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Abstract— The dense matrix resulting from an integral equa-
tion (IE)-based solution of Maxwell’s equations can be compactly
represented by an ‘H2-matrix. Given a general dense H2-
matrix, prevailing fast direct solutions involve approximations
whose accuracy can only be indirectly controlled. In this paper,
we propose new direct solution algorithms whose accuracy is
directly controlled, including both factorization and inversion,
for solving general ‘H2-matrices. Different from the recursive
inverse performed in existing 7{2-based direct solutions, this new
direct solution is a one-way traversal of the cluster tree from
the leaf level all the way up to the root level. The underlying
multiplications and additions are carried out as they are without
using formatted multiplications and additions whose accuracy
cannot be directly controlled. The cluster bases and their rank
of the original matrix are also updated level by level based on pre-
scribed accuracy, without increasing computational complexity,
to take into account the contributions of fill-ins generated during
the direct solution procedure. For constant-rank ‘H2-matrices,
the proposed direct solution has a strict O (V) complexity in both
time and memory. For rank that linearly grows with the electrical
size, the complexity of the proposed direct solution is O (NlogN)
in factorization and inversion time, and O(XN) in solution time
and memory for solving volume IEs (VIEs). Rapid direct solutions
of electrodynamic VIEs involving millions of unknowns have been
obtained on a single CPU core with directly controlled accuracy.
Comparisons with state-of-the-art ‘H2-based direct VIE solvers
have also demonstrated the advantages of the proposed direct
solution in accuracy control, as well as achieving better accuracy
with much less CPU time.

Index Terms—Dense matrices, electrodynamic, electromag-
netic analysis, fast direct solvers, frequency domain, ’Hz-matrix,
integral equations (IEs), linear complexity solvers, volume
IEs (VIEs).

I. INTRODUCTION

HE H’-matrix is a general mathematical frame-
work [1]-[4] for compact representation and efficient
computation of dense matrices. It can be utilized to develop
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fast solvers for electromagnetic analysis. Many existing fast
solvers can be interpreted in this framework, although their
developments may predate the 72-framework. For exam-
ple, the matrix structure resulting from the well-known
FMM-based methods [5], [6] is an HZ-matrix. In other words,
the H2-matrix can be viewed as an algebraic generalization
of the FMM method. Multiplying an H?-matrix by a vector
has a complexity of O(NlogN) for solving electrically large
surface integral equations (SIEs). In the mathematical litera-
ture, such as [7], it is shown that the storage, matrix-vector
multiplication (MVM), and matrix—matrix multiplication of an
H>-matrix can be performed in optimal O(N) complexity
for constant-rank cases. However, no such complexity is
shown for either matrix factorization or inversion, regardless
of whether the rank is a bounded constant or an increasing
variable. Later in [8] and [9], fast matrix inversion and
LU factorization algorithms are developed for 7>-matrices.
They have shown a complexity of O(N) for solving constant-
rank cases, such as electrically small and moderate problems
for both SIE and volume IE (VIE) [10]-[13]; and a complexity
of O(NlogN) for solving electrically large VIEs [14]-[16].
There exist other significant contributions in fast direct solvers,
such as [17]-[25], [32], and [33]. The focus of this paper,
however, is a fast direct solution to an H2-matrix, as this
matrix structure is general suitable for solving both dense and
sparse matrices.

Despite a significantly reduced complexity, in the existing
direct solutions of H2-matrices, such as [8] and [9], formatted
multiplications and additions are performed instead of actual
ones, where the cluster bases used to represent a matrix
are also used to represent the matrix’s inverse as well as
LU factors. During the inversion and factorization procedure,
only the coupling matrix of each admissible block is com-
puted, while the cluster bases are kept to be the same as those
in the original matrix. Physically speaking, such a choice of
the cluster bases for the inverse matrix often constitutes an
accurate choice. However, mathematically speaking, the accu-
racy of the inversion and factorization cannot be directly
controlled. The lack of an accuracy control is also observed
in the H2-based formatted matrix—matrix multiplication in the
mathematical literature, such as [7]. If the accuracy is to be
controlled, the inverse as well as the matrix—matrix multipli-
cation algorithm must be completely changed, as the original
formatted framework does not offer a mechanism to control
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the accuracy without increasing complexity. Algorithmwise,
the collect operation involves approximations, whose accuracy
is not directly controlled. This operation is performed when
multiplying a nonleaf block with a nonleaf block, or multiply-
ing a nonleaf block with an admissible block, with the target
block being admissible. In this operation, the four blocks,
either admissible or inadmissible, are collected to a single
admissible block based on the cluster bases of the original
matrix. If the target block cannot be accurately represented by
the original cluster bases, then an error would occur. When
the accuracy of the direct solution is not satisfactory, one
can only change the original {?-representation, i.e., change
the cluster bases and/or the rank for representing the original
matrix (based on a prescribed accuracy), with the hope that
they can better represent the inverse and LU factors. Therefore,
the accuracy of the resulting direct solution is not directly
controlled. A direct solution with an explicit accuracy control
should perform every multiplication and addition as it is
without assuming a format of the matrix involved in the
computation. Meanwhile, every operation in the direct solution
should be either exact or performed based on a prescribed
accuracy. This is what is pursued and achieved in this paper.

Recently, an HSS-matrix structure [26] has also been
explored for -electromagnetic analysis [27]-[30]. Exact-
arithmetic fast factorization and inversion algorithms have
been developed in [28] and [29]. In other words, the direct
solution of the HSS matrix does not involve any approx-
imation. However, the HSS matrix, as a special class of
H2-matrix, requires only one admissible block be formed for
each node in the >-tree. All the off-diagonal matrices in the
HSS matrix are represented as low-rank matrices. As a result,
the resultant rank can be too high to be computed efficiently,
especially for electrically large analysis. This is because as
long as the sources and observers are separated, even though
their distance is infinitely small, their interaction must be
represented by a low-rank matrix to suite the structure of an
HSS matrix. From this perspective, an 7{?-matrix is a more-
efficient structure for general applications, since the distance
between the sources and observers can be used to reduce the
rank required to represent a dense matrix for a prescribed
accuracy. However, the accuracy-controlled direct solution of
general H2-matrices is still lacking in the open literature.
The contribution of this paper is such an accuracy-controlled
direct solution of general 7>-matrices. This solution can be
applied to solve a general 2-matrix, be it real- or complex-
valued, symmetric or unsymmetrical. Its complexity is O(N)
for constant-rank 7{2-matrices in both time and memory. For
rank that linearly grows with electrical size, the complexity of
the proposed direct solution is O (NlogN) in factorization and
inversion time, O(N) in solution time, and memory usage for
solving VIEs. As a demonstration, we show how it is used to
solve large VIEs involving millions of unknowns on a single
core CPU, and with controlled accuracy.

The rest of this paper is organized as follows.
In Section II, we review the mathematical background of this
paper. In Section III, we present the proposed factorization and
inversion algorithms for general 72-matrices. In Section IV,
we describe the proposed matrix solution algorithm, including
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Fig. 1. Illustration of an H2-matrix. (a) Block cluster tree. (b) Matrix
partition where admissible blocks are stored in the format of (1).

both backward and forward substitutions. The accuracy and
the computational complexity of the proposed direct solutions
are analyzed in Section V. Section VI demonstrates the
application of this paper in solving electrodynamic VIEs.
In Section VII, we summarize this paper.

II. BACKGROUND OF THIS PAPER

An H?-matrix [1]-[4] is generally stored in a tree structure,
with each node in the tree called a cluster. The number of
unknowns in each cluster at the leaf level is no greater than
leafsize, a predefined constant. An H2-matrix is partitioned
into multilevel admissible and inadmissible blocks based on
an admissibility condition. As an example, a four-level block
cluster H’-tree is shown in Fig. 1(a), where a green link
denotes an admissible block, formed between a row cluster
and a column cluster that satisfy the admissibility condition,
and a red link denotes an inadmissible block. The resultant
H2-matrix is shown in Fig. 1(b). An admissible block in an
H2-matrix is represented as

Zis = (Ve St 0k (V)i i (1)

where V; (Vy) is called cluster basis of cluster ¢ (s), S; s is
called coupling matrix, # denotes the cardinality of a set, and
k is rank. The cluster basis in an ’-matrix has a nested
property. This means the cluster basis for a nonleaf cluster #,
V:, can be expressed by its two children’s cluster bases,
V;, and V,,, as the following:

_ (Vll)#tlxkl 0 (Ttl)kl xk
(Vt)#th B [ 0 (Vtz)#tgxkz :| [(th)kz ><k1| (2)

where T, and T, are called transfer matrices. In an
H?-matrix, the number of blocks formed by a single cluster at
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each tree level is bounded by a constant, Csp. The size of an
inadmissible block is leafsize, and inadmissible blocks appear
only at the leaf level.

In the mathematical literature [7], for constant-rank cases,
it is shown that the computational complexity of an
H?-matrix is optimal (linear) in storage, MVM, and
matrix—matrix multiplication. In [8]-[13], it is shown that
O(N) direct solutions can also be developed for H?-matrices
for constant-rank cases as well as electrically moderate cases
whose rank can be controlled by a rank function. For
electrically large analysis, the rank of an H2-representation
of IE kernels is not constant any more for achieving a
prescribed accuracy. Different H2-representations also result
in different ranks and their growth rates with electrical
size, and hence different complexities. For example, if an
FMM-based H?-representation is used to model an IE oper-
ator, the asymptotic rank would scale quadratically with the
electrical size. If an interpolation-based H2-representation is
used to model an IE operator, the asymptotic rank would scale
quadratically with the electrical size in SIEs, and cubically
with the electrical size in VIEs. Despite its full-rank model
in SIEs, the FMM complexity is as low as O(NlogN) for
one MVM, because its coupling matrix is diagonal and transfer
matrix is sparse. On the other hand, if one uses an SVD-based
minimal-rank representation, the resultant coupling matrix is
not diagonal. However, the asymptotic rank of such a minimal-
rank representation only scales linearly with electrical size
for general 3-D problems as shown by the analysis given
in [31]. In this analysis, there are additional findings that are
not utilized in the FMM-based rank analysis or a source-
observer separated rank analysis, such as SVD turns to a
Fourier analysis in a linear-shift invariant system, and the
Fourier transform of Green’s function reveals that not all the
plane waves are important, and only those whose wavenumber
is closest to the given wavenumber ko make the most important
contribution. These plane waves are counted for prescribed
accuracy for 1-, 2-, and 3-D problems in [31]. It is found that
the growth rate with electrical size is no greater than linear.

Regardless of which {?-matrix is generated to represent the
integral or partial differential equation operators, the proposed
direct solution is equally applicable. In this paper, when
we apply the proposed direct solution to solve large VIEs,
we employ a minimal-rank 7?-representation of the
VIE operator using the technique we developed in [14]-[16].

III. PROPOSED FACTORIZATION AND
INVERSION ALGORITHMS

Given a general {>-matrix Z, the proposed direct solution
is a one-way tree traversal from the leaf level all the way up
to the root level of the H2-tree. At each level, the factorization
proceeds from the left to the right across all the clusters. This
is very different from the algorithm of [9], [11], [14], and [15],
where a recursive procedure is performed. To help better
understand the proposed algorithm, while we present a generic
algorithm, we will use the H2-matrix shown in Fig. 1(b),
as an example to illustrate the overall procedure. In Fig. 1(b),
green blocks are admissible blocks, and red ones represent
inadmissible blocks.

A. Computation at the Leaf Level

1) For the First Leaf Cluster: We start from the leaf
level (I = L). For the first cluster, whose index is denoted
by i = 1, we perform three steps as follows.

Step 1: We compute the complementary cluster basis Vl-L,
which is orthogonal to V; (cluster basis of cluster /). This can
be easily done by carrying out an SVD or QL factorization
on V;. The cost is not high; instead, it is constant at the leaf
level. We then combine V; with Vl-L to form Q; matrix as the
following:

Qi = [(VD)sixi-ky (Vidsixk] 3)

in which k; is the rank at level [ (now [ = L), and # denotes
the number of unknowns contained in a set.

Step 2: Let Zyr be the current matrix that remains to be
factorized. For leaf cluster i = 1, Z¢yr = Z. We compute a
transformed matrix QIH Zcur@-, and use it to overwrite Zcyr;
thus

Zcur = QiHZcurGi (4)
where QlH denotes Q;’s complex conjugate transpose, and
Q; = diagf{I;, I, . ..

is a block diagonal matrix. The ith diagonal block in Q;
is 6,-, and other blocks are identity matrices I, the size of
each of which is the corresponding leaf-cluster size. The
subscripts in the right-hand side of (5) denote the indexes of
diagonal blocks, which are also the indexes of leaf clusters,
and #{leaf clusters} stands for the number of leaf clusters.
If leaf cluster i = 1 is being computed, Q,; appears in
the first block of (5). In addition, Q; in (4) denotes the
complex conjugate of Q;, as the cluster bases we construct
are complex-valued to account for general H2-matrices. In (5),
Q, only consists of one Q;, where i is the current clus-
ter being computed. This is because Q; values for other
clusters are not ready for use yet, since in the proposed
algorithm, we will update cluster bases to take into account
the contribution from fill-ins. This will become clear in the
sequel.

The purpose of doing this step, i.e., obtaining (4), is to
introduce zeros in the matrix being factorized, since

P 61' PRI I#{leafclusters}} (5)

R ©)
ki xk;
VI % Q; = Oy x@i—t) Tkxk ] (7)

The operation of (4) thus zeros out the first (#i — k;) rows
of the admissible blocks formed by row cluster i, as well as
the first (#i — k;) columns in Zcy, as shown by the white
blocks in Fig. 2. The real computation of (4) is, hence, in the
inadmissible blocks of cluster i, as shown by the four red
blocks associated with cluster i = 1 in Fig. 2.

Step 3: After Step 2, the first (#i — k;) rows and columns
of Zcyr in the admissible blocks of cluster i become zero.
Hence, if we eliminate the first (#i — k;) unknowns of cluster i
via a partial LU factorization, the admissible blocks of cluster i
at these rows and columns would stay as zero, and thus not
affected. As a result, the resulting L and U factors, as well
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Fig. 2. Illustration of QI ZQ.

as the fill-in blocks generated, would only involve a constant
number of blocks, which is bounded by O(CZ).

In view of the above-mentioned property, in Step 3, we per-
form a partial LU factorization to eliminate the first (#i — k;)
unknowns of cluster i in Zg,. Let this set of unknowns
be denoted by i’. Zcyr can be cast into the following form

accordingly:
_ |\ Fiir Zye
Zew = [Za_/ 7 ®)

in which F;;; denotes the diagonal block of the (#i — k;)
unknowns, and Z;. is the remaining rectangular block in the
row of set i’. Here, ¢ contains the rest of the unknowns, which
do not belong to i’. The Z; is the transpose block of Z;., and
Z.. is the diagonal block formed by unknowns in set c. It is
evident that Z; . (Z.;) only consists of O(Cyp) inadmissible
blocks, as the rest of the blocks are zero. Take leaf cluster
i = 1 as an example. It forms inadmissible blocks with clusters
i = 2,4,6, as shown by the red blocks in Fig. 2. Hence,
Z;. = [F12, Fi4, F1¢] in addition to part of Fyj.

After performing a partial LU factorization to eliminate the
unknowns contained in i’, we obtain

_ L; 01 0 Ui L:-l/Zi/c
Zewr = |:Zci/Ui/il/ I:| [0 chi| |: 0 llI )

where

Fiyy = LyyUpy (10)
and the Schur complement is
Zoe =2 — 2o ULy Ziee (1D

in which Zci/Ui_,il,Li_,il,Z,-/C represents the fill-in blocks intro-
duced due to the elimination of i’-unknowns. Because of the
zeros introduced in the admissible blocks, Z;/. and Z.; only
consist of inadmissible blocks formed by cluster i, the number
of which is bounded by constant Cs,. Hence, the number of
fill-in blocks introduced by this step is also bounded by a
constant, which is O(Cszp).

Equation (9) can further be written in short as

I 0
Zew = L [0 icc} U

in which the first matrix of (9), which is the L factor
generated after a partial LU of cluster i at level /, is denoted
by Lg. Similarly, the rightmost matrix of (9), which is the
U factor generated after a partial LU of cluster i at level /,
is denoted by Uf. The center matrix is the one that remains to

(12)

(b)

Fig. 3. (@) Zcyr after partial LU of cluster 1 with fill-in blocks marked in
blue. (b) Fill-in blocks of cluster 2 turned green after cluster basis update.

be factorized. Thus, we let

I 0
Zewr = [0 ch]-

This matrix is shown in Fig. 3(a), where the fill-in blocks
are added upon previous Zg,. If the fill-in block is added
upon an inadmissible block, we add the fill-in directly to the
inadmissible block. For the example shown in Fig. 1(b), these
blocks are the blocks marked in dark blue in Fig. 3(a) after the
i’ set of unknowns in cluster i = 1 is eliminated. If the fill-
in appears in an admissible block, we store the fill-in block
temporarily in this admissible block for future computation.
These blocks are the blocks marked in light blue in Fig. 3(a).
To explain in more detail, from (11), it can be seen that the
fill-in block formed between cluster j and cluster k has the
following form:

13)

Fik=Zji ULy Zi (14)

which is also low rank in nature. The row cluster j and column
cluster k belong to the set of clusters that form inadmissible
blocks with cluster i, whose number is bounded by Cs,. If the
original block formed between j and k, Zcy, jk, is admissible,
no computation is needed for F;, i.e., we do not add it
directly to the admissible block. Instead, we store it with this
admissible block temporarily until cluster j is reached during
the factorization. At that time, F;; will be used to compute
an updated cluster basis for j. If the elimination of different
clusters results in more than one fill-in block in admissible
Zcyr, jk block, the later ones are added upon existing Fj .
In other words, the fill-ins at the admissible Zcy,, jx block are
summed up and stored in a single F .

In summary, Step 3 is to perform a partial LU factorization,
as shown in (9), to eliminate the first #i — k; unknowns in
cluster i. The storage and computation cost of this step can
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be analyzed as follows. In (9), the LU factorization of F;/;
into Ly and Uy costs O(leafsize’) in computation, and
O(leafsize?) in memory, which is hence constant. Z.;s (Z;’.)
only involves O(Csp) inadmissible blocks. Hence, the com-
putation of Zci/Ui_,l.l, as well as Li_,il,Zi/c is simply O(Csp)
operations, each of which scales as O (leaf si ze3), and hence,
the cost is also constant. The results of the partial factorization,
ie., Lﬁ and Ué, are stored in O(Csp) blocks of leafsize. Thus,
the memory cost is also constant. As for the fill-in blocks,
their number is bounded by CSZP, and each of which is of
leafsize. Hence, the computation and storage associated with
fill-in blocks are constant too, at the leaf level for each cluster.

2) For Other Leaf Clusters: Next, we proceed to the second
leaf cluster i = 2 and other leaf clusters. For these leaf
clusters, all the steps are the same as those performed for the
first leaf cluster, except for adding another step before Step 1.
We term this step as Step O.

Step 0: This step is to update cluster basis V; to account
for the contributions of the fill-ins due to the elimination of
previous clusters. If we do not update cluster bases V;, they
are not accurate any more to represent the admissible blocks
formed by cluster i, since the contents of these blocks have
been changed due to the addition of the fill-in blocks. However,
if we let the admissible block updated by fill-ins become
a full-matrix block, i.e., an inadmissible block, the number
of fill-ins would keep increasing after each step of partial
factorization, and hence, the resultant complexity would be
too high to tolerate. To overcome this problem, we propose to
update cluster bases as follows.

For cluster i, we take all the fill-in blocks associated
with its admissible blocks, and use them to update cluster
basis V;. These fill-in blocks are shown in (14), which have
been generated and stored in the corresponding admissible
blocks during the elimination of previous clusters. Let them be
Fij(k=1,2,...,0(Csp)), where the first subscript denotes
the row cluster i, and the second being the column cluster
index. The number of such blocks is bounded by O(Csp),
because the number of admissible blocks formed by a single
cluster, such as i, is no greater than Cgp. Next, we compute

G, = (I-V,vH) (ZkFi,ijfjk) @—v,vih" s

We then perform an SVD on G;, and truncate the singular
vector matrix based on prescribed accuracy €g)1-in, obtaining

G; L (Vidd)p (vadd)

V?dd is the additional cluster basis we supplement, since it
captures the part of the column space of the fill-in blocks,
which is not present in the original V;. The cluster basis can
then be updated for cluster i as

{'7,' = [V,‘ V?dd].

(16)

a7)

By doing so, we are able to keep the original admissible blocks
to be admissible while accurately taking into account the fill-
in’s contributions. Hence, the number of fill-ins introduced
due to the elimination of each cluster can be kept to be
a constant, instead of growing. In addition, by keeping the
original cluster basis V; in the new bases instead of generating

(@ (b)

Fig. 4. (a) QSI Zcurﬁz. (b) Zcyr after partial LU of cluster 2.

a completely new one, we can keep the nested relationship in
the original 7{2-matrix for efficient computations at top levels.
The computational cost of such a supplement of cluster bases
is constant at leaf level, and scales as O(kl3 ) at other levels (this
will become clear soon) for each cluster.

In Fig. 3(b), Step O is reflected by turning the light blue
blocks associated with cluster i = 2 in Fig. 3(a) back to
green blocks, symbolizing that they become admissible again.
After V; is updated to V;, we find its complementary bases,
i.e., perform Step 1, to obtain

Q= [(’\v]ij_)#ix(#ifk/) (Vi)sixi)-

We then use Q- to generate (5), and project the current
matrix to be factorized, shown in Fig. 3(b), to the matrix
shown in (4). This again will zero out the first (#i — k;)
rows (columns) of the admissible blocks formed by cluster i,
as shown in Fig. 4(a). We then proceed to Step 3 to perform a
partial LU factorization. After this step, the matrix Zcy,, which
remains to be factorized, is shown in Fig. 4(b). Steps 0-3 are
then repeated for the rest of the leaf clusters.

3) Updating the Coupling Matrix at the Leaf Level and the
Transfer Matrix at One Level Higher: After the computation at
the leaf level is finished, before proceeding to the next level,
we need to update the coupling matrices at the leaf level,
as well as the transfer matrices at one level higher. This is
because the cluster bases have been updated at the leaf level.

For admissible blocks without fill-ins, their coupling matri-
ces can be readily updated by appending zeros. For example,
considering an admissible block formed between clusters i
and k. Its coupling matrix S; x is updated to

< _[Sik 0
S"”‘:[ 0 0}

oo of
ViSikV, = ViSikVI.

(18)

(19)
because in this way
(20)

For admissible blocks with fill-ins, their coupling matrices are
updated by adding the fill-in part onto the augmented coupling
matrix, shown in (19), as

o~ o~ ~H P~
Six =Six+V, FixVi 21

in which F; ; represents the fill-in block associated with the
admissible block.

We also need to update the transfer matrices at one level
higher, i.e., at the [ = L —1 level. This can be readily done by
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Fig. 5. Zcyr left to be factorized after leaf-level computation.

adding zeros to the original transfer matrices. To be clearer,
consider a nonleaf cluster #, whose two children clusters are
t1 and t», and its cluster basis can be written as

dd T

Vi, Ty _ [V,lV,al ] 0 0 22)
sz TTZ 0 [Vtz V?zdd] TTZ
0

where T; and T, are original transfer matrices associated
with nonleaf cluster ¢.

The transfer matrices and coupling matrices at other levels
all remain the same as before. They are not updated until
corresponding levels are reached.

B. Computation at the Nonleaf Level

After all the leaf-level computation, we obtain a matrix
shown in Fig. 5, which is current Z,, left to be factorized.
All the empty blocks are zero blocks. The diagonal blocks
corresponding to the unknowns that have been eliminated are
identity matrices shown as I. The nonzero blocks, shown as
shaded blocks, each is of size (kj41 X k;+1), where [ is current
tree level, [ + 1 is the previous tree level whose computation
is finished, and k;4+| denotes the rank at the (I + 1)th level.
The structure shown in Fig. 5 is not only true for / = L — 1
level, i.e., one level above the leaf level, but also true for every
nonleaf level /, except that the size of each block is different
at different tree levels, since k;y is different especially for
electrically large analysis. The computation at a nonleaf level
is performed as follows.

1) Merging and Permuting: In Zc,, whose structure is
shown in Fig. 5, we permute the matrix, and merge the four
blocks of a nonleaf cluster, formed between its two children
clusters and themselves, to a single block, as shown by the
transformation from Figs. 5 to 6(a). After this, we further
permute the unknowns that have not been eliminated to the
end. This results in a matrix shown in Fig. 6(b). As a result,
the bottom-right block becomes the matrix that remains to
be factorized. This matrix is of size 2/(2k;11) x 2/ (2ki+1),
because it is formed between 2! clusters at the nonleaf level /,
and each cluster is of size 2k;4+1. Obviously, this matrix is
again an H>-matrix, as shown by green admissible blocks and
red inadmissible blocks in Fig. 6(b). The difference with the
leaf level is that each block, be its inadmissible or admissible,
now is of size 2k;4+1 x 2k;4+1. Hence, in the proposed direct
solution algorithm, at each nonleaf level, the computation is
performed on the matrix blocks whose size is the rank at that
level, and hence efficient.

1 I

SIIL

(a) (b)

Fig. 6. (a) Merging to next level. (b) Permuting to obtain Zcy, to be factorized
at next level.

Now, each admissible block is of size only 2k;4+1 X 2kjq1.
Its expression is different from that at the leaf level. Consider
an admissible block formed between clusters r and s at a
nonleaf level /, as shown by the green blocks in Fig. 6(b).
It has the following form:

(Admissible block)!) = TS, ,T! (23)

where T; is the transfer matrix for nonleaf cluster ¢, whose
size is O(2kj+1 X k), T is the transfer matrix for cluster s
whose size is also O(2k;+1 x k;), and S; s is the coupling
matrix whose size is O (k; x k;).

Since the matrix block left to be factorized after merging
and permutation is again an {2-matrix, we can apply the same
procedure performed at the leaf level, i.e., from Step 0 to
Step 3, to the nonleaf level. In addition, from (23), it can
also be seen clearly that now, transfer matrix T at a nonleaf
level plays the same role as cluster basis V at the leaf level.
Therefore, wherever V is used in the leaf-level computation,
we replace it by T at a nonleaf level. In the following, we will
briefly go through Steps 0-3 performed at a nonleaf level,
as the essential procedure is the same as that in the leaf level.

2) Steps 0 to 3:

a) Step 0 at the nonleaf level: This step is to update
transfer matrix T; to account for the contributions of the fill-
ins due to the elimination of previous clusters.

For cluster i, we take all the fill-in blocks associated
with its admissible blocks, and use them to update transfer
matrix T;. These fill-in blocks are shown in (14), which have
been generated and stored during the factorization of previous
clusters. Let them be F; j, (k = 1,2,..., O(Cyp)), where the
first subscript denotes the row cluster i. Different from the
fill-ins at leaf level, F; j, now is of (2k;y1 x 2k;41) size at a
nonleaf level /. We then compute

G = (1-T,T) (sz,-,,-kajk) (L Vs Vi T2

where all the k& admissible blocks formed by cluster i are
considered. Performing an SVD on G;, and truncating the
singular vector matrix based on prescribed accuracy €fji-in,
we obtain

G " (1) 2 (13, 2

is hence the additional column space we should supple-
ment in the transfer matrix. The new transfer matrix T; can
then be obtained as

add
Ti

T, = [T T2 (26)

The cost of this step for each cluster at level [ is O (k).
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b) Step 1 at a nonleaf level: We compute the comple-
mentary cluster basis 'I~‘iL, which is orthogonal to fl This
computation is not expensive, as it costs only O (k;%) at level [.
We then combine fl with fiL to form (1- matrix as the
following:

—~ ~L o~
Q = [(Ti )2kl+1><(2kl+1—k1) (Ti)2k/+lxk/]'

c) Step 2 at a nonleaf level: With 6,- computed, we build
a block diagonal matrix

27)

Qi = diag{ll, L,..., Qi, ey I#{clusters at 1evell}} (28)
using which we construct
Zcur = Q,‘HZcurai (29)

where Z,; only consists of the block that remains to be factor-
ized, as shown by the bottom-right matrix block in Fig. 6(b),
which is not an identity. Similar to that in the leaf level,
by doing so, we zero out first (2k;41 — k;) rows of the
admissible blocks formed by row cluster i, as well as their
transpose entries in Zc,r. The real computation of (29) is hence
in the inadmissible blocks of nonleaf cluster i, the cost of
which is O (k;)3.

d) Step 3 at a nonleaf level: We perform a partial LU
factorization to eliminate the first (2k;4+; — k;) unknowns of

cluster i in Zcy. Let this set of unknowns be denoted by i’.
We obtain

_ Li/l‘/ 0 I 0 Ul‘/i/ Lj'l/Zi/C
=gy Ao 2L e

where F;; = LyyUy, and Zc. is a Schur complement.
Each fill-in block is again either directly added, if the to-
be added block is inadmissible, or stored temporarily in the
corresponding admissible block. Equation (30) can further be
written in short as

(€19

At a nonleaf level /, each of L;/;; and U;/;» is of size at most
(ki1 — ki) x< 2kjy1 — ki). Zyre (Zeir) has only Cgp blocks,
which are also inadmissible, each of which is of size at most
2kj4+1 X (2kj+1 — k). The Schur complement involves CSZp fill-
in blocks, each of which is of size at most 2k; 41 by 2k;4.
Therefore, generating the L and U factors, as well as com-
puting the fill-in blocks, only involves a constant number of
computations, each of which scales as O(k;?) at a nonleaf
level. The storage of the L and U factors, as well as the fill-in
blocks, only takes O (k;?) multiplied by constant O(Cszp).

3) Updating the Coupling Matrix at Current Level and the
Transfer Matrix at One Level Higher: After the computation
at the current nonleaf level [ is finished, before proceeding to
the next level, / — 1, we need to update the coupling matrices
at current level, as well as the transfer matrices at one level
higher. This is because the transfer matrices have been updated
at the current level.

Similar to the procedure at the leaf level, for admissible
blocks without fill-ins, their coupling matrices can be readily
updated by appending zeros, as shown in (19). For admissible

blocks with fill-ins, their coupling matrices are updated by
adding the fill-in part onto the augmented coupling matrix S; x
as

~H =
Sik =Sik + T, Fi Tk (32)

in which F;; represents the fill-in block associated with the
admissible block formed between clusters i and k.

We also need to update the transfer matrices at one level
higher, i.e., at the [ — 1 level. This can be readily done by
adding zeros to the original transfer matrices, corresponding
to the matrix block of T?dd.

C. Summary

The aforementioned computation at the nonleaf level is
continued level by level until we reach the minimal level
that has admissible blocks, denoted by [/yp. The overall
procedure can be realized by the pseudocode shown in
Algorithm 1, where the detail of each step can be found from
aforementioned Sections III-A and III-B.

Algorithm
H2-Matrices
1: Let Z¢yr = 7
2: for [ = L to [y do
3. for cluster : i =1 to 2! do
Update cluster basis (Step 0)
Obtain projection matrix Q; (Step 1)
Do Zcur = QiHZcurﬁi (Step 2)
Perform partial LU Z,, = LIZ,, Ul (Step 3)
Let Zeyr = Ziens
end for
10:  Update coupling matrices at level /
11:  Update transfer matrices at level [ — 1
12:  Permute and merge small k; x k; matrices to next level
13: end for
14: Do LU on the final block, Z.,, = LU.

1 Proposed Direct Solution of General

R A

The aforementioned direct solution procedure results in the
following factorization of Z:

7 = LU
L= IHjO—L [(Hf—lQéLé) P’T“L
U=U IH1L=10 [PI (H,-l:legQgr)“ '

As mentioned earlier, Qé denotes Q; at level /. For leaf level,
it is shown in (5), and for a nonleaf level, it is shown in (28).
Each Qﬁ has only one block that is not identity, whose size is
2kiy1 % 2k;y1 at the nonleaf level, and leafsize x leafsize
at the leaf level. Each Lf is shown in (12) or (31), which
has O(Csp) blocks of leafsize at the leaf level, and O(Cyp)
blocks of O(k;y1) size at a nonleaf level. The same is true
to Uﬁ. L and U without subscripts and superscripts are the
L and U factors of the final matrix that remains to be
factorized in level /p. The nonidentity blocks in L. and U are
of size 0(210 kiy). The P; matrix is a permutation matrix that
merges small k; x k; matrices at level / to one level higher.

(33)
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Fig. 7. (a) Ly matrix. (b) Uy matrix.

The factorization shown in (33) also results in an explicit
form of Z’s inverse, which can be written as

2 = 112, [(TE. @) e o
x L7 HIL=10 [Pl (H;ZZ,(Lﬁ)‘lQﬁH)“. (34)

In addition, in the proposed direct solution, one can also
flexibly stop at a level before /[ is reached. This may be desired
if at a tree level, the number of zeros introduced is small
as compared with the block size at that level. Although one
can still proceed to the next level, the efficiency gain may be
smaller than that gained if one just stops at the current level,
and finishes the factorization. This typically happens at a few
levels lower than the [ level.

IV. PROPOSED MATRIX SOLUTION (BACKWARD AND
FORWARD SUBSTITUTION) ALGORITHM

After factorization, the solution of Zx = b can be obtained
in two steps: Ly = b, which can be called as a forward sub-
stitution, and U/x = y called as a backward substitution. Rig-
orously speaking, since projection matrix Qg and permutation
matrix P; are involved in £ and U/ factors, the matrix solution
here is not a conventional forward/backward substitution.

A. Forward Substitution

In this step, we solve

Ly =b. (35)

From (34), it can be seen that (35) can be solved as

y=L"p=L" [HZL=10 [PZ (H"lzz/ (Lg)_ngH)} ] b(.36)

Take a three-level {>-matrix as an example, (36) is nothing
but

y=L7"PiL;'QYL; QYL QYL ' Qf . (37)

Obviously, three basic operations are involved in the for-
ward substitution: multiplying (Qﬁ)H by a vector, multiplying
(Lﬁ)’1 by a vector, and P;-based permutation.

The algorithm of the forward substitution is shown in
Algorithm 2. (Lﬁ)’lb in Step 4 of this algorithm only
involves O(Csp) MVMs of leafsize or rank size associated
with cluster i at level [. To see this point more clearly, we can

Algorithm 2 Forward Substitution b < £~ b

1: for [ = L to [y do

2. for cluster i =1 to 2! do —

3 Update b’s b; part by b; < (Q; )7 b;.
4 Dob<« (LHh™'»
5
6

end for

Permute b by front multiplying with P;
7: end for
8: Dob < L7'b

use the L matrix shown in Fig. 7(a) as an example, where
L is resultant from the partial factorization of cluster 1 in an
‘H2-matrix. It can be seen that L; has only O(Cqp) blocks that
need to be computed and stored, each of which is leafsize at
the leaf level, or rank size at a nonleaf level /. These blocks are
the inadmissible blocks formed with cluster i. For such type of
L,-,lLl._lb can be readily computed. For L; shown in Fig. 7(a),
L bis

[ Ly b
a0 o o]
Li'b=| [-TuLy 0] 1 0 0 by
[-TsL; 0] 0 I o b3
L 0 0 0 I by
Lo: "
bio—Tibi
= by —Ta1bi 1 (38)
b3 —T31b1,1
L bs
where T;j = Fy Uy (= 1,2,3), and b1,y = Ly}'b11.

Therefore, this operation actually only involves O (Csp) MVMs
related to clusters 1-3, which are those clusters that form
inadmissible blocks with cluster 1, the number of which is
bounded by Cyp. After forward substitution, the right-hand side
b vector is overwritten by solution y.

B. Backward Substitution

After finishing forward substitution, we solve

Ux =y. (39

From (34), it can be seen that (39) can be solved as

x=Uly= IHﬁO_L [(HiﬁﬁUé‘) P } ] UTly. (o)

For the same three-level 2-matrix example, (40) is nothing
but

x=QU;'QU;'QsU; QU P Uy,

The backward substitution starts from minimal admissible
block level [y, and finishes at the leaf level, as shown in
Algorithm 3. (Ué)_l y in Step 5 is performed efficiently similar
to how (38) is used to compute (Lé)_lb. There are also
three basic operations in Algorithm 3: (Ug)’l—based MVM,

_l .
Q;-based MVM, and P;-based permutation. After the back-
ward substitution is done, y is overwritten by solution x.

(41)
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Algorithm 3 Backward Substitution y < U~y

1: Doy < Uly

2: for [ =y to L do

3:  Permute y by front multiplying PIT
4. for cluster i =2' to 1 do

5 Do y « (Uﬁ)’ly

6: Update y; <« (Qi)y,-.
7:  end for
8: end for

V. ACCURACY AND COMPLEXITY ANALYSIS

In this section, we analyze the accuracy and computational
complexity of the proposed direct solver.

A. Accuracy

When generating an >-matrix to represent the original
dense matrix, the accuracy is controlled by €2, which is the
same as the accuracy parameter used in [16, egs. (6), (7), (11),
and (15)]. When computing the direct solution, the accuracy is
controlled by égy1-in. This is different from [9], [11], and [15],
since it is directly controlled.

As can be seen from Section III, there are no approximations
involved in the proposed solution procedure, except that when
we update the cluster bases to account for the contribution
from the fill-ins, we use (16) or (25) to truncate the singular
vectors. The accuracy of this step is controlled by parame-
ter €fq-in, Which can be set to any desired value.

B. Time and Memory Complexity

From (33), it is evident that the whole computation involves

ﬁ, Lﬁ, and Uﬁ for each cluster i at every level [, the storage
and computation of each of which are, respectively, O(klz)
and O(kl3) at a nonleaf level, and constant at the leaf level.
Recall that Qf is obtained from Steps 0 and 1, and Lﬁ and
Uﬁ are obtained from Step 3, whose underlying blocks are
generated in Step 2. As for the permutation matrix Py, it is
sparse involving only O(2!) integers to store at level /, and
hence having an O(N) cost in both memory and time.

From another perspective, the overall procedure of the
proposed direct solution is shown in Algorithm 1. It involves
O(L) levels of computation. At each level, there are
2! clusters. For each cluster, we have performed four steps
of computation from Step 0, 1, 2, to 3, as shown by the tasks
listed at the end of lines 4-7 in Algorithm 1. Each of these
steps costs O (k;)> for each cluster, as analyzed in Section IIL.
After each level is done, we update coupling matrices, and
transfer matrices at one-level higher, the cost of which is
also O(k;)? for every admissible block, or cluster.

The factorization and inversion complexity of the proposed
direct solutions, hence, can be evaluated as

L L
Fact./Inverse Complexity = Z Cszp21 k= Cszp Z 2}
1=0 1=0
(42)

since at every level, there are 2! clusters, and each cluster
is associated with O(Cszp) computations, and each operation
costs O(kl3). Similarly, the solution time and memory only
involve O(klz) computations and storage for each cluster.
Hence, their complexities are

L L
Solution/Mem. Complexity = Z Cp2'k? = Cyp Z 2k,
1=0 1=0
(43)

Recall that k; is the rank at tree level [. Hence, (42) and (43)
show that the overall complexity is a function of rank k;.

For constant-rank H2-matrices, since k; is a constant irre-
spective of matrix size, the complexity of the proposed direct
solution is strictly O(N) in both CPU time and memory
consumption, because

For constant %;:

L
Fact./Inverse Complexity = Cszpkl3 z 2l =0(N) (44
=0

L
Solution/Mem. Complexity = Cspkl2 221 = O(N). 45)
=0

Constant-rank H>-matrices can be used to represent the inte-
gral operators arising from small or modest electrical sizes
with well-controlled accuracy.

For electrodynamic analysis, to ensure a prescribed accu-
racy, the rank becomes a function of electrical size, and
thereby tree level. Different 72-representations can result
in different complexities, because their rank’s behavior is
different. Using a minimal-rank 7-representation, as shown
by [31], the rank grows linearly with electrical size for general
3-D problems. In a VIE, k; is hence proportional to the cubic
root of matrix size at level /, because this is the electrical size
at level /. Hence, for a VIE, (42) and (43) become

For k; linearly growing with electrical size:

VIE Factorization/Inverse Complexity
_ 143

L N3

=Cci> 2 (7) = O(NlogN) (46)
=0 L n

VIE Solution/Memory Complexity
L T 192
N\3

=Cp 2 (g) = 0(N) 47)

=0 L n

irrespective of the electrical size.

VI. NUMERICAL RESULTS

In order to demonstrate the accuracy and low computa-
tional complexity of the proposed direct solution of general
H>-matrices, we apply it to solve VIEs for electromagnetic
analysis. Both circuit and large-scale scattering problems are
simulated. The VIE formulation we use is based on [34]
with SWG vector bases for expanding electric flux density in
each tetrahedral element. First, the scattering from a dielec-
tric sphere, whose analytical solution is known, is simulated
to validate the proposed direct solver. Then, a variety of
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TABLE I

DIRECT SOLUTION ERROR MEASURED BY RELATIVE RESIDUAL é€p¢]
OF THE DIELECTRIC SPHERE AS A FUNCTION OF €fj]]—ip

€fill—in | BX. 1 Ex. 2 Ex. 3 Ex. 4
10-6 0.01% | 0.002% | 0.003% | 0.011%
10~° 0.04% | 0.006% | 0.01% 0.04%
10~% 0.11% | 0.015% | 0.024% 0.1%

large-scale examples involving over one million unknowns are
simulated on a single CPU core to examine the accuracy and
complexity of the proposed direct solver. The H2-matrix for
each example is constructed based on the method described
in [14]-[16]. The accuracy parameter €52 used is 103 for the
‘H2-matrix construction. The accuracy parameter €q-ip used in
the direct solution is varied to examine the error controllability
of the proposed direct solution. The computer used has an Intel
Xeon CPU ES5-2690 v2 running at 3.00 GHz, and only a single
core is employed for carrying out the computation to examine
the computational complexity of the solver. Frobenius norm is
used whenever norm is calculated.

A. Scattering From a Dielectric Sphere

We simulate a dielectric sphere of radius a with different
electric sizes kgpa and dielectric constant ¢,. The incident
electric field is a normalized —z propagating plane wave
polarized along the x-direction. This incident field is also used
in the following examples. During the 7{>-matrix construction,
leafsize = 25 and n = 1 are used. The accuracy parameter
in the direct solution is set to be egyin = 107°. In Fig. 8,
the radar cross section (RCS) (RCS in dBsm) of the sphere
is plotted as a function of # for zero azimuth for kpa =
0.408, ¢, = 36; koa = 0.408, ¢, = 4; koa = 0.816,¢, = 4;
and kpa = 1.632, ¢, = 4, respectively. They all show good
agreement with the analytical Mie Series solution, which
validates the proposed direct solution.

We have also investigated the accuracy of the proposed
direct solution as a function of the accuracy-control parameter
€6l-in. In Table I, we list the relative residual error for all the
four sphere examples simulated using egin = 1074, 107,
and 107°, respectively. Examples 1-4 in Table I correspond
to Fig. 8(a)-(d), respectively. As can be seen from Table I,
the smaller the egj.in value, the better the solution accu-
racy, verifying the error controllability of the proposed direct
solution. We have also compared RCS obtained from this
direct solver against the analytical Mie Series solution for
€hillin = 1074,1075, and 107°. The difference only appears
after the fourth or fifth digit.

B. Large-Scale Dielectric Slab

1) Simulation Using the Proposed Direct Solution: We then
simulate a dielectric slab with ¢, = 2.54 at 300 MHz, which
is also simulated in [14] and [15]. The thickness of the slab
is fixed to be 0.11¢. The width and length are simultaneously
increased from 41, 81g, 164g, to 3219. With a mesh size
of 0.14¢, the resultant N ranges from 22560 to 1434 880 for
this suite of slab structures. The leafsize is chosen to be 25
and n = 1. The €g).in is set to be 1072, 107, and 1079,
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Fig. 8. Simulated RCS of a dielectric sphere for different electric sizes and

dielectric constants. (a) kga = 0.408, €, = 36.0. (b) kga = 0.408, ¢, = 4.0.
(c) kpa = 0.816, ¢, =4.0. (d) kgpa = 1.632, ¢, = 4.0.

respectively, to examine the solution accuracy, computational
complexity, and error controllability of the proposed direct
solution.

Notice that this example represents the 2-D problem char-
acteristics. Based on [31], the rank’s growth rate with electric
size is lower than linear, and being a square root of the log-
linear of the electric size. Substituting such a rank’s growth
rate into the complexity analysis shown in (42) and (43),
we will obtain linear complexity in both memory and time.
The rank numerically found is 12, 17, 28, and 49, respectively,
for the four slab examples, whose growth rate with electrical
size is clearly no greater than linear.

In Fig. 9(a), we plot the factorization time with respect
to N, for all three different choices of €fj.in. It is clear that
the smaller the €g)1-in value, the larger the factorization time.
However, the complexity remains the same as linear regardless
of the choice of €g)1.in. In addition, the factorization time is not
increased much by decreasing €gjj-in. This is because €fjj-in 1S
used to append the original cluster bases with additional ones
to capture the fill-in’s contribution. When the number of addi-
tional cluster bases added is small, the cost is still dominated
by the original number of cluster bases. The solution time
and memory cost are plotted in Fig. 9(b) and (c), respectively.
Obviously, both scale linearly with the number of unknowns.
The error of the proposed direct solution is measured by
computing the relative residual €1 = |[|Zy2x — b||/||D]],
where Z> is the input H2-matrix to be solved. The relative
residual €| of the proposed direct solution is listed in Table II
as a function of €g)1-in. Excellent accuracy can be observed in
the entire unknown range. Furthermore, the accuracy can be
controlled by €gy1-in, and overall smaller €gy1i, results in better
accuracy.

2) Comparison With Direct Solvers in [14]-[16]: Since this
example is also simulated in our previous work [14]-[16],
we have compared the two direct solvers in CPU run time
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and accuracy. €fjl.in = 107 is used. For a fair comparison,
we set up this solver to solve the same HZ-matrix solved
in [16], and also use the same computer. As can be seen
from Table III, the proposed new direct solution takes much
less time than that of [14]-[16]. The speedup is more than
one order of magnitude in large examples. Even though the
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Fig. 10. Rank of the dielectric cube array example versus number of array
elements.

TABLE I

DIRECT SOLUTION ERROR MEASURED BY RELATIVE RESIDUAL,
€re], FOR THE DIELECTRIC SLAB EXAMPLE

€fill—in 102 ] 100" | 10°°
€ret (N=22,560) | 0.86% | 0.19% | 0.03%
eret (N=89,920) | 1.32% | 0.25% | 0.057%
€rer (N=359,040) | 3.59% | 1.88% | 0.66%
et (N=1,434,880) | 2.68% | 1.05% | 0.56%
TABLE III

PERFORMANCE COMPARISON BETWEEN THIS SOLVER
WITH €fjj_in = 107> AND [14]-[16] FOR THE
DIELECTRIC SLAB EXAMPLE

N 89,920 359,040
Factorization (s) [This] 353 1,662
Solution (s) [This] 1.68 7.07

Inversion (s) [14]-[16] | 2.75e+03 | 1.65e+04
Relative Residual [This] | 0.18% 0.40%
Inverse Error [14]-[16] 3.9% 7.49%

factorization time is shown, as can be seen from (34), the inver-
sion time in the proposed algorithm is similar to factorization
time. In addition, because of a direct error control, the error of
the proposed solution is also much less than that of [14]-[16].

C. Large-Scale Array of Dielectric Cubes

1) Simulation With the Proposed Direct Solution: Next,
we simulate a large-scale array of dielectric cubes at 300 MHz.
The relative permittivity of the cube is €, = 4.0. Each cube is
of size 0.349 x 0.340 x 0.34¢. The distance between adjacent
cubes is kept to be 0.34¢. The number of the cubes is increased
along the x-, y-, and z-direction simultaneously from 2 to 14,
thus producing a 3-D cube array from 2 x2 x2 to 14 x 14 x 14
elements. The number of unknowns N is, respectively, 3024,
24192, 193536, and 1037232 for these arrays. The leafsize
is 25 and # = 1. The €qyy.ip 1S chosen as 1073, 1074, and 1075,
respectively.
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TABLE IV
Csp AS A FUNCTION OF N FOR THE DIELECTRIC CUBE ARRAY

N | 3,024 | 24,192 | 193,536
Cop 16 42 95

378,000
327

1,037,232
270

For the cubic growth of unknowns for 3-D problems,
we observe that constant Cgp is not saturated until in the
order of millions of unknowns, as can be seen from Table IV.
It is thus important to analyze the performances of the
proposed direct solver as (Memory or Solution time)/Csp and
(Factorization time)/ Cszp, respectively. As for the rank of this
example, we plot the maximal rank of each unknown case
in Fig. 10. It can be clearly seen that the rank’s growth rate
with the number of array elements, thereby electrical size,
is no greater than linear. For such a growth rate, the resultant
complexities are given in (42) and (43). In Fig. 11(a) and (b),
we plot the direct factorization time normalized by CSZP, and
the storage cost normalized with Cs, with respect to N. As can
be seen, their scaling rate with N agrees very well with our
theoretical complexity analysis regardless of the choice of
€fil-in- The relative residual e of the proposed direct solution
is listed in Table V for this example, which again reveals
excellent accuracy and error controllability of the proposed
direct solution.

2) Comparison With Direct Solvers in [14]-[16]: Since this
example with dielectric constant €, = 2.54 is also simulated
in our previous work [16], we have compared the two direct
solvers in CPU run time and accuracy. As can be seen from
Table VI, the proposed new direct solution again takes much
less time, while achieving better accuracy.

D. On-Chip Interconnects

We have also performed a full-wave VIE simulation of
on-chip interconnects. A suite of large-scale on-chip bus
structures from a 4 x 4 to 64 x 64 is simulated at 30 GHz,
with an x-polarized incident electric field. The conductivity
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TABLE V

DIRECT SOLUTION ERROR MEASURED BY RELATIVE
RESIDUAL FOR THE CUBE ARRAY EXAMPLE

€fill—in 10% [ 1007 | 107°

eret (N=3,024) | 0.27% | 0.14% | 0.09%

et (N=24,192) | 0.74% | 0.31% | 0.15%

eret (N=193,536) | 2.22% | 0.88% | 0.36%

et (N=1,037,232) | 5.32% | 4.02% | 1.3%
TABLE VI

PERFORMANCE COMPARISON WITH [14]-[16] FOR
THE DIELECTRIC CUBE ARRAY EXAMPLE

N 3024 | 24,192 193,536
Factorization (s) [This] 4.24 52.6 503
Solution (s) [This] 0.03 0.3 3.07
Inversion (s) [14]-[16] 13.95 | 444.01 | 1.15e+04
Relative Residual [This] | 0.04% | 0.13% 0.13%
Inverse Error [14]-[16] | 0.9% | 1.73% 3.03%

of the metal is 5.8 x 107 S/m. The dimensions of each
bus are 1 um x I um x 20 um. The horizontal distance
between the centers of two neighboring buses is 20 #m. And
the vertical distance is 40 um. Each bus is discretized into
322 unknowns. The total number of unknowns ranges from
5152 to 1318912. For the 2 tree construction, we set leafsize
tobe 25 and y = 1, with €52 = 10~*. The accuracy parameter
for controlling the direct solution is set to be efin = 1074,
In Fig. 12(a), we plot the memory cost of both storing the
original matrix (labeled matrix), and that for factorizing the
matrix (labeled factorization). In Fig. 12(b), we plot both
factorization time and solution time for one right-hand side
as a function of N. Clear linear complexities can be observed
in both CPU time and memory consumption. The over one-
million unknown case is factorized in about 200 s, and the
solution for one right-hand side only takes 7 s. The accuracy



MA AND JIAO: ACCURACY DIRECTLY CONTROLLED FAST DIRECT SOLUTION OF GENERAL H2-MATRICES 47

4000 - ,

=#— Factorization Memory
=&~ Matrix Memory

3000}

2000¢

Memory (MB

10007

0 5 10 15
Number of Unknowns (N) x 10°

(a)

Fig. 12.
complexity.

TABLE VII

DIRECT SOLUTION ERROR MEASURED BY RELATIVE RESIDUAL €] FOR
THE FULL-WAVE VIE INTERCONNECT SIMULATION EXAMPLE

N 5152 20,608 | 82,432 | 329,728 | 1,318,912
€ret | 0.029% | 0.029% | 0.029% | 0.029% | 0.029%
TABLE VIII

DIRECT SOLUTION ERROR MEASURED AGAINST BRUTE-FORCE
LU SOLUTIONS FOR THE FULL-WAVE VIE INTERCONNECT

SIMULATION EXAMPLE
€fill—in 1072 1071 10~
Solution Error (N =5,152) | 0.0228% | 0.0188% | 0.0182%
Solution Error (N =20,608) | 0.0228% | 0.0186% | 0.018%

of the proposed direct solver is assessed by relative residual
and listed in Table VII. Excellent accuracy can be observed
in the entire unknown range.

We have also compared the accuracy of this fast direct
solution against that of a brute-force LU factorization. Cer-
tainly, this comparison can only be made for smaller number
of unknowns because of the high complexity of the brute-
force LU. Three different €f)1.in values are examined, and the
error measured by ||x — xref||/||Xref]| 1 listed in Table VIII,
where xrr is directly solved from the original dense matrix in
exact arithmetic LU, x is from this fast solver, and Frobenius
norm is used. Again, excellent accuracy is observed.

VII. CONCLUSION

In this paper, we develop fast factorization and inversion
algorithms for general 2-matrices. The key features of this
new direct solution are its directly controlled accuracy and low
computational complexity. The entire direct solution does not
involve any approximation, except that the fill-in block is com-
pressed to update the cluster basis. However, this compression
is well controlled by accuracy parameter €gyj-in. For constant-
rank ?-matrices, the proposed direct solution has an O (N)
complexity in both time and memory. For rank growing with
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Simulation of a suite of lossy on-chip buses. (a) Memory of original matrix and memory required for factorization as a function of N. (b) Time

the electrical size linearly, the proposed direct solution has
an O(NlogN) complexity in factorization and inversion, and
O(N) in solution time and memory when solving VIEs. The
proposed direct solution has been applied to solve electrically
large VIEs whose kernel is oscillatory and complex-valued,
which has been difficult to solve. Millions of unknowns are
directly solved on a single core CPU in fast CPU run time.
Comparisons with state-of-the-art 7{>-based direct VIE solvers
have demonstrated the accuracy of this new direct solution as
well as significantly improved computational efficiency. Being
a generic direct solution to an {2-matrix, this paper can also
be applied to solve other IEs and partial differential equations.
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