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Abstract—A fast solution to both the quadratic eigenvalue
problem and the generalized eigenvalue problem is developed
for the finite-element based analysis of general 3-D electromag-
netic problems. Given an arbitrary frequency band of interest,
denoting the number of physically important eigenvalues for this
band by , the proposed eigenvalue solution is capable of solving
a significantly reduced eigenvalue problem of to find a
complete set of eigenvalues and eigenvectors that are physically
important for the given frequency band. In addition to bypassing
the need of solving a large-scale eigenvalue problem of ,
with being the system matrix size, the reduced eigenvalue
problem is constructed from solutions to a deterministic
problem. As a result, the methods that have been developed to
solve deterministic problems and their fast solvers can all be
readily leveraged to solve eigenvalue problems. Moreover, the
proposed fast eigenvalue solution has guaranteed convergence and
controlled accuracy, which is theoretically proved in this paper.
The solution is applicable to general 3-D problems where the
structures are arbitrary, materials are inhomogeneous, and both
dielectrics and conductors can be lossy. Applications to microwave
devices, package structures, and on-chip integrated circuits have
demonstrated the accuracy, efficiency, and convergence of the
proposed fast eigenvalue solution.

Index Terms—Deterministic solutions, eigenvalue solutions,
electromagnetic analysis, fast solvers, finite element methods,
generalized eigenvalue problems, quadratic eigenvalue problems.

I. INTRODUCTION

T HE solution to eigenvalue problems is of great importance
to electromagnetic analysis. This is not only because of

the analysis of classical source-free problems such as waveg-
uides, cavities, filters, and resonators, but also because of the
analysis of general problems with sources. As shown in [1]–[4],
the solution of a deterministic problem with a source can be
rigorously found by solving a generalized eigenvalue problem
that is formulated without a source. For example, in a loss-
less system, the solution to the frequency-domain finite-element
system matrix at an arbitrary frequency is the superposition of
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the eigenvectors of a frequency-independent generalized eigen-
value problem [3]. The weight of each eigenvector in the field
solution is determined by its corresponding eigenvalue, the fre-
quency being simulated, and the projection of the right hand
side vector (source) onto the eigenvector. The same is true for
electromagnetic problems with lossy materials such as nonideal
conductors and lossy dielectrics, in which the underlying eigen-
value problem is a quadratic eigenvalue problem [4], [9]. The
fact that the solution to a deterministic problem is embedded in
the eigenvalue solution to a source-free problem is similar to the
fact that the matrix inverse has nothing do with right hand sides;
however, from the inverse of a matrix, one can obtain the matrix
solution for any right hand side. In current mainstream methods
for solving electromagnetic problems, a system of equations is
required to be solved over and over again for each right hand
side as well as each frequency. In contrast, if a fast eigenvalue
solution can be developed, then there is no need to repeat the so-
lution for a different right hand side. Moreover, there is no need
to repeat the solution for a different frequency either, as can be
seen from [4].
However, to accentuate the aforementioned advantages of an

eigenvalue solution for electromagnetic analysis, one has to first
overcome the high computational cost associated with tradi-
tional eigenvalue solvers. For solving a generalized eigenvalue
problem of size , the computational complexity
of traditional eigenvalue solvers such as the QR algorithm is

[5] since is generally dense.With state-of-the-art
Arnoldi algorithms [5], [6], eigenpairs of a generalized eigen-
value problem can be found in steps of an Arnoldi itera-
tion. The computational cost of each Arnoldi iteration step for
solving a generalized eigenvalue problem, which is the cost of
multiplying by a vector, has also been reduced to
by advanced algorithms in [7] and [8] for a 2.5-D finite-element
based analysis of on-chip interconnect structures, and in [9] for
a 3-D finite-element based analysis of general integrated cir-
cuit problems. However, there still exist a few bottleneck prob-
lems in an Arnoldi algorithm based eigenvalue solution of elec-
tromagnetic problems. First, the Arnoldi process typically con-
verges first to the largest eigenvalues of the numerical system.
However, it is not clear which eigenvalues of the original
eigenvalue problem will be found in Arnoldi steps. To obtain
eigenvalues of physical importance, onemay have to use
or Arnoldi steps rather than steps, resulting in or

krylov-subspace vectors, which is not computationally
efficient. Second, there is no systematic way to control the con-
vergence of an Arnoldi iteration. In other words, it is not known
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at which step to stop the Arnoldi process. For example, if one
stops at the 100th step, it is still possible that at the 101th step,
a new eigenvalue that is physically important for a given fre-
quency band appears. In mathematical literature, there has been
a continued effort to improve the convergence and efficiency
of the Arnoldi algorithm for large-scale eigenvalue problems
[10]–[12].
The key contribution of this paper is a fast eigenvalue solver

that overcomes the aforementioned shortcomings of an Arnoldi
algorithm based eigenvalue solution for finite-element based
analysis of general 3-D electromagnetic problems. Given an ar-
bitrary frequency band of interest, the eigenvalues and eigen-
vectors obtained from the proposed eigenvalue solver are a com-
plete set of physically important eigenvalues and eigenvectors
for the given frequency band. No initial guess of eigenvalues
is required. The physically important eigenvectors in this paper
are defined as the eigenvectors that are important for the field
solution in the given frequency band based on prescribed ac-
curacy, and their corresponding eigenvalues are called physi-
cally important eigenvalues. Furthermore, the eigen-solutions
are efficiently obtained by the proposed method from a reduced
eigenvalue problem of , where is the number of physi-
cally important eigenvalues. Moreover, the convergence of the
proposed eigenvalue solvers is guaranteed, which is theoreti-
cally proved in this paper. In addition to bypassing the need
for solving a large-scale eigenvalue problem of , the re-
duced eigenvalue problem of is obtained from so-
lutions to a deterministic problem. As a result, the methods that
have been developed to solve deterministic problems and their
fast solvers can all be leveraged to find the solution of eigen-
value problems. The proposed fast eigenvalue solution is appli-
cable to both quadratic eigenvalue problems arising from the
finite-element based analysis of lossy problems and the gener-
alized eigenvalue problem resulting from the analysis of loss-
less problems. The structures that can be simulated by the pro-
posed method are arbitrary 3-D structures and the materials are
inhomogeneous.
Different from the eigenvalue solvers developed in mathe-

matical literature [10]–[12], the proposed eigenvalue solver uti-
lizes the relationship between the solution of a frequency-do-
main finite-element based deterministic problem and that of an
eigenvalue problem to identify the eigenvalues and eigenvec-
tors that are physically important for a given frequency band.
Moreover, the proposed eigenvalue solver reduces the original
large-scale eigenvalue problem to a small eigenvalue problem
by deterministic solutions. Different from the model order
reduction methods developed to solve deterministic problems,

, in electromagnetics such as [13]–[15], the proposed
method solves generalized eigenvalue problems
and quadratic eigenvalue problems ,
where , , and are sparse matrices, denotes an eigen-
value, and is an eigenvector.
In the following Section II, we provide a background of

the proposed work. In Section III, we present the proposed
fast eigenvalue solver for solving the generalized eigenvalue
problem associated with lossless problems. A theoretical proof
on its accuracy and guaranteed convergence is also provided.
In Section IV, we describe the proposed fast eigenvalue solver

for solving the quadratic eigenvalue problem arising from the
analysis of lossy problems, in which both dielectrics and con-
ductors could be lossy. The performance of the proposed fast
eigenvalue solvers is demonstrated by a number of numerical
examples in Section V. Section VI relates to our conclusions.

II. BACKGROUND

In 3-D electromagnetic problems, the electric field satisfies
the second-order vector wave equation

in (1)

subject to certain boundary conditions, where is free-space
permeability, is relative permeability, is relative permit-
tivity, is conductivity, is free-space wave number, is
free-space impedance, and is current density. In (1), both di-
electric and conductor loss can contribute to the term associated
with conductivity . The conductor loss plays an important role
in many electromagnetic applications. For example, in digital
integrated circuits, conductors cannot be treated as perfect con-
ductors because skin depth is comparable to the physical dimen-
sion of conductors at the circuit operating frequencies.
By setting the excitation to be zero, a finite-element based

analysis of (1) subject to its boundary conditions results in the
following quadratic eigenvalue problem [4], [9]

(2)

in which the eigenvalues correspond to complex resonant fre-
quencies, and the eigenvectors characterize the field distribu-
tion of each resonant mode. The relationship between complex
resonance frequency and is

(3)

The , , and in (2) are all sparse matrices. They are assem-
bled from their elemental contributions as the following:

(4)

where denotes the edge basis function used to expand the un-
known electric field in each element, denotes a volume
integration in the 3-D computational domain , and rep-
resents a surface integral on the outermost boundary . In (4),
a first-order absorbing boundary condition is used. If Diritchlet-
or Neumann-type boundary conditions are used, the second term
of shown in (4) does not exist. The is called mass matrix,
and is called stiffness matrix. Since is Hermitian positive
definite, and are Hermitian positive semidefinite, the eigen-
values of (2) are real or come in complex conjugate pairs [16].
Moreover, the real part of the eigenvalues is no greater than zero
[16], and hence the system is stable.
In a lossless system where does not exist, (2) reverts to a

generalized eigenvalue problem as the following:

(5)
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Since is semipositive definite and is positive definite, the
eigenvalues of (5) are nonnegative real numbers. Different from
that in lossy problems, the resonance frequency is real. Its rela-
tionship with the eigenvalues of (5) is as the following:

The application of (2) and (5) is not just limited to finding the
resonance frequencies and resonance modes of a 3-D problem.
The intrinsic property of a 3-D system has nothing to do with ex-
citations. The solution of eigenvalue problems like (2) and (5),
in fact, carries the intrinsic property of the system.With the solu-
tion of eigenvalue problems known, the response of the system
to any possible excitation is also known. Therefore, having an
efficient solution of eigenvalue problems also provides an alter-
native way of solving deterministic problems.
Despite the importance of the eigenvalue problems, the solu-

tion to the eigenvalue problems is, in general, computationally
expensive. In next two sections, we present the proposed fast
eigenvalue solvers.

III. PROPOSED FAST GENERALIZED EIGENVALUE SOLVER FOR
LOSSLESS PROBLEMS

This section includes the proposed fast eigenvalue solution
for analyzing lossless problems, a theoretical proof on its ac-
curacy and guaranteed convergence, and a discussion on the
choice of simulation parameters.

A. Proposed Fast Eigenvalue Solution

As shown in Section II, the eigenvalue problem for the finite-
element based analysis of a lossless problem can be written as
a frequency-independent generalized eigenvalue problem

(6)

Given a frequency band of interest , to obtain
a complete set of eigenvalues and eigenvectors of (6) that are
physically important for the given frequency band, we propose
to first solve the following deterministic problem at a few fre-
quencies within this band:

(7)

where is a right hand side vector. If the source used to ex-
cite the electromagnetic structure of interest is known, then, this
source can be used as to reveal the characteristics of the struc-
ture for the given excitation. For cases where the source is un-
known, a detailed discussion on the choice of is given in the
following Section III-C.
After calculating the solution of (7), we store the field solution

vectors in matrix as the following:

(8)

where ( ) are the angular frequencies selected
from the given frequency band, and ( ) are
the field solution vectors obtained at these frequencies. Given
a frequency band , we use a bisection method to

choose frequencies. The first frequency is chosen as ,
then , , ,

, and continue. The dimension of is by
, where is the total number of unknowns, is the number
of frequency points simulated, which we increase until the con-
vergence is reached. We develop the following method to deter-
mine the convergence.
With , we transform the original large-scale system matrix

shown in (7) to a reduced matrix of size , as shown in the
following:

(9)

We then check the rank of (9) by performing a singular value
decomposition (SVD) [5]. Since the matrix shown in (9) is a
small matrix of size , the cost of SVD is negligible. Given an
accuracy requirement , we determine the rank by counting
the number of singular values of (9) that satisfy the following
condition:

(10)

where denotes a singular value, and is themaximum sin-
gular value. We keep increasing the number of frequency points
simulated, , until the rank of (9) does not change any more (the
convergence will be proved in next subsection). In other words,
once the rank of (9) saturates, we stop adding more solution vec-
tors into . Assuming at this point, the number of frequency
points that have been simulated is , the obtained is an
by matrix. The reduced matrix in (9) is symmetric and of
size . Its singular value decomposition can be written as

(11)

where is the rank determined based on accuracy requirement
, which is no greater than .

The procedure so far can be viewed as a multipoint-based
model order reduction [15], but with a different approach pro-
posed to control its convergence. This approach can also be used
by existing model order reduction methods for solving deter-
ministic problems to control convergence. Next, we show how
to extract eigenvalues and eigenvectors of (6) from (8).
After the rank of (11) saturates, i.e., the convergence is

reached, using in (8) and in (11), we transform
the original large-scale eigenvalue problem of shown in
(6) to a significantly reduced eigenvalue problem of as
shown below

(12)

where

(13)

Since the size of (12), , is very small compared to , (12) can
be readily solved by a traditional eigenvalue solver with little
cost.
After solving (12), we obtain a complete set of eigenvalues

that are physically important for the given frequency band. The
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eigenvectors of (6), , can be recovered from the eigenvectors
of (12), , as the following:

(14)

In next subsection, we provide a theoretical proof on the con-
vergence and accuracy of the proposed eigenvalue solver.

B. Theoretical Proof on the Accuracy and Guaranteed
Convergence of the Proposed Eigenvalue Solution

Wewill first prove why the proposed eigenvalue solution con-
verges. In other words, given a prescribed accuracy, why the
rank of (9) will saturate regardless of the increase of . We then
prove upon convergence, the eigenvalues of the significantly re-
duced eigenvalue problem (12) constitute a complete set of the
eigenvalues of (6) that are physically important for the given
frequency band, and the eigenvectors shown in (14) are the cor-
responding eigenvectors.
We begin the proof by revealing the content of shown in

(8). The is obtained from the field solutions computed at
the frequencies within the given frequency band. Each column
vector of is the solution of (7) at a frequency. Based on [3],
the solution of (7) can be written as

(15)

where is the eigenvector matrix of (6), and is the diagonal
matrix composed of the eigenvalues of (6). It is clear that (15) is
the superposition of all the eigenvectors of (6), and the weight
of each eigenvector in is .
Clearly, given a frequency , not all of the eigenvectors make
important contributions to the field solution. Only those eigen-
vectors that have a large weight are important, and hence should
be kept in the field solution, while other eigenvectors can be
discarded based on prescribed accuracy. As defined earlier, the
eigenvectors that are important for the field solution based on
prescribed accuracy are termed physically important eigenvec-
tors in this paper, and their corresponding eigenvalues are called
physically important eigenvalues. Given a frequency band of in-
terest , from (15), it can be seen that all the eigen-
values located within the given frequency band, i.e., the eigen-
values satisfying the following condition

(16)

should be counted as physically important eigenvalues for
the given frequency band because the weights of their corre-
sponding eigenvectors are large in the field solution. Besides
this set of eigenvalues, the eigenvalues that are close to the
given frequency band can be physically important also. There-
fore, the eigenvalues that are physically important for a given
frequency band include both the eigenvalues within the fre-
quency band and the eigenvalues that are close to the frequency
band.
From (15), it can also be understood why a bisection method

is used in this paper to select frequencies to construct in (8).
This is because the solution obtained at any frequency is domi-
nated by the eigenvalues closest to this frequency as can be seen
from (15). Thus, with a bisection method, once the rank of (9)

saturates, we have covered all the eigenvalues that are important
for the given frequency band.
Given an accuracy requirement , assuming the number of

physically important eigenvalues for the given frequency band
is , (15) can be written as

(17)
Each column vector of has a form as that shown in (17).

Therefore, can be written as

(18)

where denotes the union of the vectors ob-
tained at frequencies, each of which is one

.
With revealed as (18), (9) can be written as

(19)
Since of (6) satisfies , [3], we have

(20)

Clearly, once is increased to a certain extent, the rank of (20),
and hence (9), becomes and remains to be no matter how
much is increased further. In other words, the rank of (9) satu-
rates.With the above, we prove the convergence of the proposed
eigenvalue solution. In practice, once the rank of (9) does not in-
crease with the increase of , the convergence is reached.
When the convergence is reached, assuming at which ,

we perform an SVD on (9), which is (20), we obtain

(21)

It is worth mentioning that if the number of important eigen-
values in a frequency band happens to be very large, the SVD
cost can be high. In this case, one can break the frequency band
into multiple smaller frequency bands so that for each sub-
band is small, and then use the proposedmethod to find the phys-
ically important eigenvectors in each small subband. The union
of the eigenvectors found in each subband makes a complete set
of the eigenvectors for the entire frequency band.
Next we prove the eigenvalues of the reduced eigenvalue

problem (12) are the eigenvalues of (6). Furthermore, they are
the complete set of eigenvalues that are physically important for
the given frequency band.
Using (18), with , we obtain

(22)

where the above “ ” denotes the level of accuracy, and
. The is a full-rank matrix because the

rank of is . Substituting (22) into (13), we have

(23)

Substituting (23) into (12), we obtain

(24)
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Since is a full-rank matrix that is invertible, we have

(25)

which can be further written as

where (26)

It is clear that the solution to the above eigenvalue problem is

(27)

where is the th column in an identity matrix. Therefore, we
prove that the eigenvalues of (12), , are the eigenvalues of
(5). These eigenvalues are also the complete set of physically
important eigenvalues for the given frequency band as can be
seen from (17).
Finally, we prove the eigenvectors shown in (14) are the

eigenvectors of (6). Substituting (22) into (14), we have

(28)

Since as can be seen from (26) and (27),
we obtain

(29)

which is nothing but one column vector of the union of the
eigenvectors of (6) that are physically important for the given
frequency band.
From the aforementioned proof, it can also be seen that the ac-

curacy of the proposed fast eigenvalue solution is controllable.
In numerical implementations, one can choose shown in
(10) to satisfy a prescribed accuracy.

C. Choice of Right Hand Side Vectors

In the proposed eigenvalue solution, we employ the solutions
obtained for a deterministic problem shown in (7) to solve (6).
In (7), a right hand side vector is involved. The validity of the
proposed eigenvalue solution is not affected by the choice of .
In other words, regardless of the choice of , one can identify a
subset of the eigenvalues of the given frequency band since
is not zero. Some of the eigenvectors will be excited by as long
as is nonzero. However, if the objective is to find a complete
set of eigenvalues that are physically important for a given fre-
quency band, should be chosen appropriately. As can be seen
from (15), if the projection of onto an eigenvector is zero, this
eigenvector would not appear in the field solution, and hence
cannot be found by the proposed eigenvalue solution. There are
two ways to solve this problem. One is to select that has a
nonzero projection onto every eigenvector. This is actually not a
difficult task since each eigenvector of (6) represents an -field
solution of Maxwell’s equations in the given problem subject to
boundary conditions at all the material interfaces. Even though
we do not know the detailed field distribution of an eigenvector,
we know the field must satisfy boundary conditions. For ex-
ample, on a conducting surface, must be perpendicular to the
conducting surface. Thus, we can select corresponding entries
in to be nonzero. Such a choice of will have a nonzero pro-
jection on all the eigenvectors. In practice, for convenience, one
can select a vector made of random numbers as the right hand

side . This is what we used in all the examples simulated in
Section V. This is because the chance for an eigenvector to have
a zero projection onto a vector of random numbers, i.e., making

zero for consisting of random numbers, is
almost zero if not exactly zero. The other way is to choose as
the excitation commonly used to excite the structure being sim-
ulated. In this case, the excitation of the problem is known, thus
the eigenvectors of physical importance are also those eigen-
vectors that can be excited by the given excitation.

IV. PROPOSED FAST QUADRATIC EIGENVALUE SOLVER FOR
LOSSY PROBLEMS

In this section, we present the proposed eigenvalue solution
for analyzing lossy problems in which both dielectrics and con-
ductors can be lossy.

A. Proposed Fast Eigenvalue Solution

As shown in Section II, the eigenvalue problem underlying
a general lossy problem is a frequency-independent quadratic
eigenvalue problem as shown below

(30)

To obtain the eigenvalues and eigenvectors of (30), we solve the
following deterministic problem at a few frequencies within the
given frequency band:

(31)

The choice of right hand side is the same as that for lossless
cases described in Section III-C. We then store the solution vec-
tors in as shown in (8), the column dimension of which is
the number of frequency points simulated, denoted by . With
, we transform the original large-scale system matrix shown

in (31) to a reduced matrix of size , as shown in the following:

(32)

Similar to the lossless cases, we increase the column dimension
of by simulating more and more frequency points until the
rank of (33) does not change any more (The proof of conver-
gence will be provided in next subsection). Assuming at this
point, the number of frequency points that have been simulated
is , the obtained is an by matrix. The reduced matrix

in (32) is symmetric and of size . Its singular value de-
composition can be written as

(33)

where is the rank determined based on accuracy requirement
. With and the singular vector matrix obtained at

the convergence, we transform (30) to a significantly reduced
eigenvalue problem of size

(34)

where the reduced matrices , , and of dimension are

(35)
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The quadratic eigenvalue problem shown in (34) can be
solved by computing the roots of the determinant of the poly-
nomial matrix

(36)

However, this approach is not favorable in terms of compu-
tational efficiency. We thus linearize the quadratic eigenvalue
problem (34) to a generalized eigenvalue problem of twice the
dimension as shown below

(37)

Notice that such linearization does not involve any theoretical
approximation because the solution of (37) is the same as that
of (34).
The generalized eigenvalue problem (37) can be compactly

written as

(38)

where

(39)

The (38) is a significantly reduced eigenvalue problem of di-
mension , which can be readily solved.
From the solution of (38), we obtain a complete set of eigen-

values of (30) that are physically important for the given fre-
quency band. The eigenvectors of (30), , can be recovered from
the eigenvector of (34), , which is the upper half of the eigen-
vector of (38), as the following:

(40)

In a lossy system where nonideal conductors are present, the
matrix norm , , and can differ by orders of mag-
nitude. In this case, directly solving (38) may yield very poor
errors [17], [18]. As a result, we have to scale the underlying
matrices before solving (38) for achieving good accuracy. We
employ an optimal scaling technique [17] to reduce the error
of the eigenvalue solution. There are two scaling coefficients
and involved in this technique. They are determined as the
following:

(41)

Based on the optimal scaling coefficients, we convert the orig-
inal quadratic problem shown in (36) to a scaled quadratic
problem as the following:

(42)

After solving (42), the eigenpairs of the original quadratic eigen-
value problem (34) can be recovered from

The error of a quadratic eigenvalue problem like (30) can
be assessed by the backward error [17], [18] defined as the
following:

(43)

B. Theoretical Proof on the Accuracy and Guaranteed
Convergence of the Proposed Eigenvalue Solution

To provide a theoretical proof of the proposed quadratic
eigenvalue solution, similar to lossless cases, we first need to
develop a theoretical understanding on . The is obtained
from the field solutions computed at the frequencies within the
given frequency band. Each column vector of is the solution
of (31) simulated at a frequency. Based on [4], the solution of
(31) can be written as

(44)

where is the upper half of the eigenvector matrix , and
is the diagonal matrix composed of the eigenvalues of the

following generalized eigenvalue problem:

(45)

where

(46)

Similar to the fact that the solution of (38) is the same as that of
(34), the solution of (45) is the same as that of (30).
It is clear that (44) is the superposition of all the eigenvec-

tors of (45), and the weight of each eigenvector in is
proportional to . Clearly, given a frequency , not
all of the eigenvectors make important contributions to the field
solution. Only those eigenvectors having a large weight are im-
portant in the field solution, and other eigenvectors can be trun-
cated based on prescribed accuracy. Therefore, based on (44),
similar to lossless cases, can be written as

(47)

where is the number of physically important eigenvectors that
should be kept in the field solution based on accuracy require-
ment , and denotes the union of the vectors obtained
at frequencies, each of which is the term right multiplied with

in (44).
With known in (47), (32) can be rewritten as

(48)
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which is a rank- matrix when is increased to be no less than .
After that, no matter how much is increased, the rank of (48),
and hence (32), remains the same. With the above, we prove the
convergence of the proposed quadratic eigenvalue solution for
simulating lossy problems.
Using (47), with when convergence is reached, we

obtain

(49)

where is a full-rank matrix. Substituting
the above into (34), we obtain

(50)

Since is invertible, we have

(51)

Since is the eigenpair of (45), and hence the solution
of (2), the solution to the above eigenvalue problem (51) is

(52)

Thus, we prove that the eigenvalues of the reduced eigenvalue
problem (34) are the physically important eigenvalues of the
original eigenvalue problem (30).
Moreover, substituting (49) into (40), we have

(53)

Since as can be seen from (52), we obtain

(54)
which is nothing, but one column vector of the physically im-
portant eigenvectors of (45), and hence (30). As a result, we
prove that the eigenvectors obtained from (40) are the eigenvec-
tors of the original eigenvalue problem (30) that are physically
important for the given frequency band.

V. NUMERICAL RESULTS

A suite of examples frommicrowave cavities to on-chip inter-
connects was simulated to demonstrate the accuracy, efficiency,
and convergence of the proposed eigenvalue solver. For all these
examples, the right hand side vector is chosen as a vector of
random numbers. The bisection method is used to choose fre-
quencies in the given frequency band until the proposed eigen-
value solver converges.

A. Rectangular Microwave Cavities

We first validated the proposed method with a set of mi-
crowave structures, the analytical resonant frequencies of which
were given in [19].
The first microwave structure is a half-filled 1 cm 0.1

cm 1 cm rectangular cavity with a dielectric material of
extending from to , as shown in

Fig. 1. The left half of the cavity is filled by air. The rectangular

Fig. 1. Lossless half-filled rectangular cavity.

cavity is shielded with perfect electric conductors (PEC) all
around.
The finite element based discretization results in 1575 un-

knowns. The frequency band of interest is [1 GHz, 50 GHz].
The proposed eigenvalues solver is applied to find a complete
set of eigenvalues that are physically important for the given
frequency band. As mentioned before, this set of eigenvalues
includes all the eigenvalues within the given frequency band
and the eigenvalues that are close to the given frequency band.
The SVD error used in (10), , is chosen as . Given
such an accuracy criterion, the proposed eigenvalue solver con-
verges when the column dimension of reaches 20, i.e.,
in (11) is 20. The resultant rank of (9), and hence (11), is 15,
which saturates no matter how much the column dimension
of further grows. The dimension of the reduced eigenvalue
problem (12), and hence the number of physically important
eigenvalues, , is 15, which agrees with the number obtained by
directly solving the original eigenvalue problem (6). Compared
to the size of the original eigenvalue problem (6), which is 1575,
the reduction is significant. Moreover, the proposed eigenvalue
solver is capable of producing a complete set of eigenvalues
that are physically important for the given frequency band with
guaranteed convergence and controlled accuracy. In Table I,
we list the lowest four resonance wave numbers obtained from
the proposed eigenvalue solver in comparison with analytical
data. Excellent agreement is observed. In Table II, we compare
both eigenvalues and eigenvectors of (6) generated by the pro-
posed eigenvalue solver with those obtained from the eigen-
value solver in Matlab. Excellent agreement is observed in both
eigenvalues and eigenvectors. The eigenvector relative error is
defined as , where is computed from the
proposed solver, and is the eigenvector generated from
Matlab’s eigenvalue solver. It is worth mentioning that Table I
shows an error much larger than that given in Table II because
the comparison is made with analytical solution, and the error
contains the space discretization error. To improve the accuracy
of Table I, one can refine the mesh. To verify, we double the
mesh elements along both and directions, which results in
6745 unknowns. The errors of the four eigenvalues in Table I
are shown to be 0.11%, 0.15%, 0.15%, and 0.17% respectively,
and hence reduced.We also simulate the same example by using
a lower-order accuracy setting of . As expected,
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TABLE I
RESONANT WAVE NUMBERS OF A LOSSLESS CAVITY

TABLE II
EIGENVALUE AND EIGENVECTOR ERRORS OF A LOSSLESS CAVITY

Fig. 2. Lossy half-filled rectangular cavity.

the eigenvalues obtained are less accurate than those in Table I.
The errors for the four eigenvalues are shown to be 0.32%,
0.25%, 1.35%, and 6.64%, respectively. The last eigenvalue ap-
pears to be affected the most in accuracy. This can be due to the
fact that the singular values associated with this mode are af-
fected the most by the new truncation criterion.
Next, we consider a rectangular resonator half filled by a con-

ductive material, as shown in Fig. 2. The dimension of the res-
onator is 22.86 mm 22.86 cm 10.16 mm. The conductive
material has relative permittivity and conductivity that
ranges from 0.1 to 1.3. Again the rectangular cavity is shielded
by perfect electric conductors.
The quadratic eigenvalue problem shown in (31) is solved by

the proposed method. The frequency band of interest is [1 GHz,
50 GHz]. The SVD error used in (10), , is chosen as .
In Table III, we list the lowest resonance frequencies obtained
from the proposed eigenvalue solver in comparison with analyt-
ical data. Excellent agreement is observed. For simulating the
four cases with , 0.5, 1.0, and 1.3 S/m respectively, the
column dimension of upon convergence is 39, 37, 37, and 36
respectively. The number of physically important eigenvalues,
, in the given frequency band are found to be 36, 35, 35, and
34, respectively.
To assess the capability of the proposed eigenvalue solver in

identifying degenerate eigenvalues, we simulated a PEC cavity
of dimension 1 cm 1 cm 2 cm. The finite element based
discretization results in 29, 260 unknowns. The frequency
band considered is [10 GHz, 30 GHz]. The SVD error

TABLE III
LOWEST RESONANT FREQUENCIES OF A LOSSY RECTANGULAR CAVITY

TABLE IV
RESONANT FREQUENCIES OF A LOSSLESS 1 CM 1 CM 2 CM CAVITY

Fig. 3. Illustration of a package inductor.

is chosen as . Given such an accuracy criterion, the pro-
posed eigenvalue solver converges when the column dimension
of reaches 19. The resultant rank of (9) is 15, which saturates
no matter how much the column dimension of further grows.
In Table IV, we list the first seven resonant frequencies in the
given frequency band obtained from the proposed eigenvalue
solver in comparison with analytical data. Very good agreement
is observed. It is also observed that although the degenerate
eigenvalues analytically are identical, what is numerically
found can have a slight difference.

B. Package Inductor

We simulated a package inductor example, the detailed ge-
ometry and material information of which are given in Fig. 3.
In this example, we also compared the CPU time cost of the pro-
posed eigenvalue solution with that of a state-of-the-art Arnoldi
based sparse eigenvalue solver in Matlab.
A finite element based discretization results in 1499 un-

knowns. Since conductor loss is involved, the proposed method
is used to solve a quadratic eigenvalue problem shown in (2)
to find a complete set of eigenvalues and eigenvectors that are
physically important for frequency band [1 GHz, 100 GHz].
The SVD error used in (10), , is chosen as 1.0 .
The proposed eigenvalue solver converges when reaches
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TABLE V
LOWEST FIVE RESONANCE FREQUENCIES OF A PACKAGE INDUCTOR

TABLE VI
STEPS AND CPU TIME FOR FINDING THE EIGENSOLUTION OF A PACKAGE

INDUCTOR IN THE FREQUENCY BAND [1 GHZ, 100 GHZ]

a column dimension of 15. The rank of (33) saturates at 12,
which is also the number of physically important eigenvalues,
, solved from (34).
In Table V, we compare the resonance frequencies gener-

ated by the proposed eigenvalue solver with those generated by
Matlab. Excellent agreement can be observed. The backward
error, shown in (43), of the proposed eigenvalue solver is also
given in Table V. Good accuracy of the proposed solver can be
clearly seen.
To evaluate the efficiency of the proposed method, we

compare its performance with that of a state-of-the-art
Arnoldi-based sparse eigenvalue solver provided by Matlab.
When using the eigenvalue solver in Matlab, we use a central
frequency to accelerate Matlab’s eigenvalue
solution to find the resonant frequencies in the range of [1 GHz,
100 GHz]. The Matlab’s solver outputs one zero eigenvalue
and the lowest five nonzero eigenvalues in six Arnoldi steps,
the CPU cost of which is given in Table VI. We find that the
Arnoldi-based eigenvalue solver in Matlab is sensitive to the
choice of . For example, if we choose , it can
take more than 200 Arnoldi steps to find the first five nonzero
resonant frequencies. Moreover, the Arnoldi-based eigenvalue
solver cannot guarantee that all the important eigenvalues are
found in a certain number of Arnoldi steps, i.e., there is no
systematic way to control the convergence. Table VI compares
the CPU time of the proposed eigenvalue solver with that cost
by Matlab. It is shown that the proposed solver takes much less
time than the Matlab’s eigenvalue solver.

C. On-Chip Interconnect

The last example is an on-chip 3-D interconnect example
shown in Fig. 4. The structure is of size 6 5 7 ,
with its upper and lower boundaries shielded by perfect elec-
tric conductors. Copper wires with conductivity
are orientated in and directions. The geometrical and mate-
rial data are given in Fig. 4(a) and (b). The unit of the length,
width, spacing, thickness shown in Fig. 4 is . The symbol

( ) denotes the th metal layer, and is rela-
tive permittivity.
The discretization results in 2314 unknowns. Due to the small

feature size of the structure, its resonant frequencies are very

Fig. 4. Illustration of a lossy on-chip 3-D interconnect structure. (a) 3-D view
of the structure. (b) -plane cross-sectional view.

TABLE VII
LOWEST THREE RESONANCE FREQUENCIES OF AN ON-CHIP INTERCONNECT

high. The frequency band computed is [1 kGHz, 10 kGHz]. The
SVD error used in (10), , is chosen as 1.0 . The pro-
posed eigenvalue solver converges when the column dimension
of reaches 12. The number of physically important eigen-
values found is 10.
Table VII lists the lowest three resonance frequencies as well

as the backward errors of the proposed eigenvalue solution. The
backward error measures the accuracy of both eigenvalues and
eigenvectors, as can be seen from (43).
To simulate this example, the proposed eigenvalue solver

only cost 1.3 s, whereas the state-of-the-art eigenvalue solver
in Matlab used 200 Arnoldi steps, which cost 219 seconds,
even though we provided for Matlab to shift
the eigenvalue spectrum. To simulate the same example, the
number of Arnoldi steps required by the eigenvalue solver in
[9] is 1000. The number of Arnoldi steps of [9] is different
from that of Matlab’s solver because the finite element ma-
trix is formulated in a different way in [9]. Due to the linear
complexity at each Arnoldi step, the total time cost by the
solver in [9] is 1.9 s, which is less than Matlab’s solver. As
mentioned in the introduction part, the disadvantage of an
Arnoldi-based eigenvalue solver is that there is no systematic
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way to control the convergence of an Arnoldi iteration. The
200 used in Matlab and the 1000 used by the solver in [9] are
both empirically adjusted in order to find the eigenvalues of
interest. This problem is especially critical when dealing with
a quadratic eigenvalue problem, the eigen-solutions of which
are complex-valued. The number of Arnoldi iteration steps,
and hence the Krylov-subspace vectors, required to find
physically important eigenvalues by the solver in [9] and that in
Matlab is unknown and also can be large due to the limitation
of an Arnoldi based eigenvalue solver, whereas the number
of vectors required by the proposed solver is quantitatively
controlled by checking the saturation of the rank of (9) or (32),
and also small. In this example, the number of vectors required
by the proposed eigenvalue solver is only 12 as compared to
200 used in Matlab and 1000 used in [9].

VI. CONCLUSION

The solution to eigenvalue problems is of great importance to
electromagnetic analysis. In this paper, a deterministic-solution
based fast eigenvalue solver is developed to find a complete set
of eigenvalues and eigenvectors that are physically important
for an arbitrary given frequency band. Let the number of such
a complete set of eigenvalues be , the proposed eigenvalue
solver only needs to solve an eigenvalue problem of to find
the eigenvalues and their corresponding eigenvectors. Such
a reduced eigenvalue problem is orders of magnitude smaller
than the original eigenvalue problem of . Furthermore,
the eigenvalue problem is built from solutions to a
deterministic problem, and hence existing methods for solving
deterministic problems and their fast solvers can all be readily
used to solve eigenvalue problems.
Both fast generalized eigenvalue solver and quadratic eigen-

value solver are developed. They are applicable to arbitrary
3-D structures and inhomogeneous materials. Both dielectrics
and conductors can be lossy. Numerical experiments from mi-
crowave cavities to package structures to on-chip integrated cir-
cuits have demonstrated the accuracy, efficiency, and guaran-
teed convergence of the proposed deterministic-solution based
fast eigenvalue solvers.
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