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Time-Domain Finite-Element Simulation of
Three-Dimensional Scattering and Radiation
Problems Using Perfectly Matched Layers
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Abstract—An effective algorithm to construct perfectly matched
layers (PMLs) for truncating time-domain finite-element meshes
used in the simulation of three-dimensional (3-D) open-region elec-
tromagnetic scattering and radiation problems is presented. Both
total- and scattered-field formulations are described. The proposed
algorithm is based on the time-domain finite-element solution of
the vector wave equation in an anisotropic and dispersive medium.
The algorithm allows for the variation of the PML parameters
within each element, which facilitates the efficient use of higher
order vector basis functions. The stability of the resultant numer-
ical procedure is analyzed, and it is shown that unconditionally
stable schemes can be obtained. Numerical simulations of radia-
tion and scattering problems based on both the zeroth- and higher
order vector bases are presented to validate the proposed PML
scheme.

Index Terms—Electromagnetic scattering, electromagnetic tran-
sient analysis, finite element methods, numerical analysis.

I. INTRODUCTION

PERFECTLY matched layers (PMLs) are often used to
implement absorbing boundary conditions (ABCs) in fi-

nite-difference time-domain (FDTD) [1]–[6] and finite-element
frequency-domain (FEFD)-based codes [7]–[11] for simulating
open-region wave propagation problems. Recently, a PML
scheme to truncate finite-element time-domain meshes for
analyzing two-dimensional (2-D) open-region electromagnetic
scattering and radiation phenomena [12] was developed. In this
paper, we extend this scheme to three-dimensional (3-D) prob-
lems. In contrast to the prior 2-D scheme, the 3-D algorithm
proposed here is based on theexactvector wave equation in
a dispersive and anisotropic medium. The proposed algorithm
supports nonconstant PML parameters within each element,
which facilitates the efficient utilization of higher order vector
basis functions.

The paper is organized as follows. First, a time-domain fi-
nite-element method (TDFEM) using PMLs is presented. An
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Fig. 1. Illustration of solution domain truncated by PML.

approach for handling both dispersion and anisotropy within
both the total- and scattered-field formulations is described, and
a method for computing far-field quantities from near-field data
is outlined. Next, the stability of the TDFEM-PML procedure
is analyzed. Finally, numerical results are presented to demon-
strate the effectiveness of the scheme.

II. FORMULATION

Consider the problem of modeling the electric field
generated by an electric current in the presence of an
object, with both the source and the object residing in a region

. To formulate a finite-element scheme that permits the com-
putation of , a PML is introduced outside to truncate
the computational domain (Fig. 1). The union of the PML re-
gion and is denoted , and surfaces bounding and are
denoted by and , respectively. Inside the PML, the field
satisfies the following second-order vector wave equation

(1)

where stands for temporal convolution, denotes the
stretched electric field given by

(2)

with denoting temporal integration, , , and are
conductivities of PML walls perpendicular to the, , and
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axes, and is the time-domain counterpart of the diagonal
tensor

(3)

in which are the stretching variables given by

(4)

Obviously, (1) is also valid (except for a nonvanishing
right-hand side (RHS) contributed by ) inside , where

reverts to its unstretched value , and
becomes the identity tensor.

To seek the TDFEM solution of (1), Galerkin’s method is
employed [13] to convert (1) into a matrix equation. Assuming
an impedance boundary condition ongiven by

(5)

the weak-form solution satisfies

(6)

where denotes the vector basis function,represents
the outward unit vector normal to , and is a coefficient
that specifies the impedance of the imposed boundary condi-
tion. If , (5) is nothing but the first-order boundary condi-
tion with the free-space impedance, which is also known as the
first-order ABC. Theoretically, the perfect electrically or mag-
netically conducting wall can be used to terminate PML. How-
ever, both of them support cavity modes that are likely to de-
grade the performance of the PML, whereas with the use of an
impedance boundary condition such as (5), the TDFEM solu-
tion is devoid of cavity modes.

Expanding the stretched electric field as

(7)

with denoting the total number of expansion functions, and
assuming constant conductivities , , and within each
element, the following ordinary differential equation is derived

(8)

Here, denotes the total number of finite elements,, ,
, , , , and are square matrices whose

elements are given by

(9)

(10)

(11)

(12)

(13)

where and denote the volume integration over
element and surface integration over , respectively, and
and are diagonal tensors given by

(14)

In (8), is the unknown vector, is the
excitation vector given by

(15)

and are vectors that can be expressed as

(16)

in which denotes the unit step function. The above convo-
lution can be recursively evaluated as described in [12] and [14]
without the need to store fields of all past time steps. Second-
order accuracy is ensured by adopting a linear interpolation for
the fields within each time step. It should be noted that ten-
sors are valid in the corner region of the PML. Their spe-
cial cases, which include the side regions, can be handled more
easily.
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In arriving at (8), we use the fact that the time-domain coun-
terpart of can be expressed as

(17)

where

(18)

Time-domain counterparts of terms like can be de-
rived similarly.

The assumption used in deriving (8) that
be constant within each element can be removed. Without this
assumption, the resultant ordinary differential equation reads

(19)

where and are vectors given by

(20)

On the surface, this implies that and need to
be recalculated each time step. In reality, however, only

needs to be updated, because all spatial information can
be precomputed and stored. Since thecan be evaluated recur-
sively, their update in each time step (at each integration point)
can be carried out efficiently. The removal of the requirement
that conductivity be constant within an element is important
when higher order vector basis functions are employed to repre-
sent the unknown fields, because they allow for the use of larger
element sizes. When the element sizes increase, the conductivity
cannot be assumed constant anymore across an element. There-
fore, the allowance of a nonconstant conductivity within each
element facilitates the efficient use of higher order vector basis
functions.

The formulation described above is for the radiation case.
When a scattering problem is considered, a scattered-field for-
mulation is employed. The scattered electric field in the
entire computational domain satisfies

(21)

where denotes the incident field, and the permittivity
and permeability at the RHS reverts to its free-space values

and , respectively, in the PML region so that the incident
source vanishes therein.

Assuming an impedance boundary condition on, we ob-
tain a weak-form solution

(22)

where

(23)

To avoid the evaluation of the integrals on the RHS of (22), we
expand the incident field using the same vector basis
functions as those used to expand the unknown scattered field

. As a result, we obtain the following ordinary differen-
tial equation:

(24)

in which

(25)

and the vector is the projection of the incident field
along each basis function, which is known and

can be efficiently updated at each time step, andand
are specifically assembled from their element

counterparts.
It remains to choose the proper spatial and temporal dis-

cretization schemes. For the spatial discretization, the unknown
fields can be expanded using edge elements [15], higher order
edge elements [16], or orthogonal vector basis functions [17].
For the temporal discretization, we can employ the central
difference scheme, the backward difference scheme, and the
Newmark method [18], [19]. In this work, both zeroth- and
higher order vector elements are used to expand the unknown
field. The Newmark method is employed for temporal dis-
cretization.

The above TDFEM scheme calculates near-fields. To obtain
far-field data, an artificial boundary is introduced inside the
solution domain , which can be placed at or near the surface



JIAO et al.: 3-D SCATTERING AND RADIATION PROBLEMS USING PMLs 299

of the scatterer/radiator. The equivalent electric and magnetic
currents and on can be determined from the
fields calculated by the TDFEM. To compute far-field data, the
following surface integrals are evaluated

(26)

The scattered/radiated electric far-field is then be readily ob-
tained as

(27)

III. STABILITY ANALYSIS

The stability analysis of the TDFEM-PML procedure is rather
complicated. For simplicity, consider a PML wall perpendicular
to the axis. The diagonal tensor in (3) reduces to

(28)

The ordinary differential equation resulting from the TDFEM
solution becomes

(29)

in which is a vector given by

(30)

and , , , and are square matrices denoted by

(31)

Discretizing (29) in time using the Newmark method with
, and performing the transform, we obtain

(32)

in which

(33)

Here, is obtained by discretizing (30) in time using the
backward Euler scheme instead of the central difference, since
the latter can result in instability due to the appearance of term

.

(a)

(b)

Fig. 2. Electric field radiated from an electric dipole. (a) Electric fieldE at
r = 0:667ẑ m (The normalized rms error is 0.81%.) (b) Electric fieldE at
r = �0:05x̂+ 0:02667ẑ m (The normalized rms error is 0.62%.)

For convenience, we discard the second term in (32) since it
represents the contribution from loss, and hence it does not af-
fect the stability criterion as analyzed in [20]. Replacing matrix

with , and discarding the terms associated withand ,
we obtain

(34)

If the stability of the time-marching process indicated by (34)
is satisfied, the stability of the process indicated by (32) is also
satisfied, since the former requires a smaller time step to ensure
stability. This is because the term associated with, when it is
combined with matrix , increases the eigenvalue of the resul-
tant matrix; the term associated with , when it is combined
with matrix , decreases the eigenvalue of the resultant matrix,
whereas the term associated with, when it is combined with
matrix , increases the eigenvalue of the resultant matrix. As a
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(a) (b)

(c)

Fig. 3. Scattering from a conducting sphere of radius 0.5 m. (a) Electric current induced at the conducting surface. (b) Far-field temporal signature. (c)
Backscattered RCS.

result, we can resort to (34) instead of the complicated (32) to
analyze the stability of the TDFEM-PML numerical procedure.

Using the approach proposed in [20], we identify the charac-
teristic equation of (34) as

(35)

in which denotes the eigenvalue of matrix system ,
which is nonnegative. When , the roots of (35) can
never go beyond the unit circle. Hence, the resultant numerical
procedure is unconditionally stable.

If we use the backward difference to discretize (29), the char-
acteristic equation becomes

(36)

The roots of the above equation are always inside the unit circle.
Hence, by using the backward difference, the resultant numer-
ical procedure is also unconditionally stable.

If we use the central difference to discretize (29), the charac-
teristic equation becomes

(37)

Clearly, the roots of (37) can go beyond the unit circle in the
complex plane, when varies from zero to infinity. The max-
imum value of , denoted as , can be identified as

(38)

Hence, we deduce the following stability criterion

(39)

in which represents the spectral radius of. Since
, a time step smaller than that in free-space is required in the

PML region to keep the time-marching procedure stable. In ad-
dition, the larger the conductivity is, the smaller the maximum
time step has to be chosen.

The above analysis can be extended to the entire PML region.
The conclusion about the Newmark method and the backward
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(a) (b)

(c)

Fig. 4. Scattering from a dielectric sphere of radius 0.5 m and a relative permittivity� = 6:0. (a) Electric fieldE � t atr = �0:04x̂� 0:07ŷ� 0:72ẑ m with
t = 0:96x̂+0:26ŷ+0:13ẑ (The normalized rms error is 0.36%.) (b) Electric fieldE �t atr = 0:079x̂+0:008ŷ�0:61ẑm with t = �0:98x̂�0:08ŷ+0:14ẑ

(The normalized rms error is 0.44%.) (c) Electric fieldE � t atr = 0:05x̂+ 0:05ŷ � 0:96ẑ m with t = �0:89x̂� 0:08ŷ+ 0:44ẑ (The normalized rms error
is 0.31%.)

difference remains the same, whereas the stability criterion for
the central difference becomes more complicated. This analysis
is validated by our numerical experiments.

IV. NUMERICAL EXAMPLES

Implementations of the above scheme were applied to the
study of several scattering and radiation phenomena. In all of
these examples, the conductivity in the PML is assumed to have
a quadratic profile, and the maximum conductivity is chosen
such that the magnitude of the reflection coefficient of the cor-
responding PEC-backed PML at normal incidence is less than
0.0001.

The first example involves an electric dipole radiating in free
space. The electric current is given by

(40)

where ns, and ns. It is placed at the center of
the computational domain of dimension 0.7 0.7 0.7 m,

which is discretized into 7390 tetrahedral elements, yielding
9656 unknowns. The PML has a thickness of 0.25 m and is ter-
minated by an electric wall. No impedance wall is used here
since the frequencies of ’s modes are beyond the temporal
spectrum of (40). The electric fields observed at m
and m are shown in Fig. 2 and com-
pared to analytic data. The root-mean-square (rms) errors nor-
malized by the maximum signal amplitude are 0.81 and 0.62%,
respectively. Clearly, the simulation result agrees well with the
exact data, which indicates that the PML effectively emulates
an unbounded space.

The second example involves a conducting sphere of radius
0.5 m, which is illuminated by an-polarized Neumann pulse

(41)
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(a) (b)

(c)

Fig. 5. Scattering from a coated sphere of radius 0.3 m with coating thickness 0.2 m and a relative permittivity� = 8:0. (a) Electric fieldE atr = 0:077x̂+

0:076ŷ � 0:85ẑ m. (The normalized rms error is 0.9%.) (b) Electric fieldE at r = �0:34x̂ � 0:17ŷ � 0:41ẑ m. (The normalized rms errors is 0.65%.) (c)
Electric fieldE � t at r = 0:02x̂� 0:088ŷ � 0:76ẑ m with t = 0:94x̂+ 0:32ŷ + 0:1ẑ. (The normalized rms error is 1.08%.)

with parameters given by , ns, m,
and ns. The PML has a thickness of 0.25 m and is
placed 0.25 m away from the sphere surface. The PML is termi-
nated with an impedance wall with . The computational
domain is subdivided into 47 524 elements, generating 59 482
unknowns. Fig. 3(a) gives the sampled electric current induced
at the surface of the conducting sphere, which agrees with the
exact Mie Series solution even though differentiation is used to
calculate the result from the electric field. Fig. 3(b) shows the
calculated far-field temporal signature. The backscatter radar
cross section (RCS) is shown with respect to the electric size
of the sphere in Fig. 3(c).

Next, to examine the capability of the proposed method to
handle materials, scattering from a dielectric sphere of radius
0.5 m and relative permittivity of 6.0 is analyzed. The PML has
a thickness of 0.3 m and is placed 0.5 m away from the surface of
the dielectric sphere since the dielectric sphere supports stronger
surface waves than the previous conducting sphere. The compu-
tational domain is divided into 26 756 elements, yielding 32 967

unknowns. The sphere is illuminated by the Neumann pulse
with parameters defined as , ns, m,
and ns. Fig. 4 shows the calculated electric fields at

m,
m, and m, respectively, to-

gether with the exact data.
In the fourth example, scattering from a coated sphere of ra-

dius 0.3 m with a coating thickness of 0.2 m and relative permit-
tivity of 8 is analyzed. The computational domain is subdivided
into 32 241 tetrahedra, yielding 40 695 unknowns. The incident
Neumann pulse is identical to the previous example. The calcu-
lated electric fields at m,

m, and m
are shown in Fig. 5. Again, the validity and accuracy of the pro-
posed PML implementation are demonstrated. As noted in the
figure, the rms error is 0.9, 0.65, and 1.08% at the three observa-
tion points, respectively. In contrast, when the first-order ABC
is used to replace the PML, the corresponding rms error is 2.26,
2.19, and 2.29%, respectively. The computational domain used
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(a)

(b)

Fig. 6. Scattering from a dielectric sphere of radius 0.47 m and a relative
permittivity 8.0. (a) Electric fieldE at r = 0:71x̂+ 0:31ŷ � 0:22ẑ m (The
normalized rms error is 0.79%.) (b) Electric fieldE � t at r = 0:0035x̂ �

0:003ŷ � 0:67ẑ m with t = 0:97x̂+ 0:22ŷ � 0:056ẑ (The normalized rms
error is 1.2%.)

in the ABC calculation has the same size as that for the PML
calculation; hence, the computation time and memory require-
ments are similar in both calculations.

Next, to improve the accuracy and efficiency of the TDFEM
simulation, we utilize higher order vector bases to represent
the unknown fields. An example considered here is a dielectric
sphere of radius 0.47 m. The problem is set up the same manner
as in the third example except that the computational domain
is coarsely discretized into 2633 tetrahedra, yielding 15 556 un-
knowns with the use of the first-order vector basis functions.
The incident pulse parameters are ns and ns,
which implies a maximum incident frequency of 600 MHz. The
calculated electric fields at m and

m are shown in Fig. 6. The ap-
plicability of the present algorithm to higher order vector bases
is clearly demonstrated. The proposed TDFEM-PML scheme
correctly characterizes the multiple interactions among the mul-
tiply reflected and creeping waves. The simulation results agree
very well with the theoretical data.

(a)

(b)

Fig. 7. (a) Backscattered far-field4�rE versus time. (b) Backscatter RCS
versus the electrical size of the conducting cube(a = 1 m).

Finally, we simulate a conducting cube with a side-length of
1 m. The PML is of thickness 0.3 m, and is placed 0.5 m away
from the conducting surface. The Neumann pulse is normally
incident upon the cube with the pulse parameters defined by

ns, ns, and m. The entire com-
putational domain is subdivided into 6278 tetrahedra, yielding
42 994 unknowns with the use of first-order vector basis func-
tions. The calculated far-field temporal signature is shown in
Fig. 7(a), and the backscatter RCS is plotted in Fig. 7(b) versus
the electrical size of the cube. The numerical simulation agrees
very well with the measured data [21]. For this calculation, the
total computation time is 1639 s on a DEC Alpha 667-MHz
21 264 processor, and the total memory used is 655 MB, of
which 97 MB is used by the PML implementation.

V. CONCLUSION

This paper presented an algorithm for realizing PMLs in the
TDFEM-based simulation of 3-D open-region electromagnetic
scattering and radiation problems. The construction of the PML
was described in detail for both the total- and scattered-field
formulations. The formulations are based on the vector wave
equation in an anisotropic and dispersive medium. By allowing
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for the variation of the PML parameters within each finite el-
ement, the proposed algorithm can also make efficient use of
higher order vector basis functions. The stability of the proposed
TDFEM-PML numerical procedure was analyzed, and it was
shown that an unconditionally stable scheme could be obtained.
Numerical examples demonstrated that the proposed PML algo-
rithm is sufficiently accurate and constitutes a viable alternative
to the boundary integral-based schemes [22], [23] for the mesh
truncation of open-region scattering and radiation problems.
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