
10~ wavelengths. As an example, consider a 3-D on-chip inter-
connect, the cross-sectional view of which is shown in Fig. 1(a).
The structure is of length 2000 pm into the paper. The intercon-
nect involves a center strip line with two parallel return wires in
M2 layer, a metal plane that is 0.2 pm thick in M1 layer, and
a metal plane that is 1 pgm thick in M3 layer. A current source
is launched from the bottom plane to the center strip line. In
Fig. 1(b), we plot the electric field distribution in the transverse
plane at low frequencies, where each horizontal dashed line rep-
resents a material interface. Clearly, the FEM solution breaks
down. Between M2 and M3, the electric field should point from
the center strip to the upper metal plane, and be perpendicular
to the upper metal plane, which cannot be seen from Fig. 1(b).

Equation (3) describes a lossless system. Consider a lossy
system formed inside conductors. Note that at low frequencies,
fields penetrate into conductors because skin depth can be com-
parable to or larger than the physical dimension of the con-
ductor. In such a lossy system, the electric field E satisfies the
following second-order vector wave equation:

V x [/L;lv X E] — w26, /B + jwugoE = —jwued  (5)

where o is conductivity. A finite element analysis of (5) inside
good conductors results in the following system of equations:

(S+jwR)u="b (6)

where the mass matrix T is absent because inside a good con-
ductor, displacement current can be ignored compared to con-
duction current. The loss-related matrix R has the following en-
tries:

Rf; = po // N; - N;dV. 7
VG

At very low frequencies, we observe that the solution of (6) also
breaks down, although the breakdown frequency is much lower
than that of (3).

In the next section, we analyze the low-frequency breakdown
problem, and show why the FEM-based solution of vector wave
equations breaks down at low frequencies.
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Fig. 1. (a) Cross-sectional view of a 3-D on-chip interconnect. (b) Electric field
distribution generated by a conventional full-wave FEM-based analysis.

B. Analysis of Low-Frequency Breakdown Problem

To analyze the low-frequency breakdown problem, we ex-
amine the ratio of S’s norm over T’s norm in (3). From (4),
it is clear that S;; is an O(!) quantity, and T;; is a quantity pro-
portional to 10717(3), where [ is the average edge length in a
3-D discretization. Hence, we obtain the following relationship:

M_ 1017
T O@?)

®)

where ||.|| denotes a matrix norm. The above analysis is based
on a normalized basis N. If N is not normalized, although the
norm of T and that of S change, the ratio of S’s norm over T’s
norm remains the same as (8).

For circuits having large physical sizes such as millimeter
wave circuits, [ is in the order of 10~2 m. Hence the ratio of
S’s norm over T’s norm is in the order of 10%3. However, for
state-of-the-art VLSI circuits, [ is at the level of 1 pm. Hence,
the ratio of S’s norm over T’s norm is in the order of 102°,
which is significantly larger than that in a millimeter wave cir-
cuit.

Since || T|| is 1072° smaller than ||S|| in a VLSI circuit, at
low frequencies, even one uses double-precision computing, the
mass matrix T is essentially treated as zero by computers when
performing the addition of T and S. As a result, the breakdown
occurs. If we directly solve (3) without scaling, we cannot pre-
serve the effect of T. However, if we scale T, S has to be simul-
taneously scaled. Therefore, the bad scaling of (3) is caused by
physics instead of numerical reasons. The large ratio between
|IS|| and w?||T|| is dictated by the electric size of the structure,
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which cannot be reduced by a matrix scaling technique. If an in-
finite-precision machine is available, the solution of (3) would
not break down at low frequencies because the machine can cap-
ture the effect of T.

For alossy system shown in (6), the R;; is a quantity propor-
tional to 10717(1%) x o /e, and hence is much larger than T;;.
As aresult, the ratio of the R;;’s norm over S;;’s norm is much
larger, and hence the breakdown frequency of (6) is much lower
than that of a lossless system.

C. Identification of Breakdown Frequency

The above analysis also suggests an analytical way to esti-
mate the breakdown frequency. As can be seen from (3), T is
multiplied by w? in the system matrix. Therefore, if the ratio of
I'T|| over ||S]| is 10729, w? has to be as large as 1013 — 10'* so
that a double-precision computation can take T’s contribution
into consideration. Therefore, the breakdown frequency falls
into the range of 108 — 107 Hz for micrometer-scale structures,
which shows excellent agreement with our numerical experi-
ments.

For the lossy system formed inside a conductor, assuming o
is at the level of 107 S/m, then the ratio of |R)|| over ||S|| is
0O(10719), Hence, as long as w? is no less than 10~ — 1076,
the contribution of R can be effectively taken into considera-
tion by double-precision computing. Therefore, the breakdown
frequency for the lossy system formed inside a conductor falls
into the range of 102 — 10~ Hz for micrometer-scale struc-
tures, which also shows excellent agreement with our numerical
experiments.

From the aforementioned analysis, it can be seen clearly that
the low-frequency breakdown problem occurs earlier, i.e., at a
higher frequency, in a lossless system than that occurs in a lossy
system. In addition, due to finite machine precision, it is in-
evitable that the FEM based solution of vector wave equations
break down at low frequencies. This breakdown occurs not only
in VLSI circuits, but also in microwave and millimeter wave
circuits, and other electromagnetic applications. For VLSI cir-
cuits and future nanometer circuit applications, the breakdown
problem demands a solution because the breakdown frequency
is within the working frequency band of the circuits, whereas
the breakdown problem was ignored or may not be noticed in
microwave applications because the breakdown frequency is so
low that it is outside of the operating frequency band.

III. PROPOSED THEORETICALLY RIGOROUS SOLUTION

From Section II, apparently, as long as one solves coupled
Maxwell’s equations, and hence a combined T and S system
like (3), one cannot fundamentally eliminate the low-frequency
breakdown problem because computers have finite precision.
Thus, employing static approximations such as decoupling E
and H at low frequencies seems to be the only way forward.
However, once one makes use of the static approximations, the
resultant approach is not theoretically rigorous.

In the following, we propose a method that can fundamen-
tally eliminate the low-frequency breakdown problem without
making any theoretical approximation. In this method, we solve
full-wave Maxwell’s equations as they are without invoking
static assumptions. We use the edge basis across frequencies
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from dc to high frequencies, and hence keeping the same mass
and stiffness matrices throughout the frequencies. Our proposed
solution is truly a unified solution from dc to any high frequency.
This has not been achieved by existing methods developed for
overcoming the low-frequency problem. For example, methods
that rely on basis-function switching at low frequencies cannot
apply the same basis function to high frequencies.

The key idea of the proposed method is that the frequency
dependent deterministic problem in (3) can be rigorously solved
by the following frequency independent eigenvalue problem
[15]-[17]:

Sz = ATz 9

where )\ is the eigenvalue, and z is the eigenvector. Since
S is symmetric semi-positive definite and T is symmetric
positive definite, the eigenvalues A\ are non-negative real
numbers. Meanwhile, the eigenvectors = are S and T or-

thogonal. Denoting the eigenvalues of (9) by A1, Aa, -+, An,
and the corresponding eigenvectors by zi,x2,---,xn. Let
b = [x1,x9, -,z N], We have

oTTe =1

TSP =A (10)

where I is an identity matrix, and A is a diagonal matrix, the ith
element of which is ;.

After solving the generalized eigenvalue problem (9), the
deterministic problem (3) can be solved in the following way
[15]-[17]. First, we expand unknown w of (3) in the space of ¢

u = ®i (11)

where 7 is an unknown coefficient vector, the element of which
represents the weight of each eigen vector in u. Next, we solve
for u.

Substituting (11) into (3), and testing (3) by ®7, we obtain

®T(S — w?T)0u = &7b. (12)

Since @ are S and T orthogonal as shown in (10), (12) becomes
AL —w? - 0
: L : = oTh. (13)
0 s )\N — w2

Thus, we can solve a diagonal system (13) to obtain u, from

which u can be readily obtained from (11).
For alossy system formed inside a conductor, we perform the
same eigenvalue analysis (9) except that matrix T is replaced by
R. We then substitute (11) into (6), and test (6) by ®T | we obtain

®T(S + jwR)Pu = &b, (14)

Since ¢ are S and R orthogonal, (14) again becomes a diagonal
system

M+ jw e 0
: : : a=aTh (15)

0 o Avtjw
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from which @ can be readily solved. Once « is solved, u can be
obtained from (11).

Clearly, the above solution that is based on modal superposi-
tion naturally bypasses the low-frequency breakdown problem,
since (9) is frequency independent and (13) and (15) can be
readily solved due to the diagonal nature of the system matrix.
Equations (13) and (15) can be viewed as a number of decou-
pled I x 1 matrices. Even though the eigenvalue spectrum of (9)
is very wide, resulting in a large condition number of (3), the di-
agonal nature of (13) and (15) makes the condition number of
each 1 x 1 matrix equal to 1.

However the aforementioned modal superposition method for
solving (3) and (6) does not completely solve the problem. We
have to add another step after the eigenvalue solution. To ex-
plain, the eigenvalues of (9) can be divided into two groups.
One group consists of all the zero eigenvalues associated with
the null space of S as well as the physical dc modes of the struc-
ture such as an integrated circuit. The other group consists of the
resonant frequencies of the 3-D structure being simulated. For
VLSI circuits, the eigenvalues in the second group are extremely
large because the geometrical dimensions of on-chip circuits are
very small. For example, in a typical on-chip circuit having mi-
crometers dimensions, the largest eigenvalue of (9) can be as
large as 103°. An eigenvalue solver generally converges to the
maximum eigenvalue first, and hence the values that are six-
teen orders of magnitude smaller than the maximum one are not
distinguishable in double-precision computing. As a result, the
zero eigenvalues of (9) are not found to be exact zeros numeri-
cally. Instead, for a structure having the largest eigenvalue 1030,
the zero eigenvalues of (9) are numerically obtained as 104,
Furthermore, the smaller the physical dimension of the struc-
ture, the greater the largest eigenvalues, and hence the greater
the eigenvalues which theoretically are zero but numerically are
calculated to be nonzero.

When frequency is high, the inexact zero eigenvalues do not
induce much error because A — w? in (13) is still approximately
equal to —w? even if ) is not exactly zero. However, at low fre-
quencies, the error can be very significant. At a relatively low
frequency, w? can be easily overwhelmed by these inexact zero
eigenvalues, leading to a completely wrong frequency depen-
dence in the final solution . Fortunately, even though the zero
eigenvalues of (9) are not output as zeros by a computer due
to finite precision, the eigenvectors of (9) are still accurate be-
cause they are T orthogonal, and hence in a similar order of
magnitude. This can also be seen clearly from the following ex-
periment. We solve the eigenvalue problem (9) from

aSz = \Tx (16)
where « is a scaling factor that is artificially introduced to nor-
malize eigenvalues. Based on the ratio of S’s norm over T’s
norm analyzed in Section II for typical on-chip circuits, a was
chosen as 10729, The largest eigenvalue of (16) was found to be
10, whereas the smallest one, was found to be 10~¢, which is
essentially zero. The eigenvectors of (16) are the same as those
of (9), whereas the eigenvalues of (16) have to be multiplied by
1029 to obtain the eigenvalues of (9). Hence the 1071 eigen-
value, which is a zero eigenvalue, becomes 10! in (9). This
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proves why the 10'* eigenvalue of (9) is in fact zero, and why
the eigenvectors are still correctly obtained.

A natural remedy to the inexact zero eigenvalue problem is as
follows. After obtaining the eigenvalues of (9), we change all the
eigenvalues which theoretically should be zero, but numerically
obtained as nonzero, to be purely zero. Based on the fact that the
generalized eigenvalue problem (9) is scalable with respect to
length unit, the following approach can be used to identify zero
eigenvalues without any difficulty.

Basically, the eigenvalues of (9) obtained from one length unit
can be scaled to obtain the eigenvalues for another unit, while
the eigenvectors remain the same. For example, given a structure
the length unit of which is micrometer, one can compute (9) for
the same structure but with meter being the unit, i.e., enlarging
the geometrical dimension by 10°. The resultant eigenvector x
is the same as that of the original structure having micrometer
unit, and the resultant eigenvalues scaled by 10'2 are the same
as the eigenvalues of the original structure. This is because ma-
trix S is formed by the inner product of the curl of the vector
basis functions, and matrix T is formed by the inner product of
the vector basis functions, as shown in (4). In terms of length
unit, the S is a quantity of O(unit), whereas T is a quantity of
O(unit?), since the vector basis N is normalized. Therefore, the
generalized eigenvalue problem (9) can be computed for a large
unit, from which we can obtain the eigenvalues and eigenvec-
tors for any other small unit. To be specific, assuming the real
unit is w, after calculating (9) for a large unit v, we scale the
eigenvalues \ by (v/w)? to obtain the true eigenvalues, while
keeping the eigenvectors the same. The (v/w)? is essentially o
in (16). With current machine precision, the zero eigenvalues of
(9) for a large length unit can be computed as zeros accurately,
thus there is no difficulty for a user of the proposed method to
distinguish zero eigenvalues from nonzero ones.

Discussion: For null-space modes and dc modes of (9), we
expect that Sz = 0 since the corresponding eigenvalues are
zero. However, due to finite machine precision and extremely
large resonant frequencies of on-chip circuits, the zero eigen-
values of (9) cannot be found as zero numerically. Instead, they
are given by computers as large numbers in absolute values. This
may mislead one to think that edge basis may have some prob-
lems at low frequencies. In fact, the Sz’s being nonzero for gra-
dient-type modes is caused by finite machine precision.

One might argue that the proposed method of solving low-fre-
quency breakdown problems is not practical because of the re-
quirement of solving an eigenvalue problem. In fact, the pro-
posed method is not only theoretically rigrous but also prac-
tical because at low frequencies, only a few eigenmodes need
to be extracted as can be seen from (13), where the weight of
the eigenmodes that have a nonzero eigenvalue JA; is orders of
magnitude smaller than that of the dc mode. Extracting a few
selected eigenmodes out of (9) can be performed in linear com-
plexity as can be seen from [3] and [20]. In addition, such an
extraction only needs to be done once. It can be reused for all
frequencies.

IV. NUMERICAL RESULTS

In order to verify the proposed method, first, a parallel-plate
waveguide structure that has an analytical solution is simulated.
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TABLE 1
CAPACITANCE SIMULATED BY THE PROPOSED METHOD (') AND CAPACITANCE
SIMULATED BY THE TRADITIONAL FULL-WAVE FEM SOLVER (C*)

ELECTRIC FIELD SIMULATED BY THE PROPOSED METHOD (E) AND ELECTRIC
FIELD SIMULATED BY THE TRADITIONAL FULL-WAVE FEM SOLVER (E*)

Frequency (Hz) C* (pF) C' (pF)
1 K —0.2758 x 10% | 3.0947 x 10~3
1 —0.2758 x 1010 | 3.0947 x 103
1032 —0.2758 x 1072 | 3.0947 x 103

TABLE II

Frequency (Hz) [|E*|] (V/m) [|E|| (V/m)
1K 1.38479 x 1012 | 1.23429 x 1018
1 1.38479 x 10 1.23429 x 102!
1032 1.38479 x 10~23 | 1.23429 x 1053

The waveguide width, height, and length are set to be 10 pum,
1 pm, and 35 pm, respectively in accordance with the typical
dimensions of on-chip circuits. The analytical capacitance is
known for this structure, which is 3.0989 x 10~2 pF. A cur-
rent source of 1 A is injected from the bottom plane to the top
plane. The simulation based on a conventional full-wave FEM
solver breaks down at 10 MHz, whereas the proposed solution is
valid at all frequencies. In Table I, we compare the capacitance
simulated using the proposed method and that simulated by a
conventional FEM solver at 1 KHz, 1 Hz, and 1032 Hz respec-
tively. It is clear that the proposed solution agrees very well with
the analytical solution, whereas the conventional FEM solver is
totally wrong at low frequencies.

In addition, we compared the simulated electric field. At low
frequencies, given a constant current, the voltage, and hence
electric field is expected to scale with frequency as O(w™1!).
This can also be seen from (13), at low frequencies, only zero
eigenvalues are dominant. Since the right hand side b is linearly
proportional to w as can be seen from (4), @ in (13) should scale
with frequency as O(w™?!), and hence u. In Table II, we com-
pare the norm of the electric field E vector simulated by the
proposed method and that of the conventional full-wave FEM
solver. Clearly, the proposed method reveals an accurate fre-
quency dependence in the field solution. In contrast, the tradi-
tional full-wave FEM solver gives a wrong frequency depen-
dence.

In Fig. 2(a), we plot the electric field at each edge in the
computational domain at 10732 Hz simulated by the proposed
method, which exhibits an open circuit phenomenon. Whereas,
the traditional full-wave FEM solver gives very small magni-
tude, which is wrong, as shown in Fig. 2(b).

The proposed method is equally applicable at high frequen-
cies without any modification. To validate it, we simulated the
electric field of the parallel plate structure at three high fre-
quency points: 10 GHz, 20 GHz, and 50 GHz respectively. In
Table III, we list the norm of the electric field E vector sim-
ulated by the proposed method and that of the conventional
full-wave FEM solver at the three frequencies. Clearly, the pro-
posed method agrees very well with the conventional full-wave
FEM solver at high frequencies.

Next we simulated the 3-D on-chip interconnect shown in
Fig. 1(a). In this figure, the detailed geometrical and material

x 10°
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Fig. 2. Electric field simulated at each edge at 1032 Hz. (a) Proposed method.
(b) Traditional full-wave FEM solver.

TABLE IIL
ELECTRIC FIELD SIMULATED BY THE PROPOSED METHOD (E) AND ELECTRIC
FIELD SIMULATED BY THE TRADITIONAL FULL-WAVE FEM SOLVER (E*)
AT HIGH FREQUENCIES

Frequency (Hz) [|E*|| (V/m) [|E]| (V/m)
10 G 2.4686 x 1010 | 2.4686 x 1010
20 G 6.1714 x 10° 6.1714 x 10°
50 G 1.2343 x 1011 | 1.2343 x 1011

parameters are given. The structure is of length 2000 pm into
the paper. Along the length direction, the front and the back end
each is attached to an air layer, which is then truncated by a
Neumann-type boundary condition. The top and bottom planes
shown in Fig. 1(a) are backed by a perfect electric conducting
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Fig. 3. The eigenvalues of a 3-D on-chip interconnect.

TABLE IV
EIGENVALUES OF A 3-D ON-CHIP INTERCONNECT

Index Eigenvalue

420 1.0376E+16
421 1.08019E+16
422 1.1527E+16
423 1.43135E+16
424 8.26567E+16
425 5.75072E+22
426 5.80523E+22

(PEC) boundary condition. The left and right boundary condi-
tions are Neumann-type boundary conditions. A current source
of 1 A is launched from the bottom plane to the center con-
ductor in the metal layer (shaded layer). In Fig. 3, we plot the
smallest 426 eignevalues. A clear gap between the zero eigen-
values and the nonzero ones can be seen. In Table IV, we list
the detailed eigenvalue number from the 420th eigenvalue to
the 426th eigenvalue. A gap between the 424th eigenvalue and
the 425th eigenvalue can be clearly seen. The largest eigen-
value of this example is 4.85693 x 103!. Thus, the first 424
eigenvalues are essentially zero, which is also verified by com-
puting the same structure with a large length unit. In Fig. 4(a),
we show the electric field distribution in the transverse plane at
1 Hz simulated by the proposed method. In Fig. 4(b), we plot the
electric field distribution simulated by a conventional full-wave
FEM solver. Clearly, the proposed method produces an accurate
electric field distribution, whereas the traditional solver breaks
down. In addition, we checked the normal component of the
electric field in the two dielectric layers above the ground plane.
The normal component of the electric field in the layer having
€ = 4is |E| = 9.4638658694489792 x 106, whereas that in
the layer having e, = 8 is |E| = 4.7466856099169584 x 1016,
the ratio of which shows excellent agreement with the analytical
value which is 2.

The last example is a lossy structure. It is a solid copper wire
of length 4 ym, width 3 ym, and height 3 ym. The conductivity
is 5 x 107 S/m. We injected a 4 A current along the length
of the copper wire. In Table V, we list the resistance simulated
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Fig. 4. (a) Electric field distribution generated by the proposed method. (b)
Electric field distribution generated by a traditional full-wave FEM solver.
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TABLE V
RESISTANCE SIMULATED BY THE PROPOSED METHOD ( ) AND RESISTANCE
SIMULATED BY THE TRADITIONAL FULL-WAVE FEM SOLVER (R *)

Frequency (Hz) R* () R ()
1 K 0.008578164972632 0.008578164972632
10-6 0.003484496898574 0.008578164972631
10—32 2.053771680135873 x 10—°3 | 0.00857816497263 1

by the conventional full-wave FEM solver, and that simulated
by the proposed method at three low frequencies. Clearly, the
conventional full-wave FEM solver for the lossy system inside
conductors also breaks down at low frequencies, although the
breakdown frequency is much lower than that of lossless cases.
In contrast, the proposed method shows very good agreement
with analytical resistance.

As pointed out at the end of Section III, each eigenmode has
a different weight in the final field solution. The weight of the
eigenmode that has a nonzero eigenvalue is orders of magni-
tude smaller than that of the dc mode at low frequencies. One
thereby only needs to extract a reduced set of eigenvalues that
are necessary for the frequency being considered. For the first
example, we extracted only one eigenmode while the size of the
matrix was 826. For the second example, 424 eigenvalues out
of 1792 eigenvalues were used. The 424 eigenvalues are zero
eigenvalues that include both physical dc mode and zero eigen-
values resulting from the null space of matrix S except that ma-
trix T is replaced by R. For the third example, 41 eigenvalues
out of 175 eigenvalues were used.

V. CONCLUSION

Full-wave FEM-based solutions break down at low frequen-
cies. In this paper, we show that the low-frequency breakdown
problem is caused by finite machine precision. Hence, this
problem is associated with many electromagnetic applications.
However, the problem is especially severe in VLSI circuit
applications because the breakdown frequency is in the range
of circuit operating frequencies.

To eliminate the low-frequency breakdown problem, first,
one has to know what the actual solution of Maxwell’s equa-
tions is at low frequencies. However, such a benchmark solution
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does not exist because full-wave solvers break down at low
frequencies while static solvers involve theoretical approxima-
tions. Hence, it is necessary to develop a theoretically rigorous
method for solving Maxwell’s equations at low frequencies.
This paper provides for such a method. Furthermore, the
method is equally applicable to high frequencies without any
modification, and hence constituting a universal solution to
Maxwell’s equations in a full electromagnetic spectrum. The
proposed method has been applied to the modeling of lossless
and lossy VLSI circuits starting from dc. Numerical results
have demonstrated its validity and rigor.
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