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Abstract—This paper proposes a linear-time complex-valued
eigenvalue solver for solving large-scale on-chip interconnect
problems. The fast eigenvalue solution is achieved by eigenvalue
clustering, fast system reduction with negligible computational
cost, and fast linear-time solution of the reduced system. Numer-
ical and experimental results are presented to demonstrate the
accuracy and efficiency of the proposed method.

Index Terms—Eigenvalue solver, finite-element methods, fre-
quency domain, full-wave analysis, on-chip interconnects.

I. INTRODUCTION

W ITH continued breakthrough in processing tech-
nology, interconnect design has become one of the

biggest challenges in the design of today’s and next-generation
integrated circuits. Over the past few decades, the modeling
of on-chip interconnects has experienced a series of transi-
tions: from lumped capacitance (C), lumped resistance and
capacitance (RC), distributed RC, to distributed resistance,
inductance, and capacitance (RLC) models. As the clock
frequency of microprocessors entered the gigahertz regime,
full-wave models have become increasingly important since it is
necessary to analyze the chip response to harmonics that are up
to five times the clock frequency. In particular, full-wave-based
analysis can be used to characterize global electromagnetic
coupling through the common substrate and power delivery
network.

However, on-chip interconnect structures present many mod-
eling challenges to electromagnetic analysis [1]. These chal-
lenges include large problem size, large number of nonuniform
dielectric stacks with strong nonuniformity, large number of
nonideal conductors, the presence of silicon substrate, highly
skewed aspect ratios, etc. In recent years, both partial differen-
tial equation (PDE) based solutions and integral equation (IE)
based solutions have been developed to address these challenges
[2]–[17].

Among these techniques, the frequency-domain eigenvalue-
based method in [16] is particularly geared toward full-wave
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modeling of large-scale on-chip interconnect structures. The
original wave propagation problem involves a very large
number of unknowns, , in a 3-D computational domain.
Formulated as a generalized eigenvalue problem, the technique
in [16] partially addressed the complexity issue by seeking
the solutions of only a few 2-D interconnect structures, each
involving only unknowns in either the – - or

– -plane ( is the stack growth direction). These solutions are
then post-processed to obtain the solution of the original 3-D
problem through an on-chip mode-matching technique. The
procedure is rigorous and entails no approximation. Take the
test-chip interconnect in [22] for example, is 6678, while
is 10.1 million. In another example [22], is 222K, while
is 336 million.

While the complexity is greatly reduced with the construction
of -parameter models in [16], the problem of finding the so-
lution of the associated modeling problem in complexity
remains open. The computational bottleneck is the solution of
a generalized eigenvalue problem. Efficient algorithms such as
ARPACK [18] still require storage and operations due
to dense matrix–vector multiplications. The main contribution
of this paper is an algorithm that provides a solution to the gener-
alized eigenvalue problem with complexity, thus paving
the way for the full-wave simulation of very large scale integra-
tion (VLSI) circuits. The complexity is achieved by the
development of a direct matrix solver of linear complexity in the
process of Arnoldi iteration.

In Section II, we give a brief overview of the frequency-do-
main eigenvalue-based method for full-wave modeling of
on-chip interconnects. In Section III, we present the proposed
linear-time eigenvalue solver. In Section IV, numerical and
experimental results are given to demonstrate the accuracy
and efficiency of the proposed solver. Section V relates to our
conclusion.

II. REVIEW OF THE FREQUENCY-DOMAIN

EIGENVALUE-BASED METHOD

Recognizing that although a 3-D on-chip interconnect struc-
ture may consist of a very large number of circuit elements,
the number of modes that can be propagated in this structure
is orders of magnitude smaller, a frequency-domain eigenvalue-
based method was developed in [16] for full-wave modeling of
large-scale 3-D on-chip interconnect structures. This method in-
volves a number of important steps, as outlined below.
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Fig. 1. 3-D interconnect structure. (a) Top view. (b) End view. (c) Side view
(from [16]). (d) 3-D view.

A. Segmentation of the Interconnect Structure

A 3-D interconnect structure is sliced into segments. Each
segment has a constant cross section. The segmentation direc-
tion, i.e., the longitudinal direction, is chosen from the -, -,
and -directions to minimize the number of unknowns in the
transverse cross section. This is because the transverse cross
section is numerically solved while the longitudinal direction
is analytically processed in the frequency-domain eigenvalue-
based method.

B. Identification of the Structure Seeds

After the segmentation, a set of structure seeds are identi-
fied. A structure seed is a unique cross section. Take a typical
Manhattan-type bus structure made of six metal layers as an ex-
ample, its top view, end view (cross-sectional view), and side
view are shown in Fig. 1. Without loss of generality, assuming
the bus is segmented along the -direction. This results in a large
number of segments in a large-scale on-chip structure. However,
the number of unique cross sections is only a few. For a typ-
ical bus structure shown in Fig. 1, the number of structure seeds
is only eight. Each structure seed can be represented by three
digits, for example, 101. The first, second, and third digits cor-
respond to orthogonal layers M5, M3, and M1, respectively. For
each digit, value 0 denotes the absence of the lines in that layer,
whereas value 1 denotes a presence. If the M5, M3, and M1 lines
are aligned along the -direction, the total number of structure
seeds is only two, i.e., the number of unique – cross sections

is only two. One refers to the presence of all of the M5, M3, and
M1 lines. The other denotes their absence. The structure seeds
are repeated in different lengths along the longitudinal direction,
constructing the entire structure. The aforementioned scheme of
segmentation and identification of structure seeds equally ap-
plies to interconnects with vias. In general, the number of seeds
is orders of magnitude smaller than the number of segments.

C. Eigenvalue-Based Solution

In light of the fact that the electrical properties of intercon-
nects are intrinsic in nature irrespective of the excitation, we
construct an eigenvalue-based method for the analysis of an in-
terconnect structure. Inside the interconnect structure, the elec-
tric field satisfies the second-order vector wave equation

in (1)

subject to certain boundary conditions such as

on on (2)

In (1), , , and denote the relative permeability, relative
permittivity, and conductivity, respectively, is the computa-
tional domain, which is the cross section of a structure seed
including both dielectric and conducting regions, is the
boundary where the Dirichlet boundary condition is applied,
and is the boundary where the Neumann boundary con-
dition is applied. A finite-element analysis of the boundary
value problem defined in (1) and (2) results in the following
generalized eigenvalue problem:

(3)

in which the eigenvalues correspond to the propagation con-
stants , and the eigenvectors characterize the transverse elec-
tric field and longitudinal electric field . Matrices and
are complex valued due to the penetration of fields into on-chip
conductors. The entries of and are given by

(4)

where denotes the complex permittivity that accounts for
conductivity, represents the edge basis function [19] used to
expand the transverse field, is the node basis function used to
expand the longitudinal one, and is the computational domain.
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D. On-Chip Mode-Matching Technique

Once (3) is solved, the electric field in each segment can be
obtained as

(5)

which is a superposition of all of the forward and backward
propagation modes that can be supported by the structure. It
should be noted that the field in (5) has all three components

, , and . The unknown coefficients , and in (5)
are determined by imposing the following continuity condition
at each junction that separates region 1 from region 2:

(6)

where and are the number of modes in region 1 and
region 2, respectively, and

or (7)

and

or (8)

Testing (6) with appropriate functions results in
equations at the junction. Combining this set of equations at
each junction with the loading conditions, the unknown coef-
ficients and can be determined; hence, solving the field
anywhere inside the interconnect structure.

III. PROPOSED LINEAR-TIME EIGENVALUE SOLVER

Equation (3) can be compactly written as

(9)

Matrices and are sparse and of size . The number
of eigenvalues that can make a difference in the final solution
is generally much less than , i.e., the number of modes that
can propagate in an on-chip structure is generally much less
than . The number of propagation modes of a single stripline,
for example, is only one when the electric size of the structure
is small although the cross-section size can be very large. The
cutoff frequencies of higher order modes are so far away from
the cutoff frequency of the dominant mode that the higher order
modes are attenuated quickly. When the size is increased or the
frequency is increased, more modes can be propagated, but the
number of propagation modes is still much less than . As a
result, the computing need here is to find selected eigenpairs
of the large sparse matrix system shown in (9), where is the
number of significant modes.

The Arnoldi iteration [18] is particularly suited for this com-
puting task. Consider a standard eigenvalue problem

(10)

A -step Arnoldi process generates an orthonormal basis
of the Krylov subspace spanned by

, where is an initial unit norm vector.
The projected matrix of onto is represented by a

upper Hessenberg matrix , the Ritz pairs of which can
be used to approximate the eigenpairs of . The algorithm of
the -step Arnoldi process is as follows.

Algorithm: The -step Arnoldi process

1.
2. for do

2.1. ;

2.2. for do (11)

;
.

2.3. , .

The complexity of this algorithm is if is sparse.
However, in our problem, is dense because it is equal to

, and is dense, as can be seen from (3). There-
fore, the complexity of a straightforward implementation of the
Arnoldi process is , where the
complexity accounts for the generation of , and the
complexity accounts for the dense matrix–vector multiplica-
tion operations. As a result, the cost of step 2.1 in (11) can dom-
inate the total computational expense. The key contribution in
this paper is the reduction of this computation to . We will
first reduce the system matrix from 2-D to 1-D, then solve the
reduced system and recover other unknowns. Three efficient al-
gorithms will be developed to accomplish these two tasks with

complexity.

A. Eigenvalue Clustering

If the conductors are perfect, i.e., fields do not penetrate
into conductors, the real part of the eigenvalues of (3) is
bounded between the minimum and maximum relative per-
mittivity. Since the conductors are lossy in a real on-chip en-
vironment, the real part is, in fact, bounded in a larger region,
but still is bounded as shown in Fig. 2(a). However, the imag-
inary part can be widely scattered in complex plane due to the
conductor loss induced attenuation that is modulated by com-
plicated coupling from surrounding wires. This hinders the fast
convergence of an Arnoldi process. To overcome this problem,
we transform (9) to

(12)

where

(13)
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Fig. 2. Mapping of the eigenvalues from � plane to �.

Fig. 3. Mesh and ordering.

By doing so, we cluster the eigenvalues that are originally scat-
tered in the shaded region shown in Fig. 2(a) to a localized re-
gion shown in Fig. 2(b). Moreover, by a shift-invert operation,
we further transform (12) to

(14)

in which is an initial guess of , which is determined from
the propagation constants of typical on-chip interconnect struc-
tures. Thus, the magnitude of the eigenvalues that are of physical
interest becomes the maximum one, and hence, the convergence
of the Arnoldi process is further expedited.

B. Reduction From 2-D to 1-D Lines in Complexity Much Less
Than

In (9), both and are sparse matrices. However, their
sparse patterns are not amenable for direct use in our compu-
tational technique. As established in (3), all the edge unknowns
are ordered first and node unknowns are ordered next. The resul-
tant matrix in (14) involves four block sub-matrices,
each of which has its own sparse pattern that cannot be exploited
readily. Therefore, we will transform to a banded
matrix by permuting the ordering of the underlying variables.
Further regularity of structure can be realized by discretizing the
computational domain into rectangular elements. Since typical
on-chip interconnects have Manhattan geometry, discretization
with rectangular elements is indeed natural.

In Fig. 3, we plot a mesh to explain the unknown ordering
scheme. There is an unknown associated with each edge, which
is denoted as an edge unknown. There is also an unknown asso-
ciated with each node, which is denoted as a node unknown. We
discretize the computational domain into segments along
and segments along . We denote the -direction edge un-
knowns as , -direction edge unknowns as , and -direction
node unknowns as . We then first order of line 1 ( orien-
tated), on line 1; and along we proceed to between line
1 and line 2; of line 2, on line 2, and so on. By doing so,

we generate a banded matrix formed by submatrices in all seg-
ments. The sub-matrix in each -segment (the region formed
between two vertical lines) can be represented as

(15)

Each sub-matrix overlaps with its neighbors through matrix
and . Although the overall matrix formed by sub-matrices

of the form in (15) is a banded matrix, computation that involves
a banded matrix remains expensive when the size is large. To
overcome this problem, we first eliminate all the edge unknowns
between lines, i.e., horizontal ( -orientated) edge unknowns.
Eliminating these unknowns is equivalent to the following block
matrix operation:

(16)

The right-hand side of (14) needs to also be updated in the re-
duction process as follows:

(17)

It is apparent from (16) that in order to eliminate all the hori-
zontal unknowns, one has to fill in matrices , , , , , and

for each segment. In addition, one has to evaluate ,
, and for each segment. The required com-

putational cost can be very high when the number of segments
is large. It turns out that such computational cost is negligible
because the matrices involved exhibit the following properties.

a) Matrix is the same for all the segments.
b) Matrices and are correlated:
c) Matrix is equal to matrix in each segment.
d) Matrix is linearly proportional to the segment length.
e) Matrix only needs to be formed and inverted for each

unique structure seed.
Although these matrix properties are similar to those in [17],

the underlying reasons for them are quite different since the ma-
trices in [17] involved 3-D structures.

As an immediate result of the aforementioned factors, the
computational cost of eliminating all the horizontal unknowns
is reduced to that of solving for each structure seed.
The dimension of matrix is . When is large, the fac-
torization could cost in both time complexity and space
complexity. The operation of also costs , which
is expensive. Here we will reduce the complexity to .

A careful examination of reveals that it is a tridiagonal ma-
trix. As can be seen from Fig. 3, each horizontal edge unknown
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only has crosstalk with its upper and lower neighbors among all
the horizontal unknowns. The inverse of a tridiagonal matrix be-
longs to the class of hierarchically semiseparable matrices. For
a symmetric tridiagonal matrix of order , there exist two se-
quences , , such that [20]

...
...

...
. . .

...

(18)

Denoting as , the sequences , ,
can be generated in operations as follows:

(19)

Although the inverse of a tridiagonal matrix is dense, with
entries, it can be compactly represented by parameters in

and . In addition, matrix is sparse. Hence,
the cost of scales as .

Performance Analysis: The time complexity and space com-
plexity of the aforementioned scheme are both . Since
the direction is the stack growth direction, dictates the dis-
cretization of the stack. This number is generally much less than

. For example, the interconnect systems of 90-nm technology
node involve only 8–9 metal layers. Hence, compared to ,
the cost of is negligible. Furthermore, the cost does not
grow with the problem size within each generation as the stack
is fixed for each generation.

C. Solving Reduced System Matrix in Complexity

The reduced system matrix forms a block tridi-
agonal matrix of order , which
can be denoted by .
Here each . Thus,

with di-
agonal blocks of size each. Since the right-hand
side of (14) changes at each iteration step of an Arnoldi
process, we are specifically interested in its direct solution.
Similar to tridiagonal matrices, elegant theoretical results that
describe the inverses of block tridiagonal matrices exist. For a
symmetric block tridiagonal matrix , there exist
two sequences of matrices such that for

. Thus,

...
...

. . .
...

(20)

While theoretically elegant, the computation of parameters
and is beset by numerical problems for even

modest-sized problems. The root cause of such an instability
is that and scale exponentially with increasing
problem size. Here, we will adopt a variant of the ratio-based
approach, which is numerically stable [21]

(21)

As can be seen from (21), the computational cost of obtaining
and is

Since and constitute a compact representation of
the inverse of a block tridiagonal matrix, the matrix vector mul-
tiplication can be performed in an efficient way. For example,

can be conducted in the following manner:

(22)

In (22), for clarity, only the upper triangular part is shown. The
underlined terms are those that can be incrementally computed
from the previous step if one starts from the last row. As a result,
for each row, there is only one matrix vector multiplication that
needs to be calculated. The same is true for the lower triangular
part. Thus, the cost for computing is .

Performance Analysis: With the aforementioned scheme,
the time complexity of step 2.1 in (11) is .
Although the inverse of is a dense matrix, with and

, which are matrices of size , can be
stored in memory, while a traditional technique
would require memory. In terms of , the com-
putational complexity is . As is much
less than and the number of dominant eigenvalues is
small, . Similarly, the storage
complexity is .

IV. NUMERICAL RESULTS

To evaluate the performance of the proposed linear-time
eigenvalue solver, a number of on-chip interconnect structures
were simulated, of which two were obtained from the test chip
reported in [22] and two were artificially created.

First, an interconnect structure as shown in Fig. 4 was sim-
ulated. The dimensions of this structure were set according to
typical on-chip geometrical dimensions. Four dielectric layers
were involved. The thicknesses of the dielectric layers, from
bottom to top, were 0.6, 0.5, 0.5, and 0.2 m, respectively. The
relative permittivities were 2.5, 4, 3, and 4, respectively. On the
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Fig. 4. Interconnect example of 300 wires.

Fig. 5. Eigenvalues simulated by the proposed method in comparison with
those generated by MATLAB.

top of the first, second, and third dielectric layers, 100 inter-
connect wires were placed, and hence, in total 300 intercon-
nect wires were involved in this test structure. Each wire was
0.4975 m wide, and 0.4975 m apart from each other hori-
zontally. The frequency of interest was 1 GHz. The proposed
linear-time eigenvalue solver extracted 300 eigenvalues accu-
rately, as can be seen from Fig. 5. As expected, for this example
involving perfect conductors, all the eigenvalues are distributed
between the minimum and maximum relative permittivity. In
this simulation, the number of Arnoldi iterations was chosen as
320. The value of was chosen as 3.5. The overall CPU time of
the proposed solver was shown to be 1.5 times faster than that of
MATLAB, or more specifically ARPACK [18], a state-of-the-art
large-scale sparse eigenvalue solver, for eigenvalue computa-
tion. For a fair comparison, we provided MATLAB with the same

and required it to compute only 300 eigenvalues.
With the accuracy and efficiency of the proposed eigenvalue

solver validated, we simulated a test-chip interconnect example,
which was of 300- m width [22]. It involved a 10- m-wide
strip in the M2 layer, one ground plane in the M1 layer, and one
ground plane in the M3 layer. This strip was 50 m to the M2
returns at the left- and right-hand sides. The strip was 2000- m
long. The reference ground is located at the bottom of M1. The

-parameters were extracted by the proposed linear-time eigen-
value solver at the near and far ends of the M2 center wire
and compared with measured data. As can be seen clearly from
Fig. 6, there is an excellent agreement.

Fig. 6. Simulation of a test-chip interconnect. (a) �-parameter magnitude.
(b) �-parameter phase.

Fig. 7. Complex propagation constant simulated by the proposed method in
comparison with measured data.

We also compare the complex eigenvalues extracted by the
proposed solver at different frequency points with measured
propagation constants, as shown in Fig. 7, which again reveals
an excellent agreement. In Fig. 8, we plot the total CPU time
of the proposed linear-time eigenvalue solver at one frequency
point in comparison with that of a conventional Arnoldi-based
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Fig. 8. Total CPU time comparison for a test-chip interconnect structure.

Fig. 9. Test-chip interconnect (cross-sectional view).

Fig. 10. Simulation of a test-chip interconnect. (a) �����. (b) ��� phase
(degrees).

eigenvalue solver. The proposed solver clearly outperforms a
conventional solver, and its linear complexity can be observed.

Fig. 11. Total CPU time comparison for the simulation of a test-chip intercon-
nect example shown in Fig. 9.

Fig. 12. Simulation of a suite of on-chip interconnects consisting of three wires
to 192 wires. (a) CPU cost for evaluating �� � �� � . (b) CPU cost for
evaluating �� � �� � ��.

The third example is a test-chip interconnect structure, as
shown in Fig. 9. The structure was 2000- m long, consisting of
11 inhomogeneous layers. It involves 12 parallel returns in the
M1 and M3 layers, respectively. These returns were 1.05- m
wide and 1 m apart. They were shorted to the ground at the
near and far ends. Two wires were placed in the center of M2.
One was of 1.1- m wide, and the other was of a 2.07- m width.
The spacing between these two wires was 2.0 m. The distance
to M2 returns at the left- and right-hand sides was 10.1 m. The
reference ground is located at the bottom of the silicon substrate.
The far ends of the two center wires in M2 were left open. The
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-parameters at the near ends of the two M2 wires were ex-
tracted by using the proposed eigenvalue solver and compared
with the measured data. Very good agreement can be observed
as can be seen from Fig. 10. In Fig. 11, the total CPU time cost
by the proposed eigenvalue solver at one frequency point is plot
against that of a conventional Arnoldi-based eigenvalue solver;
the advantage of the proposed solver is evident.

In the last example, we simulated a suite of on-chip inter-
connect structures containing from three wires to 192 wires.
The structures were discretized with up to 250K unknowns.
Fig. 12(a) shows the decomposition time, i.e., the time for eval-
uating in (14) of the proposed eigenvalue solver
as a function of the number of unknowns, and Fig. 12(b) shows
the time complexity of evaluating the dense-matrix multiplica-
tion in step 2.1 of (11). In both figures, linear complexity can be
observed.

V. CONCLUSIONS

In this paper, a linear-time complex-valued eigenvalue solver
was developed to solve large-scale on-chip interconnect prob-
lems. Numerical and experimental results have demonstrated
the accuracy and efficiency of the proposed method.

ACKNOWLEDGMENT

The authors would like to thank Dr. M. J. Kobrinsky and Dr.
S. Chakravarty, both with the Intel Corporation, Hillsboro, OR,
for providing measured data.

REFERENCES

[1] D. Jiao, C. Dai, S.-W. Lee, T. R. Arabi, and G. Taylor, “Computa-
tional electromagnetics for high-frequency IC design,” in IEEE Int.
AP-S Symp., 2004, pp. 3317–3320.

[2] J. Ihm and A. C. Cangellaris, “Modeling of semiconductor substrate
on on-chip power grid switching,” in IEEE 13th Elect. Performance
Electron. Packag. Topical Meeting, 2004, pp. 265–268.

[3] J. Ihm and A. C. Cangellaris, “Distributed on-chip power grid
modeling: An electromagnetic alternative to RLC extraction-based
models,” in IEEE 12th Elect. Performance Electron. Packag. Top.
Meeting, 2003, pp. 37–40.

[4] C. C. Chen, T. Lee, N. Murugesan, and S. C. Hagness, “Generalized
FDTD-ADI: An unconditionally stable full-wave Maxwell’s equations
solver for VLSI interconnect modeling,” Int. Comput.-Aided Design
Conf., pp. 156–163, 2000.

[5] A. Rong and A. C. Cangellaris, “Generalized PEEC models for three-
dimensional interconnect structures and integrated passives of arbi-
trary shapes,” in IEEE 10th Elect. Performance Electron. Packag. Top.
Meeting, Oct. 2001, pp. 29–31.

[6] A. E. Ruehli, G. Antonini, J. Esch, J. Ekman, A. Mayo, and A. Or-
landi, “Nonorthogonal PEEC formulation for time- and frequency-do-
main EM and circuit modeling,” IEEE Trans. Electromagn. Compat.,
vol. 45, no. 2, pp. 167–176, May 2003.

[7] D. Gope, A. E. Ruehli, C. Yang, and V. Jandhyala, “(S)PEEC: Time-
and frequency-domain surface formulation for modeling conductors
and dielectrics in combined circuit electromagnetic simulations,” IEEE
Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2453–2464, Jun. 2006.

[8] P. J. Restle, A. E. Ruehli, S. G. Walker, and G. Papadopou-los, “Full-
wave PEEC time-domain method for the modeling of on-chip intercon-
nects,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol.
20, no. 7, pp. 877–887, Jul. 2001.

[9] Z. H. Zhu, B. Song, and J. K. White, “Algorithm in FastImp: A fast and
wideband impedance extraction program for complicated 3D geome-
tries,” in 40th ACM/IEEE Design Automat. Conf., 2003, pp. 981–988.

[10] W. C. Chew, “Toward a more robust and accurate fast integral solver
for microchip applications,” in IEEE 12th Elect. Performance Electron.
Packag. Top. Meeting, 2003, p. 333.

[11] S. Kapur and D. E. Long, “Large-scale full-wave simulation,” DAC, pp.
806–809, 2004.

[12] A. E. Yilmaz, J. M. Jin, and E. Michielssen, “A parallel FFT-accel-
erated transient field-circuit simulator,” IEEE Trans. Microw. Theory
Tech., vol. 53, no. 9, pp. 2851–2865, Sep. 2005.

[13] F. Ling, V. I. Okhamtovski, W. Harris, S. McCracken, and A. Dengi,
“Large-scale broad-band parasitic extraction for fast layout verification
of 3D RF and mixed-signal on-chip structures,” IEEE Trans. Microw.
Theory Tech., vol. 53, no. 1, pp. 264–273, Jan. 2005.

[14] Y. Wang, V. Jandhyala, and C. J. Shi, “Coupled electromag-netic-cir-
cuit simulation of arbitrarily-shaped conducting structures,” in IEEE
12th Elect. Performance Electron. Packag. Top. Meeting, 2001, pp.
233–236.

[15] Z. Cendes and A. Yen, “Mixed electromagnetic and elec-trical circuit
simulation for RFIC characterization,” in IEEE AP-S Int. Symp., 2004,
vol. 3, pp. 3289–3292.

[16] D. Jiao, M. Mazumder, S. Chakravarty, C. Dai, M. Ko-brinsky, M.
Harmes, and S. List, “A novel technique for full-wave modeling of
large-scale three-dimensional high-speed on/off-chip interconnect
structures,” in Int. Simulation Semiconduct. Processes and Devices
Conf. , 2003, pp. 39–42.

[17] D. Jiao, S. Chakravarty, and C. Dai, “A layered finite-element method
for electromagnetic analysis of large-scale high-frequency integrated
circuits,” IEEE Trans. Antennas Propag., vol. 55, no. 2, pp. 422–432,
Feb. 2007.

[18] ARPACK. Rice Univ., Houston, TX, 2008. [Online]. Available: http://
www.caam.rice.edu/software/ARPACK/

[19] J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed.
New York: Wiley, 2002.

[20] G. Meurant, “A review on the inverse of symmetric tridia-gonal and
block tridiagonal matrices,” SIAM J. Matrix Anal. Appl., vol. 13, no. 3,
pp. 707–728, Jul. 1992.

[21] S. Cauley, J. Jain, C.-K. Koh, and V. Balakrishnan, “A scal-able dis-
tributed method for quantum-scale device simulation,” J. Appl. Phys.,
vol. 101, pp. 12–12, 2007, Art. ID 123715.

[22] M. J. Kobrinsky, S. Chakravarty, D. Jiao, M. C. Harmes, S. List, and
M. Mazumder, “Experimental validation of cross-talk simulations for
on-chip interconnects using �-parameters,” IEEE Trans. Adv. Packag.,
vol. 28, no. 1, pp. 57–62, Feb. 2005.

Jongwon Lee (S’09) received the B.S. degree in
electrical engineering from Seoul National Uni-
versity, Seoul, Korea, in 2002, the M.S. degree in
electrical and computer engineering from Purdue
University, West Lafayette, IN, in 2007, and is cur-
rently working toward the Ph.D. degree in electrical
and computer engineering from Purdue University.

He was a System Programmer with Chosun-Ilbo,
Seoul, Korea, for three years. He is currently with the
On-Chip Electromagnetics Research Group, School
of Electrical and Computer Engineering, Purdue

University. His current research interest is computational electromagnetics for
large-scale high-frequency integrated circuit design.

Venkataramanan Balakrishnan (M’94–SM’06) re-
ceived the B.Tech. degree in electronics and com-
munication from the Indian Institute of Technology,
Madras, India, in 1985, and the M.S. degree in statis-
tics and Ph.D. degree in electrical engineering from
Stanford University, Stanford, CA, in 1992.

Since 1994, he has been a faculty member with
the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN, where he is
currenlty Professor and Interim Head. His primary
research interests are the application of numerical

techniques, especially those based on convex optimization, to problems in
engineering. He coauthored the monograph LINEAR MATRIX INEQUALITIES IN

SYSTEM AND CONTROL THEORY (SIAM, 1994).
Dr. Balakrishnan was the recipient of the 1985 President of India Gold Medal

presented by the Indian Institute of Technology, the 1997 Young Investigator
Award presented by the Office of Naval Research, the 1998 Ruth and Joel Spira
Outstanding Teacher Award, and the 2001 Honeywell Award for Excellence
in Teaching presented by the School of Electrical and Computer Engineering,
Purdue University. He was named a Purdue University Faculty Scholar in 2008.

Authorized licensed use limited to: Purdue University. Downloaded on October 5, 2009 at 12:52 from IEEE Xplore.  Restrictions apply. 



LEE et al.: LINEAR-TIME COMPLEX-VALUED EIGENVALUE SOLVER 2029

Cheng-Kok Koh (S’92–M’98–SM’06) received the
B.S. degree in computer science (with first class
honors) and M.S. degree in computer science from
the National University of Singapore, Singapore, in
1992 and 1996, respectively, and the Ph.D. degree in
computer science from the University of California
at Los Angeles (UCLA), in 1998.

He is currently an Associate Professor of electrical
and computer engineering with Purdue University,
West Lafayette, IN. His research interests include
physical design of VLSI circuits and modeling and

analysis of large-scale systems.
Dr. Koh was the recipient of the 1990 Lim Soo Peng Book Prize for Best

Computer Science Student presented by the National University of Singapore,
and the Tan Kah Kee Foundation Postgraduate Scholarship (1993 and 1994),
the GTE Fellowship and the Chorafas Foundation Prize presented by UCLA
(995 and 1996), the 1998 ACM Special Interest Group on Design Automa-
tion (SIGDA) Meritorious Service Award and Distinguished Service Award,
the 1999 Chicago Alumni Award presented by Purdue University, the 2000 Na-
tional Science Foundation CAREER Award, and the 2002 ACM/SIGDA Dis-
tinguished Service Award.

Dan Jiao (S’00–M’02–SM’06) received the Ph.D.
degree in electrical engineering from the University
of Illinois at Urbana-Champaign, in 2001.

She then joined the Technology Computer-Aided
Design (CAD) Division, Intel Corporation, until
September 2005, as a Senior CAD Engineer, Staff
Engineer, and Senior Staff Engineer. In September
2005, she joined Purdue University, West Lafayette,
IN, as an Assistant Professor with the School of Elec-
trical and Computer Engineering. She is currently
an Associate Professor with Purdue Univeristy. She

has authored two book chapters and over 90 papers in refereed journals and
international conferences. Her current research interests include computa-
tional electromagnetics, high-frequency digital, analog, mixed-signal, and RF
integrated circuit (IC) design and analysis, high-performance VLSI CAD,
modeling of microscale and nanoscale circuits, applied electromagnetics, fast
and high-capacity numerical methods, fast time-domain analysis, scattering
and antenna analysis, RF, microwave, and millimeter-wave circuits, wireless
communication, and bio-electromagnetics.

Dr. Jiao has served as the reviewer for many IEEE journals and conferences.
She was the recipient of the 2008 National Science Foundation (NSF) CA-
REER Award, the 2006 Jack and Cathie Kozik Faculty Start up Award (which
recognizes an outstanding new faculty member of the School of Electrical and
Computer Engineering, Purdue University), a 2006 Office of Naval Research
(ONR) Award under the Young Investigator Program, the 2004 Best Paper
Award presented at the Intel Corporation’s annual corporate-wide technology
conference (Design and Test Technology Conference) for her work on generic
broadband model of high-speed circuits, the 2003 Intel Corporation’s Logic
Technology Development (LTD) Divisional Achievement Award in recognition
of her work on the industry-leading BroadSpice modeling/simulation capability
for designing high-speed microprocessors, packages, and circuit boards, the
Intel Corporation’s Technology CAD Divisional Achievement Award for the
development of innovative full-wave solvers for high frequency IC design,
the 2002 Intel Corporation’s Components Research the Intel Hero Award
(Intel-wide she was the tenth recipient) for the timely and accurate 2-D and 3-D
full-wave simulations, the Intel Corporation’s LTD Team Quality Award for
her outstanding contribution to the development of the measurement capability
and simulation tools for high frequency on-chip crosstalk, and the 2000 Raj
Mittra Outstanding Research Award presented by the University of Illinois at
Urbana-Champaign.

Authorized licensed use limited to: Purdue University. Downloaded on October 5, 2009 at 12:52 from IEEE Xplore.  Restrictions apply. 


