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A Direct Domain-Decomposition-Based Time-
Domain Finite-Element Method of Linear
Complexity for Simulating Multiscaled
Structures in Integrated Circuit Systems

Duo Chen and Dan Jiao, Senior Member, IEEE

Abstract—A direct domain-decomposition-based time-domain
finite-element method of linear complexity is developed to over-
come the challenge of simulating a wide range of geometrical
scales present in an integrated circuit (IC) system. Via a set of
orthogonal prism vector basis functions, we decompose the entire
3-D system of an IC problem into 2-D subsystems and then into
1-D subsystems with negligible computational cost. We then fur-
ther decompose each 1-D subsystem into two domains, one with
conductors and the other one with dielectrics. A direct solution
without any iteration is proposed to solve the resulting system in
linear complexity. Furthermore, the method allows for the use
of different meshes in different domains. Numerical simulations
of ICs and package problems have demonstrated the accuracy,
linear complexity, and meshing flexibility of the proposed method.

Index Terms—Direct solvers, domain decomposition, finite-ele-
ment methods, multiscale, time-domain electromagnetic analysis,
very large scale integrated circuits.

I. INTRODUCTION

T HE scaling of supply voltages and the increased level
of integration have made the analysis and design of mi-

croelectronic systems increasingly challenging. To sustain the
scaling and integration of digital, analog, mixed-signal, and RF
circuits for years to come, an electromagnetic solution is indis-
pensable to overcome the fundamental limits of a circuit-based
analysis.
There are two major challenges associated with the electro-

magnetics-based analysis of very large scale integrated circuits
(ICs): exponentially increased problem size and multiscaled
structures. In recent years, a lot of work has been done to
address the challenge of simulating very large scale circuits in
time domain [1]–[10]. The challenge of simulating multiscaled
structures in ICs has also been tackled. One of the fundamental
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schemes addressing the challenge of multiscale simulation is
the domain-decomposition technique. Existing domain-decom-
position techniques [11]–[16] have been successful in many
applications. However, most of them are iterative solutions,
the convergence of which is problem dependent [17]. When
simulating very large scale ICs, owing to the complexity of the
problem, the number of iterations required for convergence is
typically not small and, also, grows with the problem size. The
performance of an iterative-solution-based domain-decompo-
sition algorithm is further degraded in transient analysis where
the right-hand side changes at every time step.
The contribution of this paper is the development of a

direct matrix-solution-based domain decomposition of linear
complexity for simulating a wide range of geometrical scales
present in an IC. In the proposed direct domain-decomposition
method, by recognizing the fact that the origin of the multiscales
in an IC is the multiple scales of conductors since dielectric
regions have a similar scale, we decompose an IC into two
domains. One contains all the conductors; the other includes all
the dielectrics. The conductor domain is further naturally de-
composed into multiple subdomains, each of which consists of
a conductor network that is not physically connected with other
conductors. An independent meshing is then performed in each
subdomain, where a dielectric subdomain is discretized with a
coarse mesh, while a conductor subdomain is discretized with a
fine mesh to capture the rapid field variation within skin depth
inside conductors. The decomposed dielectric and conductor
subdomains are then solved separately by developing a direct
domain-decomposition method without any iteration. In each
subdomain, the system matrix is solved in linear complexity.
To further accelerate the proposed direct domain-decomposi-

tion algorithm, instead of directly decomposing the entire 3-D
domain into a conductor domain and a dielectric domain, we
first decompose the original 3-D system to 1-D subsystems with
negligible computational cost via orthogonal prism vector basis
functions we recently developed in [9]. We then perform the
conductor-dielectric-based domain decomposition in each 1-D
subsystem. By doing so, not only the decomposition of the en-
tire computational domain into a conductor domain and a dielec-
tric domain is made much more convenient, but also we further
speed up the proposed direct domain-decomposition algorithm.
The accuracy, efficiency, andmeshing flexibility of the proposed
method have been demonstrated by numerical experiments.

0018-926X/$31.00 © 2012 IEEE



CHEN AND JIAO: A DIRECT DOMAIN-DECOMPOSITION-BASED TIME-DOMAIN FINITE-ELEMENT METHOD 5229

II. TIME-DOMAIN FINITE-ELEMENT-BASED
ELECTROMAGNETIC ANALYSIS OF ICS

The electric field inside a 3-D IC satisfies the second-order
vector wave equation

(1)

subject to certain boundary conditions. In (1), is current den-
sity, is a point in 3-D space, denotes time, is relative per-
meability, is free-space permeability, is permittivity, and
is conductivity. In IC and package problems, it is very important
to account for the conductivity of metals and model fields inside
conductors. This is because fields penetrate into conductors due
to the small feature sizes of the IC and package structures and
also because of their broadband working frequencies that start
from direct current (dc).
A time-domain finite-element solution of (1) and its boundary

condition results in the following system of ordinary differential
equations [18]:

(2)

in which is the unknown field vector, , , , and are
square matrices that are assembled from their elemental contri-
butions as the following:

(3)

while the excitation vector in (2) is assembled from

(4)

In (3) and (4), is the vector basis function used to expand
electric field in each element, is the speed of light, is
a unit vector normal to truncation boundary and pointing
outward, denotes a surface integration, and de-
notes a volume integration. Matrix is related to the absorbing
boundary condition. If the first-order absorbing boundary con-
dition is employed to truncate the 3-D computational domain,
the matrix element of is the same as that shown in (3). If
other types of absorbing boundary conditions are used, can
be modified correspondingly.
Matrix is associated with displacement current, while

is associated with conduction current. It is well known that in-
side a conductor, the conduction current is dominant because
the magnitude of the displacement current is orders of magni-
tude smaller than that of the conduction current from dc to very
high frequencies. Therefore, inside conductors, the term asso-
ciated with displacement current, which is the -related term,
can be neglected, and hence (2) becomes

(5)

where denotes the excitation from both the current source
and the coupling from the dielectric region to the conductor re-
gion. Equation (5) is a first-order ordinary differential equation
in time domain. Its solution has an analytical time dependence,
which can be obtained efficiently using the scheme shown
in [10]. The resultant scheme is also unconditionally stable
because it allows for the use of any large time step without
violating stability in time-domain simulation. Moreover, (5)
can also be simulated by a forward difference scheme that
permits the use of a very large time step, which will be shown
in Section III-E.

III. PROPOSED DIRECT DOMAIN-DECOMPOSITION METHOD OF
LINEAR COMPLEXITY

A. Direct Domain Decomposition for Separating the Solution
in Conductor Domain From That in Dielectric Domain for
Efficient Simulation of Multiscaled Structures

1) Decompose the System Into a Conductor Domain and a
Dielectric Domain: In an IC system, there exists a wide range
of geometrical scales. For example, a metallic wire in on-chip
metal 2 (M2) layer can be less than 0.5 m in width, while a
package plane can be as wide as a few millimeters. Despite the
wide range of geometrical scales, the conductors are the ones
that have multiple scales; the dielectric materials all have a sim-
ilar scale. By recognizing this fact, we propose to decompose an
IC problem into two subdomains. One contains all the conduc-
tors; the other includes all the dielectrics. The conductor domain
again can be naturally decomposed into multiple subdomains
that are fully decoupled, each of which consists of a conductor
network that is not physically connected with other conductors.
For example, in a 3-D bus structure, each single bus makes a
subdomain that is decoupled from other subdomains because it
is physically disconnected with other buses.
There are a number of advantages of decomposing an IC

problem into a conductor domain and a dielectric domain. First,
the multiple scales present in an IC system can be divided into
different subdomains to conquer, with each subdomain having
its own scale. For example, the subdomain formed by a bus in
an M2 layer has a very small feature size, while the subdomain
formed by a package plane has a very large scale. Since the ma-
trix blocks corresponding to physically disconnected conductor
subdomains are naturally decoupled from each other, these ma-
trix blocks can be solved independently. Hence, one does not
need to tackle the orders-of-magnitude different scales simul-
taneously. Second, each subdomain can be meshed indepen-
dently based on its own geometrical scale and physical property,
hence providing flexibility in meshing and efficiency in compu-
tation. For example, the dielectric domain that has a very slow
field variation in space can be discretized with a coarse mesh,
whereas the conductor domain that has a very rapid field varia-
tion within skin depth can be discretized with a fine mesh. In
addition, the conductors in different metal layers can be dis-
cretized with different mesh density. Hence, the total number
of unknowns can be reduced, which helps speed up the simula-
tion. Third, the conductor domain is governed by the diffusion
equation while the dielectric domain is governed by the wave
equation. By separating these two domains from each other, one
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can take advantage of the different physics in different domains
to solve a different set of equations in each domain to speed up
the simulation.
Although the matrix block in each conductor subdomain is

decoupled from that in the other conductor subdomains, the ma-
trix block corresponding to the dielectric domain is coupled to
all the conductor subdomains, whichmakes an efficient domain-
decomposition difficult. Most of the existing domain decom-
position algorithms rely on iterative solvers to handle the cou-
pling between different subdomains, the convergence of which
is problem dependent. In Sections III-A2 and III-A3, we show
how to efficiently simulate the system of equations in the con-
ductor domain and that in the dielectric domain, from which
a direct domain-decomposition algorithm is developed without
the need of any iteration. In Section III-B and Section III-C, we
propose a linear-complexity implementation of the proposed di-
rect domain-decomposition algorithm, and hence achieving op-
timal complexity.
2) Time-Domain Discretization of the System Equations in

Different Domains: The 3-D computational domain of an IC
problem is decomposed into two subdomains: conductor do-
main and dielectric domain. Correspondingly, we cast the orig-
inal system of (2) into the following form:

(6)

where denotes all the unknowns inside conductors as well
as those on the conducting surface and denotes those outside
conductors. It is worth mentioning that we do not separately for-
mulate a boundary value problem for the conductor domain and
the dielectric domain. Instead, a single boundary value problem
is formulated for the entire computational domain, yielding the
linear system of equations shown in (2). Equation (6) is simply
another representation of (2), in which the unknowns are cat-
egorized into two groups: and . Since in a finite-element
method the current source excitation is usually launched from
the region outside conductors, the excitation of the first row in
(6) is zero. Since the unknowns residing on the conductor sur-
face are categorized into , the matrix is only nonzero in the
-block. The is not considered in (6) because it is negligible
compared to .
The dielectric domain is governed by the second row of equa-

tions in (6), which can be written as

(7)

By adopting a central difference scheme to approximate the
first- and second-order time derivatives in (7), we obtain

(8)

where represents the time step.

The conductor domain is characterized by the first row of
equations in (6). Inside a conductor, the displacement current is
orders of magnitude smaller than that of the conduction current
from dc to very high frequencies. Hence, the can be ignored
in the first row of (6). Thus, we have

(9)

It is known that a central difference scheme cannot guarantee
stability in the time-domain simulation of a diffusion equation.
Here, we adopt a forward difference scheme to approximate the
first-order time derivative of the with respect to time. We
obtain

(10)

Combining (8) and (10), the system of equations for the en-
tire domain including both dielectric and conductor subdomains
becomes

(11)

The above is solved at each instant to obtain field solutions.
Clearly, the computational bottleneck is the solution of the left-
hand-side matrix. In Section III-A3, we show how to perform
a direct domain decomposition to solve (11) without invoking
iterations.
3) Direct Domain-Decomposition Method: To help explain

the proposed direct domain-decomposition algorithm, we
rewrite (11) in a compact form as follows:

(12)

where

(13)

the and represent the interaction between the un-
knowns on the conductor surface and the unknowns in
dielectric domain, and denotes the right-hand side of
(11). As can be seen from (11), the right-hand side changes at
every time step.
In Fig. 1, the dielectric domain is denoted by -domain, and

the conductor domain is denoted by the -domain. To describe
the proposed domain-decomposition algorithmmore clearly, we
define the area in the -domain, which contains all the un-
knowns that interact with the -domain, as the buffer region,
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Fig. 1. (a) Illustration of the conductor domain ( -domain) and dielectric do-
main ( -domain), interface, and buffer regions. (b) Relationship between ,

, , and .

which is the gray region shown in Fig. 1(a). In an edge-based
finite-element method, the degrees of freedom are assigned to
edges. We call the edges located in the buffer region as buffer
edges, and the edges on the conductor surface as interface edges.
The relationship between the matrix blocks in (12) is illustrated
in Fig. 1(b).
To solve (12) directly, we first reduce the whole system to that

in the conductor domain via Schur complement, thus obtaining

(14)

By solving (14), we obtain the solution of , from which we
can retrieve the solution of by

(15)

The Schur complement in (14) carries
the contribution from the -domain to the -domain. Its di-
rect solution is generally regarded computationally expensive
since the original matrix structure of is altered significantly
by , and also the resultant matrix becomes dense.
Therefore, (14) is often solved by iterative solvers in domain-de-
composition methods. In the following, we show that (14) con-
cerned in this work can be solved directly without any iteration
by using the solution of and the solution of only.
Based on the expressions of and shown in (3), we have

the following relationship:

(16)

since the metal conductivity is in the order of . This indi-
cates that the elements in and are orders of magnitude dif-
ferent. From (16) and (13), we can see that the magnitudes of
’s elements and those of ’s elements are also

very different. The is , while can be estimated
as , since the -related term is significantly smaller than the
-based term. Thus, the norm of over that of

can be evaluated as

Since is a Hermitian matrix, it is unitarily diagonalizable.
Thus, we have

where is a unitary matrix, and is a diagonal eigenvalue
matrix. As a result, we obtain

and, hence

where , i.e., the minimum value in , is the minimum
eigenvalue of . Thus, we obtain

Since , the can be estimated from
. As for , , and , they can be quantita-

tively assessed from (3). As a result, we obtain the following
estimation:

(17)

For the simulation of ICs and packages, the time step is gener-
ally greater than 10 s. This is because this time step is small
enough to capture all of the frequencies that can exist in a circuit
response; it is also small enough to maintain the time-domain
stability in conditionally stable schemes such as central-differ-
ence-based explicit time-domain methods. As a result, (17) is
less than 0.01. Hence, is negligible compared to
. Therefore, the computation of (14) becomes the computa-

tion of

(18)

If a rigorous solution is pursued and no approximation is al-
lowed, the solution of (14) can be computed using the following
Neumann series:

(19)
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which can converge within a few terms since the norm of
is much less than 1. From (19), it can be seen

that even though a rigorous solution is pursued, the solution
of Schur complement can be found by computing and

, and hence from the solution of and only. As a
result, we achieve a direct domain decomposition without any
iteration. The matrix solution in the -domain is completely
decoupled from that in the -domain. Moreover, independent
meshing can be performed in two domains.

B. Direct Domain Decomposition for Decomposing a 3-D
System Into 1-D Subsystems, With Each 1-D Subsystem Further
Decomposed Into Conductor and Dielectric Subsystems

As can be seen from Section III-A, we solve two decomposed
subsystems (18) [or (19)] and (15) to obtain the solution of the
original problem. It is clear that with the proposed direct decom-
position algorithm, the solutions of and are fully decou-
pled. To further accelerate the proposed direct domain-decom-
position algorithm, instead of directly decomposing the entire
3-D domain into a conductor domain and a dielectric domain,
we will first decompose the original 3-D system to 1-D sub-
systems with negligible computational cost. We then perform
the conductor-dielectric decomposition in each 1-D subsystem.
By doing so, not only the decomposition of the entire computa-
tional domain into a conductor domain and a dielectric domain
is made much more convenient, but also we further speed up
the proposed direct domain-decomposition algorithm. The de-
tails of this step are given as follows.
We discretize the computational domain into triangular prism

elements. For ICs and package problems, triangular prism ele-
ments are indeed natural for choice. Even if one discretizes the
structure using tetrahedral elements, layers of tetrahedral ele-
ments will be obtained since the structure is layered in nature.
For a Manhattan-type IC that is most widely used today, the
structure is layered in any direction (in other words, the geom-
etry can be sliced into layers while the material is not required to
be layered). Furthermore, if one can accept a staircase approxi-
mation in geometrical modeling along one direction, a triangular
prism element can be used to discretize arbitrarily shaped 3-D
structures. In any case, it provides a better geometrical modeling
capability than what a grid can offer.
In each triangular prism element, we expand the unknown

electric field into orthogonal prism vector basis functions de-
veloped in [9], which are illustrated in Fig. 2. In these basis
functions, the set of bases that are associated with upper and
lower planes of the prism, i.e., bases , are
called surface basis functions while those associated with ver-
tical edges are called volume basis functions (i.e., ).
These bases have two important properties. First, surface basis
functions and volume basis functions are perpendicular to each
other because of the geometrical nature of a prism element, as
shown in Fig. 2. Second, on each surface, the surface basis func-
tions are orthogonal to each other because of the property of the
orthogonal vector bases.
With the first property, without any computational cost, we

can decompose the original 3-D system of any IC problem into

Fig. 2. Illustration of the orthogonal prism vector basis functions (after [9]).

two 2-D subsystems, i.e., surface unknown system and volume
unknown system, as shown in the following:

(20)

in which denotes the surface unknown system, the volume
unknown system consists of decoupled subsystems in each
layer, , and denote the surface
unknowns, and volume unknowns, respectively, while and

denote the right-hand side of (11) corresponding to the
surface and volume unknowns, respectively.
With the second property, we can further decompose the 2-D

surface unknown system into 1-D subsystems. The 2-D
surface unknown system is composed of and

blocks, as shown in Fig. 3. Each of and is
diagonal due to the orthogonality of the vector basis functions
[9]. We assume that the discretization results in unknowns
on a single surface and layers, and hence surfaces. By
permuting unknowns, the shown in Fig. 3 can be naturally
transformed to a block diagonal matrix of blocks, as shown
in the following:

(21)

More important, each diagonal block is a
tridiagonal matrix of size

(22)

where and denote the th entries in matrices and
, respectively. Essentially, matrix in (21) is decomposed

into multiple 1-D susbsystems . Each 1-D subsystem is asso-
ciated with one surface basis function and its counterparts along
the prism (layer) growth direction. Again, the decomposition
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Fig. 3. Illustration of the surface unknown system .

Fig. 4. Illustration of , a volume unknown subsystem in each layer.

from a 2-D surface unknown system to 1-D subsystems shown
in (21) is done without any computational cost.
As for the volume-unknown-based subsystem in each

layer, it is a block tridiagonal matrix, as shown in Fig. 4. Each
block of , the size of which is highlighted by the circle
shown in Fig. 4, represents a 1-D subsystem whose dimension
is the number of dielectric stacks in an IC, a constant that does
not grow with problem size.
The final matrix structure resulting from the aforementioned

decomposition from a 3-D system to 1-D subsystems is shown
in Fig. 5(a), which is a block diagonal matrix. Each diagonal
block in the surface unknown system represents a 1-D sub-
system corresponding to , shown in (22), the dimension
of which is the number of layers. Each diagonal block in the
volume unknown system represents a 2-D subsystem in each
layer, the detailed structure of which is shown in Fig. 4. The
2-D subsystem in each layer is made of 1-D blocks whose
dimension is the number of dielectric stacks.
Next, in each diagonal block shown in Fig. 5(a), we decom-

pose the unknowns into - and -unknowns, where denotes
a conductor domain, and denotes a dielectric domain. By
doing so, the conductor-dielectric decomposition is made very
convenient. The final decomposed system has a matrix structure
shown in Fig. 5(b). Each combined system is then solved
by the direct domain-decomposition algorithm described in
Section III-A. The rows of equations in each 1-D subsystem

Fig. 5. (a) Matrix structure of the decomposed system made of 1-D blocks.
(b) Illustration of the further decomposition into - and -subsystems in each
1-D block. (c) Structure of or in a surface-based 1-D subsystem and
a volume-based subsystem.

corresponding to -unknowns are shown in (18), while the rows
of equations corresponding to -unknowns are shown in (15).

C. Linear-Complexity Direct Solution

In the decomposed system shown in Fig. 5(a), each 1-D
surface unknown subsystem, which is , shown in (22), is
a tridiagonal matrix, and each single-layer volume unknown
subsystem is a block tridiagonal matrix shown in Fig. 4,
with each block having a 1-D size.
After the decomposition illustrated in Fig. 5(b), the

matrix property of the resultant and in each subsystem
remains the same. In surface unknown system, and are
block diagonal matrices, with each block being tridiagonal, as
shown in the left figure of Fig. 5(c). Therefore, the direct so-
lution of and in the surface unknown based system
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has a linear complexity due to the tridiagonal matrix structure
[19]. Similarly, for each subsystem that is formed by volume
unknowns in a single layer, with the original structure shown
in Fig. 4, which is a block tridiagonal matrix, the resultant
and remain to be block tridiagonal matrices, as shown in
the right figure of Fig. 5(c). In this figure, the dashed lines in the
off-diagonal blocks indicate that some of the nonzero entries in
the original volume unknown system in Fig. 5(a) have been cat-
egorized into and blocks, hence those elements become
zero in and . However, these zero elements do not affect
the matrix structure. The matrix remains to be a block tridiag-
onal matrix. In [9], the underlying volume unknown solver is an
iterative solver. Although the iteration number is not large, the
performance of an iterative solver deteriorates when the number
of right-hand sides is large, which is typically true in a time-do-
main solver. To address this problem, in this work, we solve the
block tridiagonal matrix by using block UV factorization [19] or
block reduction recovery method [9] in linear complexity, based
on the fact that the block size is a constant since the dimension of
each block in a single-layered volume unknown system is equal
to the number of dielectric stacks in an IC. Assuming the number
of stacks is and the number of blocks in a volume unknown
subsystem is , the overall complexity of a block UV-based
direct solution is . Since , where is
the total number of volume unknowns in a single layer, the com-
plexity is . Since is a constant, the complexity is
linear. With and in both surface unknown system and
volume unknown system solved in linear complexity, the entire
solution of the proposed direct domain-decomposition method
has a linear complexity.

D. Nonconformal Mesh

Since and are fully decoupled in the final system,
we can mesh the conductor domain and the dielectric domain
independently. To capture the rapid field variation inside con-
ductors, we use a fine mesh to discretize the -domain (con-
ductor domain). In the -domain (dielectric domain), we use a
coarse mesh. The resulting system with a nonconformal mesh
is computed as follows:

(23)

(24)

in which is a projection matrix that projects the field solu-
tion from the -domain with a coarse mesh to the -domain
with a fine mesh, while projects the field solution on inter-
face edges from -domain with a fine mesh to -domain with a
coarse mesh. They both are extremely sparse matrices. In (23),

denotes a field solution in the -domain that has a
coarse mesh, while is constructed based on the fine mesh.
In , only the rows corresponding to the interface edges are
nonzero, as illustrated in Fig. 1(b). Each nonzero entry in
denotes the interaction between an interface edge and a buffer
edge. Therefore, the vector that multiplies with is the field
solution in the buffer region. Hence, the role that plays is
to interpolate the field solution , which is obtained in
a coarse mesh, thus obtaining the field solution in the buffer re-
gion that has a fine mesh. Consider an arbitrary edge in the

buffer region. Assume that it is located in the th triangular
prism element in the -domain. The th row of ,
which is the field solution at buffer edge , can be evaluated as
follows:

(25)

where is the center point of the buffer edge , and
is a unit vector tangential to this buffer edge,

denotes the orthogonal prism vector basis in the
th element, and is the field solution in the -domain pro-
vided by . From (25), it can be seen that the elements
of can be written as

(26)

where denotes the global edge number of the th edge
in the th element in the -domain.
In (24), is constructed based on a coarse mesh. It needs

to be multiplied by the field solution at the interface edges in the
coarse mesh.What does is to interpolate the field solution
at the interface edges in the fine mesh (used for discretizing the
conductor domain) to obtain the field solution at the interface
edges in the coarse mesh (used in the dielectric domain). It can
be constructed in the same way as is constructed. Both
and are extremely sparse matrices, since the interface edges
and the buffer edges only account for a very small portion of
the entire edges. Thus, the computation of - and -based
matrix–vector multiplications has a linear complexity and the
cost is also negligible.

E. Stability Analysis

Since there are two different time marching schemes in the
final system shown in (11), i.e., forward difference for conductor
domain and central difference for dielectric domain, we need to
perform a stability analysis for each domain. The final stability
criterion for the whole system is determined by the minimum
time step permitted by each domain.
In the dielectric domain, since a central difference is used, the

time step needs to satisfy the following stability criterion [21]:

in dielectric domain (27)

in which denotes the spectral radius. In conductor domain,
a forward difference is used, the stability of which can be ana-
lyzed as follows.
We set the right-hand side of (9) to be zero and perform a
-transform. We obtain

(28)

in which denote the -transform of . We denote
by . Clearly, is the eigenvalue of matrix . To
make the system stable, we have to bound the magnitude of
to be less than one or inside a unit circle on the complex plane.
From and , and utilizing the fact that
is nonnegative real number because is positive definite and
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Fig. 6. A cube that is partially filled with copper.

TABLE I
RELATIVE ERROR VERSUS TIME STEP AND NUMBER OF TERMS

is semipositive definite, we obtain , where
is the largest value of , which is . Therefore, the
stability criterion for the conductor domain is

in conductor domain (29)

Next, we compare the stability criteria for conductor and di-
electric domains, and find out the smaller one to be used as
the stability criterion of the entire system. The and

are the largest eigenvalue that can be found from
solving , and , re-
spectively, in which and are eigenvalues. Considering the
relationship between the magnitude of the matrix elements in
and that in , as shown in (16), we identify the following rela-
tionship between and :

(30)

which means that . Even after taking
a square root of , is greater than . As a re-
sult, the stability criterion of the combined dielectric-conductor
problem is governed by that of the dielectric domain.

IV. NUMERICAL RESULTS

We have simulated a number of examples to demonstrate the
accuracy and efficiency of the proposed method. The computer
used has an Intel Xeon CPU E5410 running at 2.33 GHz.
First, we assess the accuracy of the proposed direct solution of

the Schur complement shown in (14). The example considered
is a cube that is half filled by copper, the conductivity of which is
5.0 e 7 S/m. The dimension of the cube is set based on typical
on-chip circuit dimensions, as shown in Fig. 6. The mesh size is
1 m, both inside and outside conductors in this example. The
dielectric region is free space. The open boundary condition is
employed to truncate the computational domain. The relative
error between and is evaluated by

(31)

In addition, as shown in Section III, if a higher order of ac-
curacy is pursued, Neumann series (19) can be employed to
solve (14) with a few terms. Its relative error as compared
to is evaluated by (32), shown at the
bottom of the page, in which denotes the number of terms
in Neumann series. In fact, when , Neumann series (19)
becomes , and hence the direct solution of (14) becomes
the direct solution of (18). Table I shows the calculated relative
error with respect to different time step . As can be seen, the
relative error is very small even with a very small that is
typically used in a conditionally stable explicit method for sim-
ulating on-chip circuits. When increases, the relative error
decreases. Therefore, for both conditionally stable schemes
that have a small time step and unconditionally stable schemes
that have a large time step, (18) constitutes an accurate solution
of (14). Table I also shows the relative error with respect to
the number of expansion terms in Neumann series. As can be
seen, when the number of terms used in the Neumann series
increases, the relative error decreases. Since the accuracy of the
one-term Neumann series (i.e., using only) is satisfactory,
it is used in all the following examples.
The second example is a realistic test-chip interconnect

structure of length 100 m provided by Intel Corporation.
This test-chip interconnect structure was fabricated using
conventional silicon processing technology. It comprised three
metal layers and 13 inhomogeneous dielectric stacks, which is
illustrated in Fig. 7. The smallest mesh size inside conductors
is 0.2 m, while the mesh size outside conductors is 5 m.
A current source, which is a time derivative Gaussian pulse

( 3.0e-12 s), was placed at the
near-end of the interconnect. The far end was left open, which

(32)
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Fig. 7. Test-chip interconnect structure (provided by Intel Corporation).

Fig. 8. Comparison of time-domain waveforms obtained by the proposed
method and reference data provided by the OrFE-RR method [9] for a test-chip
interconnect.

is then truncated by the first-order absorbing boundary con-
dition. The time step used in the simulation was 1.2e-16 s. In
this example, we discretized the structure using a conformal
mesh, in which the mesh in the conductor domain and that in
the dielectric domain match at their interface. Fig. 8 shows
the time-domain waveforms of the voltages sampled at the
near-end and far-end of the center strip in the interconnect
structure. Clearly, the result obtained by the proposed method is
in excellent agreement with that obtained from the orthogonal
finite-element reduction-recovery (OrFE-RR) method that was
fully validated in [9].
To assess the capability of the proposed method in supporting

a nonconformal mesh, we simulated a lossy parallel plate wave-
guide, the length of which was 100 m. The height of the wave-
guide was 3 m, and the width was 30 m, as shown in Fig. 9(a).
The smallest mesh size is 1 m used inside conductors, while
the largest size is 7.5 m used outside conductors. The conduc-
tivity of the conductors was 5.0e 7 S/m. The dielectric material
between the two conductors was air. The computational domain
was truncated by a perfect electric conductor (PEC) boundary
condition on the topmost surface and at the bottommost surface,
a perfect magnetic conductor (PMC) boundary condition on the
left and the right, and a first-order absorbing boundary condition
in the front and at the back. The discretization was performed
using a nonconformal mesh, as shown in Fig. 9(b). A fine mesh
was used in the conductor domain, while a coarse mesh was
used in the dielectric domain, resulting in 8287 unknowns. The

Fig. 9. (a) Geometry of a lossy parallel plate waveguide (PEC and PMC bound-
aries are shown by darker lines). (b) Discretization with nonconformal meshes.

Fig. 10. Time-domain waveforms at the near-end and far-end of the lossy par-
allel plate waveguide.

mesh at the interface between the conductor domain and the di-
electric domain did not match. A current source was launched
at the near-end of the structure. In Fig. 10, we plot the time-do-
main waveforms obtained by the proposed method in compar-
ison with those from the OrFE-RR method [9]. Excellent agree-
ment is observed. In the OrFE-RR method, the discretization
has to be done based on a conformal mesh. Restricted by the fine
mesh required for discretizing the conductor region, the mesh in
the dielectric region was much finer than necessary. The resul-
tant number of unknownswas 10 831, whichwas larger than that
generated by the proposed method. In this example, the dielec-
tric region only occupied a small portion of the entire problem.
The advantage of the proposed method in saving the number
of unknowns will be even more obvious for problems having
larger dielectric regions, like realistic VLSI circuits, in which
the dielectric region usually occupies more than half of the en-
tire computational domain. To demonstrate this fact, we simu-
lated a lossy parallel plate waveguide of 10- m height, 100- m
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Fig. 11. (a) S11 and S12 magnitude versus frequency. (b) S11 and S12 phase
versus frequency. (Measurements from [20].)

width, and 2000- m length. With the conformal mesh used in
the OrFE-RR method, the number of unknowns was 1 031 210;
with the nonconformal mesh supported by the proposedmethod,
the resultant number of unknowns was only 243 493. It took the
OrFE-RR method 0.37 s to simulate this example at each time
step, whereas the proposed method only cost 0.13 s.
Next, we resimulated the test-chip interconnect structure

shown in Fig. 7 based on a nonconformal mesh, and compared
the results with the measured data provided by Intel Corpora-
tion. We kept the mesh inside the conductors the same as before
but used a coarser mesh outside the conductors. Specifically,
we reduced the mesh density in the dielectric domain by half.
We extracted the frequency-domain S-parameters of the inter-
connect structure and compared them with the measured data.
Excellent agreement with the measured data can be seen from
Fig. 11.
With the accuracy, flexibility, and efficiency of the proposed

method validated, next, we examined the computational com-
plexity of the proposed method. We kept the mesh density to
be the same; and enlarged the test-chip interconnect structure
shown in Fig. 7 to obtain a wide range of unknowns. We then

Fig. 12. CPU time per step versus the number of unknowns.

Fig. 13. Bottom view of the combined die-package structure.

Fig. 14. The input voltage between a VSS (ground) via and the substrate.

plotted the central processing unit (CPU) time cost at each time
step of the proposed method versus the number of unknowns,
which is shown in Fig. 12. A clear linear scaling is observed.
Last but not the least, we simulated a more complicated

structure, which is a realistic 2500 2500- m combined
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Fig. 15. Simulation of a 2500 2500- m combined die-package system. (a)
Voltage map of a package power plane. (b) Voltage map of one on-chip layer.

die-package power delivery system, provided by Intel Cor-
poration. A real package structure was placed on top of the
chip. The structure involved a bottom ground plane with via
holes, a center via layer consisting of both power and ground
vias, and a top power plane with via holes. A bottom ground
via was excited by a current source. Three on-chip layers
were at the bottom. Power and ground vias traversed via holes
and contacted package planes. The on-chip power rails were
connected through on-chip vias. An illustration of the structure
is shown in Fig. 13. The mesh size used inside conductors is
0.5 m, while the largest size outside conductors is 50 m. A
current source was launched at a ground via from the silicon
substrate. The time step used in the simulation was 2.5e-14 s.
The time-domain waveform of the input voltage excited by the
current is plotted in Fig. 14. It shows excellent agreement with
the results obtained from OrFE-RR solver. The voltage map of
a power plane in the package and that of an on-chip layer at the
6000th time step were shown in Fig. 15.

V. CONCLUSION

In this paper, a direct domain-decomposition-based time-do-
main finite-element method of linear complexity is proposed to
overcome the challenge of simulating a wide range of geomet-

rical scales present in an IC system. The proposed method is ca-
pable of simulating lossy conductors with arbitrary shapes em-
bedded in inhomogeneous dielectric materials. It permits the use
of a nonconformal mesh, which makes the discretization much
easier and meanwhile reduces the size of the problem. More im-
portant, the proposed method is a direct solver without any iter-
ation, and it has linear complexity. The accuracy and efficiency
of the proposed method have been demonstrated by realistic IC
and package examples. The proposed method can be employed
to perform the extraction of on-chip and package circuits, signal
integrity, and power integrity analysis. It can also be applied to
the electromagnetic analysis of other physical problems having
lossy conductors and nonuniform dielectrics.

REFERENCES
[1] M. Ha, K. Srinivasan, and M. Swaminathan, “Transient chip-package

cosimulation of multiscale structures using the Laguerre-FDTD
scheme,” IEEE Trans. Adv. Packag., vol. 32, no. 4, pp. 816–830, Nov.
2009.

[2] G. Antonini and A. E. Ruehli, “Waveform relaxation time domain
solver for subsystem arrays,” IEEE Trans. Adv. Packag., vol. 33, no.
4, pp. 760–768, Nov. 2010.

[3] A. E. Yilmaz, J. M. Jin, and E. Michielssen, “A parallel FFT-accel-
erated transient field-circuit simulator,” IEEE Trans. Microw. Theory
Tech., vol. 53, no. 9, pp. 2851–2865, Sep. 2005.

[4] J. E. Schutt-Aine, “Latency insertion method (LIM) for the fast
transient simulation of large networks,” IEEE Trans. Circuits Syst. I,
Fundam. Theory Appl., vol. 48, no. 1, pp. 81–89, Jan. 2001.

[5] R. Wang and J. M. Jin, “A symmetric electromagnetic-circuit simu-
lator based on the extended time-domain finite element method,” IEEE
Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 2875–2884, Dec.
2008.

[6] V. Jandhyala, S. Chakroborty, D. Gope, C. Yang, I. Choudhury, and G.
Ouyang, “Accelerated parallelized time and frequency domain simula-
tion for complex high-speed microsystems,” in Proc. IEEE Antennas
Propag. Soc. Int. Symp., Sep. 2006, pp. 123–126.

[7] H. Gan and D. Jiao, “Hierarchical finite element reduction recovery
method for large-scale transient analysis of high-speed integrated cir-
cuits,” IEEE Trans. Adv. Packag., vol. 33, no. 1, pp. 276–284, Feb.
2010.

[8] H. Gan and D. Jiao, “A time-domain layered finite element reduction
recovery (LAFE-RR) method for high-frequency VLSI design,” IEEE
Trans. Antennas Propag., vol. 55, no. 12, pp. 3620–3629, Dec. 2007.

[9] D. Chen and D. Jiao, “Time-domain orthogonal finite-element re-
duction-recovery (OrFE-RR) method for electromagnetics-based
analysis of large-scale integrated circuit and package problems,” IEEE
Trans. Comput. Aided Design Integr. Circuits Syst., vol. 28, no. 8, pp.
1138–1149, Aug. 2009.

[10] H. Gan and D. Jiao, “An unconditionally stable time-domain finite
element method of significantly reduced computational complexity
for large-scale simulation of IC and package problems,” in Proc. IEEE
18th Conf. Electr. Performance Electron. Packag. Syst., 2009, pp.
145–148.

[11] S. C. Lee, M. N. Vouvakis, and J. F. Lee, “A non-overlapping domain
decomposition method with non-matching grids for modeling large fi-
nite antenna arrays,” J. Comput. Phys., vol. 203, no. 1, pp. 1–21, Feb.
2005.

[12] H.Wu and A. C. Cangellaris, “A finite-element domain-decomposition
methodology for electromagnetic modeling of multilayer high-speed
interconnects,” IEEE Trans. Adv. Packag., vol. 31, no. 2, pp. 339–350,
May 2008.

[13] S. H. Lee and J. M. Jin, “Efficient full-wave analysis of multilayer in-
terconnection structures using a novel domain decomposition-model-
order reduction method,” IEEE Trans. Microw. Theory Tech., vol. 56,
no. 1, pp. 121–130, Jan. 2008.

[14] Z. Lou and J. M. Jin, “A novel dual-field time-domain finite-element
domain-decomposition method for computational electromagnetics,”
IEEE Trans. Antennas Propag., vol. 54, no. 6, pp. 1850–1862, Jun.
2006.

[15] K. Sun, Q. Zhou, K. Mohanram, and D. C. Sorensen, “Parallel domain
decomposition for simulation of large-scale power grids,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design, 2007, pp. 54–59.



CHEN AND JIAO: A DIRECT DOMAIN-DECOMPOSITION-BASED TIME-DOMAIN FINITE-ELEMENT METHOD 5239

[16] R. Becker, P. Hansbo, and R. Stenberg, “A finite element method
for domain decomposition with non-matching grids,” Math. Model.
Numer. Anal., vol. 37, no. 2, pp. 209–225, 2003.

[17] F. Magoules, P. Ivanyi, and B. H. Vopping, “Convergence analysis
of Schwarz methods without overlap for the Helmholtz equation,”
Comput. Struct., vol. 82, no. 22, pp. 1835–1847, Sep. 2004.

[18] J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed.
New York: Wiley, 2002.

[19] G. Meurant, “A review on the inverse of symmetric tridiagonal and
block tridiagonal matrices,” SIAM J. Matrix Anal. Appl., vol. 13, no. 3,
pp. 707–728, Jul. 1992.

[20] M. J. Kobrinsky, S. Chakravarty, D. Jiao, M. C. Harmes, S. List, and
M. Mazumder, “Experimental validation of crosstalk simulations for
on-chip interconnects using S-parameters,” IEEE Trans. Adv. Packag.,
vol. 28, no. 1, pp. 57–62, Feb. 2005.

[21] D. Jiao and J. M. Jin, “A general approach for the stability analysis of
time-domain finite element method,” IEEE Trans. Antennas Propag.,
vol. 50, no. 11, pp. 1624–1632, Nov. 2002.

Duo Chen received the B.S. and M.S. degrees in
electrical engineering from Tsinghua University,
Beijing, China, in 2004, and 2007, respectively.
Currently, he is working toward the Ph.D. degree in
the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN.
He is a Research Assistant in the On-Chip

Electromagnetics Research Group. His current
research interest is electromagnetics-based analysis
of very large scale integration (VLSI) and package
problems.

Dan Jiao (S’00–M’02–SM’06) received the Ph.D.
degree in electrical engineering from the University
of Illinois at Urbana-Champaign, Urbana, in 2001.
She then worked at the Technology Com-

puter-Aided Design (CAD) Division, Intel Cor-
poration, until September 2005, as a Senior CAD
Engineer, Staff Engineer, and Senior Staff Engineer.
In September 2005, she joined Purdue University,
West Lafayette, IN, as an Assistant Professor with
the School of Electrical and Computer Engineering,
where she is now a tenured Associate Professor.

She has authored two book chapters and over 170 papers in refereed journals
and international conferences. Her current research interests include computa-
tional electromagnetics; high-frequency digital, analog, mixed-signal, and RF
integrated circuit (IC) design and analysis; high-performance very large scale
integration (VLSI) computer-aided design (CAD); modeling of microscale
and nanoscale circuits; applied electromagnetics, fast and high-capacity
numerical methods; fast time-domain analysis; scattering and antenna analysis;
RF; microwave; and millimeter-wave circuits; wireless communication; and
bioelectromagnetics.
Dr. Jiao has served as the reviewer for many IEEE journals and conferences.

She is an Associate Editor of the IEEE TRANSACTIONS ON COMPONENTS,
PACKAGING, AND MANUFACTURING TECHNOLOGY. She was among the
85 engineers selected throughout the nation for the National Academy of
Engineering’s 2011 U.S. Frontiers of Engineering Symposium. She was the
2010 recipient of the Ruth and Joel Spira Outstanding Teaching Award; the
2008 National Science Foundation (NSF) CAREER Award; the 2006 Jack
and Cathie Kozik Faculty Start up Award (which recognizes an outstanding
new faculty member of the School of Electrical and Computer Engineering,
Purdue University); a 2006 Office of Naval Research (ONR) Award under
the Young Investigator Program; the 2004 Best Paper Award presented at
the Intel Corporation’s annual corporate-wide technology conference (De-
sign and Test Technology Conference) for her work on generic broadband
model of high-speed circuits; the 2003 Intel Corporation’s Logic Technology
Development (LTD) Divisional Achievement Award in recognition of her
work on the industry-leading BroadSpice modeling/simulation capability
for designing high-speed microprocessors, packages, and circuit boards; the
Intel Corporation’s Technology CAD Divisional Achievement Award for the
development of innovative full-wave solvers for high frequency IC design,
the 2002 Intel Corporation’s Components Research the Intel Hero Award
(Intel-wide she was the tenth recipient) for the timely and accurate 2-D and 3-D
full-wave simulations; the Intel Corporation’s LTD Team Quality Award for
her outstanding contribution to the development of the measurement capability
and simulation tools for high-frequency on-chip crosstalk; and the 2000 Raj
Mittra Outstanding Research Award presented by the University of Illinois at
Urbana-Champaign.


