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Time-Domain Finite-Element Simulation of
Three-Dimensional Scattering and Radiation
Problems Using Perfectly Matched Layers

Dan Jiag Member, IEEEJian-Ming Jin Fellow, IEEE Eric MichielssenFellow, IEEE and Douglas J. Riley

Abstract—An effective algorithm to construct perfectly matched
layers (PMLs) for truncating time-domain finite-element meshes
used in the simulation of three-dimensional (3-D) open-region elec-
tromagnetic scattering and radiation problems is presented. Both Solution
total- and scattered-field formulations are described. The proposed
algorithm is based on the time-domain finite-element solution of
the vector wave equation in an anisotropic and dispersive medium. Si
The algorithm allows for the variation of the PML parameters
within each element, which facilitates the efficient use of higher V.
order vector basis functions. The stability of the resultant numer-
ical procedure is analyzed, and it is shown that unconditionally
stable schemes can be obtained. Numerical simulations of radia-
tion and scattering problems based on both the zeroth- and higher
order vector bases are presented to validate the proposed PML
scheme.

PML
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Index Terms—Electromagnetic scattering, electromagnetic tran-

sient analysis, finite element methods, numerical analysis. ) ) ) )
ysIs, ’ y Fig. 1. lllustration of solution domain truncated by PML.

|. INTRODUCTION approach for handling both dispersion and anisotropy within
SRFECTLY matched lyes (PHLS) re often used (001 8 900 Satcro il ormuatens s s,
implement absorbing boundary conditions (ABCs) in fi- . puting tar- q
Lo . : . s outlined. Next, the stability of the TDFEM-PML procedure
nite-difference time-domain (FDTD) [1]-[6] and finite-element . .
. . . Is analyzed. Finally, numerical results are presented to demon-
frequency-domain (FEFD)-based codes [7]-[11] for simulatin .
) : rate the effectiveness of the scheme.
open-region wave propagation problems. Recently, a P
scheme to truncate finite-element time-domain meshes for
analyzing two-dimensional (2-D) open-region electromagnetic
scattering and radiation phenomena [12] was developed. In thisConsider the problem of modeling the electric fid#dr, ¢)
paper, we extend this scheme to three-dimensional (3-D) pr@enerated by an electric currefr,¢) in the presence of an
lems. In contrast to the prior 2-D scheme, the 3-D algorithebject, with both the source and the object residing in a region
proposed here is based on tleactvector wave equation in V;. To formulate a finite-element scheme that permits the com-
a dispersive and anisotropic medium. The proposed algorithmtation ofE(r, t), a PML is introduced outsid¥; to truncate
supports nonconstant PML parameters within each elemehie computational domain (Fig. 1). The union of the PML re-
which facilitates the efficient utilization of higher order vectogion andV; is denoted’,, and surfaces boundirig andV,, are
basis functions. denoted byS; and S,, respectively. Inside the PML, the field
The paper is organized as follows. First, a time-domain fsatisfies the following second-order vector wave equation
nite-element method (TDFEM) using PMLs is presented. An_ 9
eA(r,t) x O;E(r,t) + V

xR e, )« V x B(r,t) =0 (1)
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axes, and\(r, ¢) is the time-domain counterpart of the diagonaHere, M denotes the total number of finite elemeriks, Ty,

tensor Q°, Ty, 8¢, 8¢, andTy (§ = z,y, ) are square matrices whose
elements are given by
— .. (5,5 oo [ S5 n [ SzSy
A=1iz + 97 + 2% ) .
Sa Sy Sz T7; =e(Ni, Nj)v, )
in which S¢ (§¢ = z,y, z) are the stretching variables given by _
Tg,ij :€<N’i7Lf .Nj>Ve g =pq7,Y,2 (10)
Se=1+" t=wyz @)
Jeo 5 =1Yo(i x Niyiv x Nj)s, (12)
Obviously, (1) is also valid (except for a nonvanishing
right-hand side (RHS) contributed Byr, ¢)) insideV;, where S¢. =~V x Ni, V x N;)v- (12)
E(r,t) reverts to its unstretched valdg(r,t), and A(r,t) Y T

becomes the identity tensor. _

To seek the TDFEM solution of (1), Galerkin's method is ~ St,i; =1~ (V x Nj, =L ¢ -V x Nj)y,  E=a,y,2
employed [13] to convert (1) into a matrix equation. Assuming (13)
an impedance boundary condition Sn given by

where(-,-)y. and{(,-)s, denote the volume integration over
(r,t) %V x E(r,t)] elemente and surface integration ovey, respectively, and.g

A Yoh X i x B(r, )] =0 (5) andL, ¢ are diagonal tensors given by

L, = ! [22(oy + 05 — 02) + §Y(0w + 02 — Ty)

X [/flK_l

the weak-form solution satisfies

+ 22(0yp + 0y — 03)]

. . A 2~ . p—
I e ey sarpien 4 v e L, = {0 72 = (o + o) + 03]
.Mflx_l(r,t) *V x E(r, ) + gy [05 —oy(0s +02.) + 0,0
+ N, (r) - atJ(r,t)}dV + 2z [03 —o0.(0, +0y) + ngy]}
~ L, = — ige 2 [032: —og(oy +02)+ Jydz]
+ // ’YYOﬁ X N,(I‘) . [ﬁ X 81E(rt)]dS =0 (6) _ 9 9
JJs, L, =—gge ° [0y — 0y(0x +0.) + 040:]

where N, (r) denotes the vector basis functioh,represents L. =—2ze
the outward unit vector normal t§,, and~ is a coefficient

[az —o0.(0p +0y) + szy]

that specifies the impedance of the imposed boundary condi- Ls. ZQZ?Zy — ZT + 22 ZZ — :T
tion. If vy = 1, (5) is nothing but the first-order boundary condi- = o
tion with the free-space impedance, which is also known as the L., —id Te =0y | 5502~ 0y
first-order ABC. Theoretically, the perfect electrically or mag- ' 0z — 0Oy Og — Oy
netically conducting wall can be used to terminate PML. How-  _ Oy — 0. Oy — 0,
ever, both of them support cavity modes that are likely to de- Ls.- T + LU (14)
grade the performance of the PML, whereas with the use of an Y - ! -
impedance boundary condition such as (5), the TDFEM Oy (8), u = [uy,us, ..., un]" is the unknown vectorf® is the
tion is devoid of cavity modes. excitation vector given by
Expanding the stretched electric field as
N fi = (N;, 0,3y, (15)
E(r,t) =Y u;(t)N;(r) (") and)¢ (¢ = 2y, z) are vectors that can be expressed as
j=1

, _ 2 —0o t/e— _
with N denoting the total number of expansion functions, and Ye(t) = e " alt) xult) E=w,y,2  (16)

assuming constant conductivities, o,, ando, within each

element, the following ordinary differential equation is derived! Which(t) denotes the unit step function. The above convo-
lution can be recursively evaluated as described in [12] and [14]

M 9 without the need to store fields of all past time steps. Second-
cd7u cdu cdu . ; . : . ;
Z T el + TP‘E +Q ‘E + Tou order accuracy is ensured by adopting a linear interpolation for
e=1 ' the fields within each time step. It should be noted that ten-
sorsL; ¢ are valid in the corner region of the PML. Their spe-
+S°u + Z S¢vhe + Z Tiye + | =0. (8) cial cases, which include the side regions, can be handled more
E=z,y,2 E=z,y,z eaSily.
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In arriving at (8), we use the fact that the time-domain coump, and g, respectively, in the PML region so that the incident

terpart of—S, 1S, S.w?u can be expressed as source vanishes therein.
Assuming an impedance boundary condition%n we ob-
(0F + 1,0 + 1) u(t) — lba(t) (17) tain a weak-form solution
where / / / [eNi(x) - K(r.0) % 2B (v, ) 4 ¥
« Vo
Ly =¢ Yoy + 0.~ 02) x Ny(r) - 'R (e, 1)« V x ES(r,t)} dv
ly =€ 202 —0.(0y+0.)+040.]. (18) R
+ / / {mﬁ x Ni(r) - [ x 8tE8(r./t)]} ds
Time-domain counterparts of terms IiB@SySz_lu can be de- So
rived similarly. - _ // {eN;(r) - O2E™(r,t) + V x Ny(r)
The assumption used in deriving (8) that (¢ = z,y,z2) JJV, .
be constant within each element can be removed. Without this cpTIV x EM(r, )} dV
assumption, the resultant ordinary differential equation reads - .
— // {’yYOﬁ x N;(r) - [0 x OE™(r, )]
M d?u du du > i
TeZ — 4L eZ e 4 e + N;(r) - U™(r,t)} dS 22
S (T TG T () U™ (x.1)) 22
where

+S%u + he + c+f)1 =0 (19 . .
E:mz.y.z ¢ g:xz_y_z ge + 1 (19) U(r,t) =0 x [u™'V x E®(r,1)]
+7 Yo x Oy[ x B(r,1)].  (23)
whereh¢ andgg are vectors given by

To avoid the evaluation of the integrals on the RHS of (22), we

N expand the incident fiellli»(r, ¢) using the same vector basis
he = €(Ni(r), qung -N;(r))v, functions as those used to expand the unknown scattered field
j=1 i—1 N E*(r,t). As a result, we obtain the following ordinary differen-
N o tial equation:
st ={ (7 <N, = S e ¥ P
j=1 — +T,— — 4T
’ gz T g T Qg T
XN@%W} §=1,y,2. (20) S /
! i=1,...,N Hout Z et Z g¢ + /
E=z,y,2 E=z,y,z
On the surface, this implies thag andgg (¢ = »,y, z) need to _ _TdQUmC Qi Qdumc _fine (24)
be recalculated each time step. In reality, however, galf¢ = dt? dt

x,y, z) needs to be updated, because all spatial information GAwhich

be precomputed and stored. Sinceglaean be evaluated recur-

sively, their update in each time step (at each integration point) fine — (N, Uinc)g
can be carried out efficiently. The removal of the requirement ’ '

that conductivity be constant within an element is importanihg the vectorui™ is the projection of the incident field
when higher order vector basis functions are employed to repggnc(y 4) along each basis function, which is known and
sent the unknown fields, because they allow for the use of largey pe efficiently updated at each time step, dndand

element sizes. When the element sizes increase, the conductiyg’ty(g = 1,1, z) are specifically assembled from their element
cannot be assumed constant anymore across an element. Thejgnterparts.

fore, the allowance of a nonconstant conductivity within each |t remains to choose the proper spatial and temporal dis-
element facilitates the efficient use of higher order vector bagigetization schemes. For the spatial discretization, the unknown
functions. fields can be expanded using edge elements [15], higher order

The formulation described above is for the radiation casggge elements [16], or orthogonal vector basis functions [17].

mulation is employed. The scattered electric fBlt(r, ) inthe  gifference scheme, the backward difference scheme, and the

(25)

o

entire computational domaivi, satisfies Newmark method [18], [19]. In this work, both zeroth- and
_ . P . higher order vector elements are used to expand the unknown
eA(r,t) x ;B (r,t) + V x p= A (r, 1) x V x E*(r, 1) field. The Newmark method is employed for temporal dis-

= —e?E™(r,t) — V x p 'V x E™(r,#) (21) cretization.
The above TDFEM scheme calculates near-fields. To obtain
whereE"“(r, t) denotes the incident field, and the permittivityfar-field data, an artificial boundai$., is introduced inside the
€ and permeability, at the RHS reverts to its free-space valuesolution domainV;, which can be placed at or near the surface
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of the scatterer/radiator. The equivalent electric and magneti
currentsJ(r, t) andK(r, t) on Sg,, can be determined from the
fields calculated by the TDFEM. To compute far-field data, the
following surface integrals are evaluated

L(r,t) :/S K(r',t +c 't -r')ds’
J S Star

N(r,t) = //S J(/ t+ - r')ds'. (26)
far

The scattered/radiated electric far-field is then be readily ob-
tained as

4rrEST(t 4 ¢ 1) = — ¢ 10,[Lg(r, t) + nNg(r, t)]

47rrE§Sar(t +c7tr) =71, [Lo(r,t) — nNy(r,1)].  (27)

I1l. STABILITY ANALYSIS

The stability analysis of the TDFEM-PML procedure is rather
complicated. For simplicity, consider a PML wall perpendicular
to thex axis. The diagonal tensar in (3) reduces to

— 1
A= ;f::%S— + 99Sy + 225,
The ordinary differential equation resulting from the TDFEM
solution becomes
d’u du d?e
T—s +Ty— — T —
@t a T e

in which v is a vector given by

(28)

+Su—S,p+Sw=0 (29)

(30)

O = ¢ Lou
andT,, T, S,, andS; are square matrices denoted by
T, :Ux<Ni-/ (QQ + 22) ’ Nj)
T1 :€<Ni,£i'.ff7 - NJ>
So =p NV x Ny, (49 + 22) - V x N;)
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Electric field radiated from an electric dipole. (a) Electric fiéld at
r = 0.667z m (The normalized rms error is 0.81%.) (b) Electric fi¢ld at

Sy =~V x Ny, i - V x Nj).

(31)

Discretizing (29) in time using the Newmark method with=

0.5, and performing theZ transform, we obtain

2 1)2 22 _
TV T(,Ttlﬂ(z)

At? ,
z—1)° -~

_Tl(Atz)

x B2 +(1=2B8)z+ ] =0

in which

B 1— e—U'xAt/E ~
. e—("zAt/‘ U(Z)

A
ez 1)

D(2) + [Si(=) ~ So(2) + Sui2)]

(32)

(33)

r = —0.05% 4+ 0.026 67z m (The normalized rms error is 0.62%.)

For convenience, we discard the second term in (32) since it
represents the contribution from loss, and hence it does not af-
fect the stability criterion as analyzed in [20]. Replacing matrix
S, with S, and discarding the terms associated ilithandS
we obtain

(Z— 1)2~ 1_e—UIAt/€
T i s (12

At2
x [B2% + (1 —2B)z + B] a(z) = 0.

(34)

If the stability of the time-marching process indicated by (34)
is satisfied, the stability of the process indicated by (32) is also
satisfied, since the former requires a smaller time step to ensure
stability. This is because the term associated @Withwhen itis
combined with matrixXT', increases the eigenvalue of the resul-

Here, 9(z) is obtained by discretizing (30) in time using theant matrix; the term associated wi#h, when it is combined
backward Euler scheme instead of the central difference, sirveigh matrix S, decreases the eigenvalue of the resultant matrix,
the latter can result in instability due to the appearance of teminereas the term associated w#h, when it is combined with

1/(22 - 1).

matrix S, increases the eigenvalue of the resultant matrix. As a
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Fig. 3. Scattering from a conducting sphere of radius 0.5 m. (a) Electric current induced at the conducting surface. (b) Far-field temporal (s)gnature
Backscattered RCS.

result, we can resort to (34) instead of the complicated (32) tolf we use the central difference to discretize (29), the charac-
analyze the stability of the TDFEM-PML numerical procedureeristic equation becomes

Using the approach proposed in [20], we identify the charac- At/
1 — e 7=24¢

teristic equation of (34) as (z—1)2+ A1 | 7= 0. 37)
z—e % €
(z—1)2+\|1— 1 — ¢ owat/e Clearly, the roots of (37) can go beyond the unit circle in the
2z — e~9zAt/e complexz plane, wher\ varies from zero to infinity. The max-

X [[322 +(1-28)z + /3] =0 (35) Iimum value of), denoted asy.x, can be identified as
— —0o.At/e
in which )\ denotes the eigenvalue of matrix syst&?T—!S, Amax = 2(1 + ¢ ). (38)
which is nonnegative V.Vh?ﬂ > 0.25, the roots of (35) can . nce, we deduce the following stability criterion
never go beyond the unit circle. Hence, the resultant numerica
procedure is unconditionally stable. 2(1 + e—o=At/e)
If we use the backward difference to discretize (29), the char- At < T-1S

acteristic equation becomes o )

(39)

in which p(-) represents the spectral radiug 9f Sincel .« <
1—e o=Ae] 4, a time step smaller than that in free-space is required in the
=0 (36) pmL region to keep the time-marching procedure stable. In ad-
dition, the larger the conductivity is, the smaller the maximum
The roots of the above equation are always inside the unit cirdiene step has to be chosen.
Hence, by using the backward difference, the resultant numerThe above analysis can be extended to the entire PML region.
ical procedure is also unconditionally stable. The conclusion about the Newmark method and the backward

(z—=1)2+ 2|1 -

2 — =0z At/e
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Fig. 4. Scattering from a dielectric sphere of radius 0.5 m and a relative permittivity6.0. (a) Electric fieldE - t atr = —0.04%x — 0.07y — 0.72z m with

t = 0.96x40.26y 4 0.13z (The normalized rms error is 0.36%.) (b) Electric fi#dt atr = 0.079x+0.008y —0.61z mwitht = —0.98x—0.08y +0.14z
(The normalized rms error is 0.44%.) (c) Electric fi#ld t atr = 0.05x + 0.05y — 0.96z2 m witht = —0.89%x — 0.08y + 0.44z (The normalized rms error
is 0.31%.)

difference remains the same, whereas the stability criterion fwhich is discretized into 7390 tetrahedral elements, yielding
the central difference becomes more complicated. This analy8&56 unknowns. The PML has a thickness of 0.25 m and is ter-
is validated by our numerical experiments. minated by an electric wall. No impedance wall is used here
since the frequencies df,’s modes are beyond the temporal
spectrum of (40). The electric fields observed at 0.667z m
Implementations of the above scheme were applied to thedr = —0.05% 4+ 0.026 67z m are shown in Fig. 2 and com-
study of several scattering and radiation phenomena. In alldred to analytic data. The root-mean-square (rms) errors nor-
these examples, the conductivity in the PML is assumed to hawalized by the maximum signal amplitude are 0.81 and 0.62%,
a quadratic profile, and the maximum conductivity is choserspectively. Clearly, the simulation result agrees well with the
such that the magnitude of the reflection coefficient of the coexact data, which indicates that the PML effectively emulates
responding PEC-backed PML at normal incidence is less tham unbounded space.
0.0001. The second example involves a conducting sphere of radius

The first example involves an electric dipole radiating in freg 5 1y which is illuminated by ar-polarized Neumann pulse
space. The electric current is given by

IV. NUMERICAL EXAMPLES

(e.0) = (e =rojes | TS o) @0 ey = s Doty Tk (e o)

wheret, = 25.9ns, and- = 5.25 ns. Itis placed at the center of % oxp —[t =ty —c 'k (r — 1)) (41)
the computational domaivi, of dimension 0.7x 0.7 x 0.7 m, 72
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Fig. 5. Scattering from a coated sphere of radius 0.3 m with coating thickness 0.2 m and a relative pereittivity). (a) Electric fieldE,, atr = 0.077x +
0.076y — 0.85z m. (The normalized rms error is 0.9%.) (b) Electric fidld atr = —0.34x — 0.17y — 0.41z m. (The normalized rms errors is 0.65%.) (c)
Electric fieldE - t atr = 0.02x — 0.088y — 0.76z m witht = 0.94x% + 0.32y + 0.1z. (The normalized rms error is 1.08%.)

with parameters given bl = 2, t, = 12.99 ns,rg = —z m, unknowns. The sphere is illuminated by the Neumann pulse
andr = 2.6 ns. The PML has a thickness of 0.25 m and iwith parameters defined &s= 2, to = 25.9ns,rg = —1.3zm,
placed 0.25 m away from the sphere surface. The PML is termind+ = 5.25 ns. Fig. 4 shows the calculated electric fields at
nated with an impedance wall with = 1. The computational r = —0.04x — 0.07y — 0.72z m, r = 0.079x + 0.008y —
domain is subdivided into 47 524 elements, generating 594831z m, andr = 0.05x + 0.05y — 0.96z m, respectively, to-
unknowns. Fig. 3(a) gives the sampled electric current inducgdther with the exact data.
at the surface of the conducting sphere, which agrees with theén the fourth example, scattering from a coated sphere of ra-
exact Mie Series solution even though differentiation is used dtus 0.3 m with a coating thickness of 0.2 m and relative permit-
calculate the result from the electric field. Fig. 3(b) shows theity of 8 is analyzed. The computational domain is subdivided
calculated far-field temporal signature. The backscatter radato 32 241 tetrahedra, yielding 40 695 unknowns. The incident
cross section (RCS) is shown with respect to the electric sikeumann pulse is identical to the previous example. The calcu-
of the sphere in Fig. 3(c). lated electric fields at = 0.077x + 0.076y — 0.85z m,r =
Next, to examine the capability of the proposed method te0.34x —0.17y — 0.41z m, andr = 0.02x —0.088y —0.76z m
handle materials, scattering from a dielectric sphere of radiage shown in Fig. 5. Again, the validity and accuracy of the pro-
0.5 m and relative permittivity of 6.0 is analyzed. The PML hagosed PML implementation are demonstrated. As noted in the
athickness of 0.3 mand s placed 0.5 m away from the surfaceiiglure, the rms error is 0.9, 0.65, and 1.08% at the three observa-
the dielectric sphere since the dielectric sphere supports strontign points, respectively. In contrast, when the first-order ABC
surface waves than the previous conducting sphere. The comigwsed to replace the PML, the corresponding rms error is 2.26,
tational domain is divided into 26 756 elements, yielding 32 967.19, and 2.29%, respectively. The computational domain used



JIAO et al: 3-D SCATTERING AND RADIATION PROBLEMS USING PMLs 303

x107° x 10
— EXACT
25} - - TDFEM+PML 150
1 F
E
€ Z o5t
> £ o
z B
* 5
-0.5 OF——
.
-1.5¢ -0.5
_o}
-25 ‘ ; ‘ : : o 05 1 15
0 0.5 1 15 2 25 3 i Time (s) ’7'
Time (s) x 10~ x 10
(a) (@
30
oX 107° .
— EXACT
- - TDFEM+PML
15+ |
1 .
0.5 ,
E
=
w
-0.5 1
1}
-1.5¢
5 ‘ ‘ ‘ .
0 0.5 1 15 2 25 3
Time (s) X 10'7 (b)
(b) Fig. 7. (a) Backscattered far-fieltrr B2+ versus time. (b) Backscatter RCS

. ) . . . versus the electrical size of the conducting c(de= 1 m).
Fig. 6. Scattering from a dielectric sphere of radius 0.47 m and a relativé g cub )

permittivity 8.0. (a) Electric fieldE, atr = 0.71x + 0.31y — 0.22z m (The
normalized rms error is 0.79%.) (b) Electric fieki - t atr = 0.0035% — Finally, we simulate a conducting cube with a side-length of

2}?25’?; I§£7)z mwitht = 0.97x +0.22y — 0.056z (The normalized rms 1 1y The PML is of thickness 0.3 m, and is placed 0.5 m away
from the conducting surface. The Neumann pulse is normally
,\hnLcident upon the cube with the pulse parameters defined by
.= 6.5 ns,7 = 1.3 ns, andry = —1.3x m. The entire com-
putational domain is subdivided into 6278 tetrahedra, yielding
,\ﬁz 994 unknowns with the use of first-order vector basis func-
ns. The calculated far-field temporal signature is shown in
j@g. 7(a), and the backscatter RCS is plotted in Fig. 7(b) versus

in the ABC calculation has the same size as that for the P
calculation; hence, the computation time and memory requi
ments are similar in both calculations.

Next, to improve the accuracy and efficiency of the TDFE
simulation, we utilize higher order vector bases to repres

the unknown fields. An example considered here is a dielec th lectrical si fth be. Th ical simulati
sphere of radius 0.47 m. The problem is set up the same man g electrical size ot the cube. The numerical Simulation agrees

as in the third example except that the computational domaRry well with the measured data [21]. For this calculation, the

is coarsely discretized into 2633 tetrahedra, yielding 15 556 L}éqitz;IG(L:lomputatlon tlmz Itsh 1?3? IS on a DEC A(\JphaGgSYI;ANéHzf
knowns with the use of the first-order vector basis function processor, an € total memory used 1S ' 0

The incident pulse parameters age= 12.9 ns andr = 2.6 ns, which 97 MB is used by the PML implementation.
which implies a maximum incident frequency of 600 MHz. The
calculated electric fields at= 0.71x + 0.31y — 0.22z m and

r = 0.0035% — 0.003y — 0.67z m are shown in Fig. 6. The ap- This paper presented an algorithm for realizing PMLs in the
plicability of the present algorithm to higher order vector bas8DFEM-based simulation of 3-D open-region electromagnetic
is clearly demonstrated. The proposed TDFEM-PML schemseattering and radiation problems. The construction of the PML
correctly characterizes the multiple interactions among the mulas described in detail for both the total- and scattered-field
tiply reflected and creeping waves. The simulation results agfeemulations. The formulations are based on the vector wave
very well with the theoretical data. equation in an anisotropic and dispersive medium. By allowing

V. CONCLUSION
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for the variation of the PML parameters within each finite el-[19] w. P. Carpes Jr, L. Pichon, and A. Razek, “A 3D finite element method
ement, the proposed algorithm can also make efficient use of for the modeling of bounded and unbounded electromagnetic problems

higher order vector basis functions. The stability of the propose

in the time domain,’Int. J. Numer. Mode].vol. 13, pp. 527-540, 2000.
0] D.JiaoandJ. M. Jin, “A general approach for the stability analysis of the

TDFEM-PML numerical procedure was analyzed, and it was ~ time-domain finite-element methodZEE Trans. Antennas Propagat.
shown that an unconditionally stable scheme could be obtained. _ vol. 50, pp. 1624-1632, Nov. 2001.

Numerical examples demonstrated that the proposed PML alg([)z-

1] R.P.Penno, G. A. Thiele, and K. M. Pasala, “Scattering from a perfectly
conducting cube,Proc. IEEE vol. 77, pp. 815-823, May 1989.

rithm is sufficiently accurate and constitutes a viable alternativge2] p. Jiao, M. Lu, E. Michielssen, and J. M. Jin, “A fast time-domain finite
to the boundary integral-based schemes [22], [23] for the mesh  element-boundary integral method for electromagnetic analy&&E

truncation of open-region scattering and radiation problems.

(1]
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(3]

(4

(5]

(6]
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(8]
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(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

Trans. Antennas Propagatol. 49, pp. 1453-1461, Oct 2001.

[23] D.Jiao, A. Ergin, B. Shanker, E. Michielssen, and J. M. Jin, “A fast time-
domain higher-order finite element-boundary integral method for three-
dimensional electromagnetic scattering analy$isEE Trans. Antennas
Propagat, pp. 1192-1202, Sept. 2002.
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