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Existence of -Matrix Representations of the Inverse
Finite-Element Matrix of Electrodynamic Problems

and -Based Fast Direct Finite-Element Solvers
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Abstract—In this work, we prove that the sparse matrix re-
sulting from a finite-element-based analysis of electrodynamic
problems can be represented by an matrix without any approx-
imation, and the inverse of this sparse matrix has a data-sparse

-matrix approximation with error well controlled. Two proofs
are developed. One is based on the general eigenvalue-based
solution to the ordinary differential equations, and the other is
based on the relationship between a partial differential operator
and an integral operator. Both proofs have reached the same
conclusion. Based on the proof, we develop an -matrix-based
direct finite-element solver of � ��� � memory complexity
and � � ���� � time complexity for solving electromagnetic
problems, where is a small parameter that is adaptively deter-
mined based on accuracy requirements, and is the number of
unknowns. Both inverse-based and LU-based direct solutions are
developed. The LU-based solution is further accelerated by nested
dissection. A comparison with the state-of-the-art direct finite
element solver that employs the most advanced sparse matrix
solution has shown clear advantages of the proposed direct solver.
In addition, the proposed solver is applicable to arbitrarily-shaped
three-dimensional structures and arbitrary inhomogeneity.

Index Terms— matrix, direct solution, electromagnetic anal-
ysis, fast solvers, finite element methods, nested dissection.

I. INTRODUCTION

C OMPARED to other computational electromagnetic
methods such as finite-difference-based methods and

integral-equation-based methods, finite-element methods
(FEM) have demonstrated a strong capability in handling both
irregular geometries and arbitrary inhomogeneity. A finite-el-
ement-based analysis of a complex electromagnetic problem
generally results in a large-scale system matrix. Although the
matrix is sparse, solving it can be a computational challenge
when the problem size is large. A traditional direct solution
is computationally intensive. As yet, no linear complexity has
been reported for FEM-based direct solutions to general elec-
tromagnetic problems. In [1], the optimal operation count of
the direct solution of an FEM matrix was shown to be ,
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where is the matrix dimension. Recent exploration of fast
direct solutions for FEM-based electromagnetic analysis can be
seen in [2], [3], where two-dimensional problems were studied.
State-of-the-art finite-element-based solvers rely on iterative
approaches to solve large-scale matrices. The resultant compu-
tational complexity is , where is the number
of iterations, and is the number of right hand sides. When

and are large, iterative solutions become inefficient.
In addition, the complexity is problem dependent since the
iteration number is, in general, problem dependent.

In this work, we consider the fast direct solution of FEM
based matrices for solving electromagnetic problems. Our so-
lution is built upon the observation that although the inverse of
an FEM-based matrix generally leads to a dense matrix, this ma-
trix can be thought of as “data-sparse,” i.e., it can be specified
by few parameters. There exists a general mathematical frame-
work called the “hierarchical matrix” framework [4]–[7],
which enables a highly compact representation and efficient nu-
merical computation of the dense matrices. To be specific, if
matrix is an off-diagonal block in an matrix which
describes interactions on upper levels in the hierarchy, it can
be written as where is of dimension ,

is of dimension , and denotes the rank of with
and . Storage requirements and matrix-vector

multiplications using -matrices have been shown to be of com-
plexity . Moreover, the inverse of an matrix can
be obtained in complexity. In [14], [17], such an

-matrix based form of the system matrix was used in the inte-
gral equation based methods to solve large-scale electrodynamic
problems involving over one million unknowns. In [14], [15],
the error bound of the -and -matrix-based representation
of an electrodynamic problem was derived for integral equa-
tion based analysis. It was shown that exponential convergence
of the error with respect to the number of interpolation points
can be achieved irrespective of the electric size. In addition, dif-
ferent from static cases in which a constant rank can maintain
the same order of accuracy regardless of problem size, the rank
required by an electrodynamic system for a given accuracy is
a variable with respect to tree level, electric size, admissible
block, and admissibility condition. It is also worth mentioning
that the matrices underlying generic Fast Multiple Algorithms
[18]–[21] are -matrices, as noted in [22], which are a special
class of the matrix.

In the mathematical literature, the existence of an -matrix
approximation was only proved for elliptic partial differential
equations (PDE) [8]. Although the -matrix-based technique
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has been successful in the integral-equation based solution of
Maxwell’s equations, in an FEM-based framework, it has been
mainly used for solving elliptic PDEs such as a Poisson equa-
tion. No work has been reported for the finite-element-based
solution of wave equations. The research challenges here are:
First, one has to prove that there exists an -matrix-based rep-
resentation of the inverse of the FEM-based matrix for elec-
trodynamic problems so that the accuracy of the -based ap-
proach can be controlled; Second, one has to develop a direct
solver that is faster than state-of-the-art direct sparse solvers so
that it is worthwhile to explore an -based fast solution. Third,
one has to demonstrate the accuracy and complexity of this fast
solver by theoretical analysis in addition to numerical experi-
ments since the conclusions drawn from numerical experiments
are often problem dependent.

In [9]–[11], we have published preliminary results on a fast
-inverse-based direct solver for the FEM-based analysis of

electromagnetic problems. The main contributions of this paper
are as follows. First, we theoretically proved the existence of
an -matrix-based representation of the FEM matrix and its
inverse for electrodynamic problems. We realize the fact that
it is difficult to develop such a proof solely from a mathemat-
ical point of view. However, by synthesizing electromagnetic
physics and mathematics, such a proof becomes obvious.
Second, we developed an -matrix-based direct FEM solver
of memory complexity and
time complexity for solving vector wave equations, where
is a small parameter that is adaptively determined based on
accuracy requirements. In this direct solver, we developed both
inverse-based direct solution and LU-decomposition-based
direct solution with accuracy well controlled. In addition,
we incorporated nested dissection [1] to further expedite the

-LU-based solution of vector wave equations. Third, we per-
formed a theoretical analysis of the computational complexity
of the proposed fast direct solver. In addition, we analyzed the
accuracy of the proposed direct solver and show that it is error
controllable. Last but not least, we compared the proposed
direct solver with the state-of-the-art direct FEM solver that
employs the most advanced sparse matrix solution such as
UMFPACK 5.0 [12]. UMFPACK has been adopted by Matlab
for fast sparse matrix solution. It has incorporated almost all
the advanced sparse matrix techniques such as the multifrontal
method and the AMD ordering for solving large-scale sparse
matrices. The proposed solver is shown to outperform the
UMFPACK 5.0 in both matrix decomposition and matrix
solution time without sacrificing accuracy.

The remainder of this paper is organized as follows. In
Section II, the vector FEM-based analysis of general electro-
magnetic problems is outlined. In Section III, the existence
of the -matrix representation of the FEM matrix and its
inverse is proved for electrodynamic problems. In Section IV,
the detailed numerical procedure of the proposed direct solver
is given. In Section V, the complexity and accuracy of the
proposed solver are analyzed. In Section VI, the choice of
simulation parameters is discussed. In Section VII, numerical
results are shown to demonstrate the accuracy and almost linear
complexity of the proposed direct FEM solver. Section VIII
relates to our conclusions.

II. VECTOR FEM-BASED ANALYSIS OF GENERAL

ELECTROMAGNETIC PROBLEMS

Consider the second-order vector wave equation

(1)

subject to boundary conditions:

(2)

(3)

The boundary condition in (3) can be used to truncate the com-
putational domain for an FEM-based analysis, where and
can be frequency and position dependent.

An FEM-based solution to the above boundary value problem
results in a linear system of equations [13]

(4)

where can be written as

(5)

in which

(6)

where denotes the computational domain, and is the vector
basis used to expand unknown . In (6), is known to be a mass
matrix, and is known to be a stiffness matrix. is positive
definite, is semi-positive definite, and the combined system

is, in general, indefinite.
When the problem size is large, solving is a computational

challenge despite its sparsity. In Section III, we show that and
its inverse both can be represented by an matrix, from
which a significant reduction in computational complexity can
be achieved.

III. EXISTENCE OF -MATRIX REPRESENTATION OF THE FEM
MATRIX AND ITS INVERSE FOR ELECTRODYNAMIC PROBLEMS

An matrix is generally associated with an admissibility
condition [6]. To define an admissibility condition, we denote
the whole index set containing the indexes of the basis functions
in the computational domain by , where
is the total number of unknowns. Considering two subsets and

of the , the admissibility condition is defined as

(7)

where is the minimal subset of the space containing the sup-
ports of all basis functions belonging to , is the Eu-
clidean diameter of a set, is the Euclidean distance be-
tween two sets, and is a positive parameter. If subsets and

satisfy (7), they are admissible; otherwise, they are inadmis-
sible.
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Denoting the matrix block formed by and by , if all
the blocks formed by the admissible in can be
represented by a low-rank matrix, is an matrix. In other
words, if possesses the following property

(8)

it is an matrix.
From the above definition of an matrix, it is clear that

the FEM system matrix formulated for an electrodynamic
problem as shown in (5) is exactly an matrix. This is because
when the admissibility condition (7) is satisfied, the subsets
and are geometrically disconnected, and hence the basis func-
tions in these two sets cannot belong to the same element, and
hence the matrix entries in , are all zero. Therefore, the
FEM matrix resulting from the analysis of a general electro-
magnetic problem always has an exact -matrix representation
without involving any approximation.

Next, we prove the inverse of also allows for an -matrix
representation. We develop two proofs. One is based on the gen-
eral solution to the ordinary differential equations; the other is
based on the relationship between a partial differential operator
and an integral operator in the context of electromagnetics. Both
clearly prove the existence of an -matrix representation of the
inverse of the FEM matrix for electrodynamic analysis.

A. Proof Based on the General Solution to the Ordinary
Differential Equations

The FEM-based system of (4) can be rewritten in time domain
as

(9)

Here, for simplicity, we omit the absorbing boundary condition.
We will address it at the end of this subsection.

For an ordinary differential equation with constant coeffi-
cients like (9), from [23]–[25], its solution in frequency domain
can be written directly as

(10)

where is the identity matrix, is a diagonal matrix with its
-th entry being the -th eigenvalue of the following system:

(11)

and is the matrix containing all the eigenvectors . From
(10), it is clear that the field solution is nothing but a linear
combination of all the eigenvectors of (11). The weight of each
eigenvector is determined by , where is
the -th column of , i.e., the -th eigenvector.

Clearly, given a frequency point , and hence , not all
the eigenvectors contribute equally to the final solution. Only
those eigenvectors that have eigenvalues close to have a large
weight, and hence need to be included in the final solution. Fur-
thermore, among these eigenvectors, only those that have a non-
trivial projection to the excitation vector, i.e., a nonzero ,

need to be considered. As a result, given an accuracy require-
ment , any eigenvalue that satisfies the following condition:

(12)

can be ignored with error well controlled. As a result, only a
subset of eigenvectors need to be taken into account when con-
structing the solution of . Thus, (10) can be rewritten as

(13)

where is a subset of , which includes the eigenvectors
that have the largest weights, and contains corresponding
eigenvalues.

From (4) and (13), it is obvious that the inverse of the FEM
matrix can be written as

(14)

in which , .
Hence, the inverse of the FEM matrix is a low rank matrix
with error well controlled. As a result, we prove that the inverse
of the FEM matrix for electrodynamic analysis has an -matrix
representation.

From the proof developed above, it can also be seen clearly
that for a given frequency, the eigenvalues that should be in-
corporated in the field solution may not be the largest eigen-
values of the FEM system. Instead, they are the eigenvalues
that are the closest to the frequency being investigated. Fur-
thermore, when the frequency changes, the number of eigen-
values that should be considered in the final solution may change
also in order to keep the same accuracy. Hence, the rank for
the -based representation of an electrodynamic problem is, in
general, a function of frequency. In addition, even if the fre-
quency being considered is infinity, still there is only a limited
number of eigenvalues that need to be considered. For example,
there is no need to consider the contribution of a DC mode to
the field response at an infinitely large frequency. We only need
to consider those modes having eigenvalues that are close to in-
finity.

The above proof is developed without considering the first-
order term in (5) such as matrix if . Such a first-order
term can originate from either absorbing boundary conditions
or material loss. For an FEM system that has a first-order term,
the general solution to the ordinary differential equations of any
order in [23] is equally applicable, for which a quadratic eigen-
value analysis [25] can be conducted. Such an analysis again
reveals a limited number of modes that can be present in the
field solution for any frequency, given an accuracy requirement.

B. Proof Based on the Relationship Between a Partial
Differential Operator and an Integral Operator

In addition to the proof developed above, we also developed
a proof by using the relationship between a partial differential
operator and an integral operator in the context of electromag-
netics. In the following, we will first use free space as an ex-
ample, and then generalize the proof to inhomogeneous cases.



3700 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 58, NO. 12, DECEMBER 2010

Consider the electric field due to an arbitrary current distri-
bution in free space. The current distribution can always be
decomposed into a group of electric dipoles , where is the
current of the -th element and is the length of the -th current
element. Using the FEM-based method, we solve a system (4)
to obtain , where the right-hand-side vector has the fol-
lowing entries for a normalized

(15)

On the other hand, due to any current distribution can be
evaluated from the following integral:

(16)

where is free-space Green’s function.
For a group of electric dipoles , the

at any space point can be obtained from (16) as

(17)

where is the unit vector tangential to the -th current ele-
ment. The above simply means that is the summation of each
dipole’s contribution.

By sampling (17) at the center point of each edge in a 3-D
finite-element based discretization, and testing (17) by the unit
vector tangential to the edge, we obtain

(18)

where is the same as that in (4), the entries of which are
given in (15), and is a dense matrix having the following ma-
trix elements:

(19)

where is the unit vector tangential to the -th edge, de-
notes the center point of the -th edge, denotes the point
where the -th current element is located. In (18), vector
has the following entries:

(20)

which is the same as the vector in (4).
Comparing (18) to (4), it is clear that the inverse of the FEM

matrix is , the elements of which are given in (19). If we
can prove has an -matrix representation with error well
controlled, also has an -matrix approximation. Such a
proof in fact has already been given in [14], [15], in which we
show that the dense system matrix resulting from the analysis of
an electrodynamic problem can be represented by an -matrix
or an -matrix with error bounded irrespective of the electric

size. Different from static cases in which a constant rank can
maintain the same order of accuracy regardless of problem size,
the rank required by an electrodynamic system for a given ac-
curacy is a variable with respect to electric size, tree level, ad-
missible block, and admissibility condition.

In an inhomogeneous problem, the field due to a group of
electric dipoles can be written as

(21)

where . Thus, (21) can be written as

(22)

where is a matrix. Comparing (22) to (4), it can be seen that

(23)

Since is an -matrix, even if is a full matrix, is
still an -matrix. This can be readily proved as follows. Since

is an -matrix, its admissible blocks can be represented by
where is of dimension , is of dimension

, where . Multiplying a full matrix by still
yields an -matrix with that is of dimension

. As a result, the existence of the -matrix representation
for the inhomogeneous cases is also proved.

IV. FAST DIRECT SOLUTION OF THE FEM SYSTEM MATRIX

Once the existence of the -matrix representation is proved
for and , the -matrix arithmetics can be used to signif-
icantly accelerate the solution of . In our proposed fast direct
solver, we first build a block cluster tree to efficiently store the

-matrix-based representation of , its inverse, as well as ’s
factors. This tree structure is also used to efficiently cap-

ture the hierarchical dependence in the -matrix. We then per-
form fast inverse and LU factorization based on -based repre-
sentation of . To further expedite the -based LU factoriza-
tion, we incorporate nested dissection [1] to reduce the number
of nonzero blocks to be computed. In addition, we develop an
adaptive truncation scheme to systematically control the accu-
racy of -based operations for an accurate analysis of electro-
dynamic problems.

A. Cluster Tree and Block Cluster Tree Construction

We use a block cluster tree to efficiently store the -matrix-
based representation of the FEM system matrix , its inverse,
as well as ’s factors. To construct a block cluster tree,
a cluster tree needs to be built first. For the index set of the
basis functions , we construct a cluster tree

, which is a tree with vertex set and edge set as shown
by the left (right) part of Fig. 1(a). Each vertex in the tree is
called as a cluster. The set of children for a cluster is
denoted by children . The root of the tree is the index set

.
To construct a cluster tree, we start from the full index set of

basis functions . We split the computational domain into two
subdomains. We continue to split until the number of unknowns
in each subdomain is less than or equal to the
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Fig. 1. (a) A block cluster tree. (b) An�-matrix structure.

which is a parameter to control the tree depth. Clusters with
indexes no more than are leaves. The set of leaves of

is denoted by . In Fig. 1(a), the left (right) part is a cluster
tree with and tree depth . The total number of
clusters in this tree is 15.

A block cluster tree is built from two cluster trees
and , and a given admissibility condition. Each block cluster

has the form with clusters and
, and , , being in the same level. In a Galerkin-based

FEM procedure, the testing function is chosen the same as the
basis function. Therefore, the block cluster tree is constructed
between the cluster tree and itself. To build a block cluster
tree , we test blocks level by level starting with the root
clusters of and , and descending in the tree. Given two
clusters and , we check whether the admissibility
condition is satisfied or not. If the two clusters are admissible,
we stop at this level, draw a link between the two clusters as
shown in Fig. 1(a), and do not check their children. If they are
not admissible, we repeat the procedure for all combinations of
the children of and the children of . The construction process
stops when either at least one of and is a leaf or clusters and

satisfy the admissibility condition. This procedure results in
an -matrix structure as shown in Fig. 1(b). Each matrix block
corresponds to a link drawn between and as shown in
Fig. 1(a). Links drawn at the upper level of the tree correspond
to admissible blocks denoted by , while those drawn at the
bottommost level represent inadmissible ones denoted by .
In Fig. 1(b), admissible blocks are represented by shaded blocks.

B. Representation of the FEM System Matrix, its Inverse, and
LU Factors by an Matrix

In an matrix, inadmissible blocks are stored in a full ma-
trix form, namely all the matrix entries are stored without any
approximation. Admissible blocks are stored in a factor-
ized form: , where is a matrix and is
an matrix, with being the rank of the admissible block.

When constructing an -matrix-based representation of the
FEM matrix , all the non-zero matrix entries in are stored
in inadmissible blocks and admissible blocks do not need to
be filled because they are all zero. But we still have to form
a block cluster tree to identify all the admissible blocks at each
tree level because these blocks will be filled by the factorized

and during the process of inverse or LU factorization. The
rank in each admissible block is adaptively determined based
on a required level of accuracy, the detail of which is given in
Section E.

C. Fast Direct Inverse

The procedure of -based inverse is given in [6]. Here, we
outline the algorithm to facilitate complexity and accuracy anal-
ysis to be developed in Section V for the proposed direct solver.

Rewriting the FEM matrix in the following form:

(24)

The inverse of can be done recursively by using (25), shown
at the bottom of the page, where . All
the additions and multiplications in (25) are performed by

-based arithmetics defined in [6] and [7], which is much faster
than conventional matrix additions and multiplications. For ex-
ample, for dense matrices, a formatted addition using -based
arithmetics has complexity, and a formatted multi-
plication has complexity. A pseudo-code for the

-inverse is given in (26), shown at the bottom of the next page.

D. Fast LU Decomposition With Nested Dissection

Since what is to be solved in (4) is instead of ,
and the number of right hand sides is smaller than in many
applications, an LU-factorization-based direct solution is gen-
erally more efficient than an inverse-based direct solution. In
addition, in an LU factorization process, the input matrix can
be overwritten by and factors, thus the memory usage can
be cut by half. In contrast, when computing inverse, a tempo-
rary -matrix is needed as shown in (26), which increases
memory usage.

The proposed LU-based direct solution has three compo-
nents: (1) -based recursive LU factorization; (2) matrix
solution by -based backward and forward substitution; and

(25)
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(3) acceleration by nested dissection. The first two components
have been developed in -matrix arithmetics [6], [7]. We will
brief the first two, and focus on the third component.

1) Recursive LU Factorization: We use an -matrix block
to demonstrate the -LU factorization process, where is

a non-leaf cluster in the cluster tree . Since is a non-leaf,
block is not a leaf block. Hence, can be subdivided
into four sub blocks:

(27)

where and are the children of in the cluster tree .
Assuming can be factorized into and matrices, can

also be written as

(28)

By comparing (27) and (28), it can be seen that the LU factor-
ization can be computed recursively as follows:

-

-

(29)

If is a leaf block, is not subdivided. It is stored in
full matrix format, and factorized by a conventional pivoted LU
factorization.

In Step 2), a matrix equation needs to be
solved, where is a lower triangular matrix. In Step 3),

needs to be solved, where is an upper
triangular matrix. These two are solved by recursive block
forward and backward substitution based on arithmetics.

2) Matrix Solution by Backward and Forward Substitution:
After is factorized as , FEM system
can be solved in two steps: 1) Solve the lower triangular system

; 2) Solve the upper triangular system

. In the first step, lower triangular system is
solved recursively by forward substitution as follows.

If is not a leaf block, is subdivided and the lower
triangular system can be written as

(30)

where and are the children of in the cluster tree . We
can write (30) as

(31)

By comparing both sides of (31), we obtain by:
1) solving from ;
2) solving from .
If is a leaf block, is not subdivided and is solved by

a conventional forward substitution. Note that different from the
construction of -based , solving a lower triangular system

is exact without introducing any approximation.
Solving the upper triangular system can be done in a similar
way.

3) Acceleration by Nested Dissection: Our numerical ex-
periments show that the advantage of the -based LU over the
state-of-the-art sparse factorization such as UMFPACK is not
that obvious since the latter incorporates the most advanced
ordering technique, which almost minimizes the number of
nonzeros to be processed. We hence further accelerate the

-based LU factorization by nested dissection. It is known
that the smaller the number of nonzeros to be processed in an
LU process, the better the computational efficiency. Nested
dissection [1] can be used as an ordering technique to reduce the
number of nonzero blocks to be computed in LU factorization.
In addition, this scheme naturally fits the -based framework
compared to many other ordering techniques. It serves an
efficient approach to construct a block cluster tree.

We divide the computational domain into three parts: two do-
main clusters and which do not interact with each other,
and one interface cluster “I” which interacts with both domain
clusters.

Since the domain clusters and do not have interaction,
their crosstalk entries in the FEM matrix are all zero. If we
order the unknowns in and first and the unknowns in
last, the resultant matrix will have large zero blocks as shown in

(26)
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Fig. 2. (a) A nested dissection based partition. (b) Matrix patterns in LU
factors.

Fig. 2(a). These zero blocks are preserved during the LU factor-
ization as shown in Fig. 2(b), and hence the computation cost of
LU factorization is reduced.

We further partition the domain clusters and into three
parts. This process continues until the number of unknowns
in each cluster is smaller than , or no inter-
face edges can be found to divide the domain. Since the ma-
trices in the non-zero blocks are stored and processed by -ma-
trix techniques in the proposed direct solver, the computational
complexity is significantly reduced compared to a conventional
nested dissection based LU factorization.

E. Adaptive Truncation for Accurate Electrodynamic Analysis

As proved in Section III, the inverse of FEM matrix can
be represented by an matrix. However, which rank to use
in the admissible blocks is unknown beforehand. In addition,
the choice of rank for electrodynamic problems is more com-
plicated compared to static problems. If a constant rank is used
across the tree level of a block cluster tree, accuracy may not be
guaranteed if the constant rank is too small. If the constant rank
is chosen to be very large, the computational efficiency will be
sacrificed since for many admissible blocks, a large rank may
not be necessary. To address this issue, we developed an adap-
tive truncation scheme in the proposed direct solver, i.e., the
rank for each admissible block is determined adaptively based
on a required level of accuracy. The detail is given as follows.

In the original FEM matrix , all the admissible blocks are
zero and hence do not need to be stored. An admissible block
becomes non-zero during the inverse/LU process when adding
the sum of several matrices to this block or adding the product
of two matrices to this block. To give an example, consider

, where ,
and they have the rank and respectively. The di-

rect addition '

has rank . To determine which rank
is necessary, the singular value decomposition of ' is first
performed:

' ' ' ' (32)

where ' is a matrix, ' is a
matrix, and ' is a diagonal matrix with
diagonal entries: ' ' ' .

We then truncate ' as

(33)

where ' , ' , ,
and satisfies

' ' (34)

where is the relative truncation error chosen based on the re-
quired level of accuracy. The adaptive truncation for adding the
product of two matrices to an admissible block can be conducted
in a similar fashion.

Unlike the fixed truncation scheme, the rank here is not
a constant. It is determined by the truncation accuracy of
each admissible block adaptively. In case that the new rank

is larger than the original rank, the storage of and
matrices need to be expanded to accommodate the larger rank.
In addition, the singular value decomposition is performed by
using -based arithmetics, which has a linear complexity of

[6].

V. COMPLEXITY AND ACCURACY ANALYSIS

A. Complexity Analysis

In the following, we give a detailed complexity analysis for
the inverse and LU factorization, which is different from what
is reported in the literature for -based inverse and LU factor-
ization [6]. The latter is based on analogy without accounting
for the actual number of operations. In addition, the proposed
complexity analysis takes electrodynamic problems into con-
sideration.

Before proceeding to the detail, we introduce an important
parameter, sparsity constant , which is used extensively in
the complexity analysis. Defining the number of blocks

associated with a given cluster by

(35)

and that associated with by

(36)

the sparsity constant of is defined as

(37)
Despite a complicated mathematical definition, graphically,
is the maximum number of links that can exist in each tree level
in Fig. 1(a).

1) Inverse Complexity: The procedure -inverse shown in
(26) can be divided into two sub procedures to analyze its com-
plexity: 1) H-inverse_M, which only performs -based multi-
plications; 2) H-inverse_A, which only performs -based addi-
tions.

In sub-procedure H-inverse_M, each leaf block cluster
is computed twice. Each computation is performed by

(38)
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where {
and at least one of the two is a leaf}. represents the

parent block clusters of cluster in level . If is a leaf
block, it is either an admissible leaf or an inadmissible leaf. If

is admissible, its corresponding matrix block is stored
as , where is a matrix and is a

matrix. The product of and block cluster is an
admissible matrix block , where is computed
by multiplying by block cluster , which involves

-matrix-vector multiplications and hence has the complexity
of , where

(39)

If is inadmissible, its matrix size is at most .
So the multiplication with block cluster involves
at most -matrix-vector multiplications and has

complexity.
If the block cluster tree is balanced, in level , can
be approximated by . Therefore, overall, the complexity
of multiplying by is

(40)
The complexity of Hinverse_M can then be obtained by sum-
ming the cost for multiplying and in each level:

(41)

where denotes the set of leaves in block cluster tree
in level . Since the number of blocks satisfying
for certain cluster is smaller than , and there are at most

block clusters in level , we have

(42)

As for the complexity of H-inverse_A, since the complexity
of formatted addition is [6], the complexity

of Hinverse_A can be obtained by adding the cost of formatted
addition level by level as the following:

(43)

Therefore, the total complexity of inverse is

(44)

2) LU Factorization and Solution Complexity: As can be
seen from (29), the LU factorization of is computed in four
steps. In these four steps, , , and are computed
once, is computed twice. Since in inverse, each block is
computed twice, the complexity of -based LU factorization is
bounded by -based-inverse, which is .

After obtaining the -LU factorization, the FEM system is
solved by the algorithm outlined in Section IV-D2. Since the ma-
trix entries are stored in the leaf block clusters, matrix solving
is done in the leaf block clusters similar to -matrix based ma-
trix-vector multiplication. If the diagonal leaf block is in-
admissible, full matrix forward and backward substitutions are
performed to solve , which requires opera-
tions. If the off-diagonal leaf block is inadmissible, full ma-
trix-vector multiplication is performed, which requires
operations. If the off-diagonal leaf block is admissible, the
matrix is stored in a factorized form: , which re-
quires operations. The total complexity of matrix
solving is hence

(45)

where denotes all the inadmissible leaves, and denotes
all the admissible leaves.

B. Accuracy Analysis

From the proof developed in Section III, there exists an
-matrix-based representation of the inverse of the FEM ma-
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trix . In such a representation, which block is admissible and
which block is inadmissible are determined by an admissibility
condition. Rigorously speaking, this admissibility condition
should be determined based on . However, since is
unknown, we determine it based on . Apparently, this will
induce error. However, as analyzed in Section III, the ’s in-
verse can be mapped to the dense matrix formed for an integral
operator. For this dense matrix, the admissibility condition used
to construct an -matrix representation has the same form as
(7) as shown in [14]–[16]. Thus, the -matrix structure, i.e.,
which block can have a potential low-rank approximation and
which block is a full matrix, is formed correctly for . In
addition, the accuracy of the admissibility condition (7) can be
controlled by .

In the inverse and LU factorization process, the rank of each
admissible block is adaptively determined based on the accuracy
requirement as shown in Section IV-E. If the rank is determined
to be a full rank based on the adaptive truncation scheme, then
a full rank will be used. Thus, the low-rank approximation for
each admissible block is also error controllable through param-
eter used in the adaptive truncation scheme.

Based on the aforementioned two facts, the error of the pro-
posed direct solver is controllable.

VI. CHOICE OF SIMULATION PARAMETERS

There are only three parameters to choose in the proposed di-
rect solver: in (7), (leafsize), and in (34) for adaptively
determining the rank. The smaller is, the better the accuracy.
However, the computation will become inefficient if is too
small. For all the electrodynamic simulations conducted in this
work, we choose . The parameter can be chosen based on
a required level of accuracy. For example, can be set to
if 0.01% error is required. As for leafsize , if it is chosen to
be too large, on one hand, the accuracy becomes better; on the
other hand, larger full matrix blocks will be formed, and hence
computation becomes slow. Therefore, we determine the leaf-
size by balancing CPU time and error. In the simulation
conducted in this work, is in the range of (10, 50).

VII. NUMERICAL RESULTS

To demonstrate the accuracy and almost linear complexity of
the proposed direct FEM solver, we simulated a number of static
and electrodynamic examples from small unknowns to over one
million unknowns, from small electric sizes to more than sixty
wavelengths.

A. Shielded Bus Structure

A shielded microstrip line [13, pp. 115-116] was first sim-
ulated to demonstrate the feasibility of the proposed solver in
static electromagnetic applications. Node-based triangular basis
functions were used. The proposed direct inverse was used to
simulate this example. The simulation parameters were chosen
as and . A fixed rank was used for
such a static simulation. To test the large-scale modeling capa-
bility of the proposed direct solver, we increased the size of the
original problem by adding more lines parallel to the original

Fig. 3. Performance of the proposed direct inverse in simulating a shielded bus
structure. (a) CPU time for computing� . (b) Storage of� . (c) Relative
error of the inverse.

microstrip line, resulting in 23 K unknowns to 0.8 million un-
knowns. In Fig. 3(a) and (b), we plot the CPU time and storage
of the proposed direct FEM solver with respect to the number of
unknowns. The time complexity and storage complexity show
an excellent agreement with our theoretical prediction repre-
sented by the dashed line, which shows a memory complexity
of , and a time complexity of . Mean-
while, good accuracy is achieved in the entire range as can be
seen from Fig. 3(c). The relative error in Fig. 3(c) is measured
by the inverse error , which is less than
0.5% in the entire range.

B. Waveguide Discontinuity

The validity of the proposed solver in solving electrodynamic
problems was first demonstrated by a dielectric-loaded wave-
guide problem shown in Fig. 4(a) ([13, p. 202]). The rectangular



3706 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 58, NO. 12, DECEMBER 2010

Fig. 4. (a) Illustration of the dielectric-loaded waveguide. (b) �� � simulated
by traditional and proposed solvers.

waveguide was loaded by a dielectric obstacle with .
The computational domain was discretized by prism elements.
The vector prism basis functions [13] were used to expand the
unknown in each element. The mesh size was chosen to be
1/25 of the wavelength. The proposed direct inverse was used to
simulate this example. The simulation parameters were chosen
as and . The rank varied from 4 to 6.
In Fig. 4(b), we plotted computed using the proposed di-
rect solver with respect to electric size. An excellent agreement
with the reference result [13] computed using a traditional FEM
solver is observed.

To test the large-scale modeling capability of the proposed
direct inverse, we increased the size of the original problem by
increasing the length of the waveguide as well as the loaded di-
electric rod. The length was increased from 4.8 b to 256.8 b, re-
sulting in an electric size from wavelengths to wave-
lengths. The number of unknowns increased from 5.63 K to 0.3
M. In Fig. 5, the CPU time and memory cost are plotted as a
function of the number of unknowns. Once again, the time com-
plexity and storage complexity of the proposed solver agree very
well with the theoretical prediction which is plotted in dashed
line. Moreover, a constant order of accuracy is achieved in the
entire range. The relative inverse error
is less than 1.5% in the entire range. Note that in our simula-
tion, to test the general capability of the proposed solver, we did
not take advantage of the fact that the unknowns are increased
only along one dimension in this typical example. Otherwise,
the complexity can be further reduced to linear [26].

We also used UMFPACK 5.0 [12], a state-of-the-art sparse
matrix solver that incorporates most advanced multifrontal and

Fig. 5. Performance of the proposed direct inverse in simulating a dielectric-
loaded waveguide from 1.2 wavelengths to 64 wavelengths. (a) CPU time for
computing� . (b) Storage of� . (c) Inverse error.

ordering techniques, to simulate the 0.3 M unknown problem.
It takes UMFPACK to solve one column of the inverse
of the FEM matrix, and the time to compute the entire inverse
is approximately . If we store all the
computed columns of the inverse matrix, UMFPACK soon fails
due to the lack of memory. In contrast, the proposed solver only
takes 26 Ks to compute the entire inverse with relative error no
greater than 1.5%, and memory usage no greater than 15 GB.

C. Inductor Array

A large-scale package inductor array was simulated to
demonstrate the accuracy and efficiency of the proposed

-LU-based direct solver accelerated by nested dissection.
The geometry and material data of each inductor is shown in
Fig. 6(a), and a 7 by 7 inductor array is shown in Fig. 6(b).
We simulated a series of inductor arrays from a 2 by 2 array
to a 7 by 7 array, the number of unknowns of which ranged
from 117,287 to 1,415,127. The simulation parameters were
chosen as and . The adaptive truncation with

was used to adaptively determine the rank for each
admissible block. In Table I, we gave the rank distribution with
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Fig. 6. Illustration of an inductor array. (a) Geometrical and material detail of one inductor. (b) A 7� 7 inductor array.

TABLE I
RANK DISTRIBUTION ACROSS THE TREE LEVEL FOR A 7� 7

INDUCTOR ARRAY THAT HAS 1,415,127 UNKNOWNS

respect to tree level observed in the simulation of the 7 7
inductor example that involved more than 1 million unknowns.
As can be seen from Table I, the rank fluctuates across all the
tree levels. In Table I, the smaller the tree level, the closer it is to
the root cluster, which is at level 0. The minimum rank denotes
the smallest rank present in the admissible block in a tree level;
and the maximum rank denotes the largest rank present in the
admissible block in the same level. It can be seen that even in
the same tree level, the required rank for each admissible block
is different to achieve the same level of accuracy. However,
overall, the rank is a small number compared to the number
of unknowns. We also compared the rank distribution between
different problem sizes. For example, for a 3 3 inductor array,
with the same , the maximum rank was 83, which appeared at
level 11. The minimum rank was 1.

Fig. 7. Performance of the proposed LU-based direct solver for simulating an
inductor array. (a) CPU time for LU factorization. (b) CPU time for solving one
right hand side. (c) Storage. (d) Accuracy.

In Fig. 7(a), we plot LU factorization time cost by the pro-
posed direct solver, and that cost by UMFPACK 5.0 with respect
to the number of unknowns. The proposed solver demonstrates a
complexity of , which agrees very well with theo-
retical analysis, whereas UMFPACK has a much higher com-
plexity. In Fig. 7(b), we plot the matrix solution time of the
proposed direct solver, and that of UMFPACK for one right
hand side. Once again, the proposed direct solver outperforms
UMFPACK. In addition, the proposed direct solver is shown
to have an complexity in matrix solution (back-
ward and forward substitution). In Fig. 7(c), we plot the storage
requirement of the proposed direct solver and that of UMF-
PACK in simulating this example. Even though the storage of
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the proposed solver is shown to be a little bit higher than that
of UMFPACK, the complexity of the proposed solver is lower,
and hence for larger number of unknowns, the proposed solver
will outperform UMFPACK in storage. In Fig. 7(d), we plot the
relative error of the proposed -LU-based direct solver accel-
erated by nested dissection. Good accuracy is observed in the
entire range.

VIII. CONCLUSIONS

In this work we introduced the matrix as a mathematical
framework to develop fast solvers for direct FEM-based anal-
ysis of electromagnetic problems. We proved the existence of
the -matrix-based representation of the FEM matrix and its in-
verse for electrodynamic problems, thus laid a theoretical foun-
dation for developing error-controlled -based solutions for
fast direct FEM-based analysis of electrodynamic problems.

Both inverse-and LU-based direct solutions were devel-
oped. Accuracy was controlled by adaptively determining the
rank for each admissible block based on required accu-
racy. The computation and storage complexity were shown to
be , and respectively by both
theoretical analysis and numerical experiments. Since is a
small parameter that is adaptively determined by accuracy
requirement, we have observed time complexity
and memory complexity with a constant order of
accuracy across a wide range of unknowns and electric sizes.
The LU-based solution was further accelerated by nested dis-
section based ordering. A comparison with the state-of-the-art
direct FEM solution that employs the most advanced sparse
matrix solver such as UMFPACK has shown a clear advantage
of the proposed solver. Moreover, existing sparse solvers such
as UMFPACK cannot afford to computing a direct inverse
because storing each column of the inverse is not feasible for
large matrices, whereas the proposed solver can store the dense
inverse in units.

The proposed direct FEM solver of almost linear complexity
and controlled accuracy is applicable to general problems
involving arbitrarily-shaped geometries and non-uniform ma-
terials. It has been successfully applied to both electrostatic
and electrodynamic problems involving millions of unknowns.
More electrodynamic applications will be explored in the
future.
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