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Abstract—An effective method is developed in this work to ex-
tend the validity of a full-wave finite-element-based solution down
to dc for general 3-D problems. In this method, we accurately de-
compose the Maxwell’s system at low frequencies into two subsys-
tems in the framework of a full-wave-based solution. One has an
analytical frequency dependence, whereas the other can be solved
at frequencies as low as dc. Thus, we bypass the numerical diffi-
culty of solving a highly ill-conditioned and even singular system
at low frequencies. In addition, we provide a theoretical analysis on
the conditioning of the matrices of the original coupled Maxwell’s
system and the decomposed system. We show that the decomposed
system is well conditioned, and also positive definite at dc. The
validity and accuracy of the proposed method have been demon-
strated by extraction of state-of-the-art on-chip integrated circuits
at frequencies as low as dc.

The proposed method bypasses the need for switching
basis functions. Furthermore, it avoids stitching static- and
full-wave-based solvers. The same system matrix is used across
all the frequencies from high to low frequencies. Hence, the
proposed method can be incorporated into any existing full-wave
finite-element-based computer-aided design tool with great ease
to completely remove the low-frequency breakdown problem.

Index Terms—Electromagnetic analysis, finite-element methods
(FEMs), full-wave analysis, integrated circuits (ICs), low-fre-
quency breakdown.

I. INTRODUCTION

T HERE EXISTS a wide range of applications in which
frequencies ranging from dc to high frequencies are

involved. For example, the design of high-speed digital, analog,
mixed-signal, and RF integrated circuits (ICs) from dc to tens
and hundreds of gigahertz frequencies. In such a broad band of
frequencies, static-based modeling and simulation tools have
fundamental limits in capturing high-frequency effects accu-
rately. In contrast, full-wave-based modeling and simulation
tools can capture high-frequency effects accurately. However,
they generally break down at low frequencies [1]–[10]. In
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order to perform circuit design in a broad band of frequencies,
a natural solution is to stitch a static-based computer-aided
design (CAD) tool with a full-wave-based CAD tool. How-
ever, this solution is cumbersome because one has to develop
and accommodate both tools and switch between these two
when necessary. The other popular solution is to change
basis functions. For example, the loop-tree and loop-star basis
functions [1], [7] were used to achieve a natural Helmholtz
decomposition of the current to overcome the low-frequency
breakdown problem in integral-equation-based methods. As
another example, the tree–cotree splitting scheme [4], [5] was
used to provide an approximate Helmholtz decomposition for
edge elements in finite-element-based methods. The edge basis
functions were used on the cotree edges, whereas the scalar
basis functions were incorporated on the free nodes associated
with the tree edges to represent the gradient field. Again,
this solution is not convenient since one has to change basis
functions to extend the applicability of a full-wave solver to
low frequencies.

More important, existing tree–cotree splitting based solu-
tions of vector wave equations cannot be used to fundamentally
solve the low-frequency breakdown problem. We will soon
establish in the sequel that the system matrix resulting from the
tree–cotree splitting for solving vector wave equations remains
singular at low frequencies, although the tree–cotree splitting
scheme was successful in eliminating the null space of the curl
operator in magnetostatic analysis [13]. As yet, no results have
been reported at frequencies as low as dc for on-chip appli-
cations in which the physical dimensions could be less than
1 m. For example, it was shown that a tree–cotree splitting
scheme can be used to extend a full-wave finite-element method
(FEM)-based solution to 1 MHz for typical on-chip dimensions
[5]. However, for frequencies lower than 1 MHz, extrapolation
techniques are required.

In this work, we consider the following two questions.
1) Whether we switch basis functions or we switch solvers,
the system matrix has to be reformulated. The resultant com-
putational overhead is nontrivial. Can we extend the validity
of a full-wave FEM-based solver to low frequencies without
changing the system matrix? If this can be done, we can,
with great ease, fix the low-frequency breakdown problem in
existing full-wave FEM-based CAD tools. 2) Can we extend
the validity of a full-wave FEM-based solver to frequencies as
low as dc? In other words, can we completely eliminate the
low-frequency breakdown problem? The answers to these two
questions not only can be used to fundamentally overcome the
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low-frequency breakdown problem, but also can be used to de-
velop unconditionally stable time-domain numerical schemes
because the use of a large time step suggests that frequencies
to be solved are low.

In [10], we developed an FEM-based solution that addressed
both questions in the framework of a 2.5-D eigenvalue-based
FEM method for the broadband modeling of on-chip inter-
connects. In this paper, we propose an effective solution to
eliminate the low-frequency breakdown problem in a 3-D
FEM-based solution of vector wave equations. This solution
addresses the two questions raised above. It uses the same
system matrix across all frequencies. Meanwhile, it is valid at
frequencies as low as dc. In addition, we provide a theoretical
analysis on the root cause of the low-frequency breakdown
problem observed in the solution of vector wave equations, and
the reason why this problem is extremely severe in the modeling
of very large scale integrated (VLSI) circuits. We show that
existing tree–cotree splitting based solutions cannot be used to
completely solve the low-frequency breakdown problem for
vector wave equations. In addition, a pure mathematics-based
matrix scaling technique cannot be used to remove the low-fre-
quency breakdown problem either because physics dictates
that the eigenvalue spectrum present in a full-wave FEM-based
analysis of ICs is ultra large. We thus develop a method that
can bypass the numerical difficulty of solving a highly ill-con-
ditioned system. This method is developed by decomposing
the Maxwell’s coupled system into two subsystems at low
frequencies in the framework of a full-wave based solution.
One system has an analytical frequency dependence, while the
other has a well-conditioned matrix down to dc. In addition,
the existence of the dc solution in the proposed method is also
proved. Our proposed approach constitutes a unified finite-el-
ement solution because across all the frequencies, we use the
same system matrix. With that, we are able to incorporate the
proposed solution into any existing FEM solver to remove the
low-frequency problem with great ease.

II. LOW-FREQUENCY BREAKDOWN PROBLEM

A. 3-D Full-Wave Finite-Element-Based Solution

Consider the second-order vector wave equation subject to a
certain boundary condition

(1)

where is relative permeability, is relative permittivity, is
conductivity, is angular frequency, is the speed of light, and

represents a current source. When discretizing (1), the con-
ducting region in the computational domain is also discretized
in order to model fields inside conductors accurately. This is
especially important at low frequencies because conductors be-
come transparent to fields due to large skin depth.

By expanding the unknown using vector basis function
as

(2)

Fig. 1. Low-frequency breakdown observed in the modeling of on-chip cir-
cuits.

a finite-element-based analysis of (1) yields the following ma-
trix equation

(3)

If the first-order absorbing boundary condition is used to trun-
cate the computational domain, and are assembled from
their elemental counterparts as

(4)

In a full-wave analysis, a commonly used vector basis function
is edge element [11]. We used edge basis functions in a trian-
gular prism element for all the simulations conducted in this
work.

It was shown by our numerical experiments that, in general,
the solution of (3) breaks down at tens of megahertz in typical
on-chip problems, the electric size of which can be smaller than
10 wavelengths. As an example, consider a short single wire
of 1- m dimension embedded in an inhomogeneous stack. The
magnitude of reflection coefficient is theoretically predicted
to be very close to zero at low frequencies. However, as can be
seen from Fig. 1, obtained from an FEM solution is wrong
at low frequencies. In this example, the conductor loss inside
the conducting wire is significant. As another example, which is
lossless, consider a 1 m 1 m 1 m parallel-plate structure
made of perfect conductors. In Fig. 2(a), we plot the analytical
solution of ’s magnitude at each edge in the computational
domain at 10 kHz. In Fig. 2(b), we plot ’s magnitude at each
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Fig. 2. Magnitude of the electric field between two parallel plates made of perfect conductors. (a) Analytical result. (b) Numerical result, which breaks down.

edge obtained by numerically solving (3) at 10 kHz. Clearly,
the FEM solution breaks down. The low-frequency breakdown
problem is analyzed in Section II-B.

B. Analysis of Low-Frequency Breakdown Problem

Matrix in (3) can be written as

(5)

where

(6)

1) On the Conditioning of the System Matrix: To understand
the low-frequency breakdown problem, we first consider a loss-
less system

(7)

The eigenvalue distribution of (7) can be analyzed via the fol-
lowing generalized eigenvalue problem

(8)

Since is symmetric semipositive definite and is symmetric
positive definite, the eigenvalues of (8) are nonnegative real
numbers. They are located on the real axis, as shown in Fig. 3(a).
Among these eigenvalues, some are zero because of the null
space of [3]. The remaining eigenvalues correspond to the res-
onant frequencies of the 3-D structure being simulated. For IC

Fig. 3. Illustration of the eigenvalue distribution. (a) Eigenvalues of (8).
(b) Eigenvalue distribution related to � � � �.

problems, except for the eigenvalues associated with the domi-
nant gradient-type modes, these eigenvalues are extremely large
because the geometrical dimensions of on-chip circuits are very
small.

Denoting the eigenvalues of (8) by , and
the corresponding eigenvectors by , let

. Since are orthogonal, we ob-
tain

...
. . .

... (9)
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which can be used to analyze the condition number of (7).
From (9), it can be seen that the eigenspace of (8) is shifted to

the left by , as illustrated in Fig. 3(b). All the zero eigenvalues
are shifted to the left plane, while the nonzero ones remain in the
right plane since the considered here are small, denoting the
maximum eigenvalue of (8) by . The condition number of
(9) is

(10)

which is very large since is tens of orders of magnitude
larger than . Take a typical IC structure for example, the con-
dition number can be as large as 10 at 1 Hz. Moreover, as
the frequency decreases, the condition number increases. As a
result, the full-wave-based system (7) becomes highly ill con-
ditioned at low frequencies. At dc, the system even becomes
singular.

In addition, because of numerical errors, the eigenvalues of
(8) due to the null space of are not exactly zeros. Instead,
they are clustered around the origin point in the complex plane.
The same is true for gradient-type modes that are physical. This
problem may not even exist in microwave or millimeter-wave
circuits. However, it is very severe in on-chip VLSI circuits be-
cause the eigenvalues of (8) spread over a much wider spec-
trum compared to those in microwave or millimeter-wave cir-
cuits. Thus, the eigenvalues, which theoretically should be zero,
cannot be obtained as zero numerically. In fact, our numerical
experiments show significant values. This is understandable be-
cause computers have finite precision. If there exists an eigen-
value that is as large as 10 , it is very difficult to find zero
eigenvalues correctly. When frequency is high, the inexact zero
eigenvalues do not induce much error because is still ap-
proximately equal to even if is not exactly zero. However,
at low frequencies, the error can be very significant. The value
of can even be overwhelmed by the inaccurate when is
small. As a result, the frequency dependence of the electric field
extracted out of (7) can be wrong at low frequencies. Moreover,
if hits one of the inexact eigenvalues clustered around the
origin point, the system can even become singular. The low-fre-
quency breakdown problem observed in a lossy system shown
in (5) can also be understood by a similar analysis.

2) On the Tree–Cotree Splitting Based Solutions of Vector
Wave Equations: The tree–cotree splitting has been used to
solve the low-frequency breakdown problem in a finite-element-
based solution of vector wave equations. However, in the fol-
lowing, we show that existing techniques based on tree–cotree
splitting cannot be used to completely solve the low-frequency
breakdown problem, although it has been used to successfully
eliminate the null space of the curl operator for magnetostatic
applications [13].

Consider a magnetostatic problem

(11)

a finite-element-based analysis of (11) results in the following
matrix system:

(12)

where subscripts and denote the quantities associated with
a cotree and tree, respectively, and is the same as shown in
(6). It has been shown that the null space of is related to the
tree edges in a mesh. By arbitrarily setting the value of on
the tree edges, (12) is reduced to the following system:

(13)

where is symmetric positive definite. Therefore, for mag-
netostatic problems, the tree–cotree splitting successfully con-
verts a singular matrix to a matrix that is solvable.

In existing solutions of vector wave equations based on
tree–cotree splitting, the edge basis functions are used on the
cotree edges. In addition, the scalar basis functions are used
on the free nodes associated with tree edges to represent the
gradient field. The resultant system matrix is

(14)
where , , and are the same as those in (6), , , ,
and are different because the gradient basis function is em-
ployed on the free nodes. Similar to the magnetostatic case, the
sub-matrix is invertible. However, different from the mag-
netostatic case, the system cannot be reduced to a smaller one
that only includes the part. Moreover, when frequency is
close to zero, only the term involving the curl operator is left
while all the other terms vanish because they are all frequency
dependent. As a result, even though the tree–cotree gauge is in-
troduced to eliminate the null space of a curl operator, the null
space still exists in the portion of the matrix at low frequen-
cies. In addition, different from that in magnetostatic cases, the
upper left block of the system shown in (14) is now a combina-
tion of , , and matrices. Although it will not become ill
conditioned at low frequencies because is solvable now,
the computed frequency dependence is, in fact, wrong due to
the ignorance of the frequency dependent terms resulting from
finite machine precision. Therefore, current tree–cotree split-
ting based methods have not fundamentally solved the low-fre-
quency breakdown problem for vector wave equations.

Moreover, the mathematics-based matrix-condition-im-
proving techniques cannot be used to fundamentally solve
the low-frequency breakdown problem either. This is because
the large spectrum of (8) is due to physical reasons instead
of numerical reasons. The physical resonant modes of an IC
structure determine the largest eigenvalue of the FEM system,
which is very large because of the m- and m-level geomet-
rical dimensions of an on-chip circuit, whereas the null space
of or the physical gradient field determines the smallest one,
which is theoretically zero. As an example, we employed one
of the most advanced scaling techniques [12] and found that
it can only extend the full-wave-based solution to a frequency
around 1 MHz.

In the following, we show an approach that can efficiently
and effectively bypass the difficulty of solving an ill-condi-
tioned system at low frequencies. Meanwhile, this approach can
make the traditional full-wave FEM-based solution applicable
to dc. Applications to on-chip problems of 1- m dimensions
have shown a success at frequencies as low as 0 Hz.
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III. PROPOSED METHOD FOR ELIMINATING THE

LOW-FREQUENCY BREAKDOWN PROBLEM

We first elaborate a solution for problems that do not involve
conductor loss, i.e., problems in which conductors are treated as
perfect electric conductors. We then show how to handle prob-
lems that involve conductor loss, i.e., problems in which fields
penetrate into conductors. In fact, when frequency is low, we
have to consider the nonideality of conductors because the skin
depth can be larger than the conductor dimension. As observed
in on-chip VLSI circuits, conductors are transparent to fields. In
this section, we also give a detailed analysis on the conditioning
of the system matrix resulting from the proposed method.

A. Cases Without Conductor Loss

When there is no conductor loss, there is no in (5). We
consider a system shown in (7). At low frequencies where a
full-wave solution breaks down, static solvers have been shown
to produce accurate results. This suggests that at these frequen-
cies, and , are very well decoupled. Hence, for a problem
that only involves perfect conductors, given a current source ex-
citation (the most commonly used excitation in an FEM-based
analysis of circuits), the field satisfies the following two equa-
tions:

(15)

From (15), it is clear that should scale with frequency
as given a constant current source excitation. The
voltage thereby should scale with frequency as . The
resultant voltage–current relationship suggests that a lossless
low-frequency system that has perfect conductors is an effec-
tive capacitor, the capacitance of which does not change with
frequency. At dc, the entire system that is external to the perfect
conductor becomes an open circuit.

With the frequency dependence of the field solution analyti-
cally derived, we bypass the need for solving a highly ill-condi-
tioned system (7) at low frequencies. Thus, the low-frequency
breakdown problem can be readily overcome without the need
of any computation. The procedure is as follows. Once the full-
wave solution breaks down, we record the field solution at
the frequency that is a little bit higher than the breakdown fre-
quency. It is clear that is still valid at this frequency. We call
this frequency the reference frequency. Denoting it by and
the corresponding by , we can accurately obtain at any
lower frequency by using the following scaling:

(16)

By doing so, we are able to accurately obtain the solution of
the full-wave FEM-based system at low frequencies without
switching basis functions or switching to static formulations.

B. Cases With Conductor Loss

The frequency dependence of the electric field in a lossless
system has an analytical expression. To take advantage of that,
for cases with conductor loss, we order unknowns inside con-

Fig. 4. Circuit representation of an FEM system shown in (5).

ductors and those outside separately, yielding a system matrix
as follows:

(17)

where denotes field unknowns inside conductors, denotes
those outside conductors; and is the excitation placed outside
conductors. Here, the excitation of is not considered because
in a full-wave FEM-based analysis of circuits, a current source
excitation is generally launched from the ground to the port that
is excited, and hence, excitation only exists in . It is clear that

in (17) is a lossless system.
Equation (17) constitutes a rigorous discretization of coupled

Maxwell’s equations. At low frequencies where a full-wave so-
lution breaks down, and are very well decoupled. There-
fore, in (17), if we set conduction current to be zero, we can
solve for only because the source for , which is the conduc-
tion current, is set to zero. If we do not enforce the condition that
the conduction current is zero, we can solve for . The final so-
lution of (17) can then be obtained by combining and .

For clarity, we use a circuit interpretation of (5) to present the
proposed solution of (17) at low frequencies. The FEM-based
system (5) can be directly mapped to a circuit shown in Fig. 4.
The second-order term related to frequency in (5) is associated
with capacitance , the first-order term is associated with re-
sistance , whereas the constant term is associated with induc-
tance . In Fig. 4, denotes the conduction current, which can
be evaluated from in (17), whereas denotes the displace-
ment current.

In general, the effective , , and shown in the figure are
frequency dependent. However, at low frequencies, is fre-
quency independent. The proof is given below. From Fig. 4,
can be obtained from the resultant voltage–current relationship
by setting the conduction current to be zero. Since the conduc-
tion current density is , when the conduction current is zero,
the over the conducting region is also zero, and hence, the
dielectric region is subject to an equivalent perfect electric con-
ductor boundary condition. In such a lossless system, based on
the analysis given in Section III-A, at low frequencies, since
and are decoupled, given a constant current, the electric field,
and hence, the voltage should scale with frequency as ,
as can be seen from (15). The resultant voltage–current relation-
ship dictates a capacitance that does not change with frequency.

As a result, by setting conduction current in (17) to be zero,
we can solve for given a current, from which the dielectric re-
gion external to the conductors, i.e., the network, can be char-
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Fig. 5. Illustration of the eigenvalue distribution of the system matrix inside
conductors. (a) Eigenvalue distribution of (21). (b) Up-shifted spectrum of (20).

acterized. This characterization can be done at one frequency
and used throughout the low-frequency range since has no
frequency dependence. The detail is given in Section III-B.1.

On the other hand, if we supply a voltage to the network,
we can solve for , from which the conducting region, i.e., the

network, can be characterized. Note that different from ,
are, in general, frequency dependent due to skin effects.

Hence, needs to be numerically solved at each frequency.
The detail of this step is given in the following Section III-B.2.

After subject to is solved, and the subject to a
voltage source excitation is solved, we can combine the resultant

and to obtain the -parameters of the entire circuit, the
detail of which is described in Section III-B.3.

From the aforementioned analysis, it can be seen that the
coupled Maxwell’s system involving conductor loss can be de-
composed into two subsystems at low frequencies. One is the
system outside conductors subject to perfect electric conducting
boundary condition. This system has an analytical frequency de-
pendence based on the analysis given in Section III-A. The other
is the system inside conductors, which is in (17). We will
show that this system is well conditioned even at dc in this sec-
tion and Section III-C. Thus, we bypass the numerical difficulty
of solving the highly ill-conditioned and even singular system
(5) at low frequencies.

1) Solving for Subject to : To characterize the
system external to conductors, we set conduction current to be
zero, and hence, . This is because the conduction current
density is nothing but . As a result, (17) is reduced to

(18)

Fig. 6. Arbitrary � -port system.

Fig. 7. Mesh with element 1 in the conducting region, and the other three ele-
ments in the dielectric region.

Clearly, it is a lossless system. The solution we have developed
in Section III-A to solve the low-frequency breakdown problem
for lossless cases can be directly used here to solve (18) at any
low frequency. If the circuit parameter instead of is of in-
terest, once the full-wave solution breaks down, we record the
field solution at the frequency that is a little bit higher than
the breakdown frequency, i.e., , and use the capacitance ex-
tracted therein throughout the frequencies lower than .

2) Solving for : is solved from the first equation in (17)

(19)

where serves as a voltage to excite the current inside conduc-
tors. Based on the analysis given in [17], such a voltage source
excitation can be modeled as a gradient field. A natural and
convenient choice of is , i.e., the real part of
solved from (17) at the reference frequency . Since at
and high frequencies current sources are generally used to per-
form a full-wave FEM-based analysis, the is nothing
but a voltage distribution over the resistance network of the con-
ductors. Hence, it is a gradient field that serves as an effective
excitation of (19).

Equation (19) can be solved at any low frequency because
is a well-conditioned matrix. The proof is given as follows.

Since is formed inside conductors, it has the following
form:

(20)

The term associated with is absent because inside conductors,
the displacement current can be ignored compared to conduc-
tion current.
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Fig. 8. �-parameters of an on-chip interconnect structure simulated by the proposed solution. (Left column: �-parameters in the entire band (frequency unit:
gigahertz); right column: �-parameters at low frequencies (frequency unit: hertz).)

The eigenvalue distribution of (20) can be analyzed by con-
sidering the following eigenvalue problem:

(21)

Since is symmetric positive definite and is at least semi-
positive definite ( can be made positive definite in the pro-
posed solution, which is to be elaborated upon in Section III-C),
the eigenvalues of (21) are nonnegative, as shown in Fig. 5(a).
Similar to the analysis given in (9), when considering the system
of , we superpose by . Therefore, the eigen-
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Fig. 9. Geometry of a 3-D spiral inductor (the perfect electric conductor is
denoted as PEC).

values are shifted upward by , as shown in Fig. 5(b). As can
be seen, only a small shift in Fig. 5 can move the origin out of
the eigenspace of . In addition, the spectrum ra-
dius of (21) is approximately 10 smaller than that of (7) for
good conductors because is proportional to conductivity ,
whereas is proportional to permittivity . For typical on-chip
problems, the spectrum radius shown in Fig. 5 can be as small
as 10 . Hence, the matrix can be solved at low frequencies.
In addition, in the proposed solution, can be made positive
definite, and thereby solvable at dc. The detailed explanation is
given in Section III-C.

3) -Parameter Extraction: Next we show how to combine
and to obtain circuit parameters such as -parameters of

a circuit network. Shown in Fig. 6 is a -port system. To extract
-parameters, both open- and short-circuit port conditions can

be used. In the following, the open-circuit one is used for illus-
tration.

With the open-circuit port condition, for a -port system, we
have right-hand sides with the FEM system matrix re-
maining unchanged. If we know (the voltage at port ) and

(the current at port ) with for each excitation
(right-hand side), we can obtain -parameters of the -port net-
work by solving

(22)

where denotes the reference impedance (An industry stan-
dard is 50 ). Since there are excitations, there are
rows of equations in (22), the solution of which is .

At high frequencies where the full-wave solution does not
break down, the port voltage can be readily
obtained from the field outside conductors by evaluating a line
integral from the port to the ground

(23)

Assuming that the th port is excited, the port current is
known from the excitation. At the other ports, is zero since
other ports are left open, i.e.,

(24)

At low frequencies, the voltage at each port, , is obtained
from in the same way as (23), where is the used in
(19), which is . The current at each port, , is the
combination of the current flowing into the conductor at port

and that flowing through the dielectric region, i.e., through a
capacitor. The current flowing into the conductor at port , ,
can be evaluated from an area integral of over the conductor
cross section

(25)

Since we need to combine and to make a complete solu-
tion, the current that flows through the dielectric region at port

, , needs to also be incorporated. can be evaluated from

(26)

where is the capacitance at port . As a result, the total cur-
rent at port is obtained from

(27)

There are two approaches to obtain the capacitance
at each port. The first approach is to use the charge

distributed at port divided by , where the charge can be
obtained from normal after (18) is solved.

The second approach that is more convenient to adopt in the
proposed solution is to use the solution of at the reference fre-
quency to extract . We can do this be-
cause when the full-wave solution breaks down, the frequency
is already low enough that the capacitance does not change with
frequency any more. Hence, the capacitance extracted at the ref-
erence frequency can be safely used for lower frequencies. With

at known, at the nonexcited ports, can be found from

(28)

At the excited port, can be found from

(29)

where is the excitation current at port at the reference fre-
quency , can be evaluated from based on (25), and

is known from .
As can be seen from the proposed procedure, the -param-

eter extraction approach is the same at high and low frequen-
cies. The only difference is that (for voltage ) and current

are generated differently. At high frequen-
cies, is solved directly from (17), and
is analytically known. At low frequencies, is solved by com-
bining and , and is obtained by combining the current
flowing into the conducting region and that flowing into the di-
electric region.

The overall procedure for the cases with conductor loss is
summarized as follows.
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Fig. 10. �-parameters of a spiral inductor simulated by the proposed solution. (Left column: �-parameters in the entire band; right column: �-parameters at low
frequencies.)

Step 1) When the full-wave solution breaks down, record
, which is the field solution at the reference fre-

quency. Use to derive the port capacitance

using (28) and (29), where the
voltage and current are evaluated using (23)
and (25), respectively.
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Step 2) Use , the real part of the field solution out-
side conductors at the reference frequency, to eval-
uate the port voltage at port , , using (23).

Step 3) Use as to solve (19). From the solution
of (19), evaluate the current flowing into the con-
ductor at port by (25). Evaluate the current flowing
through the dielectric region at port by (26) using
the port voltage obtained from Step 2) and the capac-
itance obtained from Step 1). Obtain the total current
flowing into port by (27).

Step 4) With the port voltage known from Step 2) and port
current known from Step 3) at each frequency, ex-
tract -parameters using (22).

The first two steps can be done once and reused for different
low-frequency points since they are only related to . The last
two steps are repeated for each frequency point. In other words,
at low frequencies, we fix the voltage source excitation applied
to the circuit, and extract the frequency-dependent current for
each frequency.

C. DC Solution of

At dc, becomes . In general, the stiffness matrix is
only semipositive definite, and hence, has a null space. However,
here, is formed not only by inside conductors, but also
by an additional matrix. This additional matrix is due to the
contribution from the elements outside conductors, which share
the same unknowns with those elements inside conductors.
Note that the unknowns residing on the conducting surface are
shared by interior and exterior regions.

To help better understand the positive definiteness of the ,
we use a 2-D discretization to illustrate the basic concept. Con-
sider a 2-D mesh shown in Fig. 7. Element 1 represents an ele-
ment in a conducting region, i.e., the region. It is surrounded
by the other three elements in the dielectric region, i.e., the
region. Using edge bases, a 3 3 matrix can be formed. It
can be obtained as follows:

(30)

where

and

(31)

where denotes the length of the th edge, and denotes the
area of the th element. Given any arbitrary nontrivial vector ,
the following properties of and can be derived:

(32)

(33)

Fig. 11. Illustration of a 4 � 4 on-chip bus.

Clearly, since is not always greater than zero, is semi-
positive definite, and hence, cannot be inverted. However, is
not made of only. It has an additional , which is contributed
by the exterior elements, which share the edges on the con-
ducting surface with interior elements. Since is positive def-
inite, as shown in (33), the deficiency of matrix is remedied.

becomes well conditioned and solvable. In other words, after
the null space of the original 3 3 matrix is eliminated, it be-
comes a full-rank matrix. Therefore, in such cases, itself is
an invertible matrix. is thus solvable even at dc. The above
proof can also be applied to a 3-D discretization.

From the process of assembling , it can be seen that re-
gardless of 2-D or 3-D problems, the dimension of the matrix
added upon the original stiffness matrix is equal to the number
of edges on the conducting surface, i.e., the boundary between
the interior and the exterior domains. At dc, there does not exist
skin effect, and hence, current is uniformly distributed over the
cross section that is perpendicular to the current flowing direc-
tion. Therefore, there is no need to add unknowns interior to
conductors. Hence, the dimension of is the same as . Since

is positive definite, and is semipositive definite, is also
positive definite.

D. Identifying the Breakdown Frequency

To identify at which frequency the full-wave FEM-based so-
lution breaks down, a natural solution is to execute the program
from high to low frequencies. Once the circuit parameters ex-
tracted from the field solution, such as -parameters, become
physically meaningless, we consider the frequency as the break-
down frequency, at which the low-frequency solution is enabled.
However, this procedure relies on physical intuition, which may
not be accurate for complicated examples. For instance, con-
sider an interconnect network connected by a lot of vias, given
any port of the network, generally, we expect that the diagonal
entry of the -parameter matrix, , is close to zero. However,

may not be close to zero at all because of the large resistance
of the network. Getting an that is equal to 0.6, for example,
may not be wrong. We thus developed a rigorous analytical ap-
proach for quantitatively determining the breakdown frequency,
which was reported in [14].
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Fig. 12. �-parameters of a multiport structure simulated by the proposed solution. (Left column: �-parameters in the entire band; right column: �-parameters at
low frequencies.)

IV. NUMERICAL AND EXPERIMENTAL RESULTS

To validate the proposed solution, a number of on-chip inter-
connect and package inductor structures were simulated.

The first example was a three-metal-layer on-chip intercon-
nect structure fabricated using silicon processing technology on
a test chip [15]. The structure was of 300- m width. It involved
a 10- m-wide strip in M2 layer, one ground plane in M1 layer,
and one ground plane in M3 layer. The distance of this strip to
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the M2 returns at the left- and right-hand sides was 50 m. The
strip was 2000- m long. In [16], this structure was simulated
successfully by a full-wave-based solver on which our low-fre-
quency solution was built. The full-wave simulation broke down
at 10 MHz, at which the low-frequency solution was enabled.
The -parameters of this structure were extracted, which are
shown in Fig. 8. The figures in the left column depict the -pa-
rameters in the entire frequency band in comparison with mea-
sured data, while those in the right column show the detail at low
frequencies. As can be seen from the left column, the proposed
solution agrees very well with the measured data from low fre-
quencies to 50 GHz. Since the measured -parameters were not
available below 45 MHz, we compared the low-frequency re-
sult with that generated by a static solver, which was validated
in [15]. As can be seen clearly from the right column of Fig. 8,
the result generated by the proposed solution is in an excellent
agreement with the reference data starting from dc. Thus, the
accuracy of the proposed solution is validated. In addition, we
extracted and parameters from the field solution. At dc, we
obtained and pF, which showed
an excellent agreement with analytical data.

With the proposed solution validated, we next simulated a
3-D spiral inductor residing on a package. The geometry of the
spiral inductor is shown in Fig. 9. Its diameter (D) is 1000 m.
The wire is 100- m wide, and 15- m thick. The port sepa-
ration (S) is 50 m. The inductor is backed by two package
planes. The backplane is 15- m thick. The conductivity of the
metal is 5.8 10 S/m. This structure was simulated success-
fully by the full-wave-based solver in [16] at high frequencies.
The full-wave solution broke down around 1 MHz, at which the
low-frequency solution was enabled. Fig. 10 shows the simu-
lated -parameters from dc to 20 GHz. Again, figures in the left
column show the -parameters over the entire frequency band,
whereas those in the right column depict the detail at low fre-
quencies. Based on the dc resistance of the inductor, the analyt-
ical of the inductor is 0.999569151 at dc. The generated
by the proposed solution is 0.9996 at dc, which agrees very well
with the analytical data.

To demonstrate the capability of the proposed solution in sim-
ulating multiport problems. In the third example, a four-port
on-chip bus was simulated. Fig. 11 shows the detailed geom-
etry and dielectric material information. The conductivity of the
conductors is 5 10 S/m. Port 1 and port 2 are located at the
near and far ends of the left wire, whereas the other two ports are
located at the right wire. The FEM solution broke down around
10 MHz. With the proposed solution, we were able to success-
fully simulate the structure at frequencies as low as dc, as can
be seen from Fig. 12. The analytical and are 0.25 and
0.75, respectively at dc. The simulated magnitude of and

are 0.243 and 0.757, respectively. In addition, the phases of
the simulated and are zero. Hence, both magnitude and
phase produced by the proposed solution agree well with ana-
lytical data.

V. CONCLUSION

In this paper, we provided a theoretical analysis of the
low-frequency breakdown problem observed in the 3-D
full-wave FEM-based analysis of VLSI circuits. Based on this

analysis, we develop an effective solution to completely remove
the low-frequency breakdown problem. With this solution, we
extend the capability of the full-wave FEM-based solver down
to dc. In addition, across all the frequencies, the same system
matrix is used in the proposed method, and hence, the method
can be incorporated into any existing full-wave FEM-based
CAD tool with minimal computational overhead. Moreover,
from dc to frequency at which a typical full-wave solution
breaks down, only the system matrix inside conductors has
to be solved, and hence, the problem dimension is reduced
greatly. The proposed method has been applied to the modeling
of state-of-the-art VLSI circuits starting from dc. Numerical
and experimental results have demonstrated its effectiveness
in eliminating the low-frequency breakdown problem for
full-wave FEM-based solutions.
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