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Abstract—Fast algorithms are developed in this work for solving
the system matrix resulting from a frequency-domain layered fi-
nite element based analysis of integrated circuits. The frequency-
domain layered finite element method represents a 3-D layered
system by a 2-D layered system, and further by a single-layered
one. The reduced system matrix is generally denser than the orig-
inal sparse matrix. In this paper, we show that 1) the dense ma-
trix–vector multiplication can be performed in linear complexity;
in addition, the reduction cost can be bypassed, 2) an effective pre-
conditioner can be developed to converge the iterative solution of
the reduced system matrix in a small number of iterations, and
3) the preconditioner can be solved in linear complexity. As a re-
sult, the reduced system matrix can be solved efficiently. The al-
gorithms are rigorous without making any approximation. They
apply to any arbitrarily-shaped multilayer structure. Numerical
results demonstrated the accuracy, effectiveness, and efficiency of
the proposed algorithms in analyzing on-chip circuits.

Index Terms—Electromagnetic modeling, finite element method,
frequency domain, iterative solver, on chip, preconditioner.

I. INTRODUCTION

T HE move towards integrating analog, mixed-signal, and
radio-frequency (RF) circuitry on a single chip has made

the analysis and design of microelectronic systems increasingly
challenging. To sustain the continued scaling and integration of
integrated circuits, there is a critical need for the electromag-
netically accurate modeling and simulation of the integrated cir-
cuits. However, there are many modeling challenges associated
with on-chip circuits. These challenges include large problem
size, a large number of nonuniform dielectric stacks with strong
nonuniformity, a large number of nonideal conductors, the pres-
ence of silicon substrate, highly-skewed aspect ratios, etc. The
importance and challenges of electromagnetic-based analysis of
integrated circuit (IC) problems have stimulated new develop-
ments in computational electromagnetic methods [1]–[11]. In
[6], a frequency-domain layered finite element method (LFEM)
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was developed for electromagnetic analysis of large-scale high-
frequency integrated circuits. In this method, first, the system
matrix of the original 3-D problem is reduced to that of 2-D
layers. Second, the system matrix of 2-D layers is reduced to
that of a single layer. The cost of reduction scales linearly with
single-layer computational complexity. In a realistic on-chip
structure, one can encounter a large number of layers when
growing the layer along either or direction, assuming is
the stack-growth direction. Hence, the number of single-layer
unknowns is generally much less than that of total unknowns.
Take a typical on-chip interconnect as an example, the former is
2270, whereas the latter is 3.04 million. Therefore, the LFEM
method is capable of handling large-scale multilayer structures.
Designers can deal with a much smaller system produced by the
LFEM to perform design optimization.

The layered finite element method can be viewed as a fast
Gaussian elimination procedure which fully takes advantage of
the layered property present in today’s integrated circuits and
package structures. The underlying mesh used in the layered fi-
nite element method is a triangular-prism-element based mesh,
which allows for irregular structures in the transverse plane,
and meanwhile capturing the layered geometry along the third
dimension. For layered structures, a triangular-prism-element
based mesh is indeed natural for choice. In the layered finite-el-
ement method, a number of important matrix properties asso-
ciated with a prism-element-based mesh are identified or con-
structed to speed up the process of Gaussian elimination.

The efficiency of the layered finite element method hinges
upon two factors: 1) how efficiently the unknowns can be re-
duced and 2) how efficiently the reduced system matrix can
be solved. In [7] and [8], we developed fast reduction algo-
rithms to efficiently reduce the system matrix. In this work, we
present fast algorithms for solving the reduced system matrix
efficiently.

This paper is organized in the following manner. In Section II,
an overview of the LFEM and the problem statement are given.
In Section III, the proposed fast solution algorithms are de-
scribed. In Section IV, numerical results are presented to val-
idate the proposed algorithms. In Section V, conclusions are
drawn.

II. OVERVIEW OF THE LFEM AND PROBLEM STATEMENT

Consider 3-D circuit problems. The circuit can be a global
on-chip interconnect network, a package, and a mixed-signal
IC circuit. Generally, these circuits are multilayered structures.
They are embedded in a multilayer dielectric medium backed
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by silicon, GaAs, InP or other substrates. A Manhattan-type
on-chip circuit is even layered in any of , , and directions.
Inside these circuits, the electric field satisfies the second-
order vector wave equation

(1)

subject to certain boundary conditions. A finite-element solution
of (1) and its boundary condition results in the following matrix
equation:

(2)

in which and are assembled from their elemental counter-
parts:

(3)

where is the complex relative permit-
tivity, and is the vector basis function used to expand . In
the LFEM method, is chosen as triangular prism vector bases
[6, eq. (5)]. In deriving (3), the first-order absorbing boundary
condition is assumed for simplicity.

In a layered finite-element based solution of (2), the un-
knowns are ordered layer by layer, resulting in a 3-D layered
system matrix. In Fig. 1(a), we show the system matrix in a
single layer, where denotes the surface unknowns on the
upper surface of layer 1, denotes the volume unknowns
in layer 1, and denotes the surface unknowns on the upper
surface of layer 2. Matrix is formed between unknowns

and ; is formed between unknowns and ;
and is formed between unknowns and . The matrix
elements of , , , , , and are given by

(4)

in which is the edge basis function [12, pp. 234–237], is
the node basis function [12, p. 80], denotes the support of a
triangular element, and is the height of a prism element, which
is the layer thickness.

The 3-D layered system matrix is then reduced to a 2-D
layered one. This is equivalent to eliminating the volume
unknowns, the procedure of which is shown in Fig. 1. The
relationship between the reduced matrices and the original
matrices can be written as

(5)

Fig. 1. Illustration of volume unknown elimination. (a) System matrix� in a
single layer. (b) Surface unknown based system� .

Due to the matrix properties such as and
shown in [6], (5) becomes

(6)

Fast reduction algorithms have been developed in [7] and [8]
to perform the computation in (6) in an optimal computational
complexity. The 2-D layered system can be further reduced to a
single-layer system. The remaining task is to solve the reduced
system efficiently. However, due to the reduction process, the
reduced system matrix formed by surface unknowns becomes
much denser than the original sparse matrix. Hence, solving it
can be computationally intensive when the matrix size is large.
In the following, we propose fast iterative solution algorithms
to solve the reduced system efficiently.

III. FAST SOLUTION ALGORITHMS

In this section, we first present fast algorithms for solving
the 2-D layered system matrix, we then give fast algorithms for
solving the single-layered system. We also show how the com-
putational cost of the reduction from a 3-D layered system to a
2-D layered system, and to a single-layered system can be by-
passed.

A. Fast Solution of the 2-D Layered System Matrix

The reduced 2-D layered system of equations can be written
as

(7)

where denotes surface unknowns in all layers, is the corre-
sponding right-hand side, and is the reduced system matrix
shown in Fig. 2, where , , , and are , , ,
and in the th layer, the expressions of which are given in
(6).

Equation (7) can be solved iteratively using the method of
generalized minimal residual (GMRES) [13]. To solve a system
of equations , an -step GMRES process generates an
orthonormal basis of the Krylov subspace
of a reduced dimension spanned by ,
where is an initial unit norm vector. The projected matrix
of onto is represented by an upper Hes-
senberg matrix . A least square problem is then solved to
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Fig. 2. Surface-unknown-based 2-D layered system� .

minimize the norm of the residual . The conver-
gence of a GMRES procedure is theoretically guaranteed when
the number of iterations is the same as the dimension of .

A representative restarted GMRES procedure for solving (7)
is given below:

(8)

where is a preconditioner, is the initial guess, denotes
the internal iteration number, and the number of times to
restart the GMRES is called as the external iteration number.
Clearly, the efficient computation of (8) relies on an efficient
matrix–vector multiplication and an effective precondi-
tioner that can minimize the iteration number . In addition,
the solution of needs to be computationally efficient. In the
following, we show three fast algorithms that can fulfill the
aforementioned three requirements.

1) Linear-Complexity Matrix–Vector Multiplication: The
optimal complexity of computing is complexity
(Note that the ratio of to is approximately 0.75 in a
triangular prism element based mesh). However, as shown in
Fig. 2, is dense because it is made of , , , and in
each layer, and each of , , , and is dense due to the
elimination of volume unknowns. Apparently, it is not feasible
to perform in complexity. This difficulty can be

overcome by the following approach. As shown in (6), is
, is , is , and is

. Therefore, instead of forming , , , and
, and multiplying them by corresponding vectors, we can

multiply and by corresponding
vectors. Since , , and are all sparse, multiplying , ,
and by any vector can be performed in linear complexity.
In addition, multiplying by any vector can be performed
in linear complexity by employing the fast technique we de-
veloped in [7] and [8]. Basically, is structured to be a block
tridiagonal matrix. It is then split into ,
with being the diagonal block, and lower and upper
off-diagonal blocks respectively. Due to the matrix property of

, we showed in [7] and [8] that can be used as an effective
preconditioner to converge the iterative solution of in a few
iterations. As a result, the entire matrix–vector multiplication

can be carried out in linear complexity. In addition, we
bypass the need of computing , , , and in each
layer, i.e., the reduction cost is avoided.

2) Effective Preconditioner: With the efficient matrix–vector
multiplication achieved, next we develop an effective precondi-
toner that can reduce the number of iterations in the iterative
solution of (7). In addition, the solution of this preconditioner is
constructed to be computationally efficient.

To elaborate, the mass matrix part in (3) can be split into two
parts:

(9)

where

(10)

The matrix structure of and in each layer is shown in
Fig. 3, where denotes the upper surface unknowns in the
th layer, denotes the volume unknowns in the th layer,

and denotes the upper surface unknowns in the
th layer, respectively. The matrix possesses two important

properties. First, the matrix block formed by volume unknowns
(center matrix block) is decoupled from those formed between
surface unknowns. Second, the matrix blocks formed between

themselves (upper left blocks) in different layers are lin-
early proportional to each other; and the matrix blocks formed
between and (upper right blocks) in different layers
are also linearly proportional to each other. Moreover, these two
matrix blocks (upper left block and upper right block) are also
mutually proportional to each other in each layer. The linear
proportionality holds true for any multilayered integrated cir-
cuit structure and any choice of layer-growth direction due to
the layered structure and the vector basis functions used in the
layered finite element method. For example, assuming is the
stack-growth direction along which permittivity is layered.
If one chooses the direction as the layer-growth direction,
the linear proportionality is obvious due to layered permittivity.
If one chooses or direction as the layer-growth direction,
the linear proportionality still holds true because although each
layer does not have a constant permittivity, the configuration of
the permittivity is the same across all layers.
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Fig. 3. The structure of� and� in each layer. (a) Matrix structure of� in the
�th layer. (b) Matrix structure of � in the �th layer.

Fig. 4. The structure of matrix �� in each layer.

Fig. 5. The structure of matrix � in the �th layer.

Matrix as shown in Fig. 3(b) has a similar structure as .
However, the distribution of conductivity in an integrated cir-
cuit is very different from that of permittivity . As can be seen
from Fig. 3(b), although in each layer, the matrix block formed
between and and that formed between and
are linearly proportional to each other, this property does not
hold true across different layers. Therefore, in the following, we
construct a conductivity-related matrix , which processes the
same property as .

The matrix structure of is shown in Fig. 4, in which is
artificially assigned in each element, which satisfies

(11)

where is the physical conductivity in element . Basically, if
the physical conductivity is nonzero in element , is chosen
the same as the physical conductivity; if the physical conduc-
tivity is zero in element , is chosen either as the physical
conductivity or 0 whichever that can make possess the same
property as . A general approach of constructing is to re-
place each metal layer in a multilayered circuit by a solid metal

Fig. 6. (a) Matrix pattern of �. (b) The reduced single-layer system matrix.

plane. Thus, the conductivity has the same property as the
permittivity , i.e., they both are layered.

The stiffness matrix part in (3) can also be split into two parts

(12)

where possesses a similar structure as and as shown
in Fig. 5.

The preconditioner is constructed from , , and as
the following

(13)

The matrix serves as an effective preconditioner of the re-
duced system matrix. It was shown by our numerical experi-
ments that with , the iterative process of solving the reduced
system matrix converges in a small number of iterations for re-
alistic on-chip circuits we have tested.

3) Efficient Computation of in Linear Complexity:
With the preconditioner developed, the computing task of
solving (7) becomes solving at each iteration as
shown in Step (8.1) in (8). In the following, we show an efficient
solution of , with being an arbitrary right-hand side.

The surface unknown related part in has a matrix pattern
shown in Fig. 6(a), in which are linearly
proportional to each other, are lineary
proportional to each other, and are also
mutually proportional to . To explain,
is made of , , and as can be seen from (13). If one
chooses the layer growth direction as the two directions that
are different from the stack-growth direction, then each layer
has the same permittivity and conductivity configuration. As
a result, can be written as

with being the same across all the layers,
and . Hence, and

are linearly proportional to each other. Note that the
prism element is made in one layer and extruded along the layer
growth direction.

Due to the linear proportionality of and
, the matrix solution we developed in layered fi-

nite-element reduction-recovery method (LAFE-RR) [9], [10]
can be used to compute in linear complexity. Essentially,
the matrix system can be analytically reduced to a single-inter-
face system, which is then solved in linear complexity. From
the solution of the single-interface system, the solution in other
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layers can be recovered in linear complexity. To elaborate,
assuming that layer is of interest, the surface-based shown
in Fig. 6(a) can be analytically reduced to a single-layer system
matrix shown in Fig. 6(b). The matrix carries the contri-
bution from all the layers above layer to layer , while matrix

carries the contribution from all the layers below layer
to layer . These two matrices can be obtained recursively and
analytically from

...

(14)

and

...

(15)

Matrices and can be obtained analytically because
in (14) and (15), there is no need to compute the matrix inverse
and matrix–matrix multiplication because of the linear propor-
tionality. As a result, the reduction shown in Fig. 6, which is
mathematically represented by (14) and (15), is achieved with
minimal numerical calculation. To be more specific, if ,
which is in the first layer, is chosen as the reference, then

and can be obtained instantly by scaling by a cer-
tain coefficient. Once the unknowns in the th layer are solved,
the unknowns in other layers can be obtained recursively as
follows:

(16)

Once again, there is no need to compute since the two
matrices are linearly proportional to each other.

B. Fast Solution of the Single Layered System Matrix

The 2-D layered system shown in Fig. 2 can be further
reduced to a single-layered system as demonstrated in [6]. This
single-layered system can be made of any two interfaces, the
crosstalk between ports on which is of interest. The single-lay-
ered system can be solved iteratively using the preconditioner
proposed in the above section. Basically, the preconditioner
shown in Fig. 6 is reduced in the same fashion as the system ma-
trix , which is then used to solve the reduced single-layered
system. It is shown by numerical experiments that the conver-
gence of the proposed preconditioner on a reduced single-lay-
ered system is even faster than that on a 2-D layered system due
to clustered eigenvalues, and hence a reduced spectrum. In gen-
eral, the iterative solution based on the proposed preconditioner
can converge in a few iterations. In addition, the reduction of the
preconditioner from a 2-D layered system to a single-layered
one is analytical, and hence involving no computational cost.

Fig. 7. Illustration of the reduction from a 2-D layered system to a single lay-
ered one. (a) A 2-D layered system consisting of 4 layers. (b) A reduced two-
layer system. (c) A reduced single-layer system.

The remaining computational task is to perform the ma-
trix–vector multiplication efficiently, and meanwhile bypass
the 2-D-to-single-layer reduction cost. It should be noted that
the cost of 2-D-to-single-layer reduction scales linearly with
single-layer computational complexity. It is a one-time cost
that can be amortized over many design iterations. Therefore,
one can first pre-generate the reduced single-layered system
and use it for many design iterations. However, if there is a
need of minimizing the reduction cost, the following numerical
procedure can be performed.

To ease the explanation of this procedure, in Fig. 7, we give
an example of a reduction process from a four-layer system to
a single-layered one, which is to be solved iteratively. Take the
matrix block shown in Fig. 7(c) as an example. is ob-
tained by a level-by-level reduction from Fig. 7(a)–(c). Our task
is to compute efficiently, with being an arbitrary vector.

Based on [6, eq. (15)], can be written as

(17)

where , , and are the matrices shown in Fig. 7(b),
which are one level above the single-layered matrices. By
tracing back to another level above, can be written as

(18)

where , , , and are the matrices shown in Fig. 7(a),
which are matrices in a 2-D-layered system.

Instead of constructing and computing directly, we
can use (18) to compute , i.e., do the following:

(19)
Since , , and are all matrices in the 2-D-layered
system, based on the scheme developed in Section III-A-1,
multiplying , , and by any vector can be performed
in linear complexity. As for multiplying by any vector

, it is equivalent to solving from . Again the pre-
conditioner proposed in Section III-A can be used to converge
the iterative solution of quickly. As a result, the
computing task becomes the evaluation of , which again
can be performed in linear complexity because is a 2-D-lay-
ered system matrix block. The remaining task is to compute

with being an arbitrary vector. Again it is equivalent
to solving from . The preconditioner proposed
in Section III-A again can be used to converge the iterative
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Fig. 8. S-parameters of an on-chip interconnect structure of length 2000 ��. (a) S11 magnitude. (b) S11 phase. (c) S12 magnitude. (d) S12 phase.

solution of quickly. The computing task hence again
becomes the computing of a matrix–vector multiplication .
Matrix can be written as

(20)

Clearly, all the matrices involved in (20) are the 2-D layered
matrix blocks, and hence based on the analysis above, multi-
plying by any vector can be performed in linear complexity.
As a result, the single-layered matrix–vector multiplication can
be performed in linear complexity, and meanwhile the reduction
cost from a 3-D layered system to a single-layered system is by-
passed. In summary, the fast iterative solution proposed in Sec-
tion III-A can be recursively used at each level shown in Fig. 7
to reduce the computational cost.

IV. NUMERICAL RESULTS

The performance of the proposed fast iterative solution was
tested on a number of 3-D on-chip interconnect structures. For

all these examples, the initial guess used in the iterative solution
was set to be zero.

The first example was a test-chip 3-D interconnect structure.
This was the first example simulated in [6], and also the ex-
ample shown in [11, Fig.5]. The structure was 300 wide and
2000 long. It involved a 10- -wide strip in metal 2 (M2)
layer, one ground plane in metal 1 (M1) layer, and one ground
plane in metal 3 (M3) layer. The distance of this strip to the
M2 returns at the left- and right-hand sides was 50 , respec-
tively. Along the length, the structure was divided into 22 layers,
resulting in 7175 unknowns. After representing the system ma-
trix (2) as (7) by removing volume unknowns, only 5635 sur-
face unknowns are remained. Note that no computational cost
is incurred by rewriting (2) as (7) since , , , and in

are not actually formed. The proposed preconditioner was
then used to solve (7) to extract S-parameters. In Fig. 8, we plot
the S-parameters simulated over the entire frequency band. The
S-parameters show an excellent agreement with those obtained
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TABLE I
PERFORMANCE COMPARISON OF DIFFERENT PRECONDITIONERS FOR SOLVING

THE REDUCED 2-D LAYERED SYSTEM

from a direct solver [14], which was shown to agree well with
the measured data [6].

Next, we compared the performance of the proposed pre-
conditioner with other preconditioning techniques. One precon-
ditioning technique is to use the combined and matrix
without as shown below

(21)

The preconditioner also permits an efficient solution de-
scribed in Section III-A3. In Table I, we listed -parameters
simulated with , , and without any preconditioner. The fre-
quency simulated was 1 GHz. As shown in Table I, within 40 it-
erations, the proposed iterative solver converged to the reference
S-parameters obtained by a direct sparse solver [14]; whereas
the other two preconditioning techniques failed to converge. In
Table I, we list both external iteration number and internal iter-
ation number. The total iteration number is the product of the
two iteration numbers.

The convergence of the proposed iterative solver for solving
the reduced 2-D layered system (7) is plotted in Fig. 9. The ex-
ternal iteration number in GMRES, denoted by maxit, was set to
be 2, and the internal iteration number, denoted by restart, was
allowed to change. The relative residual was defined
as

(22)

where is the solution at the th step. The log function used
in plotting Fig. 9 is a natural logarithm function. Fast conver-
gence can be observed from Fig. 9.

The CPU time cost by the proposed iterative solver was then
examined. To test the scaling of the proposed solver with respect
to unknown number , the size of the original problem was
enlarged by adding more layers to generate a range of unknowns
from 4025 to 13 475. The CPU time per iteration for step (8.1)
is listed in Table II with respect to unknown number. A linear
scaling with respect to unknown number can be observed, which
verifies the proposed linear-time matrix–vector multiplication
and linear-time solution for the preconditioner .

We then compared the CPU time of the proposed iterative
solver with the layered finite element analysis based on the mul-
tifrontal-based direct sparse solver [14]. The CPU time cost
by the direct solver for solving the original matrix (2) as well
as the cost for solving the 2-D layered system (7) is listed in
Table III. As shown in Table III, the proposed iterative solver

Fig. 9. Relative residual versus number of iterations for solving a reduced 2-D
layered system. (Natural logarithm is used.)

TABLE II
CPU COST FOR SOLVING A REDUCED 2-D LAYERED SYSTEM

TABLE III
CPU TIME COMPARISON

costs less time due to the efficiency of the proposed precondi-
tioner. It should be noted that there is no reduction cost involved
in solving (7) in the proposed iterative solution because the re-
duced matrix is actually not formed. Their analytical expres-
sions are used to carry out efficient matrix–vector multiplication
as described in Section III-A1.

In Fig. 10, we plot the number of iterations versus the
number of unknowns for both 2-D-based reduced system and
a single-layer based reduced system. The relative residual was
set as 1e-4. As can be observed from Fig. 10(a), the iteration
number grows with unknown number for a reduced 2-D system.
However, for the single-layered system, the iteration number
required to reach convergence remains as a constant, as can
be seen from Fig. 10(b). To confirm this, we simulated a case
involving 0.1 million unknowns. Once again, we observe a
constant number of iterations as can be seen from Fig. 10(b).
The relative residual used for Fig. 10(b) was 1e-6.

The second structure simulated was an on-chip bus structure
as shown in Fig. 11, where the unit of geometrical dimensions
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Fig. 10. Number of iterations versus number of unknowns required for solving
(a) a 2-D layered system and (b) a single-layered system.

Fig. 11. The cross-sectional view of an on-chip bus structure.

is m. The dielectric stack was kept the same as that in previous
example.

The preconditioner and were constructed for perfor-
mance comparison. The layer-growth direction was chosen as

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT PRECONDITIONERS (EXAMPLE 2)

Fig. 12. Relative residual versus iteration number for solving a reduced three-
layer system (natural logarithm is used).

the length direction . Along , the structure was discretized
into 22 layers. The 22-layer system was then reduced to a three-
layer system by the layered finite element method. The precon-
ditioners and were then applied to solving the reduced
three-layer system respectively, with the first and last layer used
for absorbing outgoing waves. As shown in Table IV, the pro-
posed preconditioner converged the iterative solution in 40 it-
erations, whereas failed to converge the iterative solution.
In addition, the iterative solution without a preconditioner also
failed to converge in 40 iterations.

The relative residual (relres) versus the inner iteration number
is plotted in Fig. 12, with external iteration number chosen to be
2. Again, fast convergence is observed. In addition, compared
to the 2-D layered system, the reduced single-layered system is
shown to converge even faster. This is mainly because the reduc-
tion procedure helps cluster eigenvalues, and hence expediting
convergence.

We then compared the CPU time of the proposed iterative
solver for the reduced system with the layered finite element
analysis based on the multifrontal-based direct sparse solver.
As can be seen from Table V, the proposed iterative solution
is shown to be faster.

The third structure was a 3-D bus structure with orthogonal
returns as shown in Fig. 13. The structure is of length 2000 .
The spacing between the orthogonal wires as well as the width
of each orthogonal wire is 100 . The 3-D layered system was
first reduced to a single-layer one. The proposed preconditioner
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TABLE V
CPU COST FOR SOLVING A FURTHER REDUCED SYSTEM THAT HAS

A SINGLE-LAYER INTERCONNECT

Fig. 13. A 3-D bus structure with orthogonal returns.

TABLE VI
PERFORMANCE OF THE PROPOSED PRECONDITIONER (EXAMPLE 3)

Fig. 14. Relative residual versus iteration number for solving a reduced single-
layer system (natural logarithm is used.)

was then applied to solving the single-layer system. The ma-
trix in was constructed by replacing orthogonal returns

in the top and bottom metal layers by a solid metal plane. With
, the iterative solution converged in two iterations as shown in

Table VI. The convergence of the proposed iterative solution is
plotted in Fig. 14. Fast convergence can be observed.

V. CONCLUSION

Fast iterative solution algorithms are developed in this work
for solving the system matrix resulting from a layered finite el-
ement based analysis of integrated circuits. The algorithms in-
clude fast dense matrix–vector multiplication that can bypass
the reduction cost, an effective preconditioner, and an efficient
solution of the preconditioner. Numerical experiments on both
2-D layered systems and further reduced single-layered systems
have demonstrated the fast convergence of the proposed itera-
tive solution.
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