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Abstract—A novel hybrid time-domain finite element-boundary
integral method for analyzing three-dimensional (3-D) electromag-
netic scattering phenomena is presented. The method couples fi-
nite element and boundary integral field representations in a way
that results in a sparse system matrix and solutions that are devoid
of spurious modes. To accurately represent the unknown fields,
the scheme employs higher-order vector basis functions defined
on curvilinear tetrahedral elements. To handle problems involving
electrically large objects, the multilevel plane-wave time-domain
algorithm is used to accelerate the evaluation of the boundary inte-
grals. Numerical results demonstrate the accuracy and versatility
of the proposed scheme.

Index Terms—Electromagnetic scattering, finite-element
method, higher-order method, transient analysis.

I. INTRODUCTION

T HE HYBRID finite element-boundary integral (FE-BI)
method is a powerful numerical technique for solving

open-region electromagnetic scattering problems. The method
uses an artificial boundary to divide the infinite solution
domain into interior and exterior regions in which fields are
represented using finite elements (FEs) and boundary integrals
(BIs), respectively. These two representations are coupled at the
artificial boundary by enforcing field continuity. The resulting
scheme permits the accurate and efficient analysis of com-
plex electromagnetic phenomena, especially those involving
inhomogeneous media. This method was initially developed
to solve two-dimensional (2-D) and three-dimensional (3-D)
frequency-domain electromagnetic scattering problems (see
[1] and references therein); here, its time-domain extension is
considered.

Recently, considerable research efforts have been expended
on the development of numerical techniques that allow electro-
magnetic phenomena to be modeled directly in the time domain,
as these techniques permit the generation of wide-band data
and the modeling of nonlinear materials. Undoubtedly, the best
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known technique for analyzing transient electromagnetic phe-
nomena is the finite-difference time-domain (FDTD) method
[2]. Other methods, however, have been gaining popularity. For
example, recently, considerable progress has been reported on
the development [3]–[6], stabilization [7]–[13] and accelera-
tion [14]–[17] of time-domain integral equation solvers. In addi-
tion, a variety of time-domain FE schemes have been proposed
[18]–[34]. One class of approaches directly solves Maxwell’s
equations [18]–[26]. These methods usually are explicit in na-
ture, i.e., they do not require a matrix equation to be solved in
each time step and operate in a leapfrog fashion similar to the
FDTD method. Unfortunately, the well-developed frequency-
domain FE method machinery does not apply to these schemes.
Another class of time-domain FE solvers tackles the second-
order vector wave equation, or the curl-curl equation, obtained
by eliminating one of the field variables from Maxwell’s equa-
tions [27]–[33]. The major disadvantage of these approaches is
that they require the solution of a matrix equation at each time
step.

An important issue in the finite-element solution of open-re-
gion scattering problems is the treatment of the artificial trun-
cation boundary. One approach is to use an absorbing boundary
condition (ABC), e.g., a perfectly matched layer (PML). How-
ever, unlike the FDTD method, techniques for implementing
ABCs in time-domain FE schemes have received only scant at-
tention [35], [36]. Another approach for truncating the boundary
is to model exterior fields using a BI, which leads to the FE-BI
method discussed earlier. This approach is numerically exact
and more importantly, allows the truncation boundary to take on
any shape (usually conformal to the object being studied) and to
be placed close to the object, thereby minimizing the size of the
computational domain. Although this approach has been thor-
oughly studied within the context of frequency domain solvers,
it has not been explored extensively in a time-domain frame-
work, except for relatively simple 2-D analysis [37], [38].

In this paper, we present a hybrid time-domain FE-BI method
for analyzing 3-D electromagnetic open-region transient scat-
tering phenomena. This work is an extension of a similar scheme
that we developed for analyzing 2-D scattering problems [38].
This method has three unique features. The first is the hybridiza-
tion scheme that combines the FE and BI representation of the
fields. Instead of following the standard hybridization scheme
used in the frequency domain, we propose a novel scheme that
preserves the sparsity of the FE matrix and that yields solutions
free of spurious modes associated with interior BI resonances.
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Fig. 1. Illustration of the truncation and source boundaries.

The second feature is the use of a fast algorithm, viz. the multi-
level plane-wave time- domain (PWTD) method, for evaluating
the BIs. Invoking this scheme greatly reduces the computational
expense when an object of large electrical dimensions is consid-
ered. Third, the FE component of the solver employs curvilinear
tetrahedral elements to precisely model the scatterer’s geometry
and higher-order vector basis functions to accurately represent
the fields.

II. FE FORMULATION

This section describes the problem under consideration, the
scheme to couple the FE and BI field representations and the
numerical discretization adopted in the FE method.

A. Problem Statement and Hybridization Scheme

Consider the problem of modeling the electric fieldgener-
ated by an external source in the presence of an object residing
in a volume . To formulate a FE scheme that permits compu-
tation of , we introduce an artificial surface that encloses

(Fig. 1). Inside , the field satisfies

(1)

For this equation to have a unique solution, it is necessary to
impose a boundary condition on . This boundary condition
can always be expressed as

(2)

where represents the outward unit vector normal toand
is an unknown coefficient that depends on position and time.

Obviously, (2) relates the tangential electric and magnetic fields
on . To evaluate , we introduce a fictitious source boundary

that resides inside and also fully encloses the scatterer.
On , we define equivalent electric and magnetic currents as

(3)

and

(4)

Here denotes temporal integration. These equivalent cur-
rents in turn define the electric and magnetic vector potentials

(5)

and

(6)

where denotes the 3-D Green’s function

(7)

From the vector potentials and , the temporal derivatives of
the electric and magnetic fields on can be computed as

(8)

(9)

where is the idempotent. These fields subsequently define the
unknown coefficient .

In accordance with the variational principle [39], the solution
to the boundary-value problem defined by (1) and (2) is obtained
by seeking the stationary point of the functional

(10)

The FE discretization of (10) results in a matrix equation that
contains . Since is a function of time, the system matrix must
however be updated at every time step; this renders the scheme
inefficient and unattractive.

Alternatively, one can replace (2) with

(11)

where is evaluated using a BI. In this case, the pertinent
functional is

(12)

The resultant FE matrix is constant and does not need to be
updated at every time step. However, since the evaluation of
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the right-hand side of (11) involves only the magnetic field,
the solution supports spurious modes whose frequencies corre-
spond to the resonant frequencies of a cavity formed by covering

with perfect magnetically conducting walls while filling
with the exterior medium. These spurious modes creep into the
solution throughout the time marching procedure and lead to
instabilities.

Instead of specifying the tangential magnetic field onas in
(11), we may also specify the tangential electric field onas

(13)

where is evaluated using a BI. The required functional is
still given by (12) but without the integral over . However,
since involves only the electric field, the solution supports
spurious modes whose frequencies correspond to the resonant
frequencies of a cavity formed by covering with a perfect
electric conductor while filling with the exterior medium.
Again, this leads to corruption of the desired solution and even-
tually to instabilities.

To eliminate these problems, we propose a novel scheme,
which amounts to rewriting (2) in the form of the first-order
impedance boundary condition as

(14)
where is evaluated using a BI. Now, the pertinent functional
becomes

(15)

This formulation does not require the the FE matrix to be up-
dated in each time step. In addition, our numerical experiments
reveal that solutions obtained using this formulation are devoid
of spurious modes. Interestingly, if the scattered component in

is set to zero, (14) becomes the first-order ABC. Evidently,
the BI corrects this first-order condition so that (14) provides an
exact ABC.

B. Numerical Discretization

To discretize (15), we first expand as

(16)

where denotes the total number of expansion terms and
and are the vector expansion functions and corresponding
expansion coefficients, respectively. Substituting (16) into (15),
taking the partial derivative of the functional with respect to
the expansion coefficients and setting the resultant equa-

tion to zero yields the following system of ordinary differential
equations:

(17)

Here , , , and are square matrices andand are
column vectors. Their elements are given by

(18)

where and denote volume and surface integration,
respectively.

Equation (17) can be discretized in time by many differencing
schemes such as the central difference, the backward difference
[30] and the Newmark method [29], [31], [40]. The latter two
can yield unconditionally stable schemes, in which the time step
is not constrained by the spatial discretization, but is limited
by the accuracy requirement. The former yields a conditionally
stable one, in which the time step requires to satisfy a certain
criterion to ensure stability [41]. In this work, we employ the
central difference.

Adopting a traditional central difference scheme to approx-
imate the first- and second-order time derivatives in (17), we
obtain

(19)

in which

(20)

and represents the time step. Clearly, can be solved for
in a time marching fashion provided that can be evaluated
from ( ); a fast method for achieving this will be
discussed in the next section.

It now remains to choose the . We implemented both
zeroth- and higher-order schemes. In the zeroth-order FE
method, we use the well-known edge-based vector basis
functions defined in [24]. In the higher-order FE scheme, we
employ the higher-order interpolatory vector basis functions
defined in [42]. They are chosen because of their completeness
and the availability of simple expressions for any order.

III. B OUNDARY INTEGRAL EVALUATION

To compute at every time step, it is necessary to evaluate
in (14), which requires computation of a linear superposition

of temporal derivatives of the electric and magnetic fields
radiated by equivalent current sources and that
reside on . Evaluating these fields is tantamount to evaluating
the potentials and by spatial and temporal
convolutions of these currents with the Green’s function. It is
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well known that this evaluation is computationally expensive,
a fact which has been one of the primary impediments to
the popularity of the integral equation based transient analysis
schemes. Indeed, if the duration of analysis is time steps
and the currents are represented usingfunctions, the cost
of evaluating these fields/potentials scales as . In
arriving at the above estimate, it has tacitly been assumed
that the source and the observation surfaces are close to each
other; therefore, the number of source and observation points
are approximately equal. Recently, we introduced the PWTD
algorithm. This scheme permits the fast evaluation of fields
due to bandlimited sources and is the time domain counterpart
of the frequency-domain fast multiple method. This scheme
has been used for accelerating large-scale electromagnetic
transient scattering analysis [43]. More recently, it has been
used for accelerating global boundary condition kernels for
truncating the computational domain of the FDTD solvers used
for electromagnetic analysis [44]. In what follows, we shall
detail the particulars of the scheme as it applies to accelerating
the BIs required for truncating the time-domain FE method
scheme.

Consider two equal size boxes denotedand . Assuming
that contains a collection of sources, our objective is to ar-
rive at a plane wave representation of the vector potentials at
locations in the observer box . To this end, assume that the
electric and magnetic currents that reside inare represented
as , ,
where is the number of spatial discretization points for cur-
rents in . Next, the temporal signatures of these current den-
sities are divided into consecutive subsignals each of duration

defined below as follows

(21)

(22)

where and are approximately bandlimited
to [14] with and of essential
duration . Dividing the source currents in this manner using
a prolate series has been described elsewhere [16]. It has been
demonstrated that if , then the field in due to
sources in can be reconstructed as a superposition of plane
waves due to each subsignal [16], [43]. Using this source repre-

sentation, it can be shown that the electric and magnetic vector
potentials may be constructed as

(23)

where (see (24) and (25) at the bottom of the page). In
(23), is used to denote the center of the box that
either the source () or observer ( ) resides in. Like-
wise, for any is either

or ,
, where , is the

Legendre polynomial of degreeand .
Equation (23) is valid after the source has stopped radiating.
The potential is a superposition of . Integration
weights and plane wave directions necessary to evaluate (23)
are given in [45]. Using the fact that for plane wave, the operator

commutes with along with (8) and (9) permits
the definitions of plane wave representations for the temporal
derivatives of the electric and magnetic fields [43] and finally
(see (26) at the bottom of the next page). As (26) indicates,

can be evaluated using a three-stage procedure.
To arrive at a hierarchical computational scheme of reduced
complexity, the entire computational domain is enclosed in
a fictitious cubical box. This box is recursively divided
times. Any box is termed theparentbox of thechildren that it
is divided into. The fundamental signal duration at any
level is chosen proportional to the dimension of boxes at that
level. Given this choice and in light of the arguments in the
preceding paragraph regarding reconstruction of fields using
a superposition of plane waves, the next task is to identify
near- and far-field pairs at all levels. This is done using the
following mechanism: at any level, members of a box pair are
said to be in each other’s far field if the distance between their
closest points is greater than and the distance between
the closest points of their parents is less than . At
the lowest level, all box pairs that are separated by a distance
less than are said to be in each other’s near field. Given
this tree structure, the computation proceeds in two distinct
stages: 1) the equivalent currents onare computed at every
time step and stored and the for all that belong in
the near-field interaction list at the lowest level are computed;
2) Next, all interactions are computed using (26). Details

elsewhere
(24)

and

(25)
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(a)

(b)

Fig. 2. (a) Conducting or dielectric-coated conducting sphere under the plane
wave incidence. (b) An L-shaped stub under the plane wave incidence.

pertinent to the far field implementation of this algorithm can
be found in [16], [17].

IV. FAR-FIELD COMPUTATION

Once the electric and magnetic currents on the source
boundary are obtained, the scattered field in the far-field zone
can be evaluated via a far-field approximation. The scattered
electric field at a far point is given by

(27)

where and can be evaluated from the electric
and magnetic currentsand defined on as

(28)

The above surface integrals are discretized in space using
Gaussian quadrature. The discretized currentsand are
interpolated from the unknowns of the FE solution.

Once the scattered field in the far-field zone is known, the
radar cross section (RCS) of the scatterer can be obtained from

(29)

where denotes the Fourier transform.

V. NUMERICAL EXAMPLES

This section presents numerical examples to demonstrate the
validity and performance of the proposed scheme. Two basic
geometries are considered: one is a conducting or dielectric-
coated conducting sphere for which the exact scattering solution
is available in the form of a Mie series and the other is an
L-shaped object, for which the FDTD solution is used as a
reference. Both geometries are sketched in Fig. 2. For all
examples considered herein, the incident wave is assumed to
be a Neumann pulse, i.e., the time derivative of a Gaussian
pulse

(30)

Here, and denote the direction of propagation and polar-
ization of the incident pulse, respectively and, , and are
parameters that define the pulse’s temporal and spectral refer-
ence points and width. We also define to be the frequency
at which the amplitude of the pulse’s spectrum decays to 10
times its peak value.

A. Zeroth-Order Results

The first example involves a perfect electrically conducting
(PEC) sphere of radius 0.8 m. The computational domain is
truncated by a spherical surface placed two elements away from
the PEC surface and is discretized using 17 547 tetrahedra

(26)
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(a)

(b)

(c)

Fig. 3. Scattering by a conducting sphere. (a) Temporal derivative ofE at
observation pointr = 0:33x̂� 1:03ŷ � 0:45ẑ m. (b) Temporal derivative of
E at observation pointr = �0:12x̂�0:397ŷ�1:09ẑm. (c) RCS frequency
response.

resulting in 23 838 unknowns. The pulse parameters are ,
, ns, m and ns

(a)

(b)

Fig. 4. E-plane bistatic RCS of a conducting sphere. (a)f = 101:9MHz. (b)
f = 172:1 MHz.

( MHz). The source surface is placed directly
on the PEC surface. Fig. 3(a) and (b) show components of the
total temporal electric fields at m
and m, respectively. Excel-
lent agreement is observed between the calculated and the exact
results. Fig. 3(c) shows the backscatter RCS versus frequency
and Fig. 4 depicts the bistatic RCS of the sphere at frequencies

MHz and MHz.
The second example involves the L-shaped PEC object shown

in Fig. 2(b). The parameters defining the incident pulse are
, ,

ns, m and ns (
MHz). The mesh truncation surface is positioned two

elements away from the object’s surface. The simulation domain
is subdivided into 42 601 tetrahedra, yielding 54 690 unknowns.
The same problem is also analyzed using an FDTD solver
which truncates the computational domain by a PML [46].
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(a)

(b)

Fig. 5. (a) Scattering by a conducting L-shaped object at observation point
r = 0:575x̂ + 0:875ŷ + 0:225ẑ m. (b) Scattering by a dielectric L-shaped
object at observation pointr = 0:586x̂+ 0:889ŷ + 0:229ẑ m.

The use of the PML requires that the computational domain be
a rectangular box since the PML cannot be applied to a concave
outer surface; this, of course, artificially inflates the number of
unknowns in the FDTD solver. The temporal signature of the
electric field sampled at m is
shown in Fig. 5(a). The result obtained with the FE-BI scheme
agrees very well with those obtained using the FDTD solver.

Next, to illustrate the capability of our algorithm to handle
materials, we replace the L-shaped PEC object with a dielec-
tric one. The dielectric has a relative permittivity of .
The truncation surface is constructed in a manner similar to the
above example. The computational region is discretized into
45 164 tetrahedra, generating 56 852 unknowns. The incident
pulse is the same as in the previous example. Fig. 5(b) shows
the temporal signature of components of the total electric field
at m, calculated with the FE-BI
and FDTD solvers. Very good agreement between both sets of
results is observed.

(a)

(b)

Fig. 6. RCS of a coated sphere with radius 1 m and� = 4:0. (a) Backscatter
RCS. (b) Bistatic RCS atf = 110 MHz.

Finally, a coated sphere with radius of 1 m is considered. The
dielectric coating has a thickness of 0.2 m and a relative per-
mittivity of . The computational region is subdivided
into 12 351 tetrahedra, yielding 16 047 unknowns. The Neu-
mann pulse is defined by ns, m
and ns ( MHz). Computed frequency do-
main RCS signatures are compared to the exact data in Fig. 6.

B. Higher-Order Results

When higher-order FEs are used, it is found that the condition
number of the matrix (19) grows rapidly and that the
CG solver with a simple diagonal preconditioner converges
slowly. Although this problem can be mitigated by using a
better preconditioner, in this work, we employ an advanced
direct sparse matrix solver that uses the multifrontal method
[47]–[49]. The multifrontal method factorizes a large sparse
matrix using a sequence of small dense frontal matrices. The
square frontal matrices are factorized efficiently using dense
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(a)

(b)

(c)

Fig. 7. (a) RMS error versus unknowns per cube wavelength. (b) Phase error
versus unknowns per cube wavelength. (c) RMS error versus CPU time.

matrix kernels. Since the method uses a sparse memory storage
scheme, relatively large problems can be handled using readily

(a)

(b)

Fig. 8. (a) Scattering from a conducting sphere of dimension 10� . (b)
Scattering from a coated sphere of dimension 4� .

available computer resources. Note that the factorization is per-
formed only once and after that only forward and backward sub-
stitutions are needed in each time step.

To illustrate the advantages of the higher-order time-domain
finite-element method (TDFEM), we consider a PEC sphere of
radius 1 m. The incident pulse is characterized by , ,

ns, m and ns; this pulse has
a maximum frequency of 1.5 GHz or equivalently, a minimal
wavelength m. Three meshes are generated with the
average edge length of the tetrahedra equal to 0.1, 0.5
and 1 , respectively. For each mesh, calculations are carried
out using zeroth-, first-, and second-order vector basis functions.
The root-mean-square (RMS) error (normalized by the max-
imum amplitude) of the -component of the electric field ob-
served at m is plotted as a function of
the unknown density in Fig. 7(a). The higher-order accuracy and
convergence due to the use of the higher-order basis functions
are evident. In addition to the RMS error, it is also important
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(a)

(b)

(c)

Fig. 9. Scattering from an L-shaped conducting object with electric size
5� , observed atr = 0:55x̂+ 0:89ŷ + 0:25ẑ m.

to examine the phase error that accumulates as the wave propa-
gates through a large region or over a long period of time. It is

well known that phase error accumulation using zeroth-order FE
schemes severely impedes the analysis of late time responses.
The problem is mitigated by the use of higher-order elements.
Fig. 7(b) shows the phase error in the same calculations as de-
scribed above. Again, it is clear that higher-order basis functions
can significantly reduce the error at a much higher rate than the
zeroth-order basis. Finally, Fig. 7(c) plots the RMS error as a
function of the computing time to illustrate the better efficiency
of the higher-order implementation.

Because of the superior accuracy and efficiency of the higher-
order TDFEM, we can now analyze scattering from an electri-
cally larger problem. Fig. 8(a) depicts the temporal derivative
of the -component of the electric field at

m in the presence of a PEC sphere of radius of 1 m. The in-
cident Neumann pulse is defined by , , ns,

m and ns ( GHz). The results
are obtained using the first-order finite-element method (FEM)
with 4307 tetrahedra and 30 738 unknowns. Next, we consider
the coated sphere shown in Fig. 2(a), which is also considered
in the example that led to Fig. 6. The parameters for the inci-
dent pulse are also the same as in that example except that now

ns and ns ( GHz). Fig. 8(b)
shows the temporal derivative of the-component of the elec-
tric field at m. The results are obtained using
the first-order FEM with 6815 tetrahedra and 46 942 unknowns.
The effect of the creeping waves traveling around the surface is
clearly seen in the figure.

Finally, we consider the L-shaped PEC object illustrated in
Fig. 2(b). The incident Neumann pulse has the same param-
eters as the one used in the example of Fig. 5(a), except that
now ns and ns, which raises the maximum
frequency to 1.5 GHz and reduces the minimum wavelength to

m. The simulation domain is subdivided into 5278
tetrahedra, yielding 106 266 unknowns for the second-order el-
ements. The temporal electric fields sampled at

m are shown in Fig. 9. The results are compared
with those obtained from the FDTD solver.

Although the above results are generated using up to the
second-order basis functions, the code implemented is general
and suitable for the use of any orders. However, as demonstrated
clearly in Fig. 7, the largest increase of the accuracy comes
from jumping from the zeroth-order basis to the first-order
basis.

VI. CONCLUSION

A novel TD hybrid FE-BI method for analyzing open-region
electromagnetic transient scattering problems was presented.
The method uses an artificial boundary to truncate the infinite
computational domain. A novel numerically exact absorbing
condition that preserves the sparsity of the FE matrix and yields
solutions free of spurious modes, was implemented, using
higher-order vector basis functions defined on higher-order
curvilinear elements. The PWTD algorithm was employed
to efficiently evaluate the boundary integrals. The accuracy
and versatility of the technique were demonstrated by several
numerical examples.
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