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Abstract—It is of critical importance to efficiently and ac-
curately predict global resonances of a 3-D integrated circuit
system that involves arbitrarily shaped lossy conductors and
inhomogeneous materials. A quadratic eigenvalue solver of linear
complexity and electromagnetic accuracy is developed in this pa-
per to fulfill this task. Without sacrificing accuracy, the proposed
eigenvalue solver has shown a clear advantage over state-of-the-
art eigenvalue solvers in fast CPU time. It successfully solves
a quadratic eigenvalue problem of over 2.5million unknowns
associated with a large-scale 3-D on-chip circuit embedded in
inhomogeneous materials in 40 min on a single 3 GHz 8222SE
AMD Opteron processor.

Index Terms—Arnoldi iteration, fast solvers, finite element
methods, full-wave analysis, integrated circuits, quadratic eigen-
value problem, resonance analysis.

1. INTRODUCTION

NTEGRATION minimizes size and weight, and maximizes

performance of circuits. However, integrating as many
circuits as possible on the same chip leads often to unde-
sired coupling and sometimes to system failure. For instance,
switching currents induced by logic circuits cause ringing
in the power-supply rails and in the output driver circuitry.
This in turn couples through the common substrate to corrupt
sensitive analog signals on the same chip. Prevailing circuit-
based signal integrity paradigms are reaching their limits of
predictive accuracy when applied to high-frequency mixed-
signal settings. To sustain the scaling and integration of digital,
analog, mixed-signal, and radio frequency (RF) circuitry, an
electromagnetic solution is indispensable. Such a solution
allows for an accurate characterization of analog/RF circuitry,
their mutual coupling, their interaction with drivers/receivers,
and their coupling to interconnects and substrate.
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One of the critical needs in high-frequency integrated circuit
(IC) design is to predict the resonance frequency of an
integrated system. Although a chip design and its package
design can each meet design targets, the actual packaged chip
often fails at certain frequencies because of the resonance
caused by the coupling between the die and the package.
Therefore, it is important to accurately predict the resonance
frequency of an integrated system for its removal. The res-
onance frequency of an IC system can be accurately found
by solving a 3-D electromagnetics-based quadratic eigenvalue
problem. The quadratic eigenvalue problem can be converted
to a generalized eigenvalue problem via linearization. For
solving a generalized eigenvalue problem of size N, the
computational complexity of traditional eigenvalue solvers
such as QR is O(N?). With state-of-the-art Arnoldi algorithms
[51, [10], the complexity is reduced to O(N?). However,
such a complexity is still inadequate for analyzing global
resonances of an IC system since N is too large. When
resonance occurs, the entire integrated system is excited. As
a result, the number of unknowns, N, involved in the analysis
of global resonances of an IC system is ultra large. In [2]
and [3], the O(N?) complexity of an Arnoldi-based eigenvalue
solution is reduced to O(N) complexity for a 2.5-D finite-
element based solution of Manhattan-type large-scale on-chip
interconnects. In this solution, a 2-D generalized eigenvalue
problem is formulated with the third dimension handled by
mode matching technique. The eigenvalues found are complex
propagation constants of the waves propagating in each 2-D
structure seed. However, the IC structures that can be analyzed
by a 2.5-D based solution are limited. For general problems
encountered in the design of ICs such as arbitrarily shaped
RF devices, high bandwidth package interconnects, and a
combined die-package system, a 3-D solution is unavoidable.
Since the linear-complexity complex-valued eigenvalue solvers
in [2] and [3] were developed in the framework of a 2.5-D
finite element-based formulation, the problem of finding a
linear-complexity solution to the generalized eigenvalue prob-
lem remains open for the 3-D electromagnetics-based anal-
ysis of IC structures. If such a solution can be found, one
can quickly obtain the complex resonance frequencies of
the entire IC structure, which are nothing but the eigen-
values of the underlying 3-D quadratic eigenvalue problem,
as well as the fundamental 3-D modes (field distributions)
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that can be supported by the structure, which are eigen-
vectors.

The main contribution of this paper is the develop-
ment of an eigenvalue solver of linear complexity for 3-D
electromagnetics-based analysis of general IC structures. In
this solver, a quadratic eigenvalue problem is first formulated
for analyzing 3-D IC structures that involve arbitrarily shaped
lossy conductors and nonuniform materials. The quadratic
eigenvalue problem is then converted to a generalized eigen-
value problem to facilitate efficient computation. The com-
putational bottleneck of the generalized eigenvalue problem
is analyzed and found to be the solution of a large-scale
3-D sparse matrix. An orthogonal finite-element reduction-
recovery method [4] is then employed to achieve a linear-
complexity solution of the large-scale sparse matrix, holding
the complexity of the entire eigenvalue solution to linear.
Furthermore, the spurious eigenvalues associated with the
orthogonal vector basis-based discretization of the generalized
eigenvalue problem are identified. The origin of the spurious
eigenvalues is analyzed, and the approach to removing the
spurious eigenvalues is given. In addition, the accuracy of a
quadratic eigenvalue solution is investigated. The backward
error is introduced to quantitatively measure the accuracy of
the proposed eigenvalue solution. An optimal scaling tech-
nique is used to transform the original quadratic eigenvalue
problem to a scaled quadratic eigenvalue problem, improving
the accuracy of the quadratic eigenvalue solution by a few
orders of magnitude.

This paper is organized as follows. In Section II, we give a
quadratic eigenvalue-based formulation for analyzing general
3-D IC problems involving lossy conductors and inhomoge-
neous materials. In Section III, we present a linear-complexity
solution to the quadratic eigenvalue problem, analyze the
spurious eigenvalues, investigate the accuracy of the quadratic
eigenvalue solution, and present a scaled quadratic eigenvalue
problem that significantly improves accuracy. In Section 1V,
numerical results are given to demonstrate the performance of
the proposed solver. Section V relates to our conclusions.

II. QUADRATIC EIGENVALUE PROBLEM FOR 3-D
ELECTROMAGNETICS-BASED ANALYSIS OF ICS

Inside a 3-D IC, the electric field E satisfies the following
second-order vector wave equation:

V x <;V X E) — Q2afo)* E + 2nfocE=0 (1)

where fy is frequency, @, ¢, and o denote permeability,
permittivity, and conductivity, respectively. Both dielectric and
conductor loss can contribute to the term associated with
conductivity. It is also worth mentioning that for on-chip
and package circuits, conductors cannot be treated as perfect
conductors because skin depth is comparable to the physical
dimensions of conductors.

A finite element-based analysis [7] of (1) subject to its
boundary conditions results in the following quadratic eigen-
value problem:

[S+2°T+AR] {e} =0 (A = jko) 2)
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in which the eigenvalues A correspond to complex resonant
frequencies, and the eigenvectors e characterize the electric
field at each edge in the computational domain. The S, T, and
R are all real-valued matrices. Their elements are given by

S, = /// v x N} - (v x N;}dv
v Mr

Tij = /// ,bL()SNi deV
|4

R,‘j = /// //L()O'Ni deV (3)
Vv

where N denotes the edge basis function used to expand
the unknown electric field E in each element, and V is
the computational domain. The quadratic eigenvalue problem
shown in (2) can be solved by computing the roots of the
determinant of the polynomial matrix

P(L) =S+ A°T + AR. 4)

However, this scheme can be computationally expensive. To
facilitate efficient computation of (2), we linearize the above
quadratic eigenvalue problem to a generalized eigenvalue
problem of twice the dimension

Iy S - B G

the solution of which is theoretically the same as that of (2).
Equation (5) can be compactly written as

A'x = AB'x (6)
where A’, B/, and x are
| =S 0 , | R T | e

SRR A ER R P

In many IC applications, we have to find only & selected
eigenpairs of (6). For example, we are interested in a few
lowest resonant frequencies of an IC, or the first K modes that
are the closest to a frequency of interest. The Arnoldi iteration
[10] is particularly suited for this computing task. The time
and storage complexity of the Arnoldi iteration for solving (6)
is at least quadratic due to the fact that B'~! is generally dense.

In the next section, we propose a linear-complexity solution
of (6).

III. PROPOSED LINEAR-COMPLEXITY 3-D EIGENVALUE
SOLUTION

This section includes a linear-complexity solution of (6),
the identification of the spurious eigenvalues of (6) and its
removal, and a scaled quadratic eigenvalue problem with
optimal scaling for achieving good accuracy in eigenvalues
and eigenvectors.

A. Linear-Complexity Solution

1) Converting the Solution of a Generalized Eigenvalue
Problem to the Solution of a Matrix: In this section, we
analyze the computational bottleneck of an Arnoldi-based
solution of a generalized eigenvalue problem. We show that the



382 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 3, MARCH 2012

s, Vs, v8,
v D‘l Qi Al
S Sy 5| D, A
2, "Lt 4 Q| By | Qs S| A ?]‘)’ A,
V D
b 1 Dy s Al LA
A 3 2| +D 3
AY s A] Qszint +D, Qo212 2 2
X 2 4 2 S, A3
L V. 9 Q.51 P;:z Qo
V D, A
S, 2 L
/ . 3 ‘ D +D;
Sg A.z Qosaz| D, S A, D,
(@ ©

Fig. 1.
and A; matrices.

solution of a generalized eigenvalue problem can be converted
to the solution of a matrix equation.

The algorithm of a k-step Arnoldi process for solving (6)
is as follows [10]:

Algorithm: A k-step Arnoldi process

Lovy =v/[|vil]

2.for j=1,2,--- ,k do

2.1.w=B""A"y;

22.for i=1,2,---,j do 7
hij =viw

w=w — h,-jv[
2.3, hjy = |wl]|

Vigt = w/ .

From the above, it can be seen that the computational bottle-
neck of a k-step Arnoldi process is Step 2.1, the computation
of B'~'A’v at each iteration step, where v is an arbitrary vector
of length N. Since A’ is sparse, A'v can be computed in linear
complexity. As a result, the computational bottleneck becomes
the computation of B'~'g, where ¢ is a known vector. An
iterative solution of B'~!¢ is computationally expensive when
the number of iterations is large. In addition, the number of
iterations typically grows with matrix size, and hence the com-
plexity of an iterative solution is in general higher than linear.
A direct solution of B'~!g is also computationally expensive
when the matrix size N is large. The optimal complexity of
directly solving a finite-element-based sparse matrix is shown
to be O(N'?) [15]. The fast methods developed in [2] and [3]
can be employed to reduce the complexity of solving B'~!g.
With these methods, we can first transform matrices T and R
in B’ to block tridiagonal matrices by permuting the ordering
of the underlying variables. We then reduce the system matrix,
solve the reduced system by the UV parametrization method,
and recover other unknowns. As a result, the computational
complexity becomes N;O(N) [1]. For the problems considered
in [2] and [3], N, is the number of dielectric stacks, which
is a constant for each processing technology node. However,

(a) Prism-element discretization. (b) 3-D layered system matrix with diagonal D; and A; matrices. (c) 2-D layered system matrix with diagonal D;

for general 3-D problems considered in this paper, N; is the
number of unknowns on a 2-D surface, which grows with N
when the problem size increases. Therefore, the complexity
of the fast eigenvalue solver in [1] is also higher than linear
for general 3-D problems. In the next section, we show
how to solve B'"!g in linear complexity, thus reducing the
computational complexity of an Arnoldi-based generalized
eigenvalue solution to O(N) for general 3-D problems in ICs.

2) Reducing the Solution of B’ to the Solution of T: As
can be seen from (5) and (6), B’ consists of both T and R,
where T is a mass matrix associated with permittivity and R
is a mass matrix associated with conductivity, as given in (3).
Matrix T is known to be positive definite and R is, in general,
rank deficient since conductivity does not exist everywhere in
an IC. In order to solve B'~'q in linear complexity, we derive
the following formula by using the Banachiewicz inversion
formula [9]:

g-l_[R T][O
“lT o] T[T

As a result, the computation of B'~! is reduced to the compu-
tation of T~!. If we are able to solve T in linear complexity,
then the computation of B'~!¢ can be performed in linear
complexity.

Therefore, for arbitrary vector {g;, g>}7 that appears in the
Arnoldi process (7), we can compute B 'A{q1, )7 required
in Step 2.1 as follows:

0 T-! =S 0 [q1]|_ q2
T —T'RT || 0 T| (g | -T '(Sq1+Rq)
)

which only involves one matrix solve of T and two sparse
matrix-vector multiplications Sg; and Rgs.

3) Solving T in Linear Complexity: We discretize an IC
into layers of triangular prism elements shown in Fig. 1(a),
resulting in Ny unknowns on each surface perpendicular to
the prism axis, N, volume unknowns in each layer, and L
layers along the layer-growth direction (prism-axis direction).
For the example shown in Fig. 1(a), there are two layers and

T—l
_T—IRT—I . (8)
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in each layer, there is one prism element. Hence, L = 2,
N, = 3, and N; = 6 since there are three vector bases
along the prism axis inside the volume and six vector bases
on each surface in a single element. The vector bases are
shown as arrows in Fig. 1(a). For more layers and more
elements, the discretization shown in Fig. 1(a) extends both
horizontally and vertically. The resultant matrix structure is
the same block-tridiagonal structure shown in Fig. 1(b) with
L diagonal blocks of size N; + N, each. In each layer, we
do not require the dielectric material to be uniform. In other
words, the material can be inhomogeneous in each layer since
the proposed algorithm is not restricted to layered materials.
Therefore, the prism-axis direction can be aligned with any
of the x, y, and z-directions in an IC. We thus can decide
the layer-growth direction solely from a geometrical modeling
perspective. Unknowns are ordered layer by layer as shown
in Fig. 1(a). We start from surface unknowns on S;, volume
unknowns in Vi, the vector bases of which are parallel to the
prism axis, surface unknowns on S,, and continue along the
prism-axis direction. By doing so, we structure the mass matrix
T to be a 3-D layered system matrix shown in Fig. 1(b). We
then further structure D; and A; (i = 1,2, ..., L) matrices in
T to be diagonal matrices. This is achieved by employing the
orthogonal prism vector basis functions developed in [4] to
expand the unknown electric field E in each element. These
orthogonal bases are complete, and also ensure tangential field
continuity across the element interface. More importantly, they
render the D; and A; blocks in T diagonal. In Fig. 1(b), all the
Q matrices vanish. This is because the vector bases orientated
along the prism-axis direction are perpendicular to the vector
bases residing on the upper and lower surfaces of a prism
element, as can be seen from Fig. 1(a). As a result, the original
3-D layered system matrix shown in Fig. 1(b) is naturally
decomposed into a surface-unknown based system shown in
Fig. 1(c) and L decoupled volume-unknown based subsystems
Py (I=1,2,..., L) without any computational cost [4].

The L-layer surface-unknown-based system shown in
Fig. 1(c) can be further reduced to a single-layer surface-
unknown based system shown in Fig. 2(a), where matrix D,
carries the contribution from all the layers above layer i to
layer i, while matrix D, carries the contribution from all
the layers below layer i to layer i. The D}, and D;, can be
recursively computed from the following formula:

D, =D; +D, — A;D;'A,
D% = D2 +D3 — AQD/EIAZ

(a) Single-layered system matrix. (b) Single-interface system matrix that is diagonal.
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D, { Xgi } :{ bS,i}
(b)
D;d = Di—l +D[ — A,’_lD/;llAl-_l
and
D, =D, +D,— A D;'A,
D, ,=D; ,+D;_ — ALle/leAL,I
D;Ll = Di + Di+1 - Ai+lD/i:-11Ai+l . (10)

Since all the D; and A; blocks are diagonal, D}, and D;, can
be obtained in negligible cost. In addition, the single-layer
system can be further reduced to a single-surface system as
shown in Fig. 2(b), where

D, =D, — AD;'A;. (11

Again, the reduced system is diagonal, and hence can be
solved readily. During the reduction process, the right-hand
sides of each layer are also updated through a top-down
bottom-up procedure [4]. The computational cost is also
minimal because of the diagonal nature of D; and A;. After
the surface unknowns in the reduced system are computed, the
surface unknowns in other layers are recovered from

xsi0= D B — Axss =i — 1,i—2,...,1)
X530 =D By, — Aixss gl =i, i+1,..., L —1)
xs30 =D} By, — Aixsigl = L). (12)

It can be clearly seen that the above operations can be
performed in linear complexity since only diagonal matrices
D; and A; are involved in the procedure. The volume un-
knowns in each layer can be computed from xy; = P(,,lbw
(I=1,2,...,L) in linear complexity based on the algorithm
developed in [4].

B. Identification of the Spurious Eigenvalues and Its Removal

With the solution of T found in linear complexity, we
achieved our goal of reducing the cost of a k-step Arnoldi-
based solution of (6) to linear. However, there is one remaining
issue that needs to be addressed. We found that the generalized
eigenvalue problem (5) resulting from the orthogonal prism
vector basis function-based discretization intrinsically supports
a set of spurious eigenvalues. These spurious eigenvalues do
not exist in a traditional prism vector basis based discretiza-
tion [16]. However, they contaminate the solution of (5). In
addition, the magnitude of these spurious eigenvalues is found
to be similar to that of the true eigenvalues of (5). As a result,
if these spurious eigenvalues are not removed, it is difficult to
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Fig. 3. Illustration of the orthogonal prism vector bases.

distinguish them from the actual eigenvalues. In this section,
we explain the origin of these spurious eigenvalues and show
how to remove them from the solution of (5).

In each prism element, the unknown electric field E is
expanded by 15 orthogonal prism vector basis functions [4].
The 15 orthogonal vector bases are shown in Fig. 3 from N,
to Nis. The degrees of freedom associated with bases Nj_g
are assigned at each edge on the upper and lower surfaces
that are perpendicular to the prism axis. Each of N; (i =1-6) is
purely tangential to edge i at the midpoint of the edge, thereby
ensuring the tangential field continuity across the element
interface. For convenience of reference, we call bases Nig_;5
as complementary bases in this paper. They are complementary
to bases Nj_¢ in the sense that they supplement the normal
component of the electric field at each edge on the upper and
lower surfaces. Different from N;_g, the degrees of freedom of
which are associated with each edge on the horizontal surfaces,
and hence shared by adjacent triangular elements, Njg_5 are
not shared by adjacent triangular elements. If they are shared,
since N; is used to expand E, then the normal component
of E across a material interface that separates two triangular
elements will become continuous, which is wrong. As a result,
the Njg_;5 are not shared by the prism elements that are
horizontally adjacent to each other, although they are shared
by the prism elements that are vertically adjacent to each other
(vertical direction is along the prism axis). Therefore, in each
layer, the Njo_;5 bases are associated with each prism element
instead of each edge. In other words, there is a different set of
Njo-15 in each prism element. To better illustrate this point, in
Fig. 4, we show a discretization that consists of four triangular
prism elements. The basis functions used to discretize the four
elements can be divided into two groups: the vector bases
whose degrees of freedom are assigned to each edge and the
complementary bases Njo_;5s whose degrees of freedom are
assigned to each element in each layer. Therefore, there exist
two complementary bases that are normal to one edge to allow
for the normal continuity of the electric flux across element
interfaces to be satisfied in the variational process of a finite-
element procedure.

The complementary bases, being not shared by horizon-
tally adjacent prism elements, make the eigenvalue system
(5) naturally support a set of spurious eigenvalues. These
eigenvalues are local resonances generated from a reduced
eigenvalue system that is only formed by complementary

py
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Fig. 4. Illustration of the origin of the spurious eigenvalues.
TABLE 1
LOWEST EIGENVALUES ko (M~!) OF A CAVITY
Analytical Eigenvalues of the Eigenvalues of the System
Values Original System of Complementary Bases
328.63 x 18 repetitions 328.63 x 18 repetitions
523.60 546.83x 1
702.50 704.54x 1
753.10 732.19x1

734.85 x 18 repetitions 734.85 x 18 repetitions

bases, as shown in Fig. 5(b). In this figure, C1 denotes the
surface unknowns associated with the complementary bases in
surface 1, C2 denotes the surface unknowns associated with
the complementary bases on surface 2, etc. The solution of the
complementary basis-only-based system together with the zero
solutions for unknowns associated with other basis functions
constitute a valid solution of the original system shown in (5).
Although numerically supported by (5), the eigenvalues solved
from the reduced system shown in Fig. 5(b) correspond to
the local resonances of the complementary basis-only-based
subsystem, and hence are not physical for the entire system.

The aforementioned theoretical analysis of the spurious
eigenvalues has been verified by numerical experiments. As
an example, in Table I, we list the eigenvalues of a rectangular
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Fig. 5. (a) Original system formed by all basis functions. (b) Reduced
eigenvalue problem formed by complementary bases.

cavity of size 1 x 0.5 x 0.75cm? computed from the proposed
orthogonal basis-based eigenvalue solver. As can be seen from
Table I, in addition to the three eigenvalues that agree with
analytical data, two spurious eigenvalues are also generated,
each of which is repeated for 18 times. These two spurious
eigenvalues are exactly the same as those solved from the re-
duced eigenvalue system that only consists of complementary
bases shown in Fig. 5(b).

With the origin of the spurious eigenvalues identified, it
becomes obvious how to remove these unwanted eigenvalues.
If the entries corresponding to noncomplementary bases of an
eigenvector are zero, the corresponding eigenvalue (mode) is
a spurious value, and hence removed. Assume that val is the
average magnitude of the whole entries of an eigenvector, and
val,. is the average magnitude of the entries that correspond
to the noncomplementary bases. Numerically, we can apply
the following condition to remove the spurious values:

val,.

< €err-
val

In the simulation conducted in this paper, the tolerance €.
was chosen as 107>,

C. Optimally Scaled Quadratic Eigenvalue Problem

In this paper, the quadratic eigenvalue problem (2) is
converted to a linear problem (5) of twice the dimension. It is
shown in [14] that for the sake of accuracy, it is very important
to scale the coefficient matrices S, T, and R before numerically
computing the eigenvalues via linearization.
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The backward error [13], [14] is a good measurement of
the accuracy of a quadratic eigenvalue problem (4), which is
defined as

(A>T + AR + S)x|)»
(ATl + ARz + [1S2) 1x]l2

np(x, 1) = (13)

If the matrix norm [|T||2, ||S||2, and ||R]|, differ a lot in
the order of magnitude, the eigenvalue algorithm applied to the
linearized problem (5) may yield very poor backward errors
[13]. For the physical problems considered in this paper, due
to nonideal conductors and small physical dimensions at the
micrometer and nanometer level, the entries of S, T, and R
do differ from each other by orders of magnitude. As a result,
we have to scale these matrices before solving the quadratic
eigenvalue problem (2) for achieving good accuracy.

We employ an optimal scaling technique [13] to reduce
the backward error. There are two scaling coefficients o and
B involved in this technique. They are determined as the
following:

P(A) =A>T+ AR +S

v2=ITll2, vi=1IR]l2,
a=+/n/v2
B=2/(yo+vivVvo/v2).

Based on the optimal scaling coefficients, we convert the
original quadratic problem P shown in (4) to a scaled quadratic
problem P’ as follows:

P’ =P(1)B = A*(Ta?B) + V' (Rap) + (SB)

o = ISIl2

where A = AMa. As a result, the scaled quadratic eigenvalue
problem becomes

"+ * T + VR'{e} =0, (V' =r/a) (2)

in which §”=8S, T"=?>BT, and R"=apR. Here, the eigen-
vector e remains the same as that in the original quadratic
eigenvalue problem. Since this method is very effective in
balancing the scales of the coefficient matrices in (2), we can
significantly reduce the backward error of P and improve the
accuracy of the proposed eigenvalue solution. After solving
(2') with respect to A/, A can be obtained by multiplying A’ by
a. The effectiveness of this algorithm will be validated in the
following section.

IV. NUMERICAL RESULTS

We simulate a number of examples to demonstrate the
accuracy and linear complexity of the proposed eigenvalue
solver.

A. Half-Filled Cavity

The proposed linear-complexity eigenvalue solver is first
validated with a lossy cavity structure that has an analytical
solution. The cavity is filled with a conductive material as
shown in Fig. 6, and shielded by electric walls. Two methods
are compared. One is the proposed orthogonal eigenvalue
solver. The other is the UV-RR-based solver developed in
[1]. The number of unknowns generated by the proposed
method is 1792. The number of unknowns resulting from a
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TABLE I
LOWEST RESONANT FREQUENCIES AND CPU TIME COST OF A HALF-FILLED CAVITY

Analytical Values [6] UV-RR Solver [1] Proposed Orthogonal Solver
o (S/m) N = 1926 N =1792
fr (GHz) fr (GHz) Error (%)  Time (ms) fr (GHz) Error (%)  Time (ms)
1.3 5.711 + j5.197 5.808 + j5.154 1.37 68.71 5.652 + j5.244 0.98 9.35
1.0 6.579 + j3.864 6.645 + j3.831 0.97 69.23 6.545 + j3.897 0.62 9.40
0.5 7.236 +j1.819 7.282 + j1.805 0.64 74.99 7.222 + j1.833 0.27 9.31
0.1 7.379 + j0.354 7.423 + j0.352 0.59 68.56 7.368 + j0.357 0.16 9.39
TABLE III
LOWEST FIVE RESONANT FREQUENCIES (GHZ) OF AN ON-CHIP SINGLE
STRIPLINE INTERCONNECT
10.16 mm
MATLAB UV-RR Solver [1] Proposed Solver
(N = 4145) (N = 4145) (N =3927)
£.=2 475 +j51.6 4748 + j51.58 47.47 + j51.57
A 97.7 + j54.2 97.73 + j54.20 97.71 + j54.20
149.0 + j57.7 149.04 + j57.70 149.00 + j57.72
g 2.86 mm 198.0 + j61.0 198.03 + j60.99 197.98 + j61.04
220.8 + j62.4 220.83 + j62.36 220.78 + j62.43
11.43 mm 11.43 mm

Fig. 6. Half-filled cavity structure.
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Fig. 7. Illustration of an on-chip single stripline-type interconnect (geomet-
rical unit: pm).

traditional prism vector basis-based discretization used in the
UV-RR method is 1926. The Heisenberg size computed in
the Arnoldi iteration is 500 for both methods. In Table II,
we list the resonant frequencies f obtained by the proposed
solver and those computed by the UV-RR-based solver in
comparison with analytical data fualytical. The error is assessed
by | fanalytical — f1/| fanalyticat|. Very good accuracy is observed
from the proposed solver. In addition, compared to the UV-
RR solver, the CPU time cost by the proposed orthogonal
eigenvalue solver is significantly smaller. The unit of CPU
time is millisecond in Table II.

B. On-Chip Single Stripline-Type Interconnect

The second example is an on-chip interconnect that is
a single stripline-type structure. As shown in Fig. 7, the
structure is filled with a dielectric material of relative
permittivity 4, and shielded by perfect electric conductors
on the top and at the bottom. The other four boundaries are
left open (Neumann-type boundary conditions). The structure
is of size 1.45 x 300 x 2000 um3. A copper strip, with

conductivity 5 x 107 S/m and thickness 0.12 um, is located
in the center of the structure. The size of the system matrix
A’ and B’ is 4193. The Heisenberg matrix size (the number
of Arnoldi iterations performed) is 1000.

In Table III, we list the five lowest resonant frequencies
computed from the proposed eigenvalue solver, which are
sorted by real part. They show excellent agreement with the
eigenvalues obtained from MATLAB and those computed by
the UV-RR solver [1].

With this structure, we also examine the performance of the
optimal scaling method described in Section III-C. The back-
ward error obtained by the optimal scaling with o = 8.8 x 107
and B = 0.08 is shown to be, in general, smaller than that
generated by a simple scaling with scaling coefficients o = 107
and 8 = 1, as can be seen from Table IV. From Table V,
it can also be seen clearly that the zero eigenvalues of (5)
are computed more accurately by the scaling techniques. Both
simple scaling and optimal scaling produce more accurate
zeros compared to the eigenvalue solution without any scaling.
The simple scaling, though not optimal, is also an effective
scaling technique. It is developed based on the goal of bal-
ancing the scale of matrices S, T, and R in (2). As can be
seen from (3), the major difference between the scale of R
and that of T is conductivity o. Thus, we use the magnitude
of metal conductivity, which is at the level of 107, to scale T
and R. By doing so, the scaled matrix T”=a’>T becomes close
to R"=aR in magnitude. Moreover, they both become close
to matrix S in magnitude.

C. On-Chip Power Grid Structure

The third example is an on-chip power grid structure
as shown in Fig. 8. There are two x-direction wires, four
y-direction wires, and four vias that connect the crossing
wires of the same polarity. The structure is shielded by a
perfect electric conducting plane on the top and at the bottom,
with the other four sides left open. The conductivity of all
wires is 5 x 107 S/m.
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TABLE IV
BACKWARD ERRORS OF AN ON-CHIP SINGLE STRIPLINE INTERCONNECT

Resonant Backward Error Backward Error
Frequency with Simple Scaling with Optimal Scaling
475 +j51.6 272 x 107° 3.97 x 1077
97.7 + j54.2 8.40 x 107° 7.82 x 1077
149.0 + j57.7 5.96 x 107° 2.23 x 107°
198.0 + j61.0 1.72 x 1073 3.37 x 1073
220.8 + j62.4 1.30 x 1073 8.87 x 10~°
TABLE V

COMPARISON OF THE COMPUTED EIGENVALUES (GHZ) WITH AND
WITHOUT SCALING

Eigenvalues Computed Eigenvalues Computed Eigenvalues Computed
Without Scaling with Simple Scaling with Optimal Scaling

2.5 +j22629.6 0.0041 + j0.0009 0.0007 — j0.0001
5.9 +j22584.1 0.0044 + j0.0000 0.0007 — j0.0001
3.2 +j22628.9 0.0053 — j0.0043 0.0012 — j0.0019

46.9 +j51.5 475 +j51.6 475 +§51.6

923 + j54.6 97.7 + j54.2 97.7 + j54.2

138.3 +j97.4 149.0 + j57.7 149.0 + j57.7
TABLE VI

LOWEST FOUR RESONANT FREQUENCIES OF AN ON-CHIP POWER GRID
STRUCTURE (UNIT: GHZ)

MATLAB
N = 4452

Proposed Solver
N = 4452

3811.658286 + j117.423338
6030.105281 + j142.290841
7809.571017 + j174.781751
8538.366505 + j27.122742

3811.658286 + j117.423337
6030.105281 + j142.290842
7809.571007 + j174.781749
8538.366505 + j27.122742

In Table VII, we list the lowest four eigenvalues generated
by the proposed solver. The backward error obtained by
solving the scaled eigenvalue problem and that obtained by
solving the original eigenvalue problem are also compared in
this table. The scaling coefficients are o = 3.51 x 10° and
B = 549. Clearly, the accuracy of the eigenvalue solution is
improved by a few orders of magnitude owing to the optimal
scaling technique. When assessing the backward error shown
in (13), both eigenvectors and eigenvalues are used in the
calculation. Therefore, the accuracy of both eigenvalues and
eigenvectors of the proposed solver is validated.

We also compare the eigenvalues generated from the pro-
posed solver with those generated by MATLAB in Table VL.
Excellent agreement is observed.

Tlustration of an on-chip power grid structure (geometrical unit: pm). (a) 3-D view. (b) xz-plane view. (c) yz-plane view.
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TABLE VII
BACKWARD ERRORS OF A POWER GRID STRUCTURE
Eigenvalues Backward Error  Backward Error
Without Scaling With Scaling
3811.66 + j117.42 3.43 x 107 1.65 x 1077
6030.11 + j142.29 2.28 x 107 1.68 x 1077
7809.57 + j174.78 3.94 x 107° 6.98 x 108
8538.37 + j27.12 3.95 x 107° 7.35 x 1078
3000 ' '
-8-This Solver
— ]
o
]
7]
e’ 4
]
E
[ _
0 1 2 3
Number of Unknowns 6
x 10
Fig. 9. Arnoldi time versus the number of unknowns.
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Fig. 10. Total CPU time cost versus the number of unknowns.
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TABLE VIII
ARNOLDI TIME VERSUS THE NUMBER OF UNKNOWNS

UV-RR Solver ( [1]) Proposed Solver MATALB
N CPU Time (s) N CPU Time (s) | CPU Time (s)
1492 28 1536 0.77 163
2968 46 3584 1.80 154
7626 128 7854 3.87 185
9792 137 9312 4.94 1960
18954 369 17708 9.95 3570
TABLE IX

BREAKDOWN OF THE TOTAL CPU TIME OF THE PROPOSED SOLVER

N Decomposition Arnoldi QR Total
Time (s) Time (s) Time (s) Time (s)
1536 1.821x10~* 0.77 4.072x1072 0.811
3584 5.161x10~* 1.80 6.779%x 1072 1.868
7854 1.305%x10~* 3.87 7.589x1072 3.946
9312 1.629%x10~* 4.94 6.765%x1072 5.009
17708 5.691x10~* 9.95 4.226x1072 10

In addition to the accuracy analysis, we assess the efficiency
of the proposed method. In Table VIII, we compare the
Arnoldi iteration time cost by the proposed solver with that
cost by the UV-RR solver, and that by the eigensolver of
MATLAB, respectively. The number of Arnoldi iterations
performed is 1000. The examples simulated are a series of
power grids obtained by varying the size of the power grid
shown in Fig. 8. The size is increased by duplicating the
power grid shown in Fig. 8 along x direction multiple times
with the discretization density kept the same, and the prism
axis (layer growth direction) along y. It is clear that the
proposed solver is orders of magnitude faster than both of
the UV-RR solver and MATLAB that employs a state-of-the-
art sparse-matrix-based eigenvalue solver. The total CPU time
of the proposed solver includes the time cost in reduction
and decomposition of the reduced single-layer matrices in T
before the Arnoldi iteration, the Arnoldi iteration, and the QR
process after Arnoldi iteration. The cost in each step is listed
in Table IX. The recovery time is included in the Arnoldi
iteration time because the unknowns in each layer need to be
recovered to construct a complete vector at each Arnoldi step.
The decomposition time is negligible because the reduction
is based on diagonal matrices and the reduced single-layer
matrices are either diagonal or tridiagonal in the orthogonal
finite-element reduction recovery-based solution of matrix T.

Moreover, we validate the computational complexity of
the proposed eigenvalue solver. We plot the Arnoldi iteration
time with respect to N in Fig. 9, in which the dashed line
represents the CPU time that scales with N linearly. The linear
complexity of the proposed solver is clearly demonstrated.
In Fig. 10, the total CPU time for the proposed eigenvalue
solver is plotted with respect to N in comparison with the
UV-RR solver developed in [1]. It is clear that the proposed
solver has a linear complexity whereas the UV-RR solver does
not. This is because the complexity of the UV-RR solver is
O(NsN). When the number of unknowns on a single surface
N; also increases with N, the complexity of the UV-RR solver
is higher than O(N). As can be seen from Fig. 9, the quadratic
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Fig. 11. Matrix factorization and solution time in the proposed eigenvalue

solution in comparison with that in a conventional solver.

TABLE X
LOWEST EIGHT RESONANT FREQUENCIES OF A PACKAGE SPIRAL
INDUCTOR (UNIT: GHZ)

UV-RR Solver

38.297 + j0.002

80.576 + j0.003
119.773 + j0.001
135.644 + j0.001
155.592 + j0.001
173.435 + j0.001
203.443 + j0.002
236.271 + j0.002

Proposed Solver
38.059 + j0.002
80.159 + j0.003

119.354 + j0.001

135.415 + j0.001

154.899 + j0.002

173.059 + j0.001

202.005 + j0.002

235.163 + j0.002
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Fig. 12. Tllustration of a two-metal-layer package spiral inductor structure
(geometrical unit: pm).

eigenvalue problem involving over 2.5 million unknowns is
solved in 40 min. The computer used has a single 8222SE
AMD Opteron processor running at 3 GHz.

Furthermore, we considered a realistic on-chip power grid
provided by Intel Corporation. The structure involved M4,
M5, M6, and M7 metal layers. In between, there are a
large number of vias connecting orthogonal power rails at
different metal layers. We simulated a suite of such power
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grid examples, which occupy a chip area from 11.43 x
12.86, 57.15 x 64.3, 114.3 x 128.6, and 228.6 x 257.2, to
342.9 x 385.8 umz, resulting in 27742, 658 870, 2618230,
10438450, and 23 460 670 unknowns, respectively. Since the
cost of the proposed eigenvalue solution at each Arnoldi
step is the solution of T as shown in (9), in Fig. 11, we
plotted the time for factorizing T and solving T versus the
number of unknowns in the proposed solution in comparison
with the conventional solver that employs a state-of-the-
art multifrontal-based sparse matrix solver (UMFPACKS5.0 at
http://www.cise.ufl.edu/research/sparse/umfpack/). Clearly, in
the proposed eigenvalue solution, T is factorized and solved
in linear complexity. The matrix factorization time is even less
than the matrix solving time because of matrix blocks that are
diagonalized by the orthogonal vector bases. The CPU cost
of the conventional solver was not plotted across the entire
unknown range because it failed to solve a larger number of
unknowns due to large memory requirements.

D. Package Spiral Inductor

To demonstrate the capability of the proposed method in
solving irregularly shaped 3-D structures, we simulated a
package spiral inductor shown in Fig. 12. The layout of the
spiral inductor occupied two metal layers, with the dark-
colored half ring residing on the lower metal layer and the
light-colored one located on the top metal layer. The two half
rings were connected by a vertical via, which is shown by the
darkest block in Fig. 12. The metal conductivity is 5x 107 S/m.
There are five layers. The thickness of each layer is 100 pm.
The dielectric constant is 1 in each layer. The computational
domain was truncated by a perfect electric conducting bound-
ary condition on the top, at the bottom, and at the leftmost and
rightmost boundaries. The other two ends (yz-planes) were
left open. The geometrical parameters in xm unit of the spiral
inductor are given in Fig. 12. The discretization of the structure
resulted in 14 091 unknowns. The number of Arnoldi iterations
performed was 3000. The smallest eight resonant frequencies
extracted by the proposed eigenvalue solver are listed in
Table X in comparison with those generated by the UV-RR
solver developed in [1]. Excellent agreement can be observed.

V. CONCLUSION

In this paper, a 3-D complex-valued quadratic eigen-
value solver of linear complexity was developed for electro-
magnetics-based analysis of large-scale ICs. The linear com-
plexity was achieved with a new quadratic eigenvalue for-
mulation and a linear-complexity solution of the large-scale
sparse matrix involved in the Arnoldi iteration. Furthermore,
we identified the spurious eigenvalues that were intrinsically
supported by an orthogonal prism element-based discretization
of the quadratic eigenvalue problem. We analyzed the origin of
these eigenvalues and showed how to remove them effectively.
In addition, we introduced the backward error to measure the
accuracy of a quadratic eigenvalue solution, and employed an
optimal scaling technique to transform the original quadratic
eigenvalue problem to a scaled quadratic eigenvalue problem,
which improved the accuracy of the quadratic eigenvalue
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solution by a few orders of magnitude. Numerical results
have demonstrated the accuracy and efficiency of the proposed
method. In addition to predicting the global resonances of IC
systems, the proposed method can be employed to perform a
modal analysis of general 3-D electromagnetic structures.
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