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An H2-Matrix-Based Integral-Equation Solver of
Reduced Complexity and Controlled Accuracy
for Solving Electrodynamic Problems

Wenwen Chai and Dan Jiao, Senior Member, IEEE

Abstract—Using an H? matrix as the mathematical framework,
we compactly represent a dense system matrix by a reduced set of
parameters, thus enabling a significant reduction in computational
complexity. The error bound of the +?-matrix-based representa-
tion of an electrodynamic problem was derived. We show that ex-
ponential convergence with respect to the number of interpolation
points can be achieved irrespective of the electric size. In addition,
we show that a direct application of 74 -matrix-based techniques
to electrodynamic problems would result in a complexity greater
than O(IV), with IV being the matrix size, due to the need of in-
creasing the rank when ascending an inverted tree in order to keep
a constant order of accuracy. A rank function was hence developed
to maintain the same order of accuracy in a wide range of elec-
tric sizes without compromising computational complexity. With
this rank function, we demonstrate that given a range of electric
sizes which lead to a range of N, the dense system of O( N?) pa-
rameters can be compactly stored in O(N) units, and the dense
matrix-vector multiplication can be performed in O(N) opera-
tions. Moreover, the same order of accuracy can be Kkept across
this range. The method is kernel independent, and hence is suit-
able for any integral-equation-based formulation. In addition, it
is applicable to arbitrary structures. Numerical experiments from
small electric sizes to 64 wavelengths have demonstrated the per-
formance of the proposed method.

Index Terms—7H? matrix, electromagnetic analysis, fast solvers,
integral-equation-based methods, low complexity.

I. INTRODUCTION

HE design of advanced engineering systems generally
T results in numerical problems of very large scale, re-
quiring billions of parameters to describe them accurately.
For example, the design of a global power delivery system
that involves voltage regulator module, motherboard, package,
and chip. As another example, the design of electric machines
co-optimizing the geometries of stators and rotors, winding
patterns, and thermal dissipation. In order to make a real impact
in today’s and tomorrow’s design of advanced engineering
systems, computational electromagnetic methods have to scale
favorably with the problem size. Therefore, there exists a
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continued demand of reducing the complexity of computational
electromagnetic methods.

Since the advent of computational electromagnetics (CEM)
in the 1960s, numerous fast algorithms have been developed.
They can be categorized into two classes: integral equation
(IE) based solvers and partial differential equation (PDE)
based ones. The PDE-based techniques are particularly suited
for handling the complicated inhomogeneities and irregular
geometries. The IE-based methods, generally, are more ef-
ficient for open-region problems involving impenetrable or
homogeneous objects since they reduce the solution domain by
one dimension, and they satisfy the radiation condition through
the Green’s function. For open-region problems involving
inhomogeneous objects, the combination of IE- and PDE-based
solvers is often more efficient.

IE-based methods generally lead to dense systems of linear
equations. When a direct method is used, the operation count is
proportional to O(N?) and the memory requirement is propor-
tional to O(N?), where N is the dimension of the matrix. When
an iterative solver is used, the memory requirement remains the
same, and the computing time is proportional to O(N;;N?),
where Nj; denotes the total number of iterations required
to reach convergence. In recent years, fast multipole based
methods (FMM) [1], FFT-based methods [2]-[5], and fast
low-rank compression methods [6]-[9] have been developed
that dramatically reduce the memory requirement of iterative
solvers to O(N log N), and the CPU time to O(N log N) for
electrodynamic problems. Fast direct solvers have also been
developed. Most recent work can be seen in [10], [11]. All these
methods represent impressive improvements as compared with
conventional O(N?3) or O(N?) techniques.

In this paper, we study the feasibility of further reducing the
complexity of the IE-based computation for electrodynamic
problems in both memory and CPU consumption. Our solution
hinges on the observation that the matrices resulting from
an IE-based method, although dense, can be thought of as
“data-sparse,” i.e., they can be specified by few parameters.
This can be accomplished by remodeling the problem subject to
underlying hierarchical dependencies such that all interactions
can be constructed from a reduced set of parameters. There ex-
ists a general mathematical framework called the “Hierarchical
(H) Matrix” framework [12]-[14], which enables a highly
compact representation and efficient numerical computation
of the dense matrices. Storage requirements and matrix-vector
multiplications using H matrices have been shown to be of
complexity O(N log N). The hierarchical matrix structure has
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been used in [15], [16] to solve electro- and magneto-static
problems. Authors in [17]-[19] later introduced H? matrices,
which are a specialized subclass of hierarchical matrices. It
was shown that the storage requirements and matrix-vector
products are of complexity O(N). The nested structure is the
key difference between general H matrices and H? matrices,
since it permits an efficient reuse of information across the
entire cluster tree. As a general mathematical framework, the
H- and H?-matrix allows for the acceleration of both iterative
and direct IE solvers, which cannot be easily achieved in the
framework of other fast IE solvers. In addition, the methods
are kernel independent, and hence suitable for any IE-based
formulation.

The complexity analysis given in the literature of H- and
H2-matrices was all conducted based on kernel functions that do
not change with frequency. It is not clear whether the same com-
plexity can be obtained for electrodynamic problems. In [20],
the original authors of H matrices applied the H-matrix-based
techniques to 2-D high-frequency Helmholtz problems. A dense
Galerkin matrix arising from the IE-based analysis was repre-
sented by a sum of an 1 matrix and an H? matrix. The error
was discussed in this paper. However, the n-admissibility con-
dition was not considered ([20, Eq. (2.11)]). In addition, the cost
of a matrix-vector multiply was reported to be almost linear.
Linear complexity has not been reported yet. In [21], the fea-
sibility of using H matrices was studied to reduce the com-
plexity of IE-based solutions of electrodynamic problems. In
[22], an H?-matrix-based integral-equation solver was reported
for large-scale full-wave modeling of 3-D circuits, in which
an H? matrix was directly constructed to represent the dense
system matrix resulting from an IE-based analysis of 3-D circuit
problems without any compression cost. The error of H2-ma-
trix-based representation of an electrodynamic problem and its
impact on computational complexity still needs to be addressed.

The main contribution of this paper is three fold. First, the
error bound of the H?-matrix-based representation of electro-
dynamic problems was derived. It was shown that exponential
convergence with respect to the number of interpolation points
can be achieved irrespective of the electric size.

Second, we show that a direct application of 7{2-matrix-based
techniques to electrodynamic problems would result in a com-
plexity greater than O(N) in both CPU time and memory con-
sumption. This is because although the storage requirements and
matrix-vector products of H? matrices are of complexity O(N),
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the solution accuracy cannot be kept to the same order for elec-
trodynamic problems when problem size increases or frequency
increases. To keep the accuracy to the same order, one approach
is to increase the number of interpolation points when ascending
an inverted tree. Although in this case, the complexity is not
better than that offered by FMM-based techniques, H2-matrix
based methods do have their unique merits as mentioned at the
end of the fourth paragraph in this section.

Last and more important, we show that the cost of H2-ma-
trix-based solutions of electrodynamic problems can be reduced
to linear in a wide range of electric sizes by developing a rank
function. This rank function can be used to systematically deter-
mine the rank based on tree level. Meanwhile, this rank function
has constant coefficients that do not change with N. A detailed
complexity analysis based on this rank function revealed linear
cost in both memory consumption and matrix-vector multiplica-
tion. Numerical experiments from small electric sizes to tens of
wavelengths have demonstrated a constant error together with
linear cost.

The remainder of this paper is organized as follows. In
Section II, an IE formulation is presented. In Section III, the
proposed H2-matrix-based IE solver is detailed, which includes
an H2-matrix representation and its error bound, the cluster
tree and block cluster tree construction, rank function, and
complexity analysis based on the rank function. In Section IV,
numerical results are given to demonstrate the accuracy and
efficiency of the proposed IE solver. Section V relates to our
conclusions.

II. INTEGRAL-EQUATION BASED FORMULATION

Consider a 3-D arbitrarily shaped conducting object im-
mersed in a medium characterized by permittivity ¢ and
permeability p. The object is illuminated by an incident wave
Ei that induces current fs on the conducting surface. The
current satisfies the following electric-field integral equation,
as shown in (1) at the bottom of the page, in which Green’s
function g(7, ?’/) — i T =T |J4z| T — ?I|, w is
angular frequency, and « is the wave number which is w,/pe.
The subscript “tan” denotes the component that is tangential
to the conducting surface S. By expanding the unknown sur-
face current density J-; using RWG basis functions [23], and
applying Galerkin’s method to (1), we obtain (2), as shown at
the bottom of the page, in which T (J_;) are basis functions,

Ei|tall = // |:jwll/j;<?l)g(?7 ?1) -
J JS

/] () B s = él /] s /] s [jwufmm Tu(T) = L T TN T 9T T

@
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and N is the total number of basis functions. Equation (2) can
be written in a matrix equation format

GI=V 3

V= // Tn(7) - Bo(7)ds. @)
J o Sm.

A straightforward approach to solving (3) can be very expen-
sive, since matrix G is dense in the sense that all entries are
nonzero. Our approach is to approximate G by a matrix (with
error well controlled), which can be stored in a data-sparse
format, i.e., G can be specified by few parameters, from which
a significant reduction in complexity can be achieved.

1. PROPOSED H2-MATRIX BASED FAST IE SOLVER

In the proposed IE solver, first, we approximate G by an
H? matrix with accuracy well controlled, the detail of which
is illustrated in Section III-A. Second, we explore the use of a
block cluster tree to efficiently capture the nested hierarchical
dependencies present in the H2-matrix-based representation of
G (Section III-B). Then, we introduce a rank function to control
the accuracy without compromising computational complexity
(Section III-C). Next, based on the rank function, we identify a
reduced set of parameters of O(N) to compactly represent G
(Section III-D), which paves the way to the fast matrix-vector
multiplication described in Section III-E.

A. 'H2-Matrix Representation and Its Error Bound

Denoting the index set of the basis functions used in the dis-
cretization of (1) by Z := {1,2,..., N}. We fix two subsets ¢
and s of Z and define the corresponding domains 2; and 2 as
the union of the supports of the basis functions

Q= Jsupp(Ji). Q. :=Jsuwpp(Ji) (3
1€L 1€s

in which “supp” denotes the domain that is occupied by the
basis function. If ¢ and s are far away from each other (the
criterion will be established soon), the original kernel function

— /. . .
g(7, 7 )in (1) can be replaced by a degenerate approximation

gy =Y Y 9@ E)LLALLT) (6

veKt neKs

where K := {v € N? : v; < pforalli € {1,...,d}} =
{1,...,p}4,d = 1,2, 3, for 1-, 2-, and 3-D problems, respec-
tively; p is the number of interpolation points; (£¢),cx: is a
family of interpolation points in ¢; (&) ,ex- is a family of in-
terpolation points in s; and (L} ),ex and (L3,)ucr are the
corresponding Lagrange polynomlals satisfying L,,(fT) = 0yr
forallv,7 € K* and L, (&) = 6, forall u, 7 € K*.
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The advantage of the degenerate approximation is twofold.
First, the double integral in (4) is separated in two single
integrals

Gt,s

=) jwug(El, //

veK?t peKs
- d ! _ j_ t s
M- Y Lyele

-//

o (7) LE (7)ds

veKt neKs
// (V-T, f‘)LtF)ds// (V' T (7)) Ly (7 )ds.
formGLnEs?veK’uEK“. @)

Second, the submatrix G*** can be represented in a factorized
form

ét,s — VtSt"SVST. Vt c CtXZKt

St ¢ (IzzKixﬂ(f'7 v

)

c CSX?KS (8)

where

Vi=[Vi Vi,

t,s
Vi=[Vi V3], 8 = [Sl 0}

0 S
Vi, VEe €K V5 Vs e € 810 85 e CF T (9)

Vi, = / / (LA (P)ds
S

//S (V- Jon (7)) Lt (7)ds
b= [ [, 0
s ff

ST = jwng(&, ), 1.6

met, neEs veK', peK>.

and

7))L, () ds'

Si® = (¢
(10

Clearly, the rank of the matrix G** is at most 24 K" or 24K
regardless of the cardinality of ¢ and s (assuming #t(#s) is
larger than 2# K*(2# K*)). For example, if p = 2 and d = 2 are
used in both ¢ and s, the rank of G** = 2 x p? is 8 irrespective
of the cardinality of ¢ and s.

To estimate the error bound of the low-rank approximation in
(8), we define a strong admissibility condition [24] as

(t, s) are admissible
_ J True, if max{diam(§;),diam(Q
" | False,

otherwise
in which diam(-) is the Euclidean diameter of a set, dist(-, )
is the Euclidean distance of two sets, and 7 is a parameter that
can be used to control the accuracy of the low-rank approxima-
tion. This condition ensures that we are dealing with a region

s)} <ndist(Q, Q)

Y
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where the Green’s function is expected to be smooth or at least
separable.

From [28, p. 328], let g € C*°(Q+ X Q) where @Q; and
Qs are axis-parallel bounding boxes such that ; € @, and
Q; € Q; hold, such that there are positive real constants C, and
g satisfying

195 9lloc,@ux@. < Cgrgn! (12)

the error of the interpolated kernel function g is bounded by

— G5, se.@un @, < 8e(2d)(Ay)*pCy
) 4
+ -
vodiam(Q; x Q) }

where A, is a constant related to p and the interpolation scheme,
and as shown in (14) at the bottom of the page.

The parameters C'y and vy, in (12) are dependent on the kernel
function g. For an electrodynamic kernel, we derive them as
follows.

llg(r; ")

1 4+ ygdiam(Q; x Qs)]

13)

From g(7,7) = e 7"F/4xR, where R = |7 — 7| =
\/(‘”_4’7') + (y—9)* + (2 — 2')%, we have
i=J
|ajR|:‘ R <1, j=uz,y,z22.y,7. (15)
Therefore,
n 1 [s™  ne™ 1 nn—1)k"2
||ajg||oo,Qt><Qs S E |:E + R2 =+ e
n(n —1)2k n!
NI T + Rn+1} (16)

where « is the wave number.
To identify C; and ,, we did the following derivation:

107 9lloc.@. xa.
n n—1

1 [k nK n(n — 1)k"=2
<—|>+ +

“4r | R R? R3
n(n —1)2k n! }

+o Tt Rn +Rn+l

1 n n—

+n(n—1)(kR)" 2+ +nl|
1 kR)"  n(kR)"

n!47ar+1 ( n!) + ( n!>

n(n - R n_']

n! n!

_|_

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 57, NO. 10, OCTOBER 2009

| 1
= Rt

L nln = 1)(kR)" ™2 . ﬂ}

2! n!

(kR)"  n(kR)"'
T

1 n

! 1 [kR+17" ! 1 . 1"

= = k4=

AT R R AT R R
1

1 n
S Indist(0r, Q1) ['” dist(Qt,Qs)] nt. A7)

Here we kept both terms, x and 1/dist(Q;, Qs ), to facilitate the
error analysis for both static and dynamic problems. Comparing
(17) to (12), we obtain

C — ; — 4+ ;
97 rdist(Qn, Q)" T T Qist(Qy, Qy)

Hence, from (13), we have

(18)

| |g(F/ ,,:V) - g(t’S) (Fv Pl) | |00=Qf><Qs

1
< 8e(2d)(Ap)2dpm

1 :
. |:1 + <I€3 + m) diam(Q; x QS):|

-p

2
(I‘i} + m) dlam(Qt X QS)

If the admissibility condition given in (11) is satisfied, i.e.,

1+ 19)

max{diam(Q;), diam(Qs)} < ndist(Q:+,Qs).

From (19) and (14), we obtain

lg(7.7) = 52 (7. 7)o, .

ded 1
< (M) P qist(Qy, Q)

. [1 + V2rndist(Qy, Q) + \/577}
- {1 + 2 ] -
V2kndist(Q¢, Qs) + V21

Clearly, exponential convergence with respect to p can be
obtained irrespective of the electric size rxndist(Q:, Q) and
the choice of 7. In addition, given a required level of accuracy,
when the electric size increases, the error of the HZ-matrix

(20)

diam(Q: x Qs) = max{||by — bal|2 : b1, b2 € Q¢ X Qs} = max{||(t1,s1) —

(2, s2)||2 : (t1,12) € Q, (51, 52) € Qs}

< /max{||ty — ta||3 + ||s1 — s2||3 : (t1,t2) € Q4, (51, 82) € Qs}

< \/dlam (Q:)*+diam(Q,)* < V2 max{diam(Q;), diam(Q,)}.

(14)
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approximation can be controlled to the same level either by
decreasing 7 to maintain a constant kndist(Q;,Qs), or by
adaptively increasing the number of interpolation points p,
or by the combination of both. Certainly, all these accuracy
control approaches could render the computational complexity
increasing with electric size, like what has been observed in
FMM-based solutions of electrodynamic problems. Since the
number of multipoles needs to be increased when one ascends
an inverted tree, the complexity of FMM-based solutions
of electrodynamic problems is shown to be O(N log N) in
contrast to the O(N) complexity in static applications. The
increased complexity with electric size is also true for a direct
application of H?-matrix-based techniques. In Section III.C,
we will show an approach that can be used to control the
accuracy of H?-matrix-based solutions to the same order in a
range of electric sizes without compromising computational
complexity.

The low rank approximation of G in (8) forms an H2-
matrix-based representation of G [25] if the same space of
polynomials are used across ¢ and s. It enables an efficient
computation of matrix-vector multiplication. Also, the H2-ma-
trix approximation is kernel independent. In addition, it is
worth mentioning that the H2-matrix representation in (8) is
constructed directly without any compression cost.

In addition to the H2-matrix-based low-rank approximation,
we explore the use of a cluster tree and a block cluster tree
[26], [27] to efficiently capture a nested hierarchical dependence
present in the structure of matrix G, which is described in next
section.

B. Cluster Tree and Block Cluster Tree Construction

For the index set of the basis functions Z := {1,2,...,N},
we construct a cluster tree Tz, which is a tree with vertex set V'
and edge set E. Each vertex in the tree is called as a cluster.
The label of cluster ¢ is denoted by . The set of sons for a
cluster ¢ € T7 is denoted by sons(t), which is the union of
{w € V|(t,w) € E}.Forany clustert € T, eithersons(t) = ()

ort=|J

wEsons(t)
of the tree is the index set Z := {1,2,..., N}. The uniquely
determined predecessor (father) of a non-root cluster t € T7 is
denoted by F(¢). The levels of the tree T are defined by

w, where | J denotes a disjoint union. The root

170 ={1}, 17O .={terr|Ft)err YV} forleN.
2D

To construct a cluster tree, we start from the root cluster which
is the full index set. We then find a disjoint partition of the index
set and use this partition to create son clusters. We continue this
procedure until the index number in each cluster is less than the
leafsize which is a parameter to control the depth of the tree.
Clusters with indices no more than leafsize are leaves. The set
of leaves of T is denoted by L7. The leaves of Tz on level [ are
denoted by E(Il) =L N TI(l).

To give an example, consider a rectangular plate as shown in
Fig. 1(a). The basis functions used to expand the unknown cur-
rent are drawn as small arrows. Each basis function is associated
with one unknown. In total there are 80 unknowns involved in
the computational domain. We split the computational domain
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Fig. 1. Geometric partitioning for the construction of a cluster tree.
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Fig. 2. Cluster tree.

into two subdomains as shown in Fig. 1(b). We continue to split
until the number of unknowns in each sub-domain is less than
or equal to the leafsize, which is 10 in this example. As a result,
we generate a cluster tree as shown in Fig. 2. To simplify the
notation, we use 2 to represent all the basis functions in region
1. For this example, each region includes ten basis functions.

A good cluster tree should make blocks become admissible
as soon as possible. The admissibility of a block depends on
the diameters of the supports of the involved basis functions
and on the distance between the supports as shown in (11). We
try to choose the cluster tree in a way that the diameters shrink
quickly.

Let T and T'7 be cluster trees forindex sets Z and J . Tz X T'7
will form a block cluster tree labeled by 7’7« 7 and its nodes
are called blocks. A level-consistent block cluster tree 17« 7
is a special cluster tree for the index set Z x J that satisfies
1) Root(Tzrx7) = (Root(T7),Root(T7)); 2) each node b €
Tz 7 has the form b = (¢, s) for clusters t € T and s € Ty,
and level(b) = level(t) = level(s); and 3) for each node b =
(t,s) € Trx s with nonzero number of sons, sons(b) are all the
combinations of sons of ¢ and sons of s. The vertices of 17« 7
are called block clusters.

A block cluster tree 1’7 7 is called admissible with respect to
an admissibility condition if (¢, s) is admissible, or sons(t) = 0,
or sons(s) = 0, holds for all leaves (¢,s) of T7x 7. The set
of the leaves is denoted by L7« 7. Based on the admissibility
condition, the set of leaves of Ty 7 is split into

LY rywg :={b=(t,8)€Lsx7 : (t,5) are admissible}
and ‘C—IXJ = ['I><.7\£+1><.7 (22)

i.e., admissible and inadmissible leaves. The admissible leaves
are represented by low rank matrices as shown in (8), whereas
the inadmissible ones are stored and computed by using full
matrix representation as those in a dense matrix.
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Fig. 3. "H?-matrix structure.

Constructing an admissible block cluster tree from cluster
trees 77 and T'7 and a given admissibility condition can be done
recursively: We test blocks level by level starting with Root(77)
and Root(T7), and descending in the tree. Given two clusters
t € T7 and s € T'7, we check the admissibility. If the two clus-
ters are admissible, we are done. If they are not admissible, we
repeat the procedure for all combinations of sons of ¢ and sons
of s.

The admissible block cluster tree defines an H-Matrix
structure. Consider the cluster tree 77 shown in Fig. 2. In our
applications, Z = 7, the block cluster tree is hence formed
between T and T7. Imagine another T is placed in parallel
with the original Tz in Fig. 2. We start from Root(T) and
Root(Tz), and test the admissibility between clusters ¢t € Tz
and s € 17 level by level. Clearly, at level 0, the two root
clusters are not admissible. Hence, we descend to level 1. We
test the admissibility between {0, 1, 2, 3} and {0,1, 2,3},
between {0, 1, 2, 3} and {4, 5, 6, 7} (due to the symmetry,
the other two combinations of the sons of the root clusters
need not to be repeated). Because of the geometric proximity
between the two clusters {0, 1, 2, 3} and {4, 5, 6, 7} as can
be seen from Fig. 1, no admissible blocks are found. Hence,
we descend to level 2. We test the admissibility between {0, 1}
and {0, 1}, {0, 1} and {2, 3}, {0, 1} and {4, 5}, {0, 1}
and {6, 7}, {2. 3} and {4, 5}, {2, 3} and {6, 7}. {4, 5} and
{6, 7}, {6, 7} and {6, 7}. We find that {0, 1} and {4, 5} are
admissible, {0, 1} and {6, 7} are admissible, and {2, 3} and
{6, 7} are admissible, given an admissibility condition. Hence,
we can stop without testing the admissibility of their sons. For
other cluster blocks that are inadmissible, we descend to level
3 and repeat the same procedure.

The aforementioned procedure of constructing a block cluster
tree results in a matrix structure shown in Fig. 3. Each block
cluster corresponds to a matrix block. The shaded matrix blocks
are admissible blocks in which the ?-matrix-based low-rank
approximation is used; the unshaded ones are inadmissible
blocks in which a full matrix representation is employed.

C. Rank Function

Two cluster trees T’z and T'7 with different sizes are shown
in Fig. 4.
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Tree depth B}

T,

1

level 0 level 1

level 1 level 2

level 2 level 3

(@)

Fig. 4. Two cluster trees with different sizes.

Consider cluster tree T7 shown in Fig. 4(a). From the prop-
erties of a cluster tree, it is known that the lower the level is,
the larger the cluster size is. Therefore, when the level is lower,
the admissible blocks formed in that level are larger. Hence,
142/ (k4 1/dist(Q+, Qs))diam(Q: x Qs)] in (19) becomes
smaller, which leads to a slower convergence rate with respect
to p. If p = pl is used in level 3 where a relative error ¢ is ob-
tained, larger p is required in level 2 to make the approximation
accurate up to the same level.

Consider the case when frequency is increased. Since the
number of unknowns increases with frequency, the cluster
tree constructed for the same problem is enlarged as shown
in Fig. 4(b). Assuming that 77 and 77 have the same leaf-
size, then clusters in level (P£ — i) of T have the similar
diameters as the clusters in level (P — i) of T.7 with
1 = 0,1,..., min(P%,Pg). Therefore, 17 can be viewed
as a sub-tree of 77 as shown in Fig. 4(b). Hence, increasing
frequency is equivalent to increasing the tree depth. In order to
keep the same order of accuracy across all tree levels, polyno-
mial order p should be increased when larger admissible blocks
appear in the lower level. This suggests that we adaptively
decide the rank: for small clusters, a lower order approximation
is sufficient, while a larger cluster requires a higher order p to
keep the same accuracy.

Based on the above analysis, if the number of interpolation
points p, and hence the rank of an admissible block, is increased
when ascending an inverted tree, it is feasible to achieve the
same level of accuracy across all tree levels, and hence across a
range of frequencies. Thereby, we can define a polynomial order
function which decreases with tree level. Enlightened by [26],
this function is defined as

p(b) = i+ b(L — (b)) (23)
where
L = Lyin = min{level(7) : 7 € L1}
I(b) =level(t) = level(s)
p(b) =aif L < I(b) (24)

and a, b are two constants. Given a cluster  in an H?2 tree, its
rank ky,,(t) can be determined from (23) as

Fuar(t) = p(8) = a + B(L — 1(1))]" (25)
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where d = 1, 2, 3, for 1-, 2-, and 3-D problems, respectively.
Since the coefficients of this rank function are all constants,
when N increases with frequency or electric size, these coef-
ficients do not change. This is the key reason why a same set of
parameters can render the accuracy the same in the range of elec-
tric sizes while still keeping the complexity to the same order.
In the next section, we show that the cost of storage and ma-
trix-vector multiplication is linear by using (25).

D. Compact Representation of G in O(N') Parameters

Based on the rank function introduced in the above section,
we can show that G can be compactly represented by O(N)
parameters. Before deriving the compact representation, we in-
troduce the following concepts and notations.

(1) Block cluster trees constructed for an 7H-matrix
or H2-matrix have an important property: for
each cluster ¢ € 7Tz, the cardinality of the sets
col(t) := {s € Ty (t,s) € Trxg} and
row(s) :=={t € Ty : (t,s) € Trxs} is bounded by
a constant U, [24], which is called as sparsity constant.

(2) Inour construction, each non-leaf cluster ¢ has two sons,
i.e., #sons(t) = 2.

(3) The total number of clusters in the cluster tree is
bounded by 2N.

All the admissible blocks in G are represented by a factorized

form as given in (8), which is repeated as

G = VIS Ve

te (I:txzz(t7 Sts e CZKtx2K57 V°e CSX2KS.

Hence, all the admissible blocks are uniquely defined by V =
(V)ier, and (S%*)ier, ser; -

Apparently, V¢ needs to be stored for each cluster ¢ € T7. In
fact, V! only needs to be stored for each leaf cluster since V*
is nested. The nested property is the key factor that enables us
to reduce the complexity of an IE-based solution for electrody-
namic problems. The reason why V' is nested is given as below.

Consider cluster ¢’ which is a son of . We use the same space
of polynomials for all clusters. Hence, L!(7) in (10) can be
written as

= Y ELLL (26)
v eK
where
B, = L&), 27)
As a result
Vi, = / [ Tanas
= 1) v // /ijU T_’)ds
v GK“’
= Z v'v l'mv’ - (Vi Et )mm' (28)
v eKY
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where B € CFK'*K'_ Similarly, V4, =~ = (VLE! ).
Hence, assuming that sons(t) = {t1, t2} with t; # to, we have

Vit Etl Vit Et
Vi:(VtZEtQ):< Vt2> (Em)'
This means that we only need to store the matrices V* for leaf
clusters ¢ and use the transfer matrices E to represent them
implicitly for all other clusters. Since the transfer matrices E
only require (#K" )(#K") = kyar(t')kvar (t) units of storage,
while the matrices V* require (#£)(#K ") = (#1)kyar(t) units
where ko, (1) < (#t) in general, the nested representation is
memory efficient.
Thus, V = (V!);er, can be stored as follows.
1) For each leaf cluster t € T, we store the matrix V¥,
which requires O (kya(t))# units of storage:

(29)

St(all leaf clusters) = Z O (kyar (1)) #t. (30)
teLr
Since Lin < I(t) is satisfied, we obtain
Eyar(t) = a®. (31)

Since the index sets corresponding to the leaves of T
form a partition of Z, we have

St(all leaf clusters) =

D" O(kvar(t)#t = O(a%) - N.

teLy
(32)
2) For each non-leaf cluster ¢ € 17, we store the transfer
matrices E' for all # € sons(t), which requires
O(Kvyar(t)kvar(t)) storage units. Since each cluster has
two sons in our tree construction

St (all nonleaf clusters)

= > ) O(kwa(t)

teTr\ Lz t'€sons(t)

<2 ) O(k2.(t) <20

var( ))

teT7\ L1 =0 tGTél)
L 2d
<20 (Z [a+0(L—-1)] - 2l>
1=0
L
<20((a+b)*)> 1+ L-1)* .2
=0
L
<20((a+b)*") -2y (1+1)* 27 (33)
1=0
In the following, we prove that
9 2d
(+1)* <1 f ) -1.5! (34)

is satisfied for any of d = 1, 2, 3.
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Fig. 5. Tlustration of two functions: “o” represents y1 = In{(2d/In 1.5
1.5'}, “—” represents y2 = In{(l 4+ 1)2¢}.

)24,

From Fig. 5, it is clear that

2d \** 2d
_ 1 E —
yl= 1n{(1n1.5> LS =t 155

y2 = In{(1+1)?*} = 2dIn(l + 1)

>2d} +11n(1.5)

both increase with /, but y1 increases faster than y2. Therefore,
(34) is proved.
Based on (34), (33) becomes

St(all nonleaf clusters)

L 2d 2d
< ~  7\2dy oL 5.9l
<20((a + b)*%) - 2 ;(11115) 152
2d(a+ b)) " L3\
a
< _
2-0 ( In1.5 ) N;<4>
2da+5)\”"
<IN.0 ( (a+ )> 4
Inl.5
0d(d
<80 (d(“+b)) N (35)
In1.5

and hence the storage of all the non-leaf clusters scales with NV
linearly.

In addition to V = (V')cr,, we need to store
(S“%)tery ser, for admissible blocks. For each admissible
block b, the coupling matrix S" requires O(kya,>(b)) units of
storage. Hence,

St(all admissible blocks)

= Y OkatON <Y Y Okal()

b=(t,s)eLY 1y 7 teTT s€col(t)

2d(a+b)\ "
< (a+ )) N
In1.5

(36)

< Csp Y Okvar®() S4C50

teTy

The last inequality in (36) is obtained via the same steps given
in (33).

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 57, NO. 10, OCTOBER 2009

For each inadmissible block b, the admissibility of Ty 7 im-
plies that ¢ and s have to be leaves of Tz, respectively. So the
matrix G%* requires at most O (#{#3) units of storage.

St(all inadmissible blocks)

= Y O@#H< Y Oniw)
b=(t,s)€EL Tx1 b=(t,s)E€L Tx7

S Z O(nilin)
b=(t,s)ELTxT

S Z Z O(nrzmn) S CSP Z O(nr2nm)
t€T'r s€col(t) teTr

= CopO(nln)(#T1) < 204,0(nl s, )N. 37)

Summing over (32), (35), (36), (37), since Csp, Nmin, @, 5, d
are constants, clearly, matrix G can be represented by O(N)
parameters and stored in O(N') complexity.

E. Matrix-Vector Multiplication in O(N) Operations

Multiplying G with its admissible blocks represented by (8)
by a vector x can be performed in four steps.

1) Forward transformation: Compute z° := VST.T| s for all
clusters s € T7.

2) Multiplication: Compute 3" := Y~ __ . 8"z for all clus-
ters t € 17, where R := {s € T : (t,s) € LT (T1x1)},
i.e., R? contains all clusters s such that (, s) is an admis-
sible leaf of the block cluster tree.

3) Backward transformation: Compute y € CZ defined by
Yi = Dpei (V)

4) Inadmissible blocks: These blocks are treated the same as
those in the original matrix G, i.e., a full-matrix-vector
multiplication is performed.

The time complexity of the matrix-vector multiplication
based on the proposed rank function is analyzed as follows.

1) Forward Transformation: Let s € Tz, if sons(s) = 0,
i.e., s is a leaf cluster of 1’7, we compute z° := vs' x|
directly. The costis O(kyar(s))# 3§ operations for each leaf.
Summing over all the leaves, we obtain

> O(kyar)#5 < O(a)N.

sELT

(38)

If s is a non-leaf cluster, we can first compute for ¢ all
s' € sons(s). Since V = (V*)ser, is nested, we have

#=Viai= S (VE )= S (E) a7

s’ €sons(s) s’ €sons(s)

(39
Therefore, we can use the vectors z° to compute z°,
i.e., for each non-leaf cluster, we can use the contribu-
tion from its two sons to obtain x*, the cost of which is
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O(kyar(8)kvar(s’)). Hence, the total complexity of the
forward transformation is

Comp <Z VST:E|§>

sel'r

Z O var )#8+

seLr

S Olhual)honr(s)

s€ET7\L1
s’ Gsons(s)

AdN+ ZO var

seTt

~ 2d
v 2d(a + )

2) Multiplication of the Coupling Matrix: The multiplication
of St*z° requires O(k2,,(b)) operations, and has to be
performed for each s € !, hence

Comp Z Sts s
=(t, s)eﬂle
= Z Okeu(®) < D Ok (b))
b=(¢, s)eﬁzxz b=(t,s)ELTx 7
S Z Z O var < CQP Z O var
t€T'r s€col(t) teTr

2d
<4C,,0 < d(a 5)) -N. 41)

3) Backward Transformation: For each leaf cluster of Tz, we
compute V*y?* directly, the cost of which is O (kyar (t))#E
operations. For each non-leaf cluster, we add its contribu-
tion back to its two sons. For example, consider cluster '
which is a son of ¢. We have

Viyt = (VIE!yt). 42)
Hence, (V3" )i+(V'y'); = VI (" + E*' y*);, meaning
the contribution of V* to y; can be efﬁmently taken into
consideration by adding E* y* back to its son, the cost of
which is O(k2, (t)) only. Hence, the total complexity is

var

Comp <Z Vtyt>

teTr

=) Olkvar@)#E+ D Olkvar(t)hvar(t))
teLy teTr\ L1
t' €sons(t)
2d(a+0)\ "
<O@GYN + 40 (M> N. @3)
In1.5
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4) Multiplication of Non-Admissible Blocks:
The complexity of multiplying each non-admissible block
by a vector is O(nZ ;. ), summing over all the non-admis-
sible blocks, we obtain

Comp Gz,

>

b=(t,8)€£§xz

< D Ok

min
b=(t,s)€LzxT

S Z Z O(”’?mn) S 2CSPO(n12nin)N'

tETT s€col(t)

(44)

Adding the aforementioned four steps, the matrix-vector multi-
plication only requires O(N) operations.

F. Choice of Simulation Parameters

There are only four simulation parameters to choose in the
proposed method: 7, leafsize nmin, @ and b. The @ and b are used
to determine p as can be seen from (23). As shown in (20), the
smaller 7 is and the larger p is, the better the accuracy is, but if 7
is chosen to be too small, and p is chosen to be too large, the sim-
ulation will become inefficient. Therefore, there exists a tradeoff
between accuracy and efficiency. Generally speaking, for static
problems, 1 < n < 2 is enough for achieving a good accu-
racy; for high-frequency problems, 0.2 < 7 < 1 can be chosen.
The leafsize nyin and a can be determined together. Given a re-
quired level of accuracy across a range of frequencies, a can be
determined by achieving the accuracy requirement at the lower
end of the frequency range, and n,;, can be chosen based on
Nmin > 0.5a%. This can help make H2-based representation
most efficient in both memory and CPU time. The parameter b
can be chosen between 0 and G.

IV. NUMERICAL RESULTS

To demonstrate the accuracy and efficiency of the proposed
H2-matrix-based IE solver, we simulated a conducting sphere,
a conducting plate, and a half sphere of various electric sizes. In
addition, we simulated a Sierpiski Gasket from 1074 unknowns
to 263 234 unknowns, the electric size of the longest side length
of which is from 1 wavelength to 64 wavelengths.

A. Conducting Sphere

First, we validated the proposed IE solver on a 0.2\ con-
ducting sphere. The spherical surface was discretized into 1140
triangular elements. The cluster tree was built by cardinality bal-
anced construction of the index set Z = {1,2,... N}. The con-
struction yielded a block cluster tree 7" whose leaves partitioned
the product index set Z x Z. The parameter n used for the ad-
missibility condition was chosen as 1 and the leafsize n i, Was
chosen as 20. Each admissible block of the H2?-matrix was as-
sembled by interpolation. The number of interpolation points,
p, was 2 by choosing @ = 2 and b=0.In Fig. 6(b), the current
distribution along the principal cuts obtained by the proposed
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Fig. 6. (a) Conducting sphere. (b) Current distribution (p = 2,
1= Zl/ 1121l = 0.03).
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Fig. 7. Simulation of a conducting sphere. (a) Memory consumption. (b) CPU
time cost.

TABLE I ~
ACCURACY OF H2-MATRIX-BASED REPRESENTATION G
VERSUS ELECTRIC SIZE

. IG-G]
sphere_sizel A N Gl
3 4680 1.187729¢-05
5 10620 6.509749¢-05
7 16650 8.463785¢-05
9 29700 4.841575¢-05
11 42840 4.192058¢-05
13 58380 9.650041e-05
15 67050 8.327470e-05

approach was plotted with respect to angle . Excellent agree-
ment with the reference solution reported in [23] is observed.

Next, we investigated the accuracy, storage requirement, and
CPU time cost of the proposed IE solver in a range of electric
sizes from 3\ to 15\. The simulation parameters were chosen
as n = 0.8, leafsize = 63, a = 5, and b = 1. In Table I, the
error of the H>-matrix-based representation of system matrix
G was listed with respect to the electric size and the number
of unknowns. Clearly, good accuracy is observed. More impor-
tantly, the error is kept to the same order in the whole range. In
Fig. 7(a), the storage in MB of the proposed solver was plotted
with respect to the number of unknowns, and hence the electric
size, from which linear cost can be clearly observed. In Fig. 7(b),
the CPU time per iteration was plotted versus the number of un-
knowns. Again, a linear cost is observed.

B. Conducting Square Plate

We then validated the proposed IE solver on a 0.15) plate il-
luminated by a normally incident plane wave shown in Fig. 8(a).
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Fig. 8. (a) Conducting square plate. (b) Current distribution (p = 2,
I =I|I/ 1]l = 0.025).
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Fig. 9. Simulation of a conducting plate. (a) Memory consumption as a func-
tion of unknown number. (b) CPU time as a function of unknown number.

The plate was discretized into 1160 triangular elements. The
cluster tree was built by cardinality balanced construction of the
index set Z = {1,2,... N}. The parameter 7 used for the ad-
missibility condition was chosen as 1 and the leafsize 1in Was
chosen as 20. The number of interpolation points, p, was 2 by
choosing @ = 2 and b = 0. Fig. 8(b) shows the current dis-
tribution along two principal cuts of the square plate generated
by using the H?-matrix-based approach in comparison with the
reference result presented in [23], which reveals an excellent

agreement.
Next we simulated the same plate from 4\ to 20\. The sim-
ulation parameters were chosen as n = 1, leafsize = 20,

a = 5, and b = 2. In Table 11, we listed the error of the H2
matrix-based G with respect to the number of unknowns. Once
again, good accuracy is observed. In addition, the accuracy is
observed to be in the same order in the whole range. In Fig. 9,
the memory consumption and CPU time were plotted with re-
spect to the number of unknowns, respectively. Both showed
linear scaling with the number of unknowns. In Fig. 9(b), for
comparison, we also plotted the CPU time required by a full-ma-
trix-based matrix-vector multiplication. The advantage of the
proposed method can be clearly seen.

C. Half Conducting Sphere

The third example is a half sphere with skew incidence from
the concave side. The simulation parameters were chosen as 7 =
0.8, leafsize = 63,a = 4, and b = 1.InTable II1, the error of the
H2-matrix-based G was listed with respect to the electric size of
the half sphere and the number of unknowns. A constant order
of accuracy can be observed in the entire range. Different from
the simulation performed for example A, in which G was chosen
as 5. In this example, a was chosen as 4. Good accuracy is still
obtained as can be seen from Table III. In Fig. 10, we plotted
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TABLE II -
ACCURACY OF H?-MATRIX-BASED REPRESENTATION G
WITH RESPECT TO ELECTRIC SIZE

. IG-G|
Plate_sizel A N
- Gl
4720 4.989619¢-05
7400 1.292243e-06
10680 5.996929¢-05
10 14560 2.263827¢-05
12 24560 2.080167¢-05
14 29800 4.424070e-05
16 36080 7.751298e-05
18 50130 3.690129¢-05
20 67600 4.131000e-05
2000+
1500 A‘
S 1000 s
S £
b7 s
500 =
06 1 2 3 4 5 0 1 2 3 4 5
Number of unknowns x10* Number of unknowns x10*
(@) (b)

Fig. 10. Simulation of a half sphere. (a) Memory consumption as a function of
unknown number. (b) Time complexity.

the memory and CPU time cost. Once again, linear scaling is
observed.

D. Sierpiski Gasket

The last example was a multiscale structure, Sierpiski gasket,
as shown in Fig. 11. The electric size of the smallest triangle
patch remained constant. The number of geometrical details was
increased with frequency. For example, as shown in Fig. 11, one
iteration was added as the frequency doubles, while the electric
size of the smallest patch was always kept to be 1. Seven iter-
ations were performed, resulting in 1074 to 262 434 unknowns.
The electric size of the longest side length ranged from 1\ to
64).

The simulation parameters were chosen as = 1,
leafsize = 20, a = 4, and b = 1. In Table 1V, the error
of the H2-matrix-based G was listed with respect to the
electric size of the longest side length of the Sierpiski gasket.
A constant order of accuracy can be observed in the entire
range. For the case of 64\ that involved 262434 unknowns,
the computation of the matrix error was impossible since
the full-matrix representation required a memory that was
beyond what our computer can offer. We hence checked
the maximal admissible block error, which was defined as
|G®5) — G || /max(||G®D, G#)]]). It can be proven
that the total matrix error is bounded from above by the max-
imal admissible block error. In Table IV, we list the maximal
admissible block error with respect to the electric size. Clearly,
a constant order of accuracy can be observed in the entire range.
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TABLE III ~
ACCURACY OF H?-MATRIX -BASED REPRESENTATION G
WITH RESPECT TO ELECTRIC SIZE

half sphere_sizel A N IG-GJ (H;(_;ﬁ; I
3 2340 4.247538e-04
5 5310 2.965317e-04
7 8320 4.336523¢-04
9 14850 6.425261e-04
11 21420 2.175265e-04
13 29190 5.464219¢-04
15 35520 6.394084¢-04
17 43010 7.004305e-04

it=1 it=2 it=3 it=4 it=5

Fig. 11. Illustration of Sierpiski gasket at different iterations.
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Fig. 12. Simulation of a Sierpiski gasket. (a) Memory consumption as a func-
tion of unknown number. (b) Time complexity.

0 0.5 1 15 2 25 3 0 0.5
Number of unknowns x10°

TABLE IV _
ACCURACY OF THE H?2-MATRIX -BASED REPRESENTATION G
WITH RESPECT TO ELECTRIC SIZE

Maximal Admissible

) o 1G-6 | Block Error

it | Total_electric_sizel A N el 1G9 — G |

max(| G, G [|)

2 2 1074 1.455915e-05 2.956683¢-05
3 3234 2.195113e-05 6.478373e-05
4 9714 2.088980c-05 1.077240¢-04
5 16 29154 3.358065e-05 6.762226e-05
6 32 87474 5.794269¢-05 1.135951e-04
7 64 262434 --- 3.574245e-05

Since the total matrix error is no greater than the maximal ad-
missible block error, the accuracy of the total matrix is also
constant across the entire range from 2\ to 64\. In Fig. 12, we
plot the memory and CPU time of the proposed solver with
respect to the number of unknowns. Linear cost again can be
clearly seen.

V. CONCLUSION

Integral-equation-based methods generally lead to dense sys-
tems of linear equations. The resulting matrices, although dense,
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can be specified by a reduced set of parameters. In this paper, we
introduce H2-matrix as a general mathematical framework to
accelerate IE-based computation of electrodynamic problems.
‘H2-matrix-based methods are kernel independent, and hence
suitable for any IE-based formulation. In addition, the ‘H2-ma-
trix-based framework allows for the acceleration of both itera-
tive and direct IE solvers [29], [30], which cannot be easily done
in the framework of other fast IE solvers.

The error bound was derived for the 742-matrix-based repre-
sentation of an electrodynamic problem. It was shown that expo-
nential convergence with respect to the number of interpolation
points can be achieved irrespective of the electric size. The im-
pact of error on the computational complexity was studied in de-
tail. Our finding is summarized as the following. In general, an
H? matrix can be stored in O(N ) units, and an H>-matrix-based
matrix-vector multiplication can be performed in O(N) oper-
ations. However, when applying H2-matrix-based methods to
electrodynamic problems, in order to keep the error constant
across a range of electric sizes, we have to increase the cost
of both memory consumption and CPU time. This is similar to
what has been observed in an FMM-based method, which has
O(N) complexity in static applications and O(N log N) com-
plexity in dynamic applications. However, the accuracy of an
H? matrix based representation of an electrodynamic problem
is a complicated function of the number of interpolation points
p, and hence the rank, as shown in (20). In addition the accuracy
is also a function of 7. Indeed, if one blindly adjusts n and p
with respect to IV to control the accuracy, it is difficult to justify
O(N) complexity since not only N changes, but also other pa-
rameters change when sweeping a range of electric sizes. How-
ever, in this paper, we showed a viable approach to tackle this
problem. The rank was defined as a function instead of a con-
stant. In addition, this function has constant coefficients which
do not change with N. By introducing such a function, it be-
comes feasible to use a same set of parameters, 7, leafsize, a, and
b (the coefficients of the rank function) as shown in this work,
to achieve linear cost in both CPU time and memory consump-
tion while still keeping the error to the same order in a range
of electric sizes. This has been verified by our complexity anal-
ysis as well as numerical experiments. In this paper, we studied
rank as a function of tree level, and we tested electric sizes of
our current interest from small electric sizes to 64 wavelengths.
Certainly, 77 can also be defined as a function, and larger electric
sizes could be explored. These are our future research topics.
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