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Abstract—A time-domain, finite element–boundary integral
(FE–BI) method is presented for analyzing electromagnetic (EM)
scattering from two-dimensional (2-D) inhomogeneous objects.
The scheme’s finite-element component expands transverse fields
in terms of a pair of orthogonal vector basis functions and is
coupled to its boundary integral component in such a way that
the resultant finite element mass matrix is diagonal, and more
importantly, the method delivers solutions that are free of spurious
modes. The boundary integrals are computed using the multilevel
plane-wave time-domain algorithm to enable the simulation of
large-scale scattering phenomena. Numerical results demonstrate
the capabilities and accuracy of the proposed hybrid scheme.

Index Terms—Boundary integral equations, finite element
methods, electromagnetic scattering, electromagnetic transient
analysis.

I. INTRODUCTION

T HE HYBRID finite element–boundary integral (FE–BI)
method constitutes a powerful numerical technique for

solving open-region electromagnetic (EM) scattering problems.
The method separates a region containing the scatterer (interior
domain) from the remainder of the space (exterior domain) by
an artificial boundary. The fields in the interior and exterior
domains are represented in terms of finite elements (FE) and a
boundary integral (BI), respectively. These two representations
are then matched to each other across the boundary. In the past,
the FE–BI scheme has been widely applied to the analysis
of two-dimentional (2-D) and three-dimensional (3-D) fre-
quency-domain EM scattering and radiation problems (see [1]
and references therein). To the authors’ knowledge, however,
no time-domain FE–BI scheme has been reported in the open
literature. This paper describes an FE–BI scheme for analyzing
transient scattering from 2-D freestanding inhomogeneous
objects.

Because of their potential to generate wide-band data and
model nonlinear materials, numerical schemes for simulating
EM transients have grown increasingly popular in recent
years. In addition to finite-difference time-domain (FDTD)
[2] and time-domain integral equation based schemes [3],
two classes of time-domain FE methods (TDFEM) have been
proposed [4]–[20]. Schemes in the first class directly discretize
Maxwell’s equations [4]–[12]; this process typically results in
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finite difference-like leap-frog schemes that do not leverage
our extensive knowledge of frequency-domain FE solvers.
Schemes in the second class tackle the second-order vector
wave equation, also known as the curl–curl equation, obtained
by eliminating one of the field variables from Maxwell’s
equations [13]–[19]. The principal disadvantage of these
approaches is that they require a matrix equation to be solved in
each time step. Several lumping methods have been proposed
to render this matrix diagonal, thereby obviating the need for
inverting it. Unfortunately, these lumping techniques have been
found to introduce errors in the finite element solution and for
unstructured meshes, the lumping process is likely to produce
zero or negative diagonal elements, which results in the definite
instability; therefore, they are not recommended for use [20].
A recently developed scheme [18] avoids lumping altogether
by constructing orthogonal basis functions that yield a diagonal
FE matrix.

An important issue in the construction of FE-based solvers
for analyzing open-region scattering problems is the treatment
of the artificial truncation boundary. Popular truncation schemes
impose an absorbing boundary condition or wrap the computa-
tional domain in a perfectly matched layer [21]–[23]. Another
approach expresses fields exterior to the truncation boundary in
terms of boundary integrals, which leads to the FE–BI method
discussed earlier. This approach is exact, and more importantly,
it allows the truncation boundary to take on any shape (usu-
ally conformal to the outline of the object being studied) and to
be placed arbitrarily close to the object, which in turn reduces
the required computational and memory resources. As pointed
out previously, while this approach is well developed in the fre-
quency domain, it has yet to be exploited in the time domain.

This paper presents a new FE–BI scheme for analyzing tran-
sient EM scattering from freestanding inhomogeneous objects.
The scheme offers two unique features. The first feature in-
volves the hybridization of the FE and BI components of the
solver. Instead of adopting the standard hybridization scheme
used in frequency domain, a novel scheme is proposed that pre-
serves the sparseness of the finite element matrix and simultane-
ously yields solutions free of spurious modes. The second fea-
ture is the use of a fast algorithm, viz., the multilevel plane-wave
time-domain (PWTD) method, for evaluating the BIs, which
greatly reduces the computing time when an object of a large
electrical dimension is considered. In addition, we employ a
pair of orthogonal vector basis functions, developed by White
[18], to obviate the need for a matrix solution in each time step
without loss of accuracy.

The proposed FE–BI scheme is described in Section II. Sec-
tion III demonstrates the capabilities and accuracy of the scheme
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through a host of numerical examples. Finally, Section IV re-
lates our conclusions.

II. FORMULATION

This section describes a new FE–BI scheme for analyzing
2-D open-region scattering problems. Section II-A defines the
problem and introduces notation. Throughout, all fields are as-
sumed to be TMz polarized; the proposed scheme, however, also
applies to TEz scattering problems with minimal modifications.
The FE–BI scheme, including White’s set of orthogonal basis
functions [18] and the new coupling scheme, are presented in
Section II-B. Finally, Section II-C describes the PWTD-based
evaluation of the BIs. Although this 2-D problem can be solved
more easily using the axial component of the electric field as the
unknown variable, the formulation and implementation are car-
ried out here using the transverse components of the magnetic
field so that the method can readily be extended to 3-D vector
problems.

A. Problem Statement and Hybridization Scheme

Consider a freestanding inhomogeneous dielectric cylinder
with embedded electric and magnetic walls and that
extends along the-axis. This cylinder is excited by a mag-
netic field where

; is assumed zero throughout the cylinder
for . The total magnetic field

comprises the sum of and the scattered
field . In what fol-
lows, the cylinder is assumed to be recursively embedded in two
domains and with boundaries and , respectively
(Fig. 1). In addition, position dependent unit vectors normal to

are denoted by (which is assumed out-
ward pointing if is closed). Finally, the permittivity, perme-
ability, and conductivity of the cylinder and its surroundings are
denoted by , , and ; they revert to their free-space values,

, and zero outside . The spatial dependence of all time-in-
dependent quantities is understood and omitted.

In , obeys

(1)
subject to the boundary conditions

(2)

(3)

and

(4)

The left-hand side of (4) is nothing but a linear combination of
the time derivatives of the electric and the magnetic fields tan-
gential to . The right-hand side expresses the same quantity
in terms of equivalent electric and magnetic sources and

that reside on and that are defined as

(5)

Fig. 1. Illustration of the truncation and source boundaries.

and

(6)

where denotes temporal integration. In other words,
is given by (4) with replaced by

(7)

where

(8)

(9)

In these equations, denotes the 2-D Green’s func-
tion

(10)

where is a unit step function.
Before proceeding, it should be noted that the hybridization

scheme described above is different from the traditional ones.
In the present scheme, the FE and BI components are coupled
through (4), whereas, traditional schemes couple the FE and
BI components using either the first or the second term of the
left-hand side of (4). If only the first term is present, (4) specifies
the curl of the magnetic field and, hence, imposes a Neumann
condition; in contrast, if only the second term is present, (4) im-
poses a Dirichlet condition. Although both traditional schemes
yield a valid hybridization, they all suffer from the problem
of interior resonance associated with the electric and magnetic
field integral equations. This problem is well known in the fre-
quency-domain boundary integral equation solvers [24] and it
was also observed in our implementations using the traditional
hybridization schemes. Indeed, although theoretically the so-
lution to the above boundary-value problem does not support
any resonant modes if the system is assumed relaxed at,
these modes do build up the solution obtained using BI-based
schemes if no precautions are taken. To be more specific, when
the first (or second) term of (4) is specified, spurious modes that
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correspond to the resonant modes of an empty cavity formed by
electric (or magnetic) walls of the same shape asappear in
the numerical solution. These spurious modes corrupt the true
solution and cause instabilities in the time marching process.

The proposed hybridization scheme removes the problem of
spurious modes by postulating the boundary condition on
in the form of (4), which involves both the magnetic field and
its curl. Careful examination of (4) reveals that this is actually
a boundary condition describing an impedance surface whose
impedance is that of free space. As a result, the cavity formed by
such a surface cannot support real resonance. To a certain extent,
the proposed BI formulation resembles that of the combined-
field integral equation. In addition to the removal of spurious
modes, the use of (4) renders a lossy FE system even if the region

is lossless. Such a lossy FE system enhances the stability of
the time marching process.

It is also worthwhile to note that if the second and third terms
(BI terms) on the right-hand side of (7) are neglected, (4) re-
duces to the standard first-order absorbing boundary condition
(ABC). Such an ABC is reflectionless only for the normally in-
cident waves. Clearly, the BI terms provide corrections to the
first-order ABC so that (4) becomes an exact ABC.

B. Time-Domain Finite-Element Solution

In accordance with the variational principle [25], solving the
boundary-value problem defined by (1)–(4) is equivalent to
seeking the zero of the first variation of the functional

(11)

To seek the solution of this variational problem using the
FEM, is first subdivided into small triangular elements. The
field within each element is expanded as

(12)

where denotes the number of basis functions per element and
and denote the vector expansion functions and corre-

sponding expansion coefficients, respectively. To obviate the
need for a matrix solution in each time step, the must be
orthogonal

(13)

where denotes the area of elementand is the Kro-
necker delta function. Using numerical integration, (13) can be
expressed as

(14)

where denotes the midpoint of edgeof element , and the
coefficients are chosen such that the numerical integration is
at least second-order accurate.

The most widely used vector basis functions for the finite
element analysis of vector EM problems are the Whitney edge-
based functions given by

(15)

for edge that connects nodesand , where and rep-
resent the standard linear nodal basis functions associated with
nodes and , respectively. The guarantee the tangential
continuity of the fields across the element interfaces, while al-
lowing for the normal discontinuity. Therefore, they can repre-
sent the fields correctly. However, these functions do not satisfy
the orthogonality defined in (14). To make them orthogonal, as
well as to preserve the property of tangential continuity, one first
constructs vector basis functions that satisfy

at the midpoint of edge
at the midpoints of other edges

(16)

where represents the unit vector tangential to edge. Clearly,
so constructed satisfy (14). However, the cannot repre-

sent fields that have nonvanishing normal components at the
midpoints of the element edges, hence, they form an incomplete
set. To remedy this problem, another set of basis functions
is needed; these functions should satisfy

at the midpoint of edge
at the midpoints of other edges

(17)

where denotes the unit vector normal to edge. Clearly, ac-
cording to (14), the so constructed are not only mutually
orthogonal, but also orthogonal with respect to all.

The requirements above do not uniquely determine the
and . Here, White’s [18] construction is adopted

(18)

Using and as the vector basis functions, (12) becomes

(19)

By substituting (19) into (11), taking the partial derivatives
of the functional with respect to the expansion coefficients and
setting the resultant equations to zero, the following system of
ordinary differential equations is obtained:

(20)
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Here is a column vector consisting of unknown coefficients
and , and , , and are square matrices, assembled from

their corresponding element matrices given by

(21)

(22)

(23)

Matrix and vector are contributed by the line integral along
. To be more specific, the element matrix is given by

(24)

where the inner product involves the line integral along. The
vector contains the discrete values of the tangential component
of on .

Adopting a traditional central difference scheme to approxi-
mate the first- and second-order time derivatives in (20) yields

(25)

in which

(26)

and represents the time step. Because of our usage of orthog-
onal vector basis functions, matrices, , and , and hence

, are diagonal. Consequently, the matrix solution at every time
step is obviated. The time marching of (25) involves only a ma-
trix-vector multiplication, which is efficient due to the sparse-
ness of the matrix .

C. PWTD-Based Evaluation of Boundary Integrals

The above outlined FE–BI scheme requires the evaluation of
(4) with replaced by (7) for observers

. The evaluation of in turn requires the compu-
tation of the magnetic and electric vector potentials and

by spatial and temporal convolution of the electric and
magnetic source densities and with the Green’s
function , respectively. To estimate the cost of these op-
erations, let and denote the number of edges on and

. In what follows, it is assumed that closely adheres to
and therefore that ; that the source densities
and can be discretized in terms of samples; and

that the FE–BI scheme is executed for a total oftime steps.
Under these assumptions, the cost of the BI computation dom-
inates that of the FE update. Indeed, the computational cost of
evaluating at points on scales as .
This cost is entirely due to the spatial and temporal convolution
requisite in the evaluation of and ; the compu-
tational costs of approximating and on from
the FE description of the magnetic field within , evaluating

from the potentials and , and computing
from all scale linearly in both and .

Here, the PWTD algorithm is used to accelerate the evalua-
tion of and . The PWTD algorithm is the exten-
sion of the frequency domain fast multipole method (Helmholtz
equation) to the time domain (wave equation) and permits the
evaluation of and for all observers and time
steps in operations. The 2-D version
of this algorithm is described in detail in [26]. Here, the algo-
rithm’s core ideas are summarized and its incorporation into the
above-described FE–BI scheme outlined.

The 2-D PWTD scheme expresses fields due to line sources
in terms of time-gated, Hilbert-transformed plane wave expan-
sions. To rapidly evaluate the generated by , the
latter is broken up in space and time as

(27)

Source (i) resides on edge on , (ii) is bandlimited
in time to where is a temporal over-
sampling factor and is the highest frequency component
(appreciably) present in the incident pulse, and (iii) is of essen-
tial duration , that is, vanishes outside the temporal
interval , where . It is assumed
that the union of the temporal intervals spans the
duration of the analysis. A method for achieving this decom-
position by interpolation using an approximate prolate series
is described in [27]. Next, assume that source resides
in a circle of radius with center and that the magnetic
vector potential generated by this source is to be evaluated at
observer residing in a circle of like radius and center .
It is assumed that , where and

; in other words, no matter where
is located within the source circle, its field cannot reach the ob-
server circle before the source vanishes. Under these conditions,
it can be shown that the vector potential generated by
can be expressed as (28) shown at the bottom of the page, where

;
angular oversampling ratio;
denotes the nearest larger integer;
Dirac delta function;

;

(28)
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;
denotes temporal convolution;
Hilbert transform;
translation function for direction given by (29)
at the bottom of the page.

Where for and otherwise, is
the angle between the axis and the vector , and is
the Chebyshev polynomial of degree. Equation (29) implies
that the magnetic vector potential generated by can be
constructed by 1) projecting the source density onto a discrete
set of plane waves (outgoing rays) that radiate away from the
source sphere, 2) Hilbert transforming the convolution of these
outgoing rays with the translation functions on a di-
rection-by-direction basis, and 3) projecting the resulting in-
coming rays onto the observer. Fast methods for effecting step 2)
are described in [26]. Strictly speaking, (29) only yields an ap-
proximation to the vector potential generated by ; how-
ever, the error inherent in (29) decreases exponentially with in-
creasing and . The vector potential due to can be
obtained by summing up the contributions from all subsignals

.
Equation (29) can be modified to directly yield the contri-

bution of to , or even . Indeed, the
operators appearing in (4) and (5), when acting on rayin ex-
pansion (29), can be replaced by and the action
of all temporal derivatives can be incorporated into the trans-
lation functions . The resulting expressions are lengthy
and, therefore, not reproduced here. Of course, the contribution
to the electric vector potential due to , the th
temporal subsignal describing the magnetic current on edge,
can be computed using the same techniques. It is important to
note that while effecting the above PWTD translation processes,
the contributions of and can be lumped into
one scalar because a 2-D EM field is describable in terms of a
single potential.

The PWTD scheme does not invoke the above described,
three-stage sphere-to-sphere field translation algorithm sepa-
rately for all source/observer pairs , but instead proceeds
as follows. First, the domain bounded by is encased in a
square box. This box is recursively subdivided into four child
boxes, a total of times, until the area of the smallest boxes
thus obtained is of , where is the free-space wave-
length at . Parent boxes are said to exist at a higher level
than their children. In addition, two nonempty boxes at any
given level in the resulting tree are said to reside in each other’s
far-field provided that the distance between their centers equals
at least twice their linear dimensions and their respective par-
ents are not in each other’s far field. Lowest level box pairs not
accounted for by any far-field interaction are said to reside in
each other’s near field. Next, fields at all observers ondue to
all far-field interactions are evaluated as follows:

1) Construction of outgoing rays at all levels.Outgoing rays
for a given lowest-level box are computed by direct su-
perposition of the contributions from all the electric and
magnetic sources it contains. Outgoing rays for all higher-
level boxes are computed by superposition of the interpo-
lated and spliced ray spectra of their children. Interpola-
tion ensures that rays at higher levels accurately describe
the far-field spectra of higher-level boxes: the number of
rays at any given level is proportional to the radius of
the circle circumscribing a box at that level. Splicing en-
sures that the duration of subsignals translated between
two boxes is always proportional to the distance between
their centers divided by the speed of light.

2) Construction of incoming rays at all levels.Outgoing rays
are translated between any pair of boxes that interact at a
given level. This translation process requires the convo-
lution of the outgoing rays with the translation function
on a direction-by-direction basis and the evaluation of the
Hilbert transform of the result. Again, both operations can
be carried out fast (see [26]).

3) Projection of the incoming rays associated with the
fine grain boxes onto the observers.Incoming rays at
all levels are anterpolated (i.e., their density decreased)
and resected (i.e., cut into shorter signals) before being
propagated down the tree. Conceptually, these operations
are the counterparts of the interpolation and splicing
operators described above. Upon arrival at the lowest
level in the tree, all rays are projected onto the observers.

All near-field interactions are accounted for using a special
version of the algorithm that does not expand source fields in
terms of plane waves but still relies on a Hilbert transform to
efficiently represent the tail of the .

III. N UMERICAL EXAMPLES

This section considers several examples that demonstrate the
capabilities and accuracy of the proposed FE–BI algorithm. For
all examples considered herein, the incident wave is a TMz Neu-
mann pulse, viz., the time derivative of a Gaussian pulse

(30)

Here is the direction of propagation of the incident pulse and
, , and are parameters that define the spectral and temporal

reference points and shape.
The first example involves a perfect electrically conducting

cylinder of radius 1.25 m (Fig. 2). The computational domain
is discretized into 1284 triangular elements resulting in 5456

elsewhere
(29)
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Fig. 2. A circular conducting cylinder under the plane wave incidence (�

denotes the minimum wavelength of the incident Neumann pulse).

unknowns and truncated by a circular boundary, which is placed
two element layers away from the cylinder’s surface. The pulse
parameters are , ns, m, and

ns. The source boundary is placed between the conducting
surface and the truncation boundary. Fig. 3 shows the temporal
signature of the total magnetic field at m.
Comparison of the computed and the theoretical results reveals
excellent agreement.

To demonstrate the present algorithm’s ability to analyze
complex geometries, a deep conducting cavity with width 1.25
m, length 2.5 m, and conductor thickness 0.25 m is considered
next (Fig. 4.) The parameters defining the incident pulse are

, ns, m,
and ns. The mesh truncation boundary follows the
cavity outline and is positioned two elements away from its sur-
face. The simulation domain is subdivided into 2440 patches,
yielding 10 371 unknowns. The same scattering problem is also
analyzed using a FDTD solver that truncates the computational
domain with a perfectly matched layer (PML). This solver
requires that the computational domain include the cavity’s
interior as the PML cannot be attached to concave outer
boundaries. This, of course, artificially inflates the number
of unknowns in the FDTD solver. The temporal signatures of
the magnetic field sampled at m and

m are shown in Fig. 5. The results
obtained with the FE–BI scheme agree very well with those ob-
tained from the FDTD solver. A slight discrepency in Fig. 5(a)
is due to the error in the FDTD solution caused by PML.

Next, to illustrate the capability of the present algorithm to
handle materials as well as complex geometries, a dielectric
cavity is considered. This cavity has the same cross section as
the one considered in the previous example and its material has
a relative dielectric permittivity of 4.0. The outer boundary is
constructed as in the example above. The computational region
is discretized into 7412 patches, generating 33 106 unknowns.
The incidence direction is the same as the previous example
and the pulse parameters are ns, m, and

ns. Fig. 6 shows the calculated total magnetic field
at m and m;
again, the results obtained using the FE–BI method agree very
well with those obtained using the FDTD solver.

Fig. 3. Scattering by a circular conducting cylinder. (a)H . (b) Absolute error
in H .

Fig. 4. A perfect conducting cavity under the plane wave incidence (�

denotes the minimum wavelength of the incident Neumann pulse).

Finally, to compare the efficiency and accuracy of the present
method with the FDTD solver, we considered the problem of
wave scattering by a coated cylinder having a radius of 0.2 m.
The coating has a thickness of 0.008 m and a relative permit-
tivity of . For the TDFEM computation, the comput-
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Fig. 5. Scattering by a conducting cavity with width5 � , length10 � ,
and conductor thickness1 � . (a)H at observation point#1. (b)H at
observation point#2.

ational domain is truncated at two elements away from the
dielectric surface and is discretized into 2298 triangular ele-
ments, yielding 10 051 unknowns. For the FDTD simulation,
the cylinder is enclosed in a square region, which is then dis-
cretized into square grids of size 0.004 m. The pulse parameters
for the excitation are , ns, m,
and ns. To make the comparison meaningful, both the
TDFEM and FDTD use the exact BI, evaluated by the PWTD
algorithm, at the truncation boundary. (The use of PWTD in the
FDTD is described in detail by Luet al. [28].) The average and
maximum errors in the FDTD calculation of the at a fixed
point m are 5.61% and 56.34%,
respectively, relative to the peak value of, whereas those in
the TDFE calculation are only 0.28% and 2.72%, respectively.
The larger error in the FDTD calculation is caused by the
staircase approximation of the scatterer’s geometry, which is
absent in the TDFE simulation. Of course, such a staircase

Fig. 6. Scattering by a dielectric cavity with width5 � , length10 � ,
and dielectric thickness1 � . (a)H at observation point#1. (b) H at
observation point#2.

approximation can be removed using more complicated FDTD
algorithms that are based on irregular grids. The computing
time and memory usage are approximately the same for the
TDFE and FDTD calculations because they are dominated by
the PWTD algorithm.

IV. CONCLUSION

A novel hybrid FE–BI method for analyzing transient scat-
tering from freestanding 2-D inhomogeneous objects was pre-
sented. The FE component of the solver utilized a pair of orthog-
onal vector basis functions to model the fields in the interior of
the computational domain. The interior FE and exterior BI field
models were coupled to each other using a novel scheme that
yields solutions free of spurious modes. The orthogonality of
the FE basis functions and the nature of the FE–BI coupling
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scheme obviated the need for any matrix inversion during the
time stepping process. Finally, all BIs are evaluated using the
PWTD algorithm, which reduces the computational complexity
of the algorithm. The method’s capabilities and accuracy were
demonstrated by several numerical examples. The formulation
was based on vector finite elements and, therefore, can be ex-
tended readily to three dimensions.
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