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Abstract—The wave-propagation problem in an on-chip in-
terconnect network can be modeled as a generalized eigenvalue
problem. For solving such a generalized eigenvalue problem, the
computational complexity of Arnoldi iteration is at best O(k*N),
where k is the number of dominant eigenvalues and N is the
matrix size. In this paper, we reduce the computational complexity
of the Arnoldi iteration for interconnect extraction from O(k* N)
to O(NN), thus paving the way for full-wave extraction of very
large scale on-chip interconnects, of which a typical value of k is
on the order of hundreds of thousands. Numerical and experi-
mental results have demonstrated the accuracy and efficiency of
the proposed fast eigenvalue solver.

Index Terms—Arnoldi iteration, frequency domain, full-wave
analysis, generalized eigenvalue problem, on-chip interconnects.

I. INTRODUCTION

S THE clock frequency of microprocessors entered the
gigahertz regime, full-wave models have become increas-
ingly important since it is necessary to analyze the chip response
to harmonics that are up to five times the clock frequency. In
particular, full-wave-based analysis can be used to characterize
global electromagnetic coupling through the common substrate
and power delivery network. However, there are many modeling
challenges associated with on-chip interconnect structures [1].
These challenges include large problem size, large number of
nonuniform dielectric stacks with strong nonuniformity, large
number of nonideal conductors, presence of silicon substrate,
highly skewed aspect ratios, etc. In recent years, solutions of
formulations based on both partial differential equations and
integral equations have been developed to address these chal-
lenges [1]-[13]. However, driven by the continued increase of
the complexity of integrated-circuit problems, there still exists
a continued demand of reducing the computational complexity
of full-wave modeling methods.
The wave-propagation problem in an on-chip interconnect
network can be modeled as a generalized eigenvalue problem
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Ax = \Bz[4],[14]-[16]. Let the matrix size of A and B be V.
In general, the number of propagation modes that can be sup-
ported by an on-chip interconnect structure is much less than
N[4], [14]-[16]. Therefore, what is really required is the com-
putation of selected eigenpairs of the generalized eigenvalue
system. Among all the existing eigenvalue solvers, the Arnoldi
iteration [17] is particularly suited for this computing task. The
Arnoldi process generates an orthonormal basis of the Krylov
subspace of a significantly reduced size on which the original
eigensystem is projected. The overall computational complexity
of an Arnoldi process is O(kN?2 + k2N ), where k is the number
of significant eigenvalues. The O(kN?) cost is due to the com-
putation of B! Az at each Arnoldi iteration. The O(k?N) cost
is attributed to the orthonormalization of the & Arnoldi vectors
that span the Krylov subspace. In each Arnoldi iteration, the cur-
rent Arnoldi vector is made orthonormal to all previous Arnoldi
vectors.

In [15], [16], a direct matrix solver of linear time complexity
was developed. The solver allowed for an efficient computation
of B~ Az in O(N) complexity, leading to an efficient solution
to the generalized eigenvalue problem. The O(N) complexity
for computing B=' Az in O(N) was achieved by eigenvalue
clustering, fast system reduction with negligible computational
cost, and fast linear time solution of the reduced system. As a
result, the overall computational complexity of solving a gen-
eralized eigenvalue problem was reduced to O(k%N), which is
linear when k is a constant that is not related to N. However,
for an on-chip interconnect, which involves a large number of
conducting wires, even O(k?N') complexity is too high, since k
is related to NV and is on the order of hundreds and thousands.
However, due to the fact that the orthogonalization of Krylov
subspace vectors is unavoidable in an Arnoldi process, the time
complexity of Arnoldi iteration is at best O(k?N). Even if one
intends to reduce the complexity further, there is no easy way
forward.

The main contribution of this paper is the reduction of the
computational complexity of Arnoldi iteration method for
solving a generalized eigenvalue problem from O(k?N) to
O(N), thus paving the way for the full-wave extraction of very
large scale integrated circuits. The basic idea of this paper has
been outlined in [18]. In this paper, a detailed derivation of the
proposed method is given. A theoretical proof is developed, and
an extensive number of numerical results are given to provide a
rigorous validation of the proposed method.
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Fig. 1. Tllustration of a typical on-chip interconnect structure [4].

II. OVERVIEW OF THE EIGENVALUE-BASED ANALYSIS OF
ON-CHIP INTERCONNECTS

A typical on-chip interconnect structure is shown in Fig. 1.
The generalized eigenvalue problem resulting from a finite-el-
ement-based analysis of such a structure can be written as

(4], [14]
Ay 0O €t | _ 2 By Bi. €t
ol {ed = m () o

in which the eigenvalues correspond to the propagation con-
stants 7y, and the eigenvectors characterize the transverse elec-
tric field e; and longitudinal electric field e.. Matrices A and B
are complex valued due to the penetration of fields into on-chip
conductors. The entries of A and B are given by

1
Att,ij = // |:M—{Vt X Nz} . {Vt X Nz}
Q T
~ko’E,N; - N;| dQ

1
Btt,ij == / M_NL . NJdQ

O
1
B:.ij = // M_Ni - Vi&;dQ2

Q
1
th,ij = /Q/ |:;Vt€j ) N]':| dQ
1
B..., = /Q / b{vtfi}-{vt@}—k&a&@- © @

where €, denotes the complex permittivity that accounts for
conductivity o, N represents the edge basis function used to ex-
pand the transverse field [19], ¢ is the node basis function used
to expand the longitudinal field [19], and €2 is the computational
domain.

We can compactly write (1) as

Ax = \Bz 3)

where A and B are sparse and of size O(N). The task here
is to find k-selected eigenpairs of the large sparse matrix
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system shown in (3), where k is the number of significant
modes. The Arnoldi iteration [17] is particularly suited for
this computing task. Consider a standard eigenvalue problem
Gz = Az, a k-step Arnoldi process generates an orthonormal
basis {Vj}le of the Krylov subspace x4 (v1, G) spanned by
vy, Gry, ..., G*=1y,, where v is an initial unit norm vector.
The orthogonal projection of G onto x (1, G) is represented
by a k x k upper Hessenberg matrix Hy, the Ritz pairs of which
can be used to approximate the eigenpairs of G.

The algorithm of a k-step Arnoldi process is shown as
follows:

Algorithm: A k-step Arnoldi process

1. vy = 1/1/||V1||
2.forj=1,2,...,k do

2.1.w= Gy
22.forte=1,2,...,7 do
hij = l/;‘w

w=w — hi]’l/i
2.3 hj = ||w]

Vit1 = w/hjq1 )

The complexity of this algorithm is O(k2 N ) if G is sparse. How-
ever, in our problem, G is dense because itis equalto B~ 1A and
B! is dense, as can be seen from (3). Therefore the complexity
of a straightforward implementation of the Arnoldi process is at
least O(k*N + kN?), where the O(kN?) complexity accounts
for the k£ dense matrix—vector multiplication operations in step
2.1 shown in (4), and the O(k?N) complexity accounts for the
cost of orthogonalization in step 2.2. The cost of step 2.1 was re-
duced to O(N) by a recent development in [15], [16]. As a re-
sult, the complexity of the Arnoldi process is dominated by that of
step2.2. When k is large, the computation complexity of O (k2 N)
could become prohibitively large. In the next section, we show
a method that can remove this computational bottleneck.

III. EIGENVALUE SOLUTION OF O(NN') COMPLEXITY

In this section, we first construct an alternative eigenvalue so-
lution that is equivalent to the original one in terms of intercon-
nect extraction; we then prove that the solution of the proposed
alternative eigenvalue problem is local, from which we show
that the dependence of an eigenvalue solution on the number of
eigenvalues can be eliminated, and hence, an O(N') complexity
can be achieved.

A. Alternative Eigenvalue Solution

An examination of the field solution to the eigenvalue
problem (1) reveals that the field distribution is global, i.e.,
fields spread all over the computational domain. As an example,
in Fig. 2, we show the longitudinal and transverse electric field
solution of (1) in a typical on-chip interconnect at 1 GHz.
The interconnect involves seven layers, the dielectric constants
of which are, respectively, 4, 2.9, 2.9, 2.9, 2.9, 2.9, and 4.
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Fig. 2. Solution of (1) in a typical on-chip interconnect. (a) Longitudinal field distribution. (b) Transverse field distribution.

These layers are, respectively, 0.137, 0.256, 0.256, 0.32, 0.384,
0.576, and 0.972 pm thick. There are nine parallel copper
wires located in the third layer. The structure is backed by a
silicon substrate, the conductivity of which is 10* S/m. The
cross-sectional view of the structure is shown in Fig. 2. We
show in Fig. 2(a) the magnitude of longitudinal electric field
E. at each discretized point in the cross section, from which
the longitudinal current can be obtained by J, = oE.. Clearly,
the current is distributed all over the wires and the substrate.
Fig. 2(b) shows the transverse electric field distribution, which
again reveals that the field solution of (1) is global.

Since the solution of (1) is found to be global, there is no
apparent way to truncate the computational domain, i.e., reduce
the problem size. However, we can remodel the problem such
that the field solution becomes local. The details are given as
follows.

An on-chip interconnect structure of multiple conductors can
be thought of as a p-port network. Its property can be character-
ized by network parameters such as impedance (Z)-, admittance
(Y)-, and scattering (S)-parameters. Take the S-parameter ex-
traction as an example. We first find from (1) all possible modes,
i.e. field solutions, that can be supported by an interconnect. We
then extract the S-parameters of the interconnect from all these
possible field solutions. The procedure can be summarized as
follows:

S-Extraction Procedure

1. Solve Az = ABx
where 2 = (er,e.)T, X = 72,

2. Perform Superposition

E= Z [Olmem(z, y)ei’ymz + ﬂmem(xv y)e’ymz]
m=1

where e, = Ext + E.2, E; = jei/v, E. = je.
3. Extract Sij = (‘/1 — ZrefIL')/(V} + Zreij)
subjectto V; + Zyetl; = 0,fori # 7,1 =1,2,...,p

In the procedure shown above, ¢ denotes a unit vector along the
tangential direction, z denotes a unit vector along the longitu-
dinal direction, and Z,.¢ denotes the reference impedance. An
industry standard Z,.¢ is 50 €2. Similarly, Y -parameters of the
interconnect can be extracted from the following procedure:

Y -Extraction Procedure

1. Solve Az = \Bx

2. Perform Superposition

E= Z [Ozmem(x, y)e_’YmZ + /Bmem(xa y)eymz]

m=1
3. Extract Y;; = I;/V;
subjectto V; = 0,fori # j,71=1,2,...,p

In the original eigenvalue solution defined by (1), all intercon-
nects have the implicit boundary condition that they are matched
to characteristic impedance of each mode. This is because the
wave propagation along the longitudinal direction is analytically
incorporated in the derivation of (1) via e 7* dependence. In
other words, an exact absorbing boundary condition is imposed
along the wave-propagation direction, and hence, in this direc-
tion, wave propagation has no reflections. This is equivalent to
loading the interconnect structure by a matched impedance for
each mode. Therefore, the circuit extraction procedure based
on the original eigenvalue solution can be explicitly written as
follows:

Original Extraction Procedure

1. Solve Az = ABx
subjectto V; + Z.I; = 0

2. Perform Superposition

E= Z [amem(xa y)e—’ymz + ﬂmem(xa y)e'ymz]

m=1

3. Extract Circuit Parameters
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where Z. is the characteristic impedance. Comparing the above
procedure to the S-Extraction Procedure, it is clear that the orig-
inal eigenvalue-solution-based circuit extraction resembles an
S-parameter-based extraction of the p-port network with refer-
ence impedance Z,.r chosen as Z.. Since the solution is found
to be global, it suggests that the S-matrix of the interconnect
network is dense.

It has been observed that admittance matrix Y arising from
the modeling of on-chip interconnects is usually sparse [20]. It
has also been observed that a full-wave integral-equation-based
method casts a problem into a system of linear equations of the
form ZI = V, where Z is dense, whereas a partial-differen-
tial-equation-based method is able to model the same problem
by YV = I, where Y is sparse. These observations suggest
that a Y -parameter-based extraction procedure can potentially
render the solution local. Therefore, we constructed the fol-
lowing alternative procedure for interconnect extraction:

Alternative Extraction Procedure

1. Solve Az = ABx
subjectto V; = 0,fori # j,1 = 1,2,...,p

2. Perform Superposition

E= Z [amem(x7 y)e—"/mz + /8mem(x7 y)e"/mz]
m=1

3. Extract Circuit Parameters

A comparison of the above procedure to the Y -Extraction Pro-
cedure clearly shows that the two procedures are equivalent,
since they differ only in the ways the port boundary conditions
are incorporated. In the Alternative Extraction Procedure, the
port boundary conditions are incorporated at the stage of eigen-
value solution, whereas in the Y -Extraction Procedure, the port
boundary conditions are incorporated at the stage of circuit ex-
traction. Since the incorporation of boundary conditions at an
earlier stage or at a later stage should not affect the solution, the
Alternative Extraction Procedure is equivalent to the Original
Extraction Procedure, from the perspective that the two proce-
dures generate the same network parameters.

As a result, instead of solving (1), the solution of which is
found to be global, we transform (1) to an alternative eigenvalue
solution as shown as follows:

Alternative Eigenvalue Solution

Solve Az = ABzx

subjectto V; = 0, fori #7,0=1,2,...,p 4)

In this solution, we ground all the ports except for one port (or
a few selected ports) whose modes are to be extracted, i.e., we
let each port float in turn while grounding the rest of the ports.
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This leads to p eigenvalue problems. We then find the solution
of each eigenvalue problem. The total E field can then be ob-
tained as a linear combination of all these possible solutions,
from which the network parameters, such as S-parameters, can
be extracted. The grounding of each port is achieved by explic-
itly setting the tangential electric field of corresponding edges
to zero. By doing so, we enforce the port boundary condition in
(5) without altering the original physical structure.

The solution of the alternative eigenvalue solution (5) is found
to be local. In Fig. 3, we show the solution of (5) in the same in-
terconnect structure shown in Fig. 2. We let the sixth conductor
float and ground other conductors. We then observe the field so-
lution extracted from (5) at 1 GHz. As shown in Fig. 3(a) and (b),
both longitudinal and transverse electric fields exhibit a fast
decay. In Fig. 3(c) and (d), we show the longitudinal and trans-
verse electric field distributions at 20 GHz. Once again, a fast
decay is observed.

In addition to the numerical proof shown in Fig. 3, we also
theoretically proved that the solution of (5) is local, the detail of
which is given in the following section.

B. Proof on the Locality of the Alternative Eigenvalue Solution

From the second row of (1), it can be seen clearly that the
following equation satisfies:

thet + Bzzez =0. (6)

In deriving (1), the following transformation was used [4],
[14]

€t = —j’YEt € = _jEz~ @)

Substituting (7) into (6), we obtain
E. = -B_!'B..(vE:). ®

From F;, one can obtain the voltage at one end of the wire
(a port) by performing a line integral from the terminal to the
ground

V= /E’tdl. 9

Due to the fact that all field components have e=7* depen-
dence in a structure seed [4], [14], we have
OF;

NE, = 27,

9% (10)

Therefore, from v F;, one can obtain the voltage difference

between the two ends of the wire across a unit length

Vi—Vo = /yEtdl. (11

In addition, from F,, one can obtain the current flowing into the

wire by performing an area integral of the current density over
the wire cross section

I= //(jws +0)E.dS

12)
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Fig. 3. Solution of (5) in a typical on-chip interconnect. (a) Longitudinal field distribution at 1 GHz. (b) Transverse field distribution at 1 GHz. (c) Longitudinal

field distribution at 20 GHz. (d) Transverse field distribution at 20 GHz.
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Fig.4. Voltage and current distributions in log scale simulated from the original
eigenvalue solution (1) at 1 GHz.

in which both displacement and conduction currents are in-
cluded. From the aforementioned analysis, E; in (8) relates
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Fig. 5. Voltage and current distributions in log scale simulated from the alter-
native eigenvalue solution (5) with all the conductors grounded except for the
fifth conductor at 1 GHz.

to voltage, vE; relates to the voltage difference across a unit
length, and E, relates to current. Therefore, although (8) is a
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field-based equation, it has an analogous circuit meaning [21].
The circuit interpretation of (8) is
Vi—Va

I=—7——

Zin 13

which reveals the impedance experienced by a current I given
a potential difference V; — V5 at the two ends of a wire of a unit
length.

When computing the alternative eigenvalue solution (5), we
ground all the ports (wires) except for one port. Once the port
(wire) is grounded, the tangential electric field F; on each edge
along the grounding path is set to zero. Hence, v E} is zero. As
a result, the voltage difference across the wire length is set to
zero, as can be seen from (11). Hence, from (13), the current
flowing into the grounded port is zero. As a result, in the alter-
native eigenvalue solution (5), the currents flowing into all the
ports are zero except for the port that is not grounded. There-
fore, except for the wire that is excited, all the other wires do
not carry current. In other words, no current is coupled to other
wires no matter how close they are to the wire that is excited,
because the voltage difference across the length of these wires
is enforced to be zero. As a result, in the alternative eigenvalue
solution (5), the current loop is forced to be formed between
the active conductor and the physical ground only instead of ad-
jacent wires and hence localized. Therefore, the locality of the
alternative eigenvalue solution is proved.

As a validation of the above proof, we did the following ex-
periment. We considered the same test-chip interconnect shown
in Figs. 2 and 3. In Figs. 4 and 5, we show the voltage and cur-
rent distributions simulated from the original eigenvalue solu-
tion (1) and the alternative eigenvalue solution (5) respectively.
The label of z-axis in Figs. 4 and 5 denotes the index of the
conductors, and the label of y-axis represents the magnitude of
voltage or current. As shown inFig. 4, in the original eigenvalue
solution, the voltage and current distributions over the conduc-
tors is global, i.e., no voltages and currents are significantly
smaller than others. However, in Fig. 5, it is clearly shown that
the current flowing into each conductor is zero except for the
conductor that is not grounded. This behavior is in an excellent
agreement with our theoretical proof. In addition, we compared
the S-parameters obtained from the alternative eigenvalue so-
Iution and those simulated from the original eigenvalue solu-
tion. Denoting the former by S, and the latter by S, and using
Frobenius norm, the difference ||S—S||r/||S|| » was found to be
3.48%. Therefore, the proposed alternative eigenvalue solution
localizes the field solution without sacrificing circuit-extraction
accuracy.

Since the solution of the alternative eigenvalue problem is
local, this property can be utilized to significantly reduce the
computational complexity of an eigenvalue solution, which is
described in the next section.

C. Windowing Technique

If the field solution becomes zero in the region that is away
from the active conductor, there is no need to simulate fields in
that region. Hence, for each eigenvalue problem defined by (5),
we do not have to simulate the entire computational domain.
We only have to simulate a small window in which fields are
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nonzero. We cannot do this in the framework of the original
eigenvalue solution, since the fields are global in that scenario.
By developing an alternative eigenvalue solution described in
Section III-A, we essentially localize the solution of the system
and hence are able to simulate a sequence of much smaller prob-
lems to obtain the solution of the original large problem without
any reduction cost. One might argue that if the original solu-
tion is global, there is no way to localize it. Note that, here, we
have already remodeled the problem such that the solution of
our problem becomes local. A basic windowing procedure is
given as follows:

Windowing Procedure

1) Adaptively determine the window size.

2) Compute the field solution inside the window based on
(5).

3) Slide the window from left to right.

4) Repeat the computation until the whole structure is solved.

5) Perform superposition.

6) Extract circuit parameters.

The window size is adaptively decided by enlarging the window
size progressively until the solution converges. The conver-
gence criterion is [Anew — A| < 6, where A,y is the eigenvalue
obtained from the enlarged window, and ¢ is a parameter
determined by a required level of accuracy. As shown in
Section III-B, in the proposed alternative eigenvalue solution,
current loop is shrank to the loop formed between the active
conductor and ground. If the ground is perfect, it is known
that fields on the ground only concentrate in a small region
having a size similar to the active conductor; if the ground is
not perfect, it can be viewed as a resistance (R)-inductance
(L) network, the area that the fields/currents can spread over is
also limited so that the impedance experienced by the current
can be minimized (note that larger area results in a larger wl).
Therefore, the window size is, in general, very small.

D. Complexity Analysis

Assume that I windows are used, and each window includes
M number of unknowns. The proposed eigenvalue solver solves
L eigenvalue problems, each having size M. In each eigenvalue
problem, & is O(1), since in each window, we only let one or a
few conductors float while grounding all the other conductors.
As a result, the computational complexity for simulating the
eigenvalue problem in each window is O(M). Since there are
L windows in total, the total computational complexity of the
proposed solver is O(LM) ~ O(N), which does not depend
on the total number of eigenvalues in the original system.

IV. NUMERICAL AND EXPERIMENTAL VALIDATION

We simulated a number of on-chip interconnect structures to
evaluate the performance of the proposed eigenvalue solver. The
first example is the same structure examined in Section II, the
cross section of which is shown in Figs. 2 and 3. The structure
involved 9 wires and 18 ports in total. We simulated the structure
using the original eigenvalue solution as well as the proposed
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Fig. 6. Simulation of an 18-port on-chip interconnect. (a) Sii. (b) S 17.
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Fig. 7. Cross-sectional view of a test-chip interconnect structure.

Fig. 9. Large-scale interconnect having 30-600 conductors.

—Co'nventional alternative one. In Fig. 6, we show simulated S;; and S; ;7,

O This Solver where port 1 was located at the near end of the leftmost wire,
and port 17 was located at the near end of the rightmost wire.
An excellent agreement can be observed, which validates the
proposed alternative eigenvalue solution.

The second example is a test-chip interconnect structure [8],
the cross-sectional view of which is shown in Fig. 7. The struc-
ture was 2000 pm long, consisting of 11 inhomogeneous layers.
It involved 12 parallel returns in M1 and M3 layers, respec-
tively. These returns were 1.05 ym wide and 1 pm apart and
10 20 30 40 overlapped with each other vertically. Two wires were placed

Frequency (GHz) in the center of M2. The far ends of the two center wires in M2

@) were left open. The S-parameters at the near end of one M2
. wire were extracted by the proposed fast eigenvalue solver. The
— Conventional physical ground was located at the bottom of the substrate. The
-40 O This Solver || window size was chosen between 14 and 16 um. In total, six
windows were used. As shown in Fig. 8, the simulated S-param-
eters agree very well with those generated by the conventional
solver reported in [4], [14], the result of which was shown to
agree with the measured data.

The last example was used to test the performance of the pro-
posed fast eigenvalue solver in solving large-scale on-chip inter-
connects. The structure involves seven dielectric stacks, the di-
electric constants of which are, respectively, 4,2.9,2.9,2.9, 2.9,
- - - 2.9, and 4. These layers are, respectively, 0.972, 0.576, 0.384,
9 ie 20 a0 10 0.32, 0.256, 0.256, and 0.137 pum thick. The third, fifth, and

Frequent(): y (GHz) seventh dielectric stack is populated with 10-200 parallel con-
& ductors. The smallest problem hence involves 30 conductors,
Fig. 8. Simulation of a test-chip interconnect. (a) [S11|. (b) S11 phase (degree). — and the largest problem involves 600 conductors (see Fig. 9).
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Fig. 10. Simulation of a large-scale on-chip interconnect involving 30—600 conductors. (a) Arnoldi time. (b) Total CPU time. (c) Average percentage error.

(d) Error plot of S-matrix for 114-conductor (228-port) case.

Each conductor is 0.5 um wide and separated from each other
by 2.5 pum in each metal layer. These conductors, i.e., intercon-
nect wires, do not overlap with each other vertically. The dis-
tance from the leftmost (rightmost) conductor to the left (right)
boundary is 10 gm. The computational domain was discretized
into triangular elements, resulting in 24 651-476 091 unknowns.
If we use the number of conductors to estimate the number of
significant eigenvalues £, the range of k is from 30 to 600. We
simulated the structure at 20-GHz frequency. The ground was
located at the bottom. The left, right, and top boundary condi-
tions were set to be open.

First, we used the 30-conductor case to examine the accuracy
of the proposed solver with respect to window size. It was shown
that when the window included 15, 21, and 27 conductors, the
average error of the S-matrix was 3.96%, 1.54%, and 0.75%
respectively. The 21-conductor window was then decided as
a window size across the simulations. In Fig. 10(a), we show
the Arnoldi iteration time, which is the time of step 2 in (4),
with respect to unknowns. Clearly, the performance of the pro-
posed solver is linear, whereas the conventional solver devel-
oped in [16] scales as O(k>N). Since k increases with NV in this
case, the performance of the conventional solver is much worse
than linear. In Fig. 10(b), we show the total CPU time with re-
spect to the number of unknowns, which includes the factor-
ization time needed for the computation of B~1A. Again, the
proposed solver demonstrates a linear complexity that is inde-
pendent of k. In Fig. 10(a) and (b), we include the CPU time

spent on adaptively deciding the window size. In Fig. 10(c),
we use the results obtained from the conventional solver as a
reference and show the average error of the extracted S-pa-
rameters with respect to the number of unknowns. The error
is evaluated by using |S;; — Si;|/ min{(|Sil, |S;;])}, where
S is generated by the conventional solver and S is generated
by the proposed fast solver. Clearly, good accuracy can be ob-
served in the entire range. In Fig. 10(d), we take the 114-con-
ductor (228-port) case as an example and show the error of every
S-matrix element. The ports are ordered layer by layer from M3
to M7 and assigned to the near end and far end of each con-
ductor. Excellent accuracy can be observed. In addition, we used
IS — S||r/||S||F to assess the error, where subscript F* denotes
a Frobenius norm. The error was shown to be 4.83%. Therefore,
the proposed solver reduces the computational complexity of a
generalized eigenvalue problem without sacrificing accuracy. In
Fig. 10(a) and (b), the results for the conventional solver were
only generated up to 261 conductors, since it could not solve
larger problems in reasonable run times.

For large problems, the conventional solver cannot solve
them in feasible computational resources. To predict the error
of the proposed fast solver in solving large-scale problems, we
plotted the error as a function of window size for three different
problem sizes: a 30-conductor interconnect, a 60-conductor
one, and a 114-conductor one. The error is evaluated by using
|Sij — gij|/min{(|Sii|, |S]j|)} in Fig. ll(a) In Fig. ll(b),
the error is evaluated by using ||S — S||#/||S||r. As shown
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(b) Frobenius-norm-based error.

clearly in Fig. 11, irrespective of the problem sizes, the result
converges to the true solution once a certain window size is
reached. In addition, the required window size to reach a good
accuracy is small.

V. SUMMARY

The computational complexity of a generalized eigenvalue
problem generally depends on the number of eigenvalues k.
A large-scale on-chip interconnect network involves a large
number of conductors, and hence, a large number of eigenvalues.
As aresult, state-of-the-art eigenvalue solutions become compu-
tationally prohibitive when analyzing large-scale interconnect
structures. In this paper, we transform the original eigenvalue
solution to an alternative one. We show that the alternative
eigenvalue solution is equivalent to the original one in terms
of interconnect extraction. Most importantly, we prove that
the alternative eigenvalue solution is local and hence can be
utilized to significantly reduce the computational complexity of
an eigenvalue analysis. As aresult, we are able to decompose the
original large-scale eigenvalue problem into L small eigenvalue
problems, each having a constant number of dominant eigen-
values. Hence, we reduce the computational complexity of the
generalized eigenvalue problem from O(k*N) to O(N). Nu-
merical experiments demonstrated superior performance of the
proposed method for solving large-scale on-chip interconnects.
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