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Abstract: Integral-equation (IE)-based methods generally lead to dense systems of linear equations. The resulting
matrices, although dense, can be thought of as ‘data sparse’, that is, they can be specified by few parameters.
Based on this observation, two fast IE-based methods were developed for large-scale electromagnetic analysis.
One is a centre-point H-matrix-based method of linear complexity for large-scale analysis of static problems
or problems having small electric sizes. The other is an H2-matrix-based method of controlled accuracy and
linear complexity for large-scale analysis of electrodynamic problems across a wide range of electric sizes.
Numerical simulations from a small number of unknowns to over 1 million unknowns, from small electric
sizes to over 60 wavelengths have demonstrated the accuracy and efficiency of the proposed methods. The
methods are kernel independent, and hence suitable for any IE-based formulation. In addition, they are
applicable to arbitrarily shaped structures.
T

1 Introduction
Computational electromagnetic methods can be categorised into
two classes: integral-equation (IE)-based methods and partial
differential equation (PDE)-based ones. Compared to PDE-
based methods, IE-based methods generally lead to dense
systems of linear equations. When a direct method is used, the
operation count is proportional to O(N 3) and the memory
requirement is proportional to O(N 2), with N being the matrix
size. When an iterative solver is used, the memory requirement
remains the same, and the computing time is proportional to
O(NitN

2), where Nit denotes the total number of iterations
required to reach convergence. In recent years, fast multipole-
based methods [1], fast fourier transform (FFT)-based methods
[2, 3] and fast low-rank compression methods [4–6] have been
developed that dramatically reduce the memory requirement
of the iterative dense matrix solvers to O(N log N ), and
the CPU time to O(N log N ) for electrodynamic problems.
This represents an impressive improvement as compared with
conventional O(N 3) or O(N 2) techniques.

However, the analysis and design of advanced engineering
systems across the entire electromagnetic spectrum results in
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numerical problems that are of very large scale, requiring
billions of parameters to describe them accurately. For
example, accurate electromagnetics-guided full-chip optical
proximity correction for the faithful reproduction of design
onto the wafer at 45 nm technology node and beyond. As
another example, the design of high-speed mixed-signal
integrated circuits crosscutting electronics, photonics and
micro-electromechanical systems (MEMS) technologies.
Driven by the large problem size encountered in the
analysis and design of advanced engineering systems, there
is a continued demand of reducing the complexity of
computational electromagnetic methods.

IE-based methods generally lead to dense systems of linear
equations. The resulting matrices, although dense, can be
thought of as ‘data sparse’, that is, they can be specified by
few parameters. Based on this observation, in this work, we
develop H- and H2-matrix-based methods of linear
complexity for large-scale electromagnetic analysis. The ‘H
(hierarchical) matrix’ is a general mathematical framework
[7–9], which enables a highly compact representation and
efficient numerical computation of dense matrices. To be
specific, if matrix C is an m � n off-diagonal block in an H
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matrix which describes interactions on upper levels in
the hierarchy, it can be written as C ¼ ABT, where A is of
dimension m � r, B is of dimension n � r and r denotes
the rank of C with r , m and r , n. Storage requirements
and matrix–vector multiplications using H-matrices have
been shown to be of complexity O(N log N ), with N being
the matrix size. From a mathematical point of view,
existing low-rank compression-based IE methods [4–6]
developed for electromagnetic analysis, although their
technical details could be very different and many of them
predated the literature of H matrices, can be viewed in the
framework of H matrices. Recent advances in the H-matrix
mathematical framework suggested that a matrix–vector
product can be performed in O(N ) operations by
introducing H2 matrices [10–12]. The nested structure is
the key difference between general H matrices and H2

matrices, since it permits an efficient reuse of information
across the cluster tree. The accuracy and complexity analysis
given in the literature of H- and H2 matrices was generally
conducted based on kernel functions that do not change
with frequency. In addition, no linear complexity has been
obtained for electrodynamic problems.

In [13], we demonstrated the feasibility of an H-matrix-
based representation for IE-based analysis of electrodynamic
problems. In this work, we give a detailed error analysis of the
H-matrix-based representation of electrodynamic problems.
We show that the H-matrix-based representation is error
bounded. In addition, we show that by developing a centre-
point H-matrix-based method, the time and memory
complexity of solving the dense system matrix can be reduced
to O(N ). This method can be viewed as an H2-matrix-based
representation of rank one. Since rank one is generally not
sufficient for accurate simulation of electrically large problems,
we limit the use of the proposed centre-pointH-matrix-based
method to the analysis of static problems or problems having
small electric sizes. We apply the proposed method to the
analysis of large-scale on-chip 3-D interconnects embedded
in inhomogeneous materials. The method successfully solves
dense matrices involving more than 1 million unknowns with
fast CPU time and modest memory consumption.

In [14], we developed an H2-matrix-based linear-time IE
solver for electromagnetic analysis. However, the error of
H2-matrix-based representation of an electrodynamic
problem and its impact on computational complexity was not
addressed clearly. In [15], we gave a detailed error analysis
of the H2-matrix-based representation of electrodynamic
problems. In addition, we showed that a direct application
of H2-matrix-based techniques to electrodynamic problems
would result in a complexity greater than O(N ), and hence
we developed a rank function to maintain the same
order of accuracy in a range of electric sizes without
compromising O(N ) computational complexity. In this
work, we give a detailed performance analysis of the
accuracy control scheme. We also report simulation results
of large-scale scattering problems involving 60 wavelengths
and more than 1 million unknowns.
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The remainder of this paper is organised as follows. In
Section 2, an IE formulation is briefed. In Section 3, the
data-sparse representation of the dense system of equations
is detailed, which includes an H-matrix representation and
its error bound, an H2-matrix representation and its error
bound, and H- and H2-matrix block partition. In Section
4, we show a centre-point H-matrix-based method of
linear complexity, which can be used for accurate analysis
of large-scale problems having small electric sizes. In
Section 5, we show a linear-complexity H2-matrix-based
method of controlled accuracy, which can be used for large-
scale analysis of electrodynamic problems across a wide
range of electric sizes. In Section 6, we give numerical
results to demonstrate the accuracy and efficiency of the
proposed methods. Section 7 relates to our conclusions.

2 IE formulations
The proposed methods are kernel independent, and hence
suitable for any IE-based formulation. Here, without loss of
generality, we give two examples: an IE formulation for
electrostatic analysis and an electric-field IE for electrodynamic
analysis.

2.1 IE formulation for electrostatic
analysis

The electric potential in a multi-conductor structure
embedded in an inhomogeneous material satisfies [16]

F(r) ¼

ð
Sc

sc(r0)g(r, r0) dr0 þ

ð
Sd

sd(r0)g(r, r 0) dr0

where sc is the surface charge density on conducting surface
Sc, sd is the equivalent polarisation charge density on
dielectric interfaces Sd, F is the electric scalar potential, r is
the observation point, r0 is the source point and g is the
static Green’s function. The normal continuity of electric
flux density is then imposed at the dielectric interface when
solving the problem. A method-of-moments-based solution
of the IE results in the following linear system

Gq ¼ v

where G ¼
Pcc Pcd

Edc Edd

� �
, q ¼

qc

qd

� �
and v ¼

vc

0

� �
, in

which qc and qd are the charge vectors of the conductor
panels and dielectric–dielectric interface panels,
respectively, and vc is the potential vector associated with
the conductor panels. The entries of P and E are

Pij ¼
1

ai

1

aj

ð
Si

ð
Sj

g(r, r0) dr dr0

Eij ¼ (1a � 1b)
@

@na

1

ai

1

aj

ð
Si

ð
Sj

g(r, r0) dr dr0
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where ai and aj are the areas of panels Si and Sj, respectively,
n̂ is a unit vector normal to the dielectric interface, 1a and 1b

are the permittivity in the two dielectric regions
separated by the interface and g is the Green’s function
g ¼ (r, r0) ¼ 1/(4p1jr 2 r0j). The diagonal entries of Edd

are eij ¼ (1aþ 1b)/(2ai10).

2.2 Electric-field IE for electrodynamic
analysis

Consider a three-dimensional arbitrarily shaped conducting
object immersed in a medium characterised by permittivity 1

and permeability m. The object is illuminated by an incident
wave Ei that induces current Js on the conducting surface.
The current satisfies the following electric-field IE [1, 17]

Eijtan¼

ðð
S

jvmJ s(r0)g(r, r0)�
j

v1
(r0 �J s(r0))r0g(r, r0)

� �
tan

ds0

(1)

in which the Green’s function g(r, r0) ¼ e�jkjr�r0j=
(4pjr � r0j), v is the angular frequency and k is the wave
number which is v

ffiffiffiffiffiffi
m1
p

. The subscript ‘tan’ denotes the
component that is tangential to the conducting surface S. By
expanding the unknown surface current density Js using
Rao-Wilton-Glisson (RWG) basis functions [17], and
applying Galerkin’s method to (1), we obtain

ðð
Sm

J m(r) �Ei(r)ds¼
XN

n¼1

In

ðð
Sm

ds

ðð
Sn

ds0[jvmJ m(r) � J n(r0)

�
j

v1
(r � J m(r))(r0 � J n(r0))]g(r, r0)

(2)

in which Jm( Jn) are basis functions, and N is the total number
of basis functions. Equation (2) can be written as

GI ¼ V (3)

where

Gmn ¼

ðð
Sm

ds

ðð
Sn

ds0[jvmJ m(r) � J n(r 0)

�
j

v1
(r � J m(r))(r0 � J n(r0))]g(r, r0) (4)

and

Vm ¼

ðð
Sm

J m(r) � Ei(r) ds (5)

A straightforward approach to solving (3) can be very
expensive, since matrix G is dense in the sense that all
entries are non-zero. Our approach is to approximate G by a
matrix (with error well controlled), which can be stored in a
data-sparse format, that is, G can be specified by few
parameters, from which a significant reduction in complexity
can be achieved.
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Since the proposed methods are kernel independent, in
the following sections, we use the electric-field IE as an
example to illustrate the basic procedure.

3 Data-sparse representation,
error bound, block partition
3.1 H-matrix representation and
its error bound

Denoting the index set of the basis functions used in the
discretisation of (1) by I ¼ f1, 2, . . ., Ng. We fix two
subsets t and s of the I and define the corresponding
domains Vt and Vs as the union of the supports of the
basis functions

Vt ¼
[
i[t

supp( J i), Vs ¼
[
i[s

supp(J i) (6)

in which ‘supp’ denotes the space domain that is
occupied by the basis function. If t and s are far away
from each other (the criterion will be established
soon) and diam(Vt) � diam(Vs), where diam(.) is the
Euclidean diameter of a set, the original kernel
function g(r, r0) in (1) can be replaced by a degenerate
approximation

~gt,s(r, r0) ¼
X
v[K

g(jt
v, r0)Lt

v(r) (7)

where

K ¼ {v [ N d :vi � p for all i [ {1, . . . , d }} ¼ {1, . . . , p}d

(8)

in which d ¼ 1, 2, 3 for one-, two-, and three-
dimensional (3-D) problems, respectively, and p is the
number of interpolation points along each dimension.
In (7), (jv

t )v[K is a family of interpolation points in t,
and (Lv

t )v[K are the corresponding Lagrange
polynomials satisfying Lv(jt) ¼ dv,t for all v,t [ K.
The interpolation in (7) is performed on an axis-
parallel bounding box Qt $ Vt, which is the tensor
product of intervals. In a d-dimensional case,
Qt ¼ [a1,b1]� � � � �[ad,bd]. The (jv

t )v[K and (Lv
t )v[K

can be written as

jt
v :¼ (j [a1,b1]

v1
, . . . , j [ad ,bd ]

vd
), Lt

v :¼ (L[a1,b1]
v1

, . . . , L[ad ,bd ]
vd

)

(9)

The advantage of the degenerate approximation is two-fold.
First, the double integral in (4) is separated into two single
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integrals

~G
t,s

mn ¼
X
v[K

jvm

ðð
Sm

J m(r)Lt
v(r) ds �

ðð
Sn

J n(r0)g(j t
v, r0) ds0

�
X
v[K

j

v1

ðð
Sm

(r � J m(r))Lt
v(r) ds

�

ðð
Sn

(r0 � J n(r0))g(j t
v, r0) ds0 (10)

for m [ t, n [ s, v [ K. Second, the submatrix ~G
t,s

can be
represented in a factorised form

~G
(t,s)
¼ A(t,s)(B(t,s))T (11)

where the matrices A(t,s) [ C
t�K and B(t,s) [ C

s�K , which
can be computed as below

A(t,s)B(t,s)T

¼ A(t,s)
1 B(t,s)T

1 � A(t,s)
2 B(t,s)T

2 (12)

in which

A(t,s)
1mv ¼ jvm

ðð
Sm

J m(r)Lt
v(r) ds,

B(t,s)
1nv ¼

ðð
Sn

J n(r0)g(j t
v, r0) ds0

A(t,s)
2mv ¼

j

v1

ðð
Sm

(r � J m(r))Lt
v(r) ds,

B(t,s)
2nv ¼

ðð
Sn

(r � J n(r0))g(j t
v, r0) ds0

(13)

for all m [ t, n [ s, v [ K.

Clearly, the rank of the matrix ~G
t,s

is at most 2#K
regardless of the cardinality of t (assuming #K , #t), where
# denotes the cardinality of a set. For example, if d ¼ 2 and
p ¼ 2, that is, the problem is two-dimensional and two
interpolation points are used along each dimension, the
cardinality of K is 4. And hence, the rank of ~G

t,s
is 8

irrespective of the cardinality of t. It is worth mentioning

that although A(t,s)
1 B(t,s)T

1 in (12) involves a vector operation,
which apparently leads to a rank greater than #K, in our
implementation, we obtain rank #K by the following
procedure. Let

A1 ¼ (Ax, Ay, Az) and B1 ¼ (Bx, By, Bz)

A1B1
T becomes

A1BT
1 ¼ (Ax, Ay, Az) � (Bx, By, Bz)T

¼ AxBT
x þ AyBT

y þ AzBT
z

’ AxBT
x �k AyBT

y �k AzBT
z
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where �k is used to compute the matrix addition with a
targeted rank k, where k ¼ #K. We use G1xy ¼ AxBx

T

�kAyBy
T as an example to show how �k can be performed.

Since both AxBx
T and AyBy

T are of rank k, the addition

G1xy ¼ AxBT
x þ AyBT

y ¼ Ax Ay

� �
Bx By

� �T
should have

a rank 2k. To obtain G1xy of rank k, we compute G1xy

by performing a singular value decomposition of

Ax Ay

� �
Bx By

� �T
[18, p. 123], and then ordering the

singular values s1 � s2 � . . . s2k with respect to their
magnitude, and then discard all si with i . k. The truncated
result is shown to be an optimal approximation G1xy with

rank k, in the sense that kG1xy � Gk
1xyk is minimal in the

Frobenius or spectral norm [18, p. 109]. After obtaining
Gk

1xy, we can compute A1BT
1 ¼ Gk

1xy �k AzBT
z in a similar way.

If diam(Vt) � diam(Vs), g(r, r0) in (1) is approximated by

~gt,s(r, r0) ¼
X
v[K

g(r, j s
v)Ls

v(r0) (14)

The matrices A(t,s) and B(t,s) are computed using (12) but with

A(t,s)
1mv ¼ jvm

ðð
Sm

J m(r)g(r, j s
v) ds, B(t,s)

1nv ¼

ðð
Sn

J n(r0)Ls
v(r0) ds0

A(t,s)
2mv ¼

j

v1

ðð
Sm

(r � J m(r))g(r, j s
v) ds,

B(t,s)
2nv ¼

ðð
Sn

(r � J n(r0))Ls
v(r0) ds0 (15)

for all m [ t, n [ s, v [ K.

To estimate the error bound of (11), we introduce an
admissibility condition [18]

(t, s) are admissible

:¼
True if min{diam(Qt), diam(Qs)} � hdist(Qt , Qs)

False otherwise

�

(16)

in which dist(., .) is the Euclidean distance of two sets, and h

is a parameter that controls the admissibility condition. This
condition ensures that we are dealing with a region where the
Green’s function is expected to be smooth or at least
separable.

From [19, p. 328], let g [ C1(Qt) such that there are
positive real constants Cg and gg satisfying

k@n
j gk1, Qt

� Cgg
n
g n! (17)
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for all j ¼ {1,2, . . . , d} and n [ N0, we have

kg(r, r0)� ~g(t,s)(r, r0)k1, Qt�Qs

� 8ed (Lp)d pCg(1þ gg min{diam(Qt), diam(Qs)})

� 1þ
2

gg min{diam(Qt), diam(Qs)}

 !�p

(18)

where Lp is a constant related to p and the interpolation
scheme. The parameters Cg and gg are dependent on the
kernel function g. They are derived as follows.

From g(r, r0) ¼ e2jkR/4pR, where

R ¼ jr � r0j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� x0)2

þ (y � y0)2
þ (z� z0)2

q

we have

j@Rzj ¼
x� x0

R

����
���� � 1, z ¼ x, y, z (19)

Therefore

k@n
j gk1, Qt

�
kn

R
þ

nkn�1

R2
þ

n(n� 1)kn�2

R3

þ � � � þ
n(n� 1) � � � 2k

Rn
þ

n!

Rnþ1
(20)

where k is the wave number.

From (20), we can derive

Cg ¼
1

4p dist(Qt , Qs)
, gg ¼ kþ

1

dist(Qt , Qs)
(21)

Hence, from (18), we have

kg(r, r0)� ~g(t,s)(r, r0)k1,Qt�Qs

�8ed (Lp)d p
1

dist(Qt , Qs)

� 1þ kþ
1

dist(Qt , Qs)

	 

min(diam(Qt), diam(Qs))

� �

� 1þ
2

(kþ (1=dist(Qt , Qs)))min(diam(Qt), diam(Qs))

� ��p

(22)

If the admissibility condition given in (16) is satisfied, that is,

min{diam(Qt), diam(Qs)} � h dist(Qt , Qs)
T Microw. Antennas Propag., 2010, Vol. 4, Iss. 10, pp. 1583–159
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from (22), we obtain

kg(r, r0)� ~g(t,s)(r, r0)k1, Qt�Qs

� 8ed (Lp)d p
1

dist(Qt , Qs)
[1þ kh dist(Qt , Qs)þ h]

� 1þ
2

kh dist(Qt , Qs)þ h

� ��p

(23)

Clearly, exponential convergence with respect to p can be
obtained irrespective of the electric size k dist(Qt,Qs) and
the choice of h. In addition, given a required level of
accuracy, when the electric size increases, the error of the
H-matrix approximation can be controlled to the same
level either by decreasing h to maintain a constant
kh dist(Qt,Qs), or by increasing the number of
interpolation points p, or by the combination of both.

Matrices that exhibit a property shown in (11) belong toH
matrices. In an H matrix, the blocks that satisfy the
admissibility condition are represented by low rank matrices
of the form C 5 ABT, where A is of dimension m � r, B is
of dimension n � r and r denotes the rank of C with
r , m and r , n. The low-rank matrices are called as
rkmatrices. The blocks that do not satisfy the admissibility
condition are represented by full matrices. As can be seen
from (23), the error of the H-matrix representation is well
controlled. It was shown that an H matrix of dimension N
can be compactly stored in O(N log N ) parameters [7–9].

3.2 H2-matrix representation and
its error bound

If subsets t and s of the I satisfy a strong admissibility
condition [18] as shown below

(t, s) are admissible

:¼
True if max{diam(Vt), diam(Vs)}� hdist(Vt , Vs)

False otherwise

�
(24)

the original kernel function g(r, r0) in (1) can be replaced by

~gt,s(r, r0) ¼
X

v[K t

X
m[K s

g(j t
v, j s

m)Lt
v(r)Ls

m(r0) (25)

where (j t
v)v[K t is a family of interpolation points in t; (j s

m)m[K s

is a family of interpolation points in s; and (Lt
v)v[K t and

(Ls
m)m[K s are the corresponding Lagrange polynomials

satisfying Lv(jt) ¼ dv,t for all v,t [ K t, and Lm(jt) ¼ dm,t

for all m,t [ K s.
6 1587
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The double integral in (4) can then be separated into two
single integrals

~G
t,s

mn: ¼
X

v[K t

X
m[K s

jvmg(j t
v, j s

m)

ðð
Sm

J m(r)Lt
v(r) ds

�

ðð
Sn

J n(r0)Ls
m(r0) ds0 �

X
v[K t

X
m[K s

j

v1
g(j t

v, j s
m)

�

ðð
Sm

(r � J m(r))Lt
v(r) ds

ðð
Sn

(r0 � J n(r 0))Ls
m(r0) ds0

for m [ t, n [ s, v [ K t, m [ K s. As a result, the submatrix
~G

t,s
can be represented in a factorised form

~G
t,s

:¼ V t St,sV sT

, V t [ C
t�2K t

, St,s [ C
2K t
�2K s

,

V s [ C
s�2K s

(26)

where

V t
¼ [V t

1 V t
2], V s

¼ [V s
1 V s

2], St,s
¼

St,s
1 0

0 St,s
2

" #

V t
1, V t

2 [ C
t�K t

, V s
1, V s

2 [ C
s�K s

, St,s
1 , St,s

2 [ C
K t
�K s

(27)

and

V t
1mv ¼

ðð
Sm

J m(r)Lt
v(r)ds, V t

2mv ¼

ðð
Sm

(r � J m(r))Lt
v(r)ds

V s
1nm ¼

ðð
Sn

J n(r0)Ls
m(r0)ds0, V s

2nm ¼

ðð
Sn

(r0 � J n(r0))Ls
m(r0)ds0

St,s
1vm ¼ jvmg(j t

v, j s
m), St,s

2vm
¼
�j

v1
g(j t

v, j s
m),

m [ t, n [ s, v [ K t , m [ K s (28)

Clearly, the rank of matrix ~G
t,s

is at most 2#K t or 2#K s

regardless of the cardinality of t and s.

Representation (26) forms an H2-matrix-based
representation of G if the same space of polynomials are
used across t and s. It enables an efficient computation of
matrix–vector multiplication. H2 matrices are a specialised
subclass of H matrices. The nested structure is the key
difference between general H matrices and H2 matrices. It
was shown that an H2 matrix of dimension N can be
compactly stored in O(N ) parameters [10–12]. In addition,
like H-matrix-based techniques, the H2-matrix-based
techniques are kernel independent.

When the strong admissibility condition (24) is satisfied,
following the same error analysis derived for H-based
representation, we obtain the error bound for H2-based
88 IET
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representation

kg(r, r0)� ~g(t,s)(r, r0)k1,Qt�Qs

�
4ed

p
(Lp)2d p

1

dist(Qt , Qs)
[1þ

ffiffiffi
2
p

khdist(Qt , Qs)þ
ffiffiffi
2
p

h]

� 1þ
2ffiffiffi

2
p

khdist(Qt , Qs)þ
ffiffiffi
2
p

h

" #�p

(29)

As can be seen from (29), exponential convergence with
respect to p can be obtained irrespective of the electric size
kh dist(Qt,Qs) and the choice of h. In [15], we showed an
approach that can be used to systematically control the
accuracy of H2-matrix-based solutions to the same order in
a wide range of electric sizes without compromising
computational complexity. In Section 5, we give a detailed
performance analysis of this accuracy control approach.

3.3 H- and H2-matrix block partition

In this section, we explain how to partition a product index
set I � J into admissible and inadmissible blocks. A trivial
partition would be P � {(i, j)ji [ I , j [ J } where only
1 � 1 blocks of rank 1 appear. In this case matrix ~G is
identical to G. However, this partition is not efficient. In
the following, we present general strategies by using a
cluster tree and a block cluster tree [20, 21] for the
construction of suitable partitions, which enables an
efficient computation of G.

For the index set of the basis functions I ¼ f1, 2, . . . , Ng, we
construct a cluster tree TI , which is a tree with vertex set V and
edge set E. Each vertex in the tree is called as a cluster. The label
of cluster t is denoted by t̂. The set of sons for a cluster t [ TI is
denoted by sons(t). The root of the tree is the index set I ¼ {1,
2, . . . , N}. To construct a cluster tree, we start from the full
index set of basis functions I. We split the computational
domain into two subdomains. We continue to split until the
number of unknowns in each subdomain is less than or equal
to the leafsize which is a parameter to control the tree depth.
As a result, we generate a cluster tree TI as shown in Fig. 1.
Clusters with indices no more than leafsize are leaves. The set
of leaves of TI is denoted by LI .

Constructing an admissible block cluster tree from the
cluster trees TI and TI and a given admissibility condition
can be done recursively. We test blocks level by level starting

Figure 1 Cluster tree
Microw. Antennas Propag., 2010, Vol. 4, Iss. 10, pp. 1583–1596
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with Root(TI ) and Root(TI ), and descending in the tree.
Given two clusters t [ TI and s [ TI , we check the
admissibility. If the two clusters are admissible, we are done.
If they are not admissible, we repeat the procedure for all
combinations of sons of t and sons of s. The aforementioned
procedure of constructing a block cluster tree results in a
matrix structure as shown in Fig. 2b. Each matrix block
corresponds to a link drawn between TI and TI as shown in
Fig. 2a. Links drawn on the upper level of the tree
correspond to admissible blocks denoted by LþI�I , whereas
those drawn at the bottommost level represent inadmissible
ones denoted by L�I�I . In addition, based on our approach
of constructing the cluster tree, it is clear that if there exists a
link at the upper level between two clusters’ fathers, there
cannot exist a link between the two clusters. In Fig. 2b,
admissible blocks are represented by shaded blocks.

In Fig. 3, we plot theH2-matrix block structure of a square
plate for N ¼ 1160, and 3605, respectively, with leafsize
T Microw. Antennas Propag., 2010, Vol. 4, Iss. 10, pp. 1583–159
i: 10.1049/iet-map.2009.0229
chosen as 38, and h set as 2. The unshaded blocks are
admissible blocks that are represented by low rank matrices,
whereas the shaded ones are inadmissible blocks that are
represented by full matrices.

In our numerical computation, the matrix shown in Fig. 2b
is never formed. Instead, we use the block cluster tree shown
in Fig. 2a to carry out efficient computation.

4 Centre-point H-matrix-based
method of O(N ) complexity
It was shown that storage requirements and matrix–vector
multiplications of H matrices are of complexity
O(N log N ). In the following, we show that the complexity
can be reduced to O(N ) by developing a centre-point
H-matrix-based method. The method can be viewed as an
H-matrix-based method of rank one. It can also be viewed
Figure 2 Block cluster tree and its H2 matrix structure

a An admissible block cluster tree
b An H (H2)-matrix structure

Figure 3 H2-matrix block structure of a square plate

a N ¼ 1160
b N ¼ 3605
6 1589
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as an H2-matrix-based method of rank one. The method is
suitable for the analysis of static problems or problems
having small electric sizes in which rank one is enough for
achieving a good accuracy.

Consider an admissible pair (t, s), if we make the
admissibility condition used in the H-matrix-based
representation more stringent by reducing h or by changing
the condition to a strong admissibility condition like (24),
further approximation of the kernel function g(r, r0) can be
made without degrading the accuracy. We can use rc and r0c
to replace r and r0 in g(r, r0), where rc and rc

0 are the centre
points of supports Vt, and Vs, respectively. ~G

t,s
in (10)

hence becomes

~G
t,s

mn ¼ jvmgt,s(rc, r0c)

ðð
Sm

J m(r) ds

 ! ðð
Sn

J n(r0) ds0

 !

�
j

v1
gt,s(rc, r0c)

ðð
Sm

(r � J m(r)) ds

 !

�

ðð
Sn

(r � J n(r0)) ds0

 !
(30)

which can be written in a factorised form as

~G
t,s

mn ¼ (At,sDt,sBt,sT

)mn (31)

where

At,s
¼ At,s

1 At,s
2

� �
, Bt,s

¼ Bt,s
1 Bt,s

2

� �

Dt,s
¼

jvmgt,s(rc, r0c) 0

0 �
j

v1
gt,s(rc , r0c)

2
4

3
5 (32)

and At,s
1 , At,s

2 [ C
t�1, Bt,s

1 , Bt,s
2 [ C

s�1. They are

At,s
1 m ¼

ðð
Sm

J m(r) ds At,s
2m ¼

ðð
Sm

(r � J m(r)) ds

Bt,s
1n ¼

ðð
Sn

J n(r0) ds0 Bt,s
2n ¼

ðð
Sn

(r0 � J n(r0)) ds0
(33)

for m [ t, n [ s.

From (33) it can be seen that At,s is independent of cluster
s, whereas Bt,s is independent of cluster t. Therefore they can
be directly denoted by At and Bs. Since At and Bs represent
the same integration, Bt ¼ At. Therefore ~G

t,s
is solely

determined by At, t [ TI , and Dt,s. In fact, this
representation of ~G

t,s
is a special form of (10) in the case of

rank one.
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From (33) it can also been seen that a cluster t with
sons(t) ¼ {t1, t2} (t1 = t2) satisfies

At
¼

At1

At2

� �
(34)

This means that we do not need to store At for each
cluster t [ TI , we only need to store At for each leaf
cluster. The At for all non-leaf clusters can be represented
by the combination of At from leaf clusters. This enables
an efficient matrix–vector multiplication of O(N )
complexity.

4.1 Storing G in O(N ) complexity

As can be seen from (31) and (33), all the admissible blocks
are formed by (At)t[TI

and (Dt,s)t[TI ,s[TI

For each leaf cluster t [ TI , we store the matrix At that
requires O(1)#t̂ units of storage. For each non-leaf cluster
t [ TI , there is no additional storage requirement since it
can be represented by its two sons as given in (34).

To store Dt,s, for each admissible block b ¼ (t, s), we store
gt,s(rc, rc

0), jvm, and j/v1 based on (32), which requires only
O(1) units of storage; whereas for the inadmissible block b,
the matrix Gt,s needs O(1)#t̂#ŝ units of storage. The total
storage can be obtained by summing over the
aforementioned components as

Total storage ¼ St(all leaf clusters)þ St(all non-leaf clusters)

þ St(all admissible blocks)

þ St(all inadmissible blocks)

¼
X

t[LI

O(1)# t̂ þ 0þ
X

b¼(t,s)[LþI�I

O(1)

þ
X

b¼(t,s)[L�I�I

O(1)# t̂# ŝ � O(1)N

þ
X

t[T I

X
s[col (t)

O(1)þ
X

t[T I

X
s[col (t)

O(1)n2
min

� O(1)N þ Csp

X
t[T I

O(1)þ Csp

X
t[T I

O(1)n2
min

� O(1)N þ 2O(1)CspN þ 2O(1)Cspn2
minN

! (O(1)þ O(Csp)þ O(Cspn2
min))N (35)

where col(t) ¼ {s [ TI : (t, s) [ TI�I }, nmin is leafsize, and
Csp is called as a sparsity constant. The constant Csp is the
upper bound of the cardinality of the set col(t). It denotes
the maximum number of admissible blocks that can
be formed for each cluster t [ TI , which is shown to
be a constant [7–9]. As can be seen from (35), the
memory complexity of the centre-point-based scheme is
linear.
Microw. Antennas Propag., 2010, Vol. 4, Iss. 10, pp. 1583–1596
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4.2 Matrix–vector multiplication of
O(N ) complexity

Computing y ¼ Gx can be decomposed into

yi ¼
X

(t,s)[LI�I

~G
t,s

xjs

0
@

1
A

i

¼
X

(t,s)[LþI�I

At Dt,sAsT

xjs

0
@

1
A

i

þ
X

(t,s)[L�I�I

Gt,sxjs

0
@

1
A

i

(36)

that is multiplying the admissible blocks with the vector, and
multiplying the inadmissible blocks with the vector.

For admissible blocks, the matrix–vector multiplication
can be performed in three steps:

1. We compute xs
¼ AsT

xjŝ for all clusters s [ TI . If s is
a leaf cluster for tree TI , then we can compute AsT

x
directly, which needs O(1)#ŝ operations. If s is not a leaf
cluster, then we can first compute xs1, xs2 for its two sons
s1, s2 [ sons(s). From (34), it can be seen that

AsT

xjŝ ¼
As1T

xjŝ1

As2T

xjŝ2

" #
. Clearly, if xs :¼ AsT

xjŝ for all leaf

clusters have been computed, for any other non-leaf cluster,
we can directly use the contribution from its two sons to
obtain the result of matrix–vector multiplication without
any additional operations. Therefore

Comp
X
s[TI

AsT

xjŝ

 !
¼
X
s[LI

O(1)#ŝ ¼ O(1)N (37)

2. We compute yt
¼
P

s[St Dt:sxs for all clusters t [ TI ,
where St

¼ {s [ TI : (t, s) [ Lþ(TI�I )}, that is, St contains
all clusters s such that (t, s) is an admissible leaf of the block
cluster tree. The multiplication of Dt,sxs requires O(1)
operations, and has to be performed for each s [ St, hence

Comp
X

b¼(t,s)[LþI�I

Dt,sxs

0
@

1
A

¼
X

b¼(t,s)[LþI�I

O(1) �
X

b¼(t,s)[LI�I

O(1) �
X
t[TI

X
s[col(t)

O(1)

� Csp

X
t[TI

O(1) � O(1)Csp#T
I
� 2O(1)CspN

(38)

3. We compute Atxs for each admissible leaf block (t,s). If t is
leaf cluster of TI , we compute Atxs directly, the cost of which
is O(1)#t̂ operations. If t is a non-leaf cluster, we add its
contribution back to its two sons. For example, consider
cluster t0 which is a son of t. We have (At0xs)iþ

(Atxs)i ¼ (At0(xs
þ xs))i. This means that the contribution
T Microw. Antennas Propag., 2010, Vol. 4, Iss. 10, pp. 1583–159
oi: 10.1049/iet-map.2009.0229
of At to yi can be efficiently taken into consideration by
adding xs back to its son, the cost of which is O(1) only.
Hence, the total complexity is

Comp
X

(t,s)[LþI�I

Atxs

0
@

1
A

�
X
t[LI

X
s[col(t)

O(1)#t̂ þ
X

t[TI nLI

X
s[col(t)

O(1)

� CspO(1)N þ 2CspO(1)N ! O(Csp)N

(39)

For inadmissible blocks, these blocks are treated the same as
those in the original matrix G, that is, a full-matrix–vector
multiplication is performed. The complexity of multiplying
each non-admissible block by a vector is O(n2

min). Summing
over all the non-admissible blocks, we obtain

Comp
X

b¼(t,s)[L�I�I

Gt,sxjs

0
@

1
A

�
X

b¼(t,s)[LI�I

O(n2
min)

�
X
t[TI

X
s[col(t)

O(n2
min)

� 2CspO(n2
min)N ! O(Cspn2

min)N

(40)

Adding the aforementioned steps, the matrix–vector
multiplication requires only O(N ) operations.

5 H2-matrix-based methods of
O(N ) complexity and controlled
accuracy
From (23) and (29), it can be seen that for static problems or
problems having small electric sizes, a constant p, and hence a
constant rank can keep the accuracy of the H- or H2-based
approximations the same across all the levels of a cluster tree.
However, for electrodynamic problems, the use of a constant
rank cannot keep the accuracy to the same order when the
number of unknowns increases or the electric size increases.
This has also been observed in interpolation-based fast IE
solvers [22]. It was shown that to ensure the interpolation
accuracy, one should use different numbers of interpolation
points in the cubes of different sizes at different tree levels.
In the following, for the proposed methods, we give a
theoretical analysis of this phenomenon by using the error
bound derived for H- or H2-based approximations.

From the properties of a cluster tree, it is known that the
lower the tree level is, the larger the cluster size is.
Therefore when the tree level is lower, the admissible
blocks formed in that level are larger. Hence
1þ 2=[(kþ (1=dist(Qt , Qs))) min(diam(Qt), diam(Qs))] in
6 1591
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(22) becomes smaller, which leads to a slower convergence
rate with respect to p. Since increasing frequency is
equivalent to increasing the tree depth, in order to keep the
same order of accuracy across all tree levels, polynomial
order p (the number of interpolation points along one
dimension) should be increased when ascending an
inverted tree.

Based on the above analysis, we define a polynomial order
function that decreases with tree level as

p(b) ¼ a þ b(L� l (b)) (41)

where

L ¼ Lmin ¼ min{level(t):t [ LI }, l (b) ¼ level(t) ¼ level(s))

p(b) ¼ a if L � l (b) (42)

and a, b are two constants. Given a cluster t in an H2 tree, its
rank kvar(t) can be determined from (41) as

kvar(t) ¼ pd (t) ¼ [a þ b(L� l (t))]d (43)

where d ¼ 1, 2, 3, for 1-, 2-, and 3-D problems, respectively.

To examine the effectiveness of (43) for accuracy control, we
did a number of numerical experiments. First, we considered a
square plate of four wavelengths, and plotted the error of the
H2-matrix-based G with respect to constant coefficient a
with b fixed to be 1. As can be seen from Fig. 4, the larger a,
the better the accuracy. In Fig. 5a, we plotted the error of
the H2-matrix-based G with respect to electric size when a
was chosen as 5, and b chosen as 0. Since b was 0, the rank
was in fact a constant across all the tree levels, that is, the
rank function was in fact disabled. Hence, we expect that
the error of the H2-matrix-based representation would
increase with electric size, which is verified by Fig. 5a. In
Fig. 5b, we plotted the error of the H2-matrix-based G with
respect to electric size when a was chosen as 5, and b was
chosen as 2, that is, the rank function was enabled (by
92 IET
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setting a non-zero b). A constant order of accuracy can be
observed in the entire range. This demonstrates the
effectiveness of the proposed rank function for accuracy
control. In simulations performed for plotting Fig. 5, the
leafsize was chosen as 20, and h was set as 1.

Since the coefficients of the rank function (43) are all constants,
when N increases with frequency or electric size, these coefficients
do not change. This can render the accuracy the same in a wide
range of electric sizes while still keeping the complexity linear
for storing G and performing H2-based matrix–vector
multiplication. In [15], we proved that the cost of storage and
matrix–vector multiplication is linear based on (43).

6 Numerical results
First, we tested the performance of the proposed centre-point
H-matrix-based method for large-scale capacitance
extraction. A realistic 3-D on-chip interconnect [16] as
shown in Fig. 6 was considered. The relative permittivity is
3.9 in M1 layer, 2.5 from M2 to M6, and 7.0 from M7 to
M8. The discretisation of this structure results in 25 556
unknowns. Layers M2–M5 have ten conductors each,
whereas layers M7 and M8 have four conductors each,
resulting in 48 conductors in total. To test the capability of
the proposed method in simulating large-scale examples,
the 48-conductor structure shown in Fig. 6 is duplicated
horizontally, resulting in 48, 72, 96, 120, 144, 192, 240,

Figure 4 Effect of a on H2-matrix-based approximation
Figure 5 Effect of b on H2-based representation

a a ¼ 5, b ¼ 0
b a ¼ 5, b ¼ 2
Microw. Antennas Propag., 2010, Vol. 4, Iss. 10, pp. 1583–1596
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288 and 336 conductors, which lead to more than 1 million
unknowns.

As mentioned earlier, the proposed methods are kernel
independent, and hence suitable for any IE-based
formulation. The IE formulation used for simulating this
example is shown in Section 2.1. The simulation parameters
are chosen as leafsize ¼ 10 and h ¼ 1. The error of the
proposed centre-point H-matrix-based representation of
system matrix G is shown in Fig. 7a, with the number of
unknowns varying from 25 556 to 1 047 236. A constant

Figure 6 Illustration of a 3-D on-chip interconnect
Microw. Antennas Propag., 2010, Vol. 4, Iss. 10, pp. 1583–159
i: 10.1049/iet-map.2009.0229
order of accuracy can be observed in the entire range. In
Fig. 7a, the maximal admissible block error is plotted
instead of the entire matrix error kG � ~Gk=kGk because the
storage of the original matrix G exceeds what our computer
could offer. In addition, the entire matrix error is bounded
from above by the maximal admissible block error, and
hence the latter can be used as an effective measurement of
the error. In Fig. 7b, we plot matrix–vector multiplication
time of the proposed solver with respect to N. A linear
complexity can be clearly observed. In Fig. 7c, we plot the
memory complexity of the proposed solver, which again
demonstrates a linear complexity.

To compare the performance of the proposed solver with
an FMM-based solver, we simulate a k � k bus structure
shown in Fig. 8 embedded in free space. The k in this
structure varies from 4 to 16. The dimension of each bus is
scaled to 1 m � 1 m � (2kþ 1) m, and the distance
between the two bus layers is 1 m. Two methods are
compared: FastCap2.0 [23] and the proposed iterative IE
solver. The convergence tolerances of both solvers are set to
1%. The simulation parameters of the proposed solver are
chosen as leafsize ¼ 8, h ¼ 1.2 and p ¼ 2. Fig. 9a shows
the accuracy of both FastCap2.0 and the proposed solver
with respect to the number of unknowns. The capacitance
Figure 7 Simulation of a large-scale on-chip interconnect

a Maximal admissible block error with respect to the number of unknowns
b Time complexity
c Memory complexity
6 1593
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error is measured by kC 2 C 0kF/kCkF, where C is the
capacitance matrix obtained from a full-matrix-based direct
solver, and C 0 is that generated by the proposed solver and
FastCap2.0. Excellent accuracy can be observed for both
solvers as can be seen from Fig. 9a, and the proposed
solver is shown to have a better accuracy. In Fig. 9b, we
plot the total solution time. As can be seen clearly, the
time complexity of the proposed solver is linear. In
addition, the total solution time of the proposed solver is
much less than that of the FMM-based FastCap2.0.

Figure 8 A k � k bus structure
94 IET
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Next, we tested the accuracy and efficiency of the linear-
time H2-matrix-based IE solver for solving large-scale
electrodynamic problems. A half sphere from small electric
size to 60 wavelengths was simulated. There are only four
simulation parameters to choose in the H2-matrix-based IE
solver: h, leafsize, a and b. They were chosen as h ¼ 0.8,
leafsize ¼ 63, a ¼ 4 and b ¼ 1. In Table 1, the error of
the H2-matrix-based ~G was listed with respect to the
electric size of the half sphere from three wavelengths to
17 wavelengths. A constant order of accuracy can be
observed. In Table 1, we also listed the maximal admissible
block error, which is defined as kG(t,s)

� ~G
(t,s)
k=

(max(kG(t,t)
k, kG(s,s)

k). Clearly, the entire matrix error is
bounded from above by the maximal admissible block
error as shown in Table 1. Therefore the maximal
admissible block error can be used as an effective
measurement of the error when the number of unknowns
is so large that it is not feasible to store the original matrix
G for accuracy assessment. In Fig. 10, the memory and
CPU time cost were plotted. Again, linear scaling is
observed.
Figure 9 Simulation of a k � k bus structure by the proposed solver and FMM-based FastCap2.0

a Accuracy
b Total solution time
Table 1 Accuracy of theH2-matrix-based representation ~G with respect to
electric size

half_sphere_size/l N kG� G̃k

kGk

kG(t,s)
�G̃

(t,s)
k

max(kG(t,t)k , kG(s,s)k )

3 2340 4.247538e 2 04 3.170883e 2 04

5 5310 2.965317e 2 04 5.230145e 2 04

7 8320 4.336523e 2 04 4.799418e 2 04

9 14 850 6.425261e 2 04 1.096829e 2 03

11 21 420 2.175265e 2 04 6.108898e 2 04

13 29 190 5.464219e 2 04 9.608508e 2 04

15 35 520 6.394084e 2 04 1.034488e 2 03

17 43 010 7.004305e 2 04 8.451372e 2 04
Microw. Antennas Propag., 2010, Vol. 4, Iss. 10, pp. 1583–1596
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Figure 10 Simulation of a half sphere

a Memory consumption as a function of unknowns
b Time complexity

Figure 11 Simulation of a half sphere to 60 wavelengths

a H2-approximation error with respect to N
b Time complexity
T

Next, we enlarged the electric size of the half sphere to
60 wavelengths, resulting in 1 082 050 unknowns. In
Fig. 11a, we plotted maximal admissible block error with
respect to the electric size from 20 wavelengths to 60
wavelengths. Good accuracy is observed in the entire range.
In Fig. 11b, we plotted the matrix-vector multiplication
time versus the number of unknowns. A clear linear scaling
is observed.

7 Conclusions
In this work, we demonstrated two linear-complexity IE-
based methods. One is a centre-point H-matrix-based
method of linear complexity for large-scale analysis of static
problems or problems having small electric sizes. The other
is an H2-matrix-based method of controlled accuracy and
linear complexity for large-scale analysis of electrodynamic
problems across a wide range of electric sizes. Numerical
simulations from a small number of unknowns to over 1
million unknowns, from small electric sizes to over 60
Microw. Antennas Propag., 2010, Vol. 4, Iss. 10, pp. 1583–159
i: 10.1049/iet-map.2009.0229
wavelengths have demonstrated the accuracy and efficiency
of the proposed methods.
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