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Linear Complexity for Surface
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Impedance Extraction of
Complicated 3-D Structures
The authors of this paper develop a low-complexity matrix solution to solve a

surface integral equation for extracting the impedance of 3-D nonideal

conductors embedded in a dielectric material.

By Wenwen Chai and Dan Jiao, Senior Member IEEE

ABSTRACT | We develop a linear-complexity direct matrix

solution for the surface integral equation (IE)-based impedance

extraction of arbitrarily shaped 3-D nonideal conductors

embedded in a dielectric material. A direct inverse of a highly

irregular system matrix composed of both dense and sparse

matrix blocks is obtained in OðNÞ complexity with N being the

matrix size. It outperforms state-of-the-art impedance solvers,

be they direct solvers or iterative solvers, with fast central

processing unit (CPU) time, modest memory consumption, and

without sacrificing accuracy, for both small and large number

of unknowns. The inverse of a 2.68-million-unknown matrix

arising from the extraction of a large-scale 3-D interconnect

having 128 buses, which is a matrix solution for 2.68 million

right-hand sides, was obtained in less than 1.5 GB memory and

1.3 h on a single CPU running at 3 GHz.

KEYWORDS | Direct solvers; electromagnetic analysis; fast integral

equation (IE) solvers; impedance extraction; interconnects

I . INTRODUCTION

With the increase in the processing power of the central

processing unit (CPU), the memory and system intercon-

nect links connected to a CPU need to have an expo-

nentially increased bandwidth in order to fully utilize the

computing power. This leads to higher speed signals on

each data line as well as an increase in the number of data

lines. It also becomes necessary to move chips closer to
each other by revolutionary technologies such as 3-D

stacking via through silicon vias (TSVs), etc. Enabling

higher bandwidth brings significant challenges to the

analysis and design of interconnects. To address these

challenges, a full-wave modeling technology is required

that can rapidly characterize the interaction between a

large number of I/Os in the face of large problem sizes.

Existing fast solvers for solving large-scale circuit
problems are, in general, iterative solvers since traditional

direct solvers are computationally expensive. Among these

iterative solvers, representative are fast multipole-based

methods [1], [2], [34], fast low-rank compression methods

[3], [4], hierarchical algorithms [5]–[7], and fast Fourier

transform (FFT)-based methods [8], [9], which have

dramatically reduced the memory and CPU time of the

iterative solution of the dense system matrix resulting from
an integral equation (IE)-based analysis.

The optimal complexity of an iterative solver is

OðNrhsNitNÞ, where Nrhs is the number of right-hand
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sides, Nit is the number of iterations, and N is the matrix
size. To analyze the interaction between high-bandwidth

interconnects, the number of right-hand sides is propor-

tional to the I/O count. When the I/O count is large, iter-

ative solvers become inefficient since an entire iteration

procedure has to be repeated for each I/O (port).

There has been much recent progress in direct solvers

[10]–[13], [17], [35], [36] for solving both circuit problems

that typically are electrically small or moderate and
scattering problems that typically are electrically large.

In [10], an IE-based dense matrix is rendered sparse by

applying multilevel multipole expansions, and the resul-

tant sparse matrix is solved by a conventional sparse matrix

solver for circuit parameter extraction of microelectronic

structures. In [35], [36], a characteristic basis function

method is developed for reducing the size of the system

matrix arising in the analysis of monolithic microwave
integrated circuits and scattering problems. In [12], a

local-global solution (LOGOS) framework is proposed to

develop efficient factorization algorithms for IE methods

for electromagnetic analysis. In [11], an adaptive cross

approximation (ACA)-based method is used to compress

and directly solve IE-based dense matrices arising from

scattering problems. It successfully solved electrically

large IEs for problem sizes up to 1-M unknowns. In [17],
the fast H-matrix arithmetic was introduced to solve

large-scale electrodynamic problems. The cost of the fast

H-matrix-based computation was further reduced without

sacrificing accuracy. The resultant direct solver success-

fully solved dense matrices that involve more than 1 million

unknowns associated with electrodynamic problems of

96 wavelengths in fast CPU time (less than 20 h in LU

factorization, 85 s in LU solution), modest memory con-
sumption, and with prescribed accuracy satisfied on a

single CPU running at 3 GHz. Other recent developments

on direct solvers can be found in [13]. These direct solvers

have significantly reduced the computational cost of their

traditional counterparts. However, no linear complexity

(optimal complexity) has been achieved for the analysis of

general 3-D problems.

The focus of this paper is circuit parameter extraction
of arbitrarily shaped 3-D lossy conductors embedded in a

dielectric material. This class of problems typically has

small or moderate electric sizes. For electrically small or

moderate problems, no linear-complexity direct matrix

solution was achieved prior to the work reported in

[14]–[16], where an H2-matrix-based mathematical

framework [18]–[21] was introduced to reduce the com-

putational complexity of direct matrix solutions. Although
the H2-matrix enables a highly efficient computation of

dense matrices, under this mathematical framework, no

linear complexity has been established for matrix inver-

sion. In [14], it is established for the first time that an

H2-based inverse can be performed in linear complexity.

The detailed inverse algorithm and a theoretical analysis

on its complexity and accuracy are given in [15]. In [16], it

is shown that an H2-based LU factorization can also be
performed in linear complexity. Based on the linear-time

direct matrix solution, in [14]–[16], the dense system of

linear equations arising from an IE-based analysis was

directly solved for the capacitance extraction of arbitrarily

shaped 3-D structures embedded in inhomogeneous

materials. However, the impedance extraction developed

in [14], [16] was only for ideal conductors in a uniform

material. To the best of our knowledge, the impedance
extraction of 3-D structures that involve nonideal

conductors has not been accomplished with a linear-

complexity direct solution.

The contribution of this paper is the development of a

linear-complexity direct solution for the surface IE-based

impedance extraction involving arbitrarily shaped 3-D

nonideal conductors embedded in a dielectric material. A

surface integral formulation [22], [34] is attractive for
impedance extraction compared to a volume integral

formulation since the number of unknowns is greatly

reduced. The surface integral formulation used in this

work is based on a full-wave formulation given in [22]

that rigorously handles skin effects, and meanwhile

supports an electric potential-based excitation. This

formulation is shown to be accurate and robust over a

broad band of frequencies. Although a full-wave kernel is
considered in this work, it is worth mentioning that the

electric size of the problem being considered is not large

since if the electric size is large, there is no need to

consider fields inside the nonideal conductors as skin

depth is negligible and conductors can be accurately

treated as perfect conductors. The unknowns solved by

the surface integral formulation in [22] are tangential E,

tangential H, scalar potential, and charge density on the
conducting surfaces. The resultant system matrix is

composed of both dense and sparse matrix blocks. Some

of these blocks are even not square matrices. Although

such a complicated matrix structure does not create an

additional challenge to the fast computation of a matrix–

vector multiplication, it does render the fast computation

of a matrix inverse or LU particularly challenging. The

entire system matrix cannot be represented as one H2

matrix. The same is true for its inverse. As a result, the

method developed in [14], [15] is not directly applicable

to the impedance extraction concerned in this work. In

the following sections, we establish a general OðNÞ direct

matrix solution for rapidly solving a highly irregular

system matrix composed of both dense and sparse blocks,

to extract impedances of arbitrarily shaped 3-D nonideal

conductors embedded in a dielectric material. The
proposed OðNÞ inverse is the matrix solution for N
right-hand sides. Moreover, its accuracy can be controlled

to any desired order. The basic idea of this paper has been

presented in conference paper [23]. Limited by space,

many details were omitted in [23]. They are fully dis-

cussed in this paper along with an enriched section of

numerical results.
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The remainder of this paper is organized as follows.
In Section II, we present a mathematical background of

the H2-matrix framework. In Section III, we construct a

system matrix from a surface IE-based formulation for

impedance extraction of arbitrarily shaped 3-D lossy con-

ductors immersed in a dielectric material. In Section IV,

we present the proposed linear-complexity direct matrix

solution. Moreover, we provide a theoretical analysis on

the complexity and accuracy of the proposed direct matrix
solution. In Section V, we present numerical results to

demonstrate the performance of the proposed direct solver

for impedance extraction. The solver demonstrates a clear

linear scaling in both CPU time and memory consumption

with controlled accuracy. It is capable of inverting a matrix

involving 2.68 million unknowns resulting from surface

IE-based impedance extraction in 1.3 h and 1.5-GB

memory on a single 3-GHz CPU. Comparisons with
state-of-the-art impedance solvers such as FastHenry [32]

and FastImp [9], [31] have demonstrated a clear advan-

tage of the proposed direct solver. Section VI relates to

our conclusions.

II . MATHEMATICAL BACKGROUND

The H (hierarchical)-matrix is a general mathematical

framework [18], [24]–[26], which enables a highly com-

pact representation and efficient numerical computation

of dense matrices. Both storage requirements and matrix–

vector multiplications using H matrices are of complexity

OðN log� NÞ. H2-matrices, which are a specialized sub-

class of hierarchical matrices, were later introduced in

[19]–[21]. Compared to an H-matrix, an H2 matrix has a
reduced computational complexity. The nested structure

is the key difference betweenH-matrices andH2-matrices.

In what follows, we give a basic overview of theH2-matrix-

based mathematical framework.

A. H2-Matrix Definition
An H2 matrix is generally associated with a strong

admissibility condition [18, p. 145]. Denoting the full
index set of all the basis functions used in a numerical

discretization by I ¼ f1; 2; . . . ;Ng, where N is the total

number of basis functions, consider two subsets t and s of

the I , the strong admissibility condition is defined as

ðt; sÞ are admissible

¼ true; if max diamð�tÞ; diamð�sÞf g�� distð�t;�sÞ
false; otherwise

�
(1)

where �t and �s are the supports of the union of all the

basis functions in t and s, respectively, diamð:Þ is the

Euclidean diameter of a set, distð:; :Þ is the Euclidean

distance between two sets, and � is a positive parameter

that can be used to control the admissibility condition.
Generally speaking, it is not practical to directly measure

the Euclidean diameter and Euclidean distance between �t

and �s. An axis-parallel bounding box Qt � �t, which is

the tensor product of intervals [18, pp 46–48], is thus used

to represent the support of the union of all the basis

functions in t, and similarly in s. If subsets t and s satisfy

(1), they are admissible; otherwise, they are inadmissible.

As can be seen from (1), if subsets t and s are admis-
sible, they are sufficiently far from each other. Given an

IE-based dense matrix Z, denoting the matrix block

formed by t and s by Zt;s, if all the blocks Zt;s formed by

the admissible ðt; sÞ in matrix Z can be represented by a

factorized form

Zt;s :¼VtSt;sVsT

Vt 2 C#t�k

St;s 2Ck�k Vs 2 C#s�k (2)

where VtðVsÞ is nested, then Z is anH2 matrix. In (2), Vt

and Vs are called a cluster basis associated with t and s,
respectively, St;s is called a coupling matrix, k is the rank of

VtðVsÞ, and B#[ denotes the cardinality of a set.

For an efficient computation, the hierarchical depen-

dence of the unknowns is stored in a tree structure. Each

node of the tree is called a cluster, which represents a
subset of the entire unknown set I . The cluster basis Vt is

nested if across the cluster tree, it satisfies

Vt ¼ Vt1Et1

Vt2Et2

� �
¼ Vt1

Vt2

� �
Et1

Et2

� �
(3)

where t1; t2 2 childrenðtÞ, which are the two children

clusters of t. In (3), Et1 and Et2 are called transfer matrices

associated with a nonleaf cluster t and they are used to

build a relationship between t and its two children.

B. H2-Matrix-Based Fast Arithmetics
The nested property enables linear-time arithmetics of

H2 matrices. In mathematical literature, it is shown that

for frequency independent kernels, storage requirements,

matrix–vector multiplications, and matrix-matrix multi-

plications using H2-matrices are all of complexity OðNÞ
[21]. However, no linear-complexity direct matrix solu-

tions have been reported in the mathematical literature. In

[14]–[16], it is shown that H2-based inverse and LU can
also be performed in linear complexity for static problems

and electrically moderate problems.

The challenge of this paper is the development of a

linear-complexity direct matrix solution for a highly irre-

gular matrix system arising from the impedance extraction

of arbitrarily shaped 3-D lossy conductors embedded in a

dielectric material. The system matrix is mixed with both
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dense and sparse matrix blocks. The entire system matrix
cannot be represented as one H2 matrix. The same is true

for its inverse. In what follows, we will show step by step

how this challenge is overcome.

III . FORMULATION OF SYSTEM MATRIX

A. Surface Integral Formulation for Full-Wave-Based
Impedance Extraction

Consider a union of conductors of finite conductivity �
immersed in a dielectric material characterized by per-

mittivity " and permeability �. We employ the surface

IE-based formulation derived in [22] to extract the impe-

dance matrix of the conductor network in a broad band

of frequencies. The formulation comprises the following

five equations:

�1

2
~Eð~rÞ ¼ ZC �

j

KC

ZZ
S

ds0r0 � ðn̂�~HÞrG0

24
þ jKC

ZZ
S

ds0ðn̂�~HÞG0

35
þ
ZZ

S

ds0ðn̂�~EÞ�rG0þr’ð~rÞ (4)

1

2
~Hð~rÞ¼ � j

KC

ZZ
S

ds0r0 � ðn̂�~EÞrG1

24
þ jKC

ZZ
S

ds0ðn̂�~EÞG1

35,ZC

þ
ZZ

S

ds0ðn̂�~HÞ�rG1 (5)

’ð~rÞ¼
ZZ

S

G0�ð~r0Þ=" ds0 (6)

r � ðn̂�~HÞð~rncÞ ¼K2
C�ð~rncÞ=�� (7)

’ð~rcÞ ¼ C (8)

where ~E is electric field intensity, ~H is magnetic field

intensity, n̂ is a unit vector normal to the conductor surface
and pointing away from the conductor, G0 and G1 are the

full-wave Green’s function in the background material, and

the conducting region, respectively. They are given by

G0ð~r;~r 0Þ ¼
e�jkj~r�~r 0 j

4�j~r�~r 0j

G1ð~r;~r 0Þ ¼
e�jKC j~r�~r 0 j

4�j~r�~r 0j (9)

with

k ¼ ! ffiffiffiffiffiffi
�"
p

; KC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2�"� j!��

p
(10)

where ! is the angular frequency. In (4)–(9), ZC ¼ !�=KC,

~r denotes an observation point,~r0 denotes a source point, S
is the conducting surface, ’ is electric scalar potential, � is

charge density,~rc denotes a point on the contact surfaces
where the voltage source  C is supplied, and~rnc denotes a

point on the noncontact surface. The first equation is an

electric field integral equation (EFIE) that describes the

interaction of equivalent electric and magnetic currents on

the conductor surfaces via the background material; the

second IE is a magnetic field integral equation (MFIE)

formulated for what is inside each conductor. The third

equation describes the potential-charge relationship. The
fourth equation reveals the relationship between charges

on the noncontact surfaces and tangential ~H. The last

equation describes a voltage-source-based excitation. The

introduction of electric potential ’ and subsequently the

introduction of (6) and (7) facilitate the incorporation of a

voltage-source-based excitation into a field-based EFIE-

MFIE system.

The unknowns involved in (4)–(8) are

ðn̂�~E; n̂� ~H; ’; �Þ

on the conducting surfaces. After n̂� ~H is solved, we can

use it to compute the current and the impedance of the

conductor as follows:

I ¼ �
Z Z

SC

dsEn ¼ ��=ð�þ j!"Þ
Z Z

SC

dsr � ðn̂� ~HÞ

Z ¼ V

I
(11)

where SC represents the contact surface. For a conductor

network, its admittance matrix can be computed as

Yij ¼
Ii

Vj
; ðVi ¼ 0; i 6¼ jÞ

where Ii is the current computed at the ith port with the jth
port excited by ’ ¼ Vj and all the other ports grounded.

From the admittance matrix, one can obtain other net-

work parameters such as Z-parameters and S(cattering)-

parameters as well.
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B. Construction of the System Matrix
We discretize the conducting surface into triangular

elements to accurately model arbitrarily shaped conduc-

tors. In each triangular element, the equivalent magnetic

current n̂� ~E and the equivalent electric current n̂� ~H are

expanded by using RWG vector basis functions ~Jn [29] as

follows:

n̂� ~H ¼
XN

n¼1

In~Jn and n̂� ~E ¼
XN

n¼1

IIn~Jn (12)

where In and IIn are unknown coefficients.

The charge density � and the potential ’ are expanded

by scalar pulse basis function in each element. We denote

the total number of RWG bases by N, and the total number

of triangular panels by NT. The Galerkin method is applied

to test (4) and (5). The centroid collocation method is

applied to test (6) and (7). The resultant system of linear
equations can be written as

ZCL0½In� �K0½IIn� þ Jsp½’� ¼ 0 (13)

K1½In� þ L1=ZC½IIn� ¼ 0 (14)

½’� ¼P0½�� (15)

Jsp½In� ¼ ½��NC (16)

½’�C ¼ C (17)

where the subscripts BC[ and BNC[ denote the quantities
on the contact surfaces and noncontact surfaces, respec-

tively. The L0;K0;L1;K1;P0 in (13)–(17) are dense

matrices. Their elements are given by

ðLiÞmn¼ jKC

Z Z
Sm

ds~Jmð~rÞ �
Z Z

Sn

ds0~Jnð~r 0ÞGi

þ 1

jKC

� �Z Z
Sm

dsr�~Jmð~rÞ
Z Z

Sn

ds0r0 �~Jnð~r 0ÞGi

ðKiÞmn¼
Z Z

Sm

ds~Jmð~rÞ �
Z Z

Sn

ds0rGi �~Jnðr0Þ

� 0:5

Z Z
Sm

ds n̂�~Jmð~rÞ
� �

�~Jnð~rÞ

P0¼
1

"

� �ZZ
S

G0ð~r;~r 0Þ ds0 (18)

with i ¼ 0; 1. The Jsp in (13) is a sparse matrix of dimen-

sion N � NT . For each ðJspÞmn
, m is the index of the RWG

basis function, whose degree of freedom is assigned to each

edge, and n is the index of the pulse basis function, whose

degree of freedom is assigned to each triangular panel. The

Jsp has a dimension of NC � N, which is also sparse. The
NC is the number of triangular panels on the noncontact

surfaces. The elements of Jsp and Jsp are given by

ðJspÞmn ¼ �
Z Z

Sm

dsr �~Jmð~rnÞ

ðJspÞmn ¼ ��=K2
Cr �~Jnð~rmÞ: (19)

The total number of unknowns in the system (13)–(17)

is 2N þ 2NT , where 2N unknowns are associated with

vector-based RWG basis functions, and 2NT unknowns are

associated with scalar-based pulse basis functions.

C. Derivation of a Reduced System Matrix that
Involves Equivalent Electric Currents Only

The matrix system shown in (13)–(17) consists of both

sparse and dense blocks, which cannot be represented as
an H2 matrix as a whole. To develop a linear-complexity

direct solution of (13)–(17), our strategy is to eliminate all

the ½IIn�, ½��, and ½’� unknowns from (13)–(17) to reduce

the system to a small one that only involves ½In�.
Using (14) to eliminate ½IIn�, (13) becomes

ZC L0 þK0 � L�1
1 �K1

� �
½In� þ Jsp½’� ¼ 0

) HLK½In� þ Jsp½’� ¼ 0 (20)

with HLK ¼ ZCðL0 þK0 � L�1
1 �K1Þ.

Based on (15), the charge ½�� on the noncontact surface
can be represented by ½’� as

½��NC¼ P�1
0

� �
NC�C
� C þ P�1

0

� �
NC�NC

½’�NC

¼ P�1
0

� �
NC�C
� C þ ðbP0ÞNC�NC

h i�1

½’�NC (21)

w i t h ðbP0ÞNC�NC ¼ ðP0ÞNC�NC � ðP0ÞNC�C � ðP0Þ�1
C�C�

ðP0ÞC�NC, which is the Schur complement of the matrix

block ðP0ÞNC�NC.

Using (16) and (21), we can directly relate ½’� to ½In� by

½’�NC ¼ ðbP0ÞNC�NC � Jsp½In� � P�1
0

� �
NC�C
� C

� 	
: (22)

By separating the contact-surface potential from the non-

contact-surface potential, (20) can be rewritten as

HLK½In� þ ðJspÞN�C
�  C þ ðJspÞN�NC

� ½’�NC ¼ 0: (23)
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Substituting (22) into (23), we obtain

Z½In� ¼ rhs (24)

where

Z ¼HLK þHSP

rhs ¼ ðJspÞN�NC
� ðbP0ÞNC�NC � P�1

0

� �
NC�C

�
�ðJspÞN�C

	
�  C

in which

HLK ¼ ZC L0 þK0 � L�1
1 �K1

� �
HSP ¼ðJspÞN�NC

� ðbP0ÞNC�NC � Jsp: (25)

Electro-Magneto-Quasi-Static (EMQS) and Magneto-Quasi-
Static (MQS) Analysis: The system matrix shown in

(13)–(17) can be further reduced for MQS analysis and

EMQS analysis in a relatively low frequency regime. For

EMQS analysis, since displacement current is negligible,
the wave number k is 0 in the Green’s function of the

background material given in (9), which further simplifies

the system matrix (24) by removing the ejkj~r�~r0 j term. For

MQS analysis, in addition to k ¼ 0, the surface charge

density � can be ignored, which reduces (16) to

Jsp½In� ¼ 0: (26)

Based on (20), we obtain

½In� ¼ �H�1
LKJsp½’�: (27)

From (26) and (27), we can obtain the following system for
MQS analysis

JspH
�1
LKJsp½’� ¼ 0: (28)

By separating the potential on contact surfaces from that

on noncontact surfaces, we obtain

JspH�1
LKðJspÞN�NC

� 	
½’�NC¼�JspH�1

LKðJspÞN�C
� C (29)

from which ½’� on noncontact surfaces can be computed.

After ½’� is computed, ½In� can be solved from (27).

In (24), Z is obtained by eliminating ½IIn�, ½��, and ½’�
unknowns. In general, the unknown elimination has a

cubic complexity. In other words, the matrix operations

shown in (25) have a cubic complexity. In this work, we

ensure that the elimination of the ½IIn�, ½��, and ½’�
unknowns, i.e. the construction of Z, is performed in linear

complexity, and also the reduced ½In�-system is solved in

linear complexity, holding the complexity of the entire

solution to linear. The detailed procedure of the proposed
linear-complexity direct solution is given in the following

section.

IV. LINEAR-COMPLEXITY
DIRECT SOLUTION

In this section, we present a complete procedure of

linear-complexity direct solution to the system (13)–(17)

for full-wave-based impedance extraction. The entire

flow is shown in Fig. 1. First, we construct an efficient

H2 partition that fully takes advantage of the surface
IE-based formulation to generate clusters that are 2-D for

efficient computation of 3-D problems. Based on the pro-

posed efficientH2 partition, we buildH2-representations of

the dense matrices L0, K0, L1, K1, and P0 with con-

trolled accuracy, and in linear complexity. We also build

H2-representations of the sparse matrices Jsp and Jsp,

which does not involve any approximation. Since the ma-

trices involved in (13)–(17) do not share the same cluster
basis in common, to facilitate an efficient computation, we

unify the cluster bases. We then use the new unified

cluster bases to update the H2 representations of the dense

matrices L0, K0, L1, K1, and P0 as well as sparse matrices

Jsp and Jsp. After that, we perform a linear-complexity

Fig. 1. Overall procedure of the proposed direct solution.
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multiplication of the H2-based sparse matrix JspðJspÞ
with an H2-based dense matrix, from which we obtain an

H2-based Hsp. Moreover, we perform a linear-complexity

multiplication of an H2-based dense matrix with an

H2-based block diagonal matrix to obtain an H2-based

HLK. With Hsp and HLK obtained, Z is obtained.

Because each of the aforementioned steps has a linear

complexity, the construction of Z has a linear complexity.

Similarly, the rhs in (25) is computed in linear time by
sparse matrix–vector multiplications and H2-based

matrix–vector multiplications. After Z and rhs are

obtained, the linear-complexity inverse algorithm developed

in [15] can be employed to directly solve (24) in linear time.

In the following subsections, we detail the algorithm in

each step.

A. New H2 Partition
An H2-based partition is to separate a matrix into ad-

missible blocks that have a factorized form shown in (2)

and inadmissible blocks that have a full-matrix represen-

tation. This is generally done by a cardinality-based

splitting method [18]. Although this method is general, it

is not efficient in the context of the surface integral-based

impedance extraction. In this work, we propose a new

partition method that significantly improves the efficiency
of the resultant H2-based computation for wideband im-

pedance extraction.

We first show the proposed scheme for constructing a

cluster tree, from which we build an H2-partition. To help

understanding, we use a simple example to explain the

construction procedure without loss of generality. Con-

sider an impedance system made of eight arbitrarily

shaped conductors. Assuming ðt1; t2; t3Þ to be a coordinate
system, the arbitrarily shaped conductors can be orientated

in any direction in the 3-D space. We first find out the

direction along which the structure being simulated has

the maximal size, we then split the entire system into two

subsystems along this direction. We repeat the process,

during which each conductor is treated as the smallest

splitting-unit, and we do not split any single conductor. We

continue to split in this way until one conductor is left in
each subsystem. After that, we switch to another strategy

to split a single conductor. We separate the single con-

ductor into three groups that, respectively, contain the

panels on t1t2, t2t3, t1t3 surfaces, and place each group as a

top cluster of the conductor. We then use the conventional

splitting method to construct the descendant clusters of

the three top clusters. We keep such a splitting until the

number of bases involved in each cluster is less than or
equal to leafsize, which is a parameter to control the tree

depth. The aforementioned scheme generates a cluster

tree shown in Fig. 2. The major advantage of such an

approach to constructing a cluster tree is that each cluster

is made two dimensional, and hence fully taking advantage

of the surface-based formulation to speed up the H2-based

computation of 3-D problems.

We denote the cluster tree as T. The first node of the

tree is called root cluster, denoted by RootðTÞ. Clusters
with indices no more than leafsize are leaves. Each nonleaf

cluster has two children. Based on the cluster tree T and

the admissibility condition (1), we construct an H2

partition. We start from RootðTÞ and RootðTÞ, and test

the admissibility condition between clusters t 2 T and

s 2 T level by level. Once two clusters t and s are found to

be admissible, the block formed by them is called an

admissible block, and we do not check the admissibility
condition for the combination of their children. If clusters

t and s are both leaf clusters but not admissible, we call the

block formed by them inadmissible block. The aforemen-

tioned process results in anH2 partition composed of both

admissible blocks and inadmissible blocks.

The above procedure can be used to generate H2

partitions for the impedance extraction system described

in Section III. As shown in Section III-B, two different
basis functions are used for discretization: one is RWG

basis and the other is triangular-panel-based pulse basis.

Therefore, we construct a cluster tree-R and a cluster

tree-T for RWG bases and pulse bases, respectively. The

cluster tree-R is used to construct an H2 partition of

L0;K0;L1;K1, and the cluster tree-T is used to construct

theH2 partition of P0. Fig. 3(a) shows one example of such

an H2 partition.
Although L0, K0, L1, and K1 share the same H2

partition, the H2 structure of L1 and K1 is different from

that of L0 and K0. This difference lies in the fact that (5) is

only satisfied in each conductor, and hence the matrix

block formed for one conductor does not couple with that

formed for another conductor, which is physically dis-

connected. Thus, only the diagonal blocks that are formed

by the same conductor cluster are nonzero and all the
other blocks are zero as shown in Fig. 3(b). In addition, if

two conductors c1 and c2 have the same shape and size,

Fig. 2. A cluster tree.
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their corresponding diagonal blocks are the same, which

simplifies the computational cost associated with these

blocks. For example, when evaluating the inverse of

ðL1Þc1;c1 and ðL1Þc2;c2, once one of them is computed, the

other can be directly obtained. By doing so, the computa-
tional efficiency can be further improved.

B. H2 Representations of Dense
Matrices L0;K0; L1;K1; P0

To construct H2 representations of the dense matrices

L0, K0, L1, K1, and P0 involved in (13)–(17), for an

admissible block ðt; sÞ, we replace the G1 and G0 in (18) by

a degenerate approximation based on Lagrange interpola-

tion method

~G
t;s

0;1ð~r;~r 0Þ ¼
X
v2Kt

X
�2Ks

G �t
v; �

s
�

� 	
Lt

vð~r ÞLs
�ð~r 0Þ (30)

where ð�t
vÞv2Kt and ð�s

�Þ�2Ks
are Lagrange interpolation

points chosen, respectively, in t and s; and ðLt
vÞv2Kt and

ðLs
�Þ�2Ks

are the corresponding Lagrange polynomials. The

number of interpolation points in each cluster is pd, where

p is the number of interpolation points along each

dimension, and d is problem dimension, which is reduced

from 3 to 2 by the proposed newH2 partition although the

problem to be solved is 3-D in nature. The accuracy of (30)
can be controlled to any order as proved in [28].

By substituting (30) into (18), the double integrals in

(18) can be separated into two single integrals

~Lt;s
0;1

� 	
ij
¼
X
v2Kt

X
�2Ks

ZZ
Si

~Jið~r ÞLt
vð~r Þ ds

0B@
� jKCG0;1 �t

v; �
s
�

� 	
�
ZZ

Sj

~Jjð~r 0ÞLs
�ð~r 0Þ ds0

þ
ZZ

Si

r�~Jið~r ÞLt
vð~r Þ ds� 1

jKC
G0;1 �t

v; �
s
�

� 	

�
ZZ

Sj

r0�~Jjð~r 0ÞLs
�ð~r 0Þ ds0

1CA
~Kt;s

0;1

� 	
ij
¼
X
v2Kt

X
�2Ks

ZZ
Si

~Jið~r ÞLt
vð~r Þ ds�rG0;1 �t

v; �
s
�

� 	

�
ZZ

Sj

~Jjð~r 0ÞLs
�ð~r 0Þ ds0

~Pt;s
0

� �
ij
¼
X
v2Kt

X
�2Ks

Lt
vð~riÞ�G0 �t

v; �
s
�

� 	.
"�
ZZ

Sj

Ls
�ð~r 0Þ ds0

from which we obtain H2-representations of L0, K0, L1,

K1, and P0 as

~L
t;s

0;1 ¼Vt
LSt;s

L0;1
VsT

L

~K
t;s

0;1 ¼Vt
KSt;s

K0;1
�VsT

K

~P
t;s

0 ¼ VT
p1

� 	t

St;s
P0

VT
p2

� 	sT
(31)

where the cluster bases in a given cluster t are

Vt
K

� �
iv
¼
ZZ

Si

~Jið~rÞLt
vð~rÞ ds

Vt
S

� �
iv
¼
ZZ

Si

r �~Jið~rÞ
� �

Lt
vð~rÞ ds

Vt
L ¼ Vt

K Vt
S


 �
VT

p1

� 	t

iv
¼ Lt

vð~riÞ; VT
p2

� 	t

iv
¼
ZZ

Si

Lt
vð~rÞ ds: (32)

Fig. 3. AnH2-matrix partition: (a) Partition for L0;K0 ( h full matrix

block, g admissible block). (b) Diagonal partition for L1;K1: gray blocks

represent nonzero blocks, white blocks represent zero blocks.
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The coupling matrices shown in (31) are shown in

St;s
L0;1
¼

jKCSG0;1

1
jKC

� 	
SG0;1

" #
;

ðSG0;1
Þv� ¼ G0;1 �t

v; �
s
�

� 	
St;s

K0;1

� 	
v�
¼ rG0;1 �t

v; �
s
�

� 	
; St;s

P0

� �
v�
¼ G0 �t

v; �
s
�

� 	.
"

8>>>>><>>>>>:
(33)

with i 2 t; j 2 s; v 2 Kt; � 2 Ks, and Vt 2 R#t�#Kt

;St;s 2
C#Kt�#Ks

. In (31)–(33), #KtðsÞ � #t ð#sÞ is the rank in

the cluster t or s, which is determined by the number of

interpolation points. VL;K;S denotes cluster basis formed

by the cluster tree-R, and ðVTÞp1;p2 denotes cluster basis

formed by the cluster tree-T. Since the same space of

Lagrange polynomials is used, cluster bases VL;K;S and

ðVTÞp1;p2 are all nested cluster bases. From (30) to (33),

with the H2-representation found for the dense matrices
L0, K0, L1, K1, and P0, we prove the existence of the

H2-representation of the dense matrix blocks involved in

impedance extraction.

As can be seen from (31) and (32), L0 and L1 share the

same cluster basis VL, and they are only different in

coupling matrix S; similarly, K0 and K1 share the same

cluster basis VK but with different coupling matrix S.

However, VL is different from VK. The P0 even has
different row and column cluster bases. Therefore, for

efficient computation of (24), in Section IV-D, we propose

an algorithm to unify different cluster bases to build a

common set of cluster basis with nested property

preserved.

C. H2 Representations of Sparse Matrices Jsp and Jsp

As can be seen from (25), sparse matrices Jsp and Jsp

are involved in the matrix-matrix multiplication for

computing Hsp. In order to make use of the linear-time

matrix-matrix multiplication algorithm of H2 matrices,

we represent both sparse matrices Jsp and Jsp as H2

matrices. To do so, we first construct an H2 partition for

Jsp. As can be seen from (19), the row cluster of Jsp is

formed by RWG bases, and the column cluster of Jsp is

formed by triangular panel-based pulse bases. Hence, we

choose the cluster tree-R as its row cluster tree and cluster

tree-T as its column cluster tree, and build anH2 partition

based on the two cluster trees and the admissibility

condition (1). We then fill in the matrix elements in each
H2-block. From (19), it can be seen that for an edge i
associated with an RWG basis, only ðJspÞi;t1 and ðJspÞi;t2
are nonzero, and all the other ðJspÞ elements are zero,

where t1 and t2 denote the two triangular panels that share

edge i in common. In other words, only adjacent edges and

triangular panels can have interactions in Jsp. Therefore,

all the admissible blocks become zero since they are

sufficiently far from each other. Only inadmissible blocks
are nonzero. Furthermore, in each nonzero block, only

several elements are nonzero. Thus, we only need to

record all the nonzero elements and their locations in the

H2 representation. In sparse matrix Jsp, only ðJspÞt1;i,
ðJspÞt1;j, and ðJspÞt1;k for the triangle element t1 are

nonzero, while all the other elements are zero, where i; j; k
are the three edges in triangular element t1. Therefore,

only adjacent edges and triangle panels have interactions
in Jsp. As a result, similar to Jsp, theH2 representation of

Jsp can be formed. Since all the blocks that satisfy the

admissibility condition are not only low rank, but also zero

in Jsp and Jsp, the H2 representations of Jsp and Jsp are

exact.

D. Unifying Cluster Bases
We propose to use orthogonalization to unify the cluster

bases. The goal is to unify the cluster bases of L0, K0, L1,

and K1 to be the same set of cluster basis V with VTV ¼ I
satisfied for each cluster. Take VL shown in (32) as an

example, it is composed of a vector-based VK and a scalar-

based VS. Given a cluster t, we first expand the vector-

based Vt
L into a scalar-based form as the following:

Vt
Lexpand ¼ Vt

Kx Vt
Ky Vt

Kz Vt
S

h i
:

We then orthogonalize Vt
Lexpand, which results in an

orthogonal cluster ~V
t

L that contains all the independent

column vectors of the original Vt
L. We use the orthogo-

nalization algorithm in [33] to perform this task, which has

a linear complexity. With ~Vt
L obtained, the cluster bases

of H2-based ~L0, ~K0, ~L1, and ~K1 can be accurately

unified by ~Vt
L. For example, based on ~Vt

L, ~L0 can be

updated based on the following equation:

~Lt;s
0 ¼ ~Vt

L
~VtT

L �Vt
L

� 	
� St;s

L0
� ~Vs

L
~VsT

L �Vs
L

� 	T

¼ ~Vt
L

~VtT

L Vt
LSt;s

L0
VsT

L
~Vs

L

� 	
~VsT

L

¼ ~Vt
L

~VtT

L Vt
Kx jKCSt;s

G0

� �
~VsT

L Vs
Kx

� 	T
�
þ ~VtT

L Vt
Ky jKCSt;s

G0

� �
~VsT

L Vs
Ky

� 	T

þ ~VtT

L Vt
Kz jKCSt;s

G0

� �
~VsT

L Vs
Kz

� 	T

þ ~VtT

L Vt
S

SG0

jKC

� �
~VsT

L Vs
S

� 	T
�

~VsT

L

¼ ~Vt
L jKC Wt

xS
t;s
G0

WsT

x þWt
yS

t;s
G0

WsT

y

��
þWt

zS
t;s
G0

WsT

z

	
þWt

SS
t;s
G0

WsT

S =ðjKCÞ
	

~VsT

L
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with

Wt
x;y;z¼ ~VtT

L Vt
Kx;y;z: (34)

~L1 can be updated in a similar way.

Next, we show how to update ~K0. The St;s
K is a vector-

based coupling matrix, as can be seen from (33). It can be

expanded as

St;s
Kexpand ¼ St;s

Kx St;s
Ky St;s

Kz

h i
:

Since ~Vt
L keeps all the independent vectors of Vt

L, and

Vt
K is part of Vt

L as shown in (32), Vt
K is contained in

~Vt
L. Hence, ~K0 can be updated accurately based on ~Vt

L as

~Kt;s
0 ¼ ~Vt

L
~VtT

L �Vt
KSt;s

K0
� ~Vs

L
~VsT

L �Vs
K

� 	T

¼ ~Vt
L Wt

xS
t;s
KyW

sT

z �Wt
zS

t;s
KyW

sT

x

� 	h
þ Wt

zS
t;s
KxW

sT

y �Wt
yS

t;s
KxW

sT

z

� 	
þ Wt

yS
t;s
KzW

sT

x �Wt
xS

t;s
KzW

sT

y

� 	i
~VsT

L : (35)

~K1 can be updated in a similar way. From (34) and (35), it

can be seen that the cluster bases and coupling matrices of

updated ~L0, ~K0, ~L1, and ~K1 all become scalar-based ones.

Furthermore, they share the same cluster basis ~VL.

The row cluster basis VT
p1 and column cluster basis VT

p2

of matrix P0 also need to be updated to one set of cluster

basis. We collect VT
p1 and VT

p2 into one cluster basis in a

form ½VT
p1 VT

p2�, and then orthogonalize it to obtain ~VT
p . By

doing so, ~VT
p contains all the independent column vectors

of VT
p1 and VT

p2, and hence the H2-representation of P0

can be accurately updated by ~VT
p .

E. Computing HLK and HSP

In this subsection, we show how to compute HLK and

HSP in (25) and obtain their H2-matrix representations.

Computing HLK: In order to compute HLK, we need to

know L0, L�1
1 , K0, K1 as can be seen from (25). The H2

representations of L0;K0;L1;K1 have been obtained as
~L0, ~L1, ~K0, and ~K1 in previous subsections. The L�1

1

can be computed directly in linear complexity by the

inverse algorithm in [15], and stored in an H2 matrix with

OðNÞ units. In addition, due to the block diagonal nature

of L1, we only need to compute the inverse of each

diagonal block. For conductors having the same shape and

size, their corresponding block inverses are the same, and

hence only one block inverse needs to be computed. A

discussion of the linear-time inverse algorithm in [15] will
be given in the following Section IV-F.

With the H2 representations of L0, L�1
1 , K0, and K1

known, the H2 representation of HLK shown in (25) can

be constructed based on an H2-based matrix-matrix

multiplication algorithm given in [21]. To be specific, by

performing an H2-based matrix-matrix multiplication in

the diagonal blocks, we can obtain an H2-based represen-

tation of ~L1
�1 ~K1. By performing ~K0 � ð~L1

�1 ~K1Þ and
adding it upon ~L0, we can obtain an H2-based represen-

tation of HLK. It is worth mentioning that due to the

diagonal structure of both ~L1 and ~K1, matrix-matrix

multiplications are only performed on the nonzero dia-

gonal blocks. All these operations have a linear complexity

since an H2-based matrix-matrix multiplication as well as

addition has a linear complexity.

Computing HSP: In order to compute HSP, we need to

first compute ðbP0ÞNC�NC, which is the Schur complement

of ðP0ÞNC�NC, as can be seen from (25). For a given matrix

A, the Schur complement of its bottom rightmost block

A22 can be evaluated during the computation of A’s

inverse based on Matrix Inversion Lemma [30]. In

addition, the evaluation of rhs in (25) requires the inverse

computation of P0 to obtain ðP�1
0 ÞNC�C. If we compute the

inverse of P0, we can simultaneously obtain the Schur

complement of ðP0ÞNC�NC and ðP�1
0 ÞNC�C during the

inverse process. The inverse of P0 can be directly

computed using the linear-time inverse algorithm in [15].

Furthermore, since P0 as well as its inverse is symmetric,

we only need to compute half of it.

Next, in order to represent HSP in (25) as an H2

matrix, we need to compute anH2-based product based on
a sparse matrix Jsp (or Jsp) and an H2 matrix bP0. The

computation of such a matrix-matrix multiplication is

much more efficient than that between two H2-based

dense matrices. The underlying operation is equivalent

to a few matrix–vector multiplications. When computing

an H2-based matrix-matrix multiplication, we choose

the partition formed by the first matrix’s row cluster and

the second matrix’s column cluster as the partition of the
matrix product.

F. Linear-Time Inverse-Based Direct Solution of Z
With the steps described in previous sections

completed, we obtain an H2 matrix ~Z to represent the

Z matrix in (24). We then employ the OðNÞ H2-inverse

algorithm [15] to compute ~Z
�1

and employ the OðNÞ H2-

based matrix–vector multiplication algorithm [21], [28] to
compute rhs as well as ½In� ¼ ~Z

�1 � rhs. Based on ½In�, the

current and the network parameters like impedance para-

meters can be extracted. If multiple right-hand sides are

involved, instead of performing a matrix–vector multiplica-

tion for each right-hand side, we store the multiple right-hand

sides in a sparse matrix and perform an H2-based matrix-

matrix multiplication to obtain the solution in OðNÞ time.
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It is worth mentioning that although a matrix inverse
and a matrix-matrix multiplication [21] share the same

number of block matrix multiplications, there is a major

difference that prevents one from using a fast matrix-

matrix multiplication algorithm to achieve a linear

complexity in inverse. The major difference is that in the

level-by-level computation of the inverse, at each level, the

computation is performed based on updated matrix blocks

obtained from the computation at previous level instead of
the original matrix. In contrast, in the level-by-level

computation of the matrix-matrix multiplication, at each

level, the computation is always performed based on the

original matrix, which is never updated. This difference

would render the inverse complexity higher than linear if

one does not address it properly. In [15], we develop three

new algorithms to render the total cost of an inverse linear.

The first algorithm is an instantaneous collect operation
for generating the auxiliary admissible block forms; the

second algorithm is a modified block matrix multiplication

algorithm; and the third one is an instantaneous split

operation.

The main operation in the inverse algorithm is to

perform fast block matrix multiplications based on

orthogonalized and nested cluster basis. For example,

after the orthogonalization, VsTVs ¼ I is satisfied for
each cluster s, and hence an admissible block-based matrix

multiplication encountered in the inverse procedure can

be done based on

VtS1V
sT �VsS2V

rT ¼VtS1 VsT �Vs
� 	

S2V
rT

¼VtS1IS2V
rT

¼VtðS1 � S2ÞVrT

where only S1 � S2 needs to be computed, the cost of

which is Oðk3Þ. The main purpose of the instantaneous

collect operation and the instantaneous split operation is

to keep the cost of each block matrix multiplication

constant. Since each H2-block is computed from OðCspÞ
block matrix multiplications and there are in total OðCspNÞ
blocks in an H2 matrix, the total cost of the inverse is

OðC2
spk3ÞN, which is linear. For nonstatic problems whose

electric size is moderate, the rank can be increased by a

rank function developed in [28] with the prescribed

accuracy satisfied. The total cost of the resultant direct

matrix solution is still linear as proved in [16].

G. Complexity Analysis
The storage of an H2-matrix is OðNÞ. The total

computational cost for solving the impedance system

(24) includes two parts: one is the H2-based construction

of Z that includes the computation of P�1
0 , L�1

1 , HSP and

HLK, which is the cost of eliminating unknowns ½IIn�, ½��,
and ½’� from (13)–(17), and the other is the direct solution

of (24) by computing ~Z
�1

, each of which is performed in
linear complexity as analyzed in the subsections above. As

a result, the total complexity is linear.

H. Accuracy Analysis
We analyze the accuracy of the proposed direct matrix

solution step by step based on the overall procedure shown

in Fig. 1.

The first step is to construct an efficient H2 partition.
The accuracy of this step can be controlled by � in (1).

The H2 representation of dense matrices L0, K0, L1,

K1, and P0 is obtained by a degenerate approximation

based on Lagrange interpolation given in (30). The error

bound of this approximation is derived in [28]. It is shown

that the error of (30) can be controlled to any desired order

by the number of interpolation points p and parameter �
used for H2 partition. For impedance extraction of 3-D
lossy conductors considered in this work, the electric size

of the underlying problem is not large, and hence a very

small p is sufficient for achieving a good accuracy. This is

also numerically demonstrated, as can be seen from exam-

ples given in the section of numerical results.

The H2 representation of sparse matrices Jsp and Jsp

is exact, as explained in Section IV-C, and hence this step

does not introduce any error.
Unifying the cluster bases is performed by orthogo-

nalization. We do not reduce the rank of the cluster basis

during the orthogonalization procedure, and hence no

error is introduced.

To compute HLK, we first need to obtain L�1
1 . It is

obtained by the inverse algorithm developed in [15] with

controlled accuracy. In this algorithm, we theoretically

proved the existence of theH2 matrix representation of the
inverse of the dense system matrix arising from a

capacitance extraction problem, and revealed the relation-

ship between the block cluster tree of the original matrix

and that of its inverse. By using a similar proof, it can be

shown that there exists an H2-representation of L�1
1 .

Moreover, L�1
1 shares the same block cluster tree as L1.

Hence, the H2-partition developed for L1 is equally

applicable to L�1
1 . This fact can also be understood

physically. Consider an admissible block ðL1Þt;s formed

by two subsets t and s of the entire unknown set. It repre-

sents the response (equivalent voltage) in subset t with the

source (equivalent current) located in subset s. This block

can be admissible because the admissibility condition is

satisfied, i.e. the response is sampled in subset t that is

sufficiently far from the source. Based on the same

reasoning, ðL�1
1 Þ

t;s
should be also admissible because it

also represents the response in subset t that is sufficiently

far from the source. The only difference is that in the

inverse, the physical quantity that represents the source

and the physical quantity that represents the response are

reversed from those in the original matrix. For example, in

ðL�1
1 Þ

t;s
, the source becomes an equivalent voltage, while

the response is an equivalent current.
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With L�1
1 obtained with controlled accuracy, the

L�1
1 �K1 is computed by an H2-based block-diagonal

matrix multiplied by an H2-based block-diagonal matrix

with controlled accuracy. The resultant matrix is also

block diagonal. The K0 � L�1
1 �K1 is then obtained from

a formatted matrix-matrix multiplication between an

H2-based dense matrix K0 and anH2-based block-diagonal

matrix L�1
1 �K1, with the H2 partition of the product

matrix ðK0 � L�1
1 �K1Þ assumed to be the same as K0, and

hence L0. This assumption is true because if a block is

admissible in K0, it is also admissible in K0 � L�1
1 �K1.

This can be analyzed as follows. Consider a ðt; sÞ block that

is admissible in K0, since L�1
1 �K1 is a block diagonal

matrix, to compute the ðt; sÞ block in K0 � L�1
1 �K1, only

ðs1; sÞ and ðs2; sÞ blocks in L�1
1 �K1 will participate in the

computation since all the other blocks in the columns

representing s are zero, where s1 is the row cluster that
forms an admissible block with column cluster s in the same

conductor cluster, and s2 is the row cluster that forms an

inadmissible block with s. The multiplication of

K0 � L�1
1 �K1 for obtaining the ðt; sÞ block hence becomes

K0 � L�1
1 �K1

� �t;s¼ Kt;s1
0 L�1

1 �K1

� �s1;s

þKt;s2
0 L�1

1 �K1

� �s2;s
: (36)

In the first term in the right-hand side, although Kt;s1
0 may

not be admissible, the ðL�1
1 �K1Þ

s1;s
is admissible, and

hence the first term has a low rank form shown in (2); in

the second term, since ðs2; sÞ is inadmissible, s2 must be

physically close to s; since Kt;s
0 is admissible, t must be

sufficiently far from s, and hence s2. As a result, Kt;s2
0 is

admissible, and thereby the second term in (36) also has a

low rank form. Hence, the resultant ðK0 � L�1
1 �K1Þ

t;s
has

a low-rank representation. Therefore, the ðt; sÞ block that

is admissible in K0 is also admissible in K0 � L�1
1 �K1.

Similarly, we can prove that an inadmissible block in K0 is

also inadmissible in K0 � L�1
1 �K1. As a result, the H2

partition constructed for K0 and L0 is equally applicable
to K0 � L�1

1 �K1. Thus, based on this partition, the

resultant formatted H2-based matrix-matrix multiplica-

tion has a controlled accuracy. The addition of L0 and

K0 � L�1
1 �K1 is then performed based on a straightfor-

ward H2-based matrix-matrix addition without introduc-

ing additional error.

To compute Hsp, we first need to obtain ðbP0ÞNC�NC.

This is obtained together with ðP�1
0 ÞNC�C (required in the

computation of rhs) by computing P�1
0 . The P�1

0 is

obtained with controlled accuracy by the inverse algorithm

in [15]. The matrix product ðJspÞN�NC
� ðbP0ÞNC�NC � Jsp is

performed based on an H2-based formatted matrix-matrix

multiplication. The product tree is formed between the

row cluster tree of Jsp and the column cluster tree of Jsp,

both of which is the cluster tree constructed for the RWG

vector basis functions. In the formatted matrix-matrix
multiplication, we assume that the H2 partition of the

product matrix ðJspÞN�NC
� ðbP0ÞNC�NC � Jsp is the same as

that of Li and Ki (i ¼ 0) matrices. This again can be

proved to be true as follows. Consider a ðt; sÞ block in the

partition formed based on the RWG-basis-based cluster

tree, if ðt; sÞ satisfies the admissibility condition, we can

prove that the corresponding block in ðJspÞN�NC
�

ðbP0ÞNC�NC � Jsp has a low rank form. This is because

ðJspÞN�NC � ðbP0ÞNC�NC � Jsp

� 	t;s

¼ ðJspÞ
t;t0

N�NCðbP0Þt
0;s0

N�NCJs0;s
sp

¼ ðJspÞ
t;t0

N�NCVt0St0;s0Vs0TJs0;s
sp

which is low rank. In the above, we only consider the ðt; t0Þ
block in Jsp, where t0 includes basis functions that directly

interact with t, because Jsp is a sparse matrix whose nonzero
elements only appear in the close interaction. Similarly, in

Jsp, we only need to consider the ðs; s0Þ-block, where s0

includes basis functions that directly interact with s. As a

consequence, in bP0, only the ðt0; s0Þ block is involved in the

computation. Since ðt; sÞ satisfies the admissibility condition,

and t0 is close to t, and s0 is close to s; ðt0; s0Þ also satisfies the

admissibility condition. Thus the ðt0; s0Þ block is admissible inbP0. Therefore, it can be replaced by a factorized low-rank
form, from which it can be seen clearly that the ðt; sÞ block

has a low rank form in ðJspÞN�NC
� ðbP0ÞNC�NC � Jsp, and

hence is also admissible.

The addition of HLK and HSP is then performed based

on a straightforward H2-based matrix-matrix addition

without introducing additional error, from which Z is

obtained. The error controlled inverse algorithm [15] is

then employed to obtain Z�1.
From the aforementioned analysis, it can be seen that

the error is well controlled at each step of the proposed

direct matrix solution. Therefore, the accuracy of the

entire solution can be controlled to a desired order.

V. NUMERICAL RESULTS

For all the examples simulated in this work, we choose

leafsize ¼ 8 and � ¼ 1 for the construction ofH2 partition;

and we use p ¼ 3 for the interpolation along each

dimension. All the simulation is done on a single 3 GHz

CPU. A surrounding medium with relative permittivity
equal to 1 is considered in all examples. The mesh size is

not restricted by the skin depth because of the underlying

surface-based formulation that rigorously accounts for skin

effects. The mesh size is chosen to capture the field

variation with space on the conducting surface. Whether

the mesh is fine enough or not is numerically judged by

checking the convergence of the impedance result.
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A. A Straight Conductor Wire
We first use a simple conductor wire to test the

accuracy of the proposed method for wideband impedance

extraction. The wire has a cross section of 1 mm by 1 mm

and a length of 25 mm. The conductivity of the wire is
5.8e þ 7 S/m. The discretisation results in 630 triangular

panels. Both real part and imaginary part of the impedance

computed by the proposed method are compared with

those extracted by FastHenry [32], which is based on a

volume IE method accelerated by fast multipole algorithm.

The inductances generated by both methods agree with

each other very well as can be seen from Fig. 4(a). For the

real part of the impedance as shown in Fig. 4(b),
FastHenry has to use a dense mesh with 7200 filaments

to capture the skin effect in the higher frequency band,

whereas the proposed surface-based method can still

capture the frequency dependency with a 630-panel-based

discretization.
The total solution time of the proposed solver across the

entire frequency band is 22.2 s, while the total solution time

of FastHenry across the entire frequency band is 434.5 s.

B. A 1 � 5 Bus Structure
We next simulated a 5-bus structure. Each bus has a

size of 2 �m� 2 �m� 20 �m as shown in Fig. 5. The

distance between two adjacent conductors is 5 �m. Each

conductor has the same conductivity as that used in the
previous example. The frequency point for extraction is

10 GHz. The discretization of the problem generates

1440 triangular panels. The impedances (in �) extracted

by the proposed method are shown in the equation at

the bottom of the page. The error of the impedance

matrix is 0.42%, which is computed by kZH2 � ZFHkF=
kZFHkF, where ZH2 is obtained by the proposed H2-based

direct solver and ZFH is obtained by FastHenry with
12 000 filaments.

The total solution time of the proposed solver is 8.1 s,

while the total solution time of FastHenry is 458.3 s.

C. Large-Scale Spiral Inductor Array
In this example, we consider an inductor array

composed of rectangular spirals, each of which has 4 full

turns. The width, thickness, and spacing of the rectangular

spiral are 1, 1, and 1 �m, respectively, and the inner
diameter of the rectangular spiral is 10 �m. The array

includes 2 � 2, 2 � 4, 2 � 8, 2 � 16 rectangular spirals,

as shown in Fig. 6(a), which, respectively, results in

72 692, 145 384, 290 768, and 581 536 number of

unknowns. For a fair comparison, a similar discretisation

is used in FastImp [31] and the residual error of GMRES

used by FastImp is set as 10�2. The frequency is 1 GHz.

Fig. 6(b) and (c) show the memory and the total solution
time for both methods. As can be clearly seen, the total

solution time of the proposed method scales linearly with

Fig. 4. Impedance of a straight conductor wire from 1 Hz to 10 GHz.

(a) Imaginary part. (b) Real part.

Fig. 5. A 5-bus structure.

Z ¼

9:87þ i71:23 0:062þ i26:78 �0:105þ i16:09 �0:091þ i11:37 �0:076þ i8:74

0:062þ i26:78 9:98þ i71:10 0:114þ i26:73 �0:080þ i16:08 �0:091þ i11:37

�0:105þ i16:10 0:113þ i26:73 9:99þ i71:18 0:113þ i26:73 �0:105þ i16:10

�0:091þ i11:37 �0:080þ i16:08 0:114þ i26:73 9:98þ i71:10 0:062þ i26:78

�0:076þ i8:74 �0:091þ i11:37 �0:105þ i16:10 0:062þ i26:78 9:88þ i71:24

266664
377775� 10�2:
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the number of unknowns, whereas the total solution time

of FastImp is affected by the number of iterations and the

number of right-hand sides, and hence FastImp failed to

show linear complexity although its matrix–vector multi-

plication achieved almost linear complexity. In Fig. 6(d),

we plot the solution error measured by k~ZI� rhsk=krhsk
of the proposed method. Good accuracy is observed in the

entire unknown range.

Next, we tested the capability of the proposed solver in

achieving a higher order of accuracy. The structure was the

spiral inductor array shown in Fig. 6(a). The arrays

simulated had 1, 2, 4, and 8 rectangular spirals, respec-

tively. The simulation parameters nmin and � remained the

same, but the number of interpolation points p was
increased from 3 to 6. Fig. 7(a) and (b), respectively, show

the solution error measured by k~ZI� rhsk=krhsk and

the total solution time of the proposed solver. As can be

seen clearly, by increasing p, the solution error is reduced

without sacrificing the linear time complexity.

D. Large-Scale 3-D Buses in Multiple Layers
The last example is a crossover bus structure in two

layers and each layer has m conductors. Each conductor has

a size of 1 �m� 1 �m� ð2mþ 1Þ �m and a conductivity

of 5.8e þ 7 S/m. The m is chosen as 1, 2, 4, 8, 16, 32, 64,

which, respectively, results in 800, 4480, 14 080, 48 640,

179 200, 686 080, 2 682 880 number of unknowns.

Fig. 6. Simulation of an array composed of rectangular spirals.

(a) Inductor Array. (b) Memory. (c) Total solution time.

(d) Solution error.

Fig. 7. Performance of the proposed solver in achieving a higher

order of accuracy. (a) Solution error. (b) Total solution time.
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The impedance is extracted at 1 GHz. First, we test the

accuracy of the matrices shown in (25) by evaluating

kHSP � ~HSPkF=kHSPkF, kHLK� ~HLKkF=kHLKkF, and

k~P
�1

0 P0 � IkF=kIkF, where HSP;HLK are both full

matrix representations while ~HSP; ~HLK are their corre-

spondingH2 representations, ~P
�1

0 is theH2-based inverse
of P0, and I is an identity matrix. Good accuracy of ~HSP;
~HLK and ~P

�1

0 is achieved in the entire unknown range, as

can be seen from Fig. 8, and the worst error is 2.55E-4,

3.81E-4 and 4.39E-3, respectively. Since the assessment of

matrix accuracy requires the computation of full matrices,

we only tested the accuracy of the matrix for m up to 16.

For larger cases, we used reference solutions to test the

solution accuracy of the proposed method as can be seen

from the following test.
We examined the efficiency of the proposed direct

solver and compared its performance with FastImp. For a

fair comparison, a similar discretization was used in both

methods. The relative residual in GMRES used by FastImp

was set as 10�3. The FastImp was only used to simulate

the bus structure with m up to 32 since the advantage of the

proposed solver was already obvious. Fig. 9(a) shows the

memory consumption by both methods. It can be seen that
the memory required by the proposed method is eight times

less than that required by FastImp. The time for one

matrix–vector multiplication is plotted in Fig. 9(b), which

shows that the proposed scheme is about 18 times faster

than FastImp. Fig. 9(c) shows the total solution time of the

proposed method that includes the cost of each step in

Fig. 1. As can be seen clearly, the total solution time of the

proposed method scales linearly with the number of
unknowns. It is also much faster than FastImp even though

the proposed method computes the entire inverse, whereas

FastImp only solves for 2m right-hand sides. In addition, we

tested the accuracy of the extracted impedance. One

column of the impedance matrix was extracted. We tested

the solution accuracy of both the proposed method and

FastImp based on kZ1 � Z01k=kZ1k, where Z1 is a vector of

Fig. 8. Matrix accuracy.

Fig. 9. Simulation of an m � m 3-D bus. (a) Memory. (b) Time for one

matrix vector product. (c) Total solution time. (d) Impedance error

compared to FastImp.
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impedances between port 1 and other ports computed by a
full-matrix-based direct solver, while Z01 is computed by

either the proposed method or FastImp. Because the full-

matrix-based direct solver is very expensive, we only used

this approach to assess error for small bus structures. It is

shown that the accuracy of the proposed method is 0.32%,

and 0.47%, respectively, for the bus structure with m ¼ 1

and m ¼ 2. For the same two structures, the accuracy of

FastImp is 0.70%, and 0.89%, respectively. Because both
methods achieved very good accuracy, we used FastImp to

benchmark the accuracy of the proposed method for larger

buses based on kZthis � Zfastimpk=kZfastimpk, where Zthis is

computed by the proposed method, and Zfastimp is computed

by FastImp. As can be seen from Fig. 9(d), excellent

accuracy is observed in the entire unknown range.

VI. CONCLUSION

A direct solver of linear complexity is developed for the

surface integral-based impedance extraction of arbitrarily
shaped nonideal 3-D conductors embedded in a dielectric

material. It successfully solves a highly irregular system

matrix mixed with both dense and sparse blocks in linear

CPU time and memory consumption, with controlled

accuracy. Numerical results demonstrate its superior

performance.

Impedance parameters (Z-parameters) are one kind of

network parameters to characterize a circuit. From the
impedance parameters or the voltage and current results

obtained from the proposed solver, one can also obtain any

other circuit parameters of interest such as admittance

ðYÞ parameters and scattering ðSÞ parameters. h
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