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Abstract—A fast electromagnetic simulator is developed to
co-simulate the linear network and nonlinear circuits in an inte-
grated circuit system. In this simulator, the physical layout of a
large-scale linear network is rigorously reduced to a single surface
or a few surfaces where the nonlinear circuits are located. The
reduction is done analytically, and, hence, the computational
overhead is minimal. The reduced system is then split into a linear
system and a nonlinear system so that both systems can be solved
efficiently. The linear system of equations is solved rapidly by the
time-domain layered finite-element reduction-recovery method.
The nonlinear system of equations is solved by developing an
efficient method. This method renders the contribution from the
linear network to the nonlinear system a diagonal matrix in the
Jacobian matrix, hence significantly speeding up the nonlinear so-
lution. After the reduced system is solved, the unknowns elsewhere
in the computational domain are recovered efficiently by the
time-domain layered finite-element reduction-recovery method.
The proposed simulator has been applied to co-simulate on-chip
interconnects and CMOS transistors. Numerical results have
demonstrated its accuracy and efficiency. The proposed simulator
is capable of capturing the global electrical interaction between
integrated circuit interconnects, package, RF/analog components,
substrates, and nonlinear drivers/receivers across the full electro-
magnetic spectrum. In addition, it bypasses the extraction of the
linear network, preserves the passivity and stability of the linear
network, and captures the interaction between the linear network
and nonlinear devices.

Index Terms—Co-simulation, electromagnetic simulation, fast
solvers, finite-element method (FEM), integrated circuits (ICs),
nonlinear circuits, time domain.

I. INTRODUCTION

T HE prevailing circuit simulation paradigm is heavily
dominated by Simulation Program with Integrated Cir-

cuit Emphasis (SPICE) [1] and its variants. In such a paradigm,
the linear network is extracted first so that their RLC-based,
transmission-line-based, or scattering-parameter-based repre-
sentations can be obtained. This step is known as extraction.
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The extracted circuit model is then stitched with nonlinear
devices to simulate the entire circuit. This step is known as
simulation. Due to the requirement of SPICE, even though
the simulation is the end goal, the extraction still needs to be
performed so that the circuit model of the interconnect and
passive components, i.e., the linear network, can be generated
for the use of a SPICE-based simulation.

The extraction itself is computationally intensive when the
linear network is large. Furthermore, the extraction-based cir-
cuit simulation flow introduces a large number of redundant
computations. For example, the linear network has to be com-
puted for a large number of right-hand sides, i.e., excitations, for
the circuit model extraction. However, in reality, only a small
number of excitations could be encountered in the simulation
of a large-scale integrated circuit (IC). Hence, a lot of com-
putations involved in the extraction stage are redundant. More-
over, the passivity and stability of the circuit models obtained by
extraction cannot be guaranteed. A passivity checking and en-
forcement procedure has to be incorporated into prevailing cir-
cuit simulation flow to ensure a stable circuit simulation, leading
to both additional computational overhead and model inaccu-
racy. In addition, since the extraction of the linear network is
performed alone, the coupling between the interconnect and
nonlinear devices is not captured in the prevailing circuit simu-
lation paradigm. As the density and complexity of interconnects
increase, and the interaction between nonlinear devices and in-
terconnects in ICs intensifies, the drawbacks inherent in an ex-
traction-based circuit simulation flow will be exacerbated even
more.

An electromagnetics-based co-simulation of the linear net-
work and nonlinear circuits naturally bypasses the extraction
because the linear network is co-simulated with the nonlinear
devices directly in time domain. In addition, in an electromag-
netics-based co-simulation, the redundant computation due to
extra right-hand sides is avoided, the passivity and stability
of the linear network is naturally preserved, and the coupling
between the linear network and nonlinear devices is captured.
Moreover, the electromagnetics-based co-simulation is accurate
across the full electromagnetic spectrum and, hence, can be
used to guide the design of digital, analog, mixed-signal, and
RF ICs at very high frequencies. However, for an electromag-
netics-based co-simulation to gain widespread acceptance in
the very large-scale integration (VLSI) community, it has to be
fast enough to be put into practical use.

The electromagnetics-based co-simulation of the linear
network and nonlinear circuits has been studied in the past
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[2]–[15]. Approaches to coupling both the first-order Maxwell’s
equations and the second-order vector wave equations with the
lumped circuit models have been developed. The field-circuit
co-simulation algorithm has been explored in the framework
of the finite-difference time-domain method [2]–[4], the
time-domain finite-element method (FEM) [5]–[11], and the
time-domain integral equation method [12], [13]. However,
many of these algorithms were developed for the simulation
of microwave and millimeter-wave ICs or package and board
problems. They often have not been found to be amenable
to on-chip VLSI design because of unique on-chip modeling
challenges such as conductor loss, strong nonuniformity, large
number of conductors, large aspect ratio, and large number
of nonlinear devices [16]. In addition, although a variety of
co-simulation algorithms have been developed, the research on
fast co-simulation methods is still in its infancy.

Recently, a family of time-domain finite-element reduc-
tion-recovery (FE-RR) methods was developed for solving
large-scale ICs and package problems [17]–[21]. These
methods can reduce the system matrix of rigorously
to that of for any multilayered structure, where is
the number of unknowns in the entire 3-D structure and
is the number of unknowns on a single surface. Furthermore,
the reduction from to was achieved either via
analytical means or with negligible computational cost. The
reduced system is solved in optimal complexity, i.e., linear
complexity. The rest of the unknowns are then recovered, also
in linear complexity. The hierarchical FE-RR method [20] is
applicable to any Manhattan-type multilayered structure; the
orthogonal FE-RR method [21] further advances the method to
solve any irregularly shaped multilayer structure. The FE-RR
methods have been successfully applied to solve large-scale
IC and package design problems. For example, the matrix
resulting from a large-scale combined die-package problem
involving 333 million unknowns can be solved in 200 s on a
single 2.66-GHz Intel Xeon 5300 processor by the orthogonal
FE-RR method [21]. Despite its high capacity and efficiency,
the FE-RR methods have not taken the simulation of nonlinear
circuits into consideration yet.

In this work, we develop a fast electromagnetics-based
nonlinear–linear co-simulation algorithm to capture the global
electrical interaction between integrated circuit interconnects,
packages, RF/analog components, substrates, and nonlinear
drivers/receivers. In this method, we first reduce an arbitrarily
shaped 3-D multilayer structure to a single surface or a few
surfaces where the nonlinear circuits are located. The reduction
is rigorous without involving any theoretical approximation.
Furthermore, the reduction is achieved without any computa-
tional cost via analytical means by the use of the layered FE-RR
method [17]. We then separate the linear equations from the
nonlinear ones in the reduced system so that both can be solved
efficiently. The linear system is solved rapidly by the layered
FE-RR method. The nonlinear system is solved by developing
an efficient method. In this method, the contribution of the
linear system to the nonlinear system in the Jacobian matrix is a
diagonal matrix. Compared with other FEM-based co-simula-
tion methods which generate a dense submatrix in the Jacobian
matrix, the proposed method is much more computationally

Fig. 1. Illustration of an integrated system consisting of a linear network and
nonlinear circuits.

efficient. After the reduced system is solved, the unknowns on
the other surfaces and in the volume are recovered efficiently
by the FE-RR methods.

II. DERIVATION OF THE SYSTEM OF EQUATIONS FOR

CO-SIMULATION

Consider an integrated system consisting of a linear network
and nonlinear circuits shown in Fig. 1. All of the interconnects,
packages, and passive components belong to the linear network.
All of the nonlinear devices are in the nonlinear block. Here, we
derive the system of equations that governs the co-simulation of
the linear network and nonlinear circuits.

A. System of Equations of the Linear Network

The physical phenomena in the linear network are governed
by Maxwell’s Equations, which suggest

(1)

where is the electric field, is free-space permeability,
is relative permeability, is permittivity, is conductivity, is
current density, and denotes a point in a 3-D space.

A time-domain finite-element solution of (1) and (1)’s
boundary conditions results in the following system of ordinary
differential equations [22]:

(2)

in which , , and are square matrices, is the unknown field
vector, is a vector related to the absorbing boundary condition,
and is the vector of the currents injected into the linear system.
The elements of the matrices , , and are given by

(3)

where and are the vector basis functions used to expand
unknown field and denotes a volume integration. The
elements of the current vector are given by

(4)

At the th edge, if a current source of magnitude is attached,
(4) can be evaluated as

(5)
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where is the length of the th edge. In deriving (5), we as-
sume that the vector basis is normalized, and is orien-
tated along the same direction as the current source . (If the
basis is not normalized and its direction is not aligned with the
current source, (4) can be evaluated in a similar fashion.) From
Fig. 1, it can be seen clearly that the current flowing into the
linear system has two components: which is a supply current,
and which is injected from the nonlinear network. Hence, (5)
can be written as

(6)

The voltage across the th edge, , can be evaluated from
after (2) is solved. For example, if is evaluated along the

direction that is opposite to the th normalized vector basis, then

(7)

B. System of Equations for the Nonlinear Circuits

The nonlinear circuit shown in Fig. 1 can be modeled by

(8)

where is a nonlinear function, is time, is current, and
is voltage. If the nonlinear circuit is a network that consists of
a number of nonlinear components, it can be analyzed by the
Modified Nodal Analysis [23], which results in the following
nonlinear system of equations:

(9)

where the unknown vector , in which is a vector
of node voltages and is a vector of branch currents flowing
through inductors and voltage sources. In (9), denotes a non-
linear mapping from to , and denotes a nonlinear mapping
from to . Both and can be time-dependent. The
nonlinear model (8) can be viewed as a special case of (9).

C. System of Equations at the Interface Between the Linear
Network and Nonlinear Circuits

From Fig. 1, it can be seen clearly that, at the interface be-
tween the linear network and nonlinear circuits, the following
system of equations satisfies

(10)

D. Combined System of Equations for Co-Simulation

With equations developed above in the three subsections, we
complete the system of equations that governs the integrated
nonlinear–linear system shown in Fig. 1. To accurately obtain
the transient response of such a system, we need to co-simulate
(2), (9), and (10).

It is worth mentioning that, if the function in (8) is linear
and time-independent, the co-simulation of (2), (9), which is
reduced to (8), and (10) is straightforward in an FEM-based
solver. To explain, the functions of a constant and linear re-

sistor of resistance , an inductor of inductance , and a capac-
itor of capacitance are

(11)

respectively. By substituting (10) and (11) into (6), and em-
ploying (7), it can be readily derived from (2) that, if the lumped

, , and are attached to the th edge in an FEM-based mesh,
they only contribute to the th diagonal element of , , and ,
which amounts to adding to , to , and

to respectively.
If the circuit connected to the linear network is nonlinear, the

aforementioned approach becomes highly computationally ex-
pensive because the entire system matrix has to be factorized
and solved at each time step, as the system is time-dependent
and nonlinear. In the following section, we propose an efficient
algorithm to co-simulate the linear network and nonlinear cir-
cuits, i.e., the combined system of (2), (9), and (10).

III. EFFICIENT CO-SIMULATION ALGORITHM

Compared with the number of edges present in an FEM-based
discretization of a 3-D computational domain, in general, the
edges that are attached to the nonlinear circuits are orders of
magnitude smaller. For example, in a state-of-the-art integrated
circuit, the transistors are only attached to the bottommost metal
layer. Therefore, it becomes meaningful to first reduce the 3-D
system to a single surface or a few surfaces where the nonlinear
circuits are attached. The reduced system can be orders of mag-
nitude smaller than that of the original 3-D system because the
number of nonlinear circuits typically is much smaller than that
of the linear network. To minimize the reduction cost, we will
invoke the time-domain layered FE-RR method [17] to analyt-
ically perform the reduction. The detailed procedure of the re-
duction is given in Section III-A.

After we obtain a reduced system, we divide the unknowns
into two groups: one is associated with the linear network, and
the other is associated with the nonlinear circuit. This procedure
is illustrated in Section III-B. We then solve the linear equations
by the layered FE-RR method, and the nonlinear equations by
an efficient method which is detailed in Section III-D. After the
solution of the reduced system is obtained, we recover the rest
of the solutions efficiently by the layered FE-RR method.

A. Reduction of the Physical Layout of a Linear Network to
the Surfaces Where Nonlinear Circuits are Located

Discretizing (2) by a central difference scheme, we obtain

(12)

in which

(13)

and represents the time step used in the electromagnetics-
based simulation of the linear network. The field value at the
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Fig. 2. Illustration of a reduction-recovery process. (a) 3-D layered system. (b) 2-D layered system. (c) Single-surface system.

Fig. 3. Matrix pattern. (a) 3-D layered system matrix �. (b) 2-D layered system matrix. (c) Reduced single-layer system matrix. (d) Reduced single-surface
system matrix equation.

th time step, , can be solved in a time marching
fashion from the solution of at previous time steps.

The computational domain of a combined linear–nonlinear
system is discretized into layers of triangular prism elements as
shown in Fig. 2(a). Since existing integrated circuits are multi-
layered structures in general, the triangular prism element based
discretization is indeed natural for choice. The unknowns are
then ordered layer by layer. In each layer, the unknowns are di-
vided into surface and volume ones. As shown in Fig. 2(a), the
unknowns associated with the solid edges are surface unknowns,
and the unknowns associated with the dashed edges are volume
unknowns.

Without loss of generality, assuming that the nonlinear cir-
cuits are attached to the th surface. We will formulate a reduced
system that only involves unknowns on the th surface by using
the layered finite-element reduction-recovery method [17]. The
procedure is as follows. The 3-D layered system matrix is first
reduced to a 2-D layered one as shown in Fig. 2(b). The 2-D
layered system matrix is then reduced to a single-surface one as
shown in Fig. 2(c). Once the unknowns on a single surface are
solved, the unknowns on other surfaces and the unknowns in the
volume can be recovered as shown in [17]–[21].

In Fig. 3, we show the system matrix for the 3-D lay-
ered system, 2-D layered system, single-layered system, and
single-surface system respectively. The 3-D layered system
matrix shown in Fig. 3(a) is matrix shown in (12) and
(13). In Fig. 3(b), matrices and

are the submatrices formed for surface un-
knowns in . In the single-layered system shown in Fig. 3(c),
matrices and can be obtained analytically with
minimal computational overhead from

(14)

and

(15)



HE AND JIAO: FAST ELECTROMAGNETICS-BASED CO-SIMULATION OF LINEAR NETWORK AND NONLINEAR CIRCUITS 3681

In (14) and (15), there is no need to compute the matrix
inverse and matrix–matrix multiplication. This is because,
in the layered FE-RR method, , is
constructed to be linearly proportional to each other,

is made linearly proportional to each other,
and , is also made linearly proportional to

, . Therefore, , of primed
quantities are also linearly proportional to , .
As a result, the reduction shown in Fig. 3, which is mathemat-
ically represented by (14) and (15), is achieved without any
numerical calculation.

From and , the single-interface system shown in
Fig. 3(d) can be obtained as follows:

(16)

Again, there is no need to compute matrix inversion and ma-
trix–matrix multiplications because and are linearly
proportional to each other. From the reduction process, it can
also be seen that, due to the linear proportionality between ma-
trices and , essentially can be obtained by scaling the

in the original system matrix by a coefficient. Hence, the re-
duced single-surface matrix preserves the same sparsity as that
in the original system matrix, enabling an efficient computation.

In addition to the left-hand matrix reduction from to ,
the right-hand vector of the original system (12) is also reduced
to that of the th surface, following the procedure given in [17].
Since the nonlinear circuits are connected to the linear network
via the current excitation vector , in the following, we
show how is reduced.

From (6), the excitation vector in the right-hand side
of (12) can be written as

(17)

which can be further written as

(18)

by using (10). Since only exists on the th surface, in other
words, the entries of are all zero except for those on the th
surface, the reduction of the vector from that of the orig-
inal 3-D problem to that of the th surface does not change the
values in . Therefore, the right-hand side of the single-
surface system shown in Fig. 3(d) can be explicitly written as

(19)

where represents what is reduced from all the terms on the
right-hand side of (12) except for . Following the deriva-
tion of (6), the entries of can be derived as

(20)

Now, the computing task is to solve a reduced system

(21)

Since, in general, not all of the edges on the th surface are at-
tached to the nonlinear circuits, (21) is mixed with both linear
and nonlinear equations. In Section III-B, we separate the linear
equations from nonlinear ones so that both can be solved effi-
ciently.

B. Separate Linear Equations From Nonlinear Ones

We divide unknowns in the reduced system into two groups:
one is associated with the linear network, and the other is at-
tached by nonlinear circuits. The former group is denoted by

, and the latter is denoted by . We then recast the reduced
system into the following system:

(22)

in which subscript denotes quantities associated with the linear
network, and denotes those associated with the nonlinear cir-
cuit.

C. Efficient Solution of the Linear System of Equations

The system of equations represented by the first row in (22) is
a linear system. It can be solved efficiently by a general sparse
matrix solver since the dimension of is already reduced
to that of a single surface, and the reduction preserves the spar-
sity of . If the reduced single-surface system is still large,
the hierarchical FE-RR method [20] or the orthogonal FE-RR
method [21] can be employed to achieve a linear-complexity
solution of . Since (22) is a reduced system that only in-
volves the unknowns on the th surface, after (22) is solved, we
recover the on the other surfaces and in the volume from
the solution on the th surface by the layered FE-RR method
[17]. Again, if the hierarchical FE-RR method or the orthog-
onal FE-RR method is employed, the recovery complexity is
also linear.

In the following, we focus on efficient solutions to the non-
linear system represented by the second row of (22).

D. Efficient Solution of the Nonlinear System of Equations

Here, we present two methods for solving the nonlinear
system of equations. The first method is useful when the
number of nonlinear circuits is small. The second method is
efficient for solving a large number of nonlinear circuits.

1) Method I: Equation (22) can be rewritten as

(23)

(24)

Substituting (23) into (24) with yields

(25)

where

(26)

(27)
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Assuming there are nonlinear circuits with each circuit
connecting to serial edges in a finite element mesh, the dimen-
sion of is . In addition, is a dense matrix due
to the coupling from the linear network to the nonlinear circuit,
which is represented by the term in (26). In
(25), the unknown vector and can be written as

(28)

where, in , the first subscript denotes the circuit index, and the
second subscript denotes the edge index; in , since the th
circuit is attached across edges in serial, the edges share the
same current .

Since the current is a nonlinear function of time due to
the connection with nonlinear and time-variant circuits, appar-
ently, all of the equations in (25) have to be solved in a nonlinear
fashion. In fact, in (25), only equations need to be solved in
a nonlinear fashion. This is because each circuit is attached to
edges, where there are equations for each nonlinear circuit in
(25). Since the equations all share the same as can be
seen from (28), a linear combination of these equations will
zero out the term in equations, leaving only one
equation to be associated with the nonlinear term . As
a result, for nonlinear circuits, among the equations in
(25), only equations need to be solved in a nonlinear fashion.
There are several classical methods that can be used to find the
solution of a nonlinear equation. In this work, we use Newton’s
method (or Newton–Raphson method) [24], which offers a com-
putationally efficient and numerically stable approach to solve
for a nonlinear equation.

To complete the co-simulation, we solve (25) together with
(9) by the Newton’s method. Using the approach described
above, the linear network only contributes a dense matrix of
size by to the Jacobian matrix used in the Newton iteration
rather than a dense matrix of size by , which
reduces the cost greatly when and are large.

After (25) together with (9) is solved, is obtained. By sub-
stituting into (23), we can solve for on the th surface. The

on the other surfaces and in the volume can then be recovered
from the field solution on the th surface. The efficient solution
of the linear system (23) has been discussed in Section III-C.

2) Method II: In Method I, although the matrix size involved
in the nonlinear simulation is reduced from to ,
the matrix is dense. This makes the nonlinear simulation
very time consuming when the number of nonlinear circuits,

, is large. To overcome this problem, we develop the second
method as follows.

We stagger and to solve (22). This leads to

(29)

where the subscript denotes the iteration index. We perform
a few iterations of (29) until it converges. Clearly, when (29)
converges, the solution of (29) is the same as that of (25). By
doing so, we keep the sparsity of the original matrices
and . Moreover, is a diagonal matrix because the
edges which are connected to circuits generally do not belong
to the same finite element. As a result, the contribution from the
linear network to the Jacobian matrix is a diagonal matrix when
solving the second row of (29) together with (9) by the Newton’s
method. Hence, the resultant nonlinear solution is efficient. The
computational overhead is a number of iterations of (29). Since
the number of iterations is small, less than 15 on average in our
simulation of realistic on-chip circuits, the computational over-
head is negligible. To help better understand the fast conver-
gence of (29), we point out that the staggered marching shown
in (29) is equivalent to using the diagonal blocks of the system
matrix of (22), and , as the preconditioner to solve
(22). Since the off-diagonal blocks of (22) are extremely sparse,
the diagonal-block-based preconditioner is very effective.

E. Performance Analysis

The numerical procedure of the proposed method for co-sim-
ulation can be summarized as follows.

Step 1) Reduce the matrix equation in (12) to the th surface
where the nonlinear circuit is located by the scheme described
in Section III-A.

Step 2) Recast the resultant th surface matrix equation (21) to
system (22).

Beginning of the Time Marching Process

With the value of and at time step and known,
perform the following steps.

Step 3) When the number of nonlinear circuits is small, solve
the nonlinear algebraic differential equation (25) and (9) for

by the Newton–Raphson method, then solve (23) for
. The detailed procedure is given in Section III-D1. When

the number of nonlinear circuits is large, solve (29) subject to
(9) by the staggered marching iteration to obtain and

. The detailed procedure is given in Section III-D2.

Step 4) Recover on the other surfaces and in the volume
by the approach discussed in Section III-C.

Step 5) Construct the new right-hand side of (12) for the next
time step.

Go back to Step 3).

End of the Time Marching Process

The cost of Step 1) is negligible because the reduction is per-
formed analytically by the layered FE-RR method. Step 2) does
not involve any cost because it is an analytical recasting. In Step
3), if Method I described in Section III-D1 is used for solving
the nonlinear system, the computational cost is to form the
Schur complement matrix .
Since the dimension of the is already reduced to that
of a single surface, compared with other time-domain FEMs
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that deal with the entire 3-D problem size for co-simulating
with nonlinear devices [5]–[10], the dimension of the proposed
scheme is orders of magnitude smaller. Furthermore, by the
FE-RR methods [17]–[21], each matrix solve of has
a linear complexity. Hence, the can be
obtained in complexity, where is the number of
circuit unknowns, and is the number of field unknowns
on a single surface. The system matrix contributed by the
linear network to the Jacobian matrix for solving the nonlinear
system is a dense matrix of dimensions, where is the
number of nonlinear circuits. When is large, Method II
given in Section III-D2 should be used for the simulation of the
nonlinear system. In this method, there is no cost for forming
an additional dense matrix . In addition, the system con-
tributed by the linear network to the Jacobian matrix for solving
the nonlinear system, , is a diagonal matrix. Although a
few iterations are needed in the staggered marching scheme, the
iteration number is small. In Step 4), the recovery has a linear
complexity based on the FE-RR methods [17]–[21]. In Step 5),
the right-hand side of (12) only involves sparse matrix-vector
multiplication and, hence, can also be obtained efficiently.

F. Stability Analysis

The time step required by the electromagnetics-based sim-
ulation of the linear network for maintaining stability can be
different from that required by the Newton-method-based sim-
ulation of nonlinear circuits. We denote the former by and
the latter by and discuss their choices in the following.

A time-domain FEM-based analysis is stable if the following
condition is satisfied:

(30)

in which is the value at which the roots of a character-
istic equation start to leave the unit circle [25], and de-
notes the spectral radius of matrix . As discussed in [18],
a typical time step for on-chip integrated circuit simulation is
at a level of 10 s to maintain the stability of a central dif-
ference-based scheme. For the nonlinear circuit simulation, we
utilize the SPICE-based criterion to choose the time step [26],
[27]. A typical for state-of-the-art nonlinear devices is from
the order of 10 s to the order of 10 s, which is much larger
than that of the central difference-based time-domain FEM sim-
ulation of the linear on-chip system. As a result, we can use a
large and variable time step for the nonlinear circuit simulation
and a small fixed time step for the time-domain FEM-based sim-
ulation of the linear network to avoid unnecessary updates of the
circuit simulation. For the numerical examples simulated in this
paper, since the cost of the nonlinear circuit part accounts for
less than 2% of the total computational cost, we used the time
step dictated by the time-domain FEM as the time step for the
co-simulation.

IV. NUMERICAL RESULTS

Here, we give numerical results to demonstrate the perfor-
mance of the proposed co-simulation method. In the first ex-
ample, we validated the proposed method on a lossless par-
allel-plate waveguide structure, for which the numerical results

Fig. 4. Voltage across a lumped resistor, inductor, and capacitor connected to
a lossless parallel-plate waveguide.

Fig. 5. Voltage across a lumped diode connected to a lossless parallel-plate
waveguide.

can be benchmarked with those of SPICE. According to typ-
ical on-chip circuit dimensions, the waveguide width (along )
was set as 1 m, the height (along ) was set as 0.1 m, and
the waveguide length (along ) was set as 4 mm. The spatial
discretization was chosen as 0.1 m, 0.25 m,
and 1 m. The dominant TEM mode was launched on
the incident plane at . The incident wave was a sinu-
soidal source oscillating at 10 GHz. The first-order absorbing
boundary condition was placed at the two ends of the wave-
guide along the length. The time step was chosen as 10 s.
A resistor 37.7 , an inductor 1 nH , a capacitor

1 pF , and a diode ( ,
10 A, 0.026 V) were added at the far end of the wave-
guide 4 mm , respectively. The voltage across the
lumped circuit was simulated by the proposed method and com-
pared with that obtained by SPICE [5], [28], which employed
a lossless transmission-line model to represent the waveguide.
As shown by Figs. 4 and 5, the proposed method for co-simula-
tion exhibits an excellent agreement with SPICE. The maximum
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Fig. 6. Base-to-emitter voltage of a BJT that terminates a microstrip line ex-
cited by a unit exponential source.

Fig. 7. Co-simulation system of a CMOS inverter driving an interconnect
structure.

number of iterations is four in the Newton–Raphson scheme for
solving the nonlinear diode during the time marching.

The second example is a bipolar junction transistor (BJT) that
terminates a good conducting microstrip line as described in [2].
The strip is discretized into along the width, along
the length, and along the height with 0.265 mm,

0.39 mm, and 0.4 mm. The relative permittivity
is chosen as 2.2 such that the characteristic impedance is 50 .
The BJT described by the Ebers–Moll model [29] with
300 K, 10 amp, , and is
loaded at the far end of the microstrip line. A unit exponential
source with 190 ps is launched as the
incident field at the near end of the microstrip line. The time step
used is 10 s. The maximum number of Newton iterations is
eight. The results for both active 50 and saturated

10 regions of operation are shown in Fig. 6, where an
excellent agreement with SPICE can be observed.

The third example is an on-chip problem in which one and
multiple CMOS inverters drive an interconnect structure as
shown in Fig. 7. The MOS transistor is constructed using

TABLE I
MOSFET PARAMETERS

SPICE-like level 1 (Shichman–Hodges) model [30] by

when cutoff region

when linear region

when saturation region

(31)

and

.

(32)

The transistors in 0.25- m technology are used in this simula-
tion. The physical parameters are not given in detail in the ref-
erence. The detailed parameters used for (31) and (32) in our
simulation are listed in Table I. The meaning of each parameter
can be found from [31].

A falling edge of 0.25 ns is chosen as the input signal of
the inverter. The characteristic input–output behaviors of the
CMOS inverter simulated by the proposed simulator and those
simulated by SPICE are shown in Fig. 8(a). An excellent agree-
ment can be seen. We then co-simulate the combined transistor
and interconnect system. The interconnect structure is a three-
metal-layer test-chip interconnect structure [17]. The intercon-
nect length (100 m) along is subdivided into five layers. Its
two ends are both attached to an air layer, which is truncated by
a first-order absorbing boundary condition. The top and bottom
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Fig. 8. Simulation of an interconnect structure driven by inverters. (a) Characteristic input–output behavior of the CMOS inverter. (b) Voltage results for one
inverter. (c) Voltage results for two inverters. (d) Voltage results for five inverters.

boundaries along the -direction are perfect electrically con-
ducting (PEC) boundaries. The left and right boundaries along
the -direction are perfect magnetically conducting boundaries.
The layer growth direction is chosen as . Each layer is divided
into 676 triangular prism elements with 1053 surface unknowns
and 378 volume unknowns. The inverters are connected verti-
cally between the center M2 wire and the ground plane. Each
inverter is attached across three edges. For the two-inverter case,
two center wires are located in the M2 layer symmetrically with
each wire driven by one inverter. The five-inverter case has five
M2 wires with each inverter connected to one wire. The meshing
size is relatively large for the five-inverter case with 1453 sur-
face unknowns and 518 volume unknowns in each layer. For
the five-inverter example, (25) has unknowns with
a 15 15 dense matrix . By the approach described in
Section III-D1, (25) is transformed to five nonlinear equations
and ten linear equations. As a result, the contribution from the
linear system to the Jacobian matrix in the nonlinear solver is a
reduced 5 5 dense matrix.

In total, 5 10 , 8 10 , 7 10 time steps are run for
one, two, and five inverters, respectively. The results are shown

in Fig. 8(b)–(d) respectively. The input signals of the inverters
and the output signals at the interface between the inverter and
the interconnect structure are plotted. Due to the effect of the
interconnect structure, the output signals of the inverters are de-
layed and attenuated.

The performance comparison of the co-simulation performed
by the proposed method and that of the traditional time-do-
main FEM is given in Tables II and III respectively. In these
two tables, Case I is a 100- m-long interconnect structure dis-
cretized into five layers driven by one inverter; Case II involves
two inverters, Case III involves five inverters, and Case IV is a
2000- m-long interconnect structure discretized into 100 layers
driven by one inverter. As can be seen from Tables II and III,
compared with the traditional time-domain FEM-based co-sim-
ulation, the proposed methods are much more efficient. In ad-
dition, the larger the problem size is, the more significant the
speedup is. We also compare the performances of the proposed
two methods for the simulation of the nonlinear system. Method
II exhibits an obvious advantage in matrix factorization com-
pared with Method I, as can be seen from Table II. Because the
nonlinear circuit unknowns are not that large in this example,
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TABLE II
COMPARISON OF THE FACTORIZATION TIME

TABLE III
COMPARISON OF THE CPU COST AT EACH TIME STEP

the CPU time at each time step cost by the proposed Method I
is similar to that of Method II.

V. CONCLUSION

In this paper, an efficient electromagnetics-based co-simula-
tion method is developed for co-simulating linear network and
nonlinear circuits present in an integrated circuit. The original
3-D system is first reduced to an orders-of-magnitude smaller
system where the nonlinear circuits are located. The reduction
is rigorous and performed analytically, and, hence, the compu-
tational overhead is minimal. The reduced system is then sepa-
rated into a linear system and a nonlinear system, both of which
are solved efficiently. The remainder of the unknown solutions
in the original 3-D system are then recovered by the FE-RR
method. The proposed co-simulation algorithm is applicable to
arbitrarily shaped multilayer structures embedded in inhomoge-
neous materials. Furthermore, it bypasses the extraction of the
linear network, naturally preserves the passivity and stability of
the passive linear network, and captures the coupling between
the linear network and nonlinear circuits. In addition, the pro-
posed co-simulation framework can be readily interfaced with
the SPICE-based circuit simulator to accentuate the advantage
of SPICE in simulating active and nonlinear devices and the ad-
vantage of the proposed electromagnetic simulator in simulating
large-scale linear networks.
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