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An LU Decomposition Based Direct Integral Equation
Solver of Linear Complexity and Higher-Order

Accuracy for Large-Scale Interconnect Extraction
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Abstract—A fast LU factorization of linear complexity is devel-
oped to directly solve a dense system of linear equations for the
capacitance extraction of any arbitrary shaped 3-D structure em-
bedded in inhomogeneous materials. In addition, a higher-order
scheme is developed to achieve any higher-order accuracy for the
proposed fast solver without sacrificing its linear computational
complexity. The proposed solver successfully factorizes dense
matrices that involve more than one million unknowns in fast
CPU run time and modest memory consumption. Comparisons
with state-of-the-art integral-equation-based capacitance solvers
have demonstrated its clear advantages. In addition to capacitance
extraction, the proposed LU solver has been successfully applied
to large-scale full-wave extraction.

Index Terms—Direct solver, fast solver, integral-equation-based
methods, interconnect extraction, LU factorization.

I. INTRODUCTION

I N RECENT years, the semiconductor industry has turned
to the exponential growth in transistor density to sustain the

continued growth of computational performance; the new tran-
sistors added every 18–24 months are used in the form of addi-
tional cores. All these transistors are connected via interconnect
lines. As a result, the interconnect extraction tools are required
to solve larger and larger problems. In general, an extraction
tool casts a physical problem into a matrix equation to
solve, with being either dense or sparse. To solve of dimen-
sion , generally speaking, the optimal computational com-
plexity one can hope for is linear complexity . However,
no linear complexity has been reported for direct matrix factor-
izations for general problems. State-of-the-art methods rely on
iterative solvers to solve large-scale problems [1]–[6], the op-
timal complexity of which is , where is the
number of iterations, and is the number of right hand sides.
When the number of iterations or the number of right-hand sides
is large, iterative solvers become inefficient. Fast direct inte-
gral-equation-based solvers have also been developed [7], [8]
for interconnect extraction. In [8], we developed a fast inverse
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of linear complexity to solve a dense system of linear equations
directly for capacitance extraction. In general, the number of
right hands encountered in interconnect extraction is less than

, and hence an LU factorization based matrix solution is more
efficient than an inverse based matrix solution. Therefore, in
this work, we develop an LU factorization of linear complexity
for integral-equation (IE)-based analysis of large-scale intercon-
nects embedded in inhomogeneous materials. In addition, we
develop higher-order schemes to achieve a higher-order accu-
racy for interconnect extraction. Little work has been reported
on higher-order schemes for interconnect extraction. With the
linear complexity and higher-order accuracy achieved, we pave
the way for the precision extraction of very large-scale on-chip
interconnects involving thousands and thousands of conductors.

In the proposed approach, the dense matrix resulting from an
IE-based analysis of interconnects is represented as an ma-
trix [8]. The matrix is a general mathematical framework
that enables a compact representation and efficient numerical
computation of the dense matrices [9]–[13]. It was shown that
the storage requirements and matrix–vector products of ma-
trices are of complexity . However, the complexity
has yet not been established for LU factorization. In this work,
after representing the dense system matrix by an matrix, a
higher-order scheme is developed to achieve any higher-order
accuracy for the -based representation without sacrificing
computational complexity. The dense matrix of param-
eters is then compactly stored by a reduced set of parameters of

. An LU factorization of linear complexity is then devel-
oped through orthogonal nested cluster bases, linear algebraic
techniques, and efficient matrix multiplication. The proposed
methods are applicable to arbitrary 3-D structures embedded in
inhomogeneous materials. No structure regularity and problem
specialty are employed, and hence the methods are general. In
addition, they are applicable to any IE-based formulation.

II. BACKGROUND

A. Integral Equation for Capacitance Extraction

The proposed LU-based direct IE solver is kernel indepen-
dent, and hence suitable for any IE-based formulation. In the
following, we use IE formulations for capacitance extraction as
an example to illustrate the basic idea.

Consider multiple conductors embedded in an inhomoge-
neous material, the following integral equation can be derived
[3]:

(1)
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where is the surface charge density on conducting surfaces
is the polarization charge density on dielectric interfaces
is the electric scalar potential, is the observation point,

is the source point, and is the Green’s function

(2)

where is the permittivity of the dielectric material. The fol-
lowing boundary condition needs to be satisfied at the dielectric
interface that separates two regions:

(3)

where is a unit vector normal to the dielectric interface at point
, and and are the permittivity in the two regions.

We discretize conductor–dielectric and dielectric–dielectric
interfaces into small panels, with panels re-
siding on conductor–dielectric interfaces and panels on di-
electric–dielectric interfaces. By using a pulse function as the
basis function, a method-of-moment solution of (1) and (3) re-
sults in a dense linear system

(4)

where , and , in which

and are the charge vectors of the conductor panels and
dielectric–dielectric interface panels, respectively, and is the
potential vector associated with the conductor panels. The en-
tries of and are

(5)

where and are the areas of panel and , respectively.
The diagonal entries of are .

In a uniform dielectric, (4) is reduced to

(6)

A conventional way to solve (4) could be very expensive since
the entries of are all nonzero. In the following section, we
introduce the matrix, which enables a data sparse represen-
tation of .

B. Definition of the Matrix

An matrix is defined based on an important concept: ad-
missibility condition. Denoting the full index set of all the panels
used for the discretization of (4) by , for ar-
bitrary two subsets and of , the strong admissibility condi-
tion is defined as [10]

(7)

Fig. 1. (a) Cluster tree. (b) � -matrix structure.

in which and are, respectively, the supports of the union
of all the basis functions in and is the Euclidean
diameter of a set, is the Euclidean distance of two
sets, and is a parameter that controls the admissibility condi-
tion. If two subsets and satisfy the strong admissibility con-
dition (7), the corresponding matrix block formed by and
can be replaced by a degenerate approximation, and hence be-
comes admissible. Otherwise, the matrix block is inadmissible.
An matrix is composed of admissible matrix blocks and in-
admissible matrix blocks. The admissible block has a factor-
ized form , where

with and less than and . An
matrix also possesses a nested structure [9]–[13].

C. Cluster Tree and Block Cluster Tree

To obtain an matrix representation, we need to use an
efficient approach to partition a dense matrix into admissible
blocks and inadmissible blocks. In [14] and [15], we have shown
how to efficiently carry out the matrix partition for a dense
matrix resulting from an IE-based analysis of electromagnetic
problems. The basic scheme is outlined as follows.

To construct a cluster tree, we start from the root cluster which
is the full index set. We then find a disjoint partition of the index
set and use this partition to create children clusters. We continue
this procedure until the index number in each cluster is less than
the leafsize which is a parameter to control the depth of the tree.
This process generates a cluster tree shown in Fig. 1(a). Clus-
ters with indices no more than leafsize are leaves. We denote a
cluster tree constructed for the index set by . A block cluster
tree is constructed from cluster trees and based on
a given admissibility condition as the following. We test blocks
level by level starting with the root clusters of and , and
descending in the tree. Given two clusters and ,
we check the admissibility condition. If the two clusters are ad-
missible, we stop at this level and do not check the admissibility
of their children. If they are not admissible, we repeat the proce-
dure for all combinations of the children of and . The resultant
block cluster tree can be mapped to a matrix structure shown in
Fig. 1(b). Each leaf block cluster corresponds to a matrix block.
The shaded matrix blocks are admissible blocks in which a de-
generate approximation is used and the unshaded ones are inad-
missible blocks in which the original full matrix form is kept.

Based on the constructed cluster tree and block cluster tree,
we introduce the following concepts and notations: 1) for each
cluster , the cardinality of the sets
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and
is bounded by a constant ([10 p. 124]); 2) the leafsize is
denoted by , and if is a leaf cluster; 3) the
depth of a cluster tree is denoted by .

III. -REPRESENTATION WITH CONTROLLED ACCURACY

In this section, we derive an -representation of in (4)
and analyze its accuracy. The error bound for an -represen-
tation of full-wave problems is also given.

A. -Representation

We choose two subsets and from the full index set of all
the panels. If and satisfy the strong admissibility condition
(7), the original kernel function in (2) can be replaced
by a degenerate approximation

(8)

where for all
, for 1-D, 2-D, and 3-D problems, re-

spectively; is the number of interpolation points; and
are two families of interpolation points, respectively,

in and ; and and are the corresponding
Lagrange polynomials.

With (8), (5) can be written as

(9)

(10)

from which the submatrix in (4) can be written in a factor-
ized form

(11)

where

for . In (11), “#” denotes the
cardinality of a set.

The matrix form in (11) is an -matrix-based representation
of if the same space of polynomials are used across and
. are called cluster bases, and is called coupling

matrix.

B. Accuracy of an -Representation

1) Frequency-Independent Kernels: The kernel function in
(2) is frequency-independent. Using the error analysis devel-
oped in [14], we can find that if the admissibility condition given
in (7) is satisfied, the error of (8) is bounded by

(12)

where is a constant related to and the interpolation scheme.
Clearly, exponential convergence with respect to can be ob-
tained irrespective of the choice of . Since is propor-
tional to , the relative error becomes a constant
with respect to . The smaller is, the smaller the error. This
also agrees with the fact that a smaller leads to a stronger ad-
missibility condition. However, too small an could make the

-based computation inefficient. Based on our numerical ex-
periments, is, in general, a good choice.

2) Frequency-Dependent Kernels: The error bound for an
-based representation of frequency-dependent kernels is dif-

ferent from (12). For electrodynamic problems, the kernel func-
tion has the following form:

(13)

where is the wave number which is and is angular
frequency. Based on the error analysis given in [14], we have

(14)

Again, exponential convergence with respect to can be ob-
tained irrespective of the electric size and .
In addition, given a required level of accuracy, when the elec-
tric size increases, the error of the -matrix approximation can
be controlled to the same level either by decreasing to main-
tain a constant , or by adaptively increasing the
number of interpolation points , or by the combination of both.
It’s obvious that (12) is a special case of (14). If is zero, (14)
becomes (12).

IV. PROPOSED LU-BASED DIRECT IE SOLVER OF LINEAR

COMPLEXITY AND HIGHER-ORDER ACCURACY

A. Higher-Order Scheme

As can be seen from (12), the larger is, the smaller the
error is. If is chosen to be 1, (9) and (10) are the same as
center-point-based integrations. In a very general sense, the
work reported in [2] for capacitance extraction can be viewed
as an -based matrix–vector multiplication having .
Generally speaking, the accuracy offered by is sufficient
for static applications as can be seen from results reported in
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[2]. However, if a higher-order accuracy is required, larger is
needed. In the following, we give three schemes that can effi-
ciently achieve a higher-order accuracy without compromising
the linear computational complexity. Users can employ these
schemes to achieve a higher-order accuracy for capacitance
extraction in both matrix–vector multiplication based iterative
solvers developed in the past and LU-factorization based direct
solvers proposed in this work.

1) Scheme 1: For general structures that have similar dimen-
sions in -, -, and -directions, we can use the same number of
interpolation points in each direction, the rank in one matrix
block shown in (11), , is hence , with , for
1-D, 2-D, and 3-D problems, respectively.

2) Scheme 2: For integrated circuits or other multilayered
structures in which the dimension along one direction (stack-
growth direction) is a constant, we can choose a fixed along
this direction, for example , and use larger in the other
two directions. By doing so, the rank in each block is re-
duced to . Compared to scheme 1, this scheme offers better
efficiency while achieving the same accuracy. Scheme 2 can be
generalized to , i.e., having a different number
of interpolation points along each direction.

3) Scheme 3: Both scheme 1 and scheme 2 are based on a
constant rank, i.e., the same rank is used across all the admis-
sible blocks when ascending an inverted tree. This is not the
most efficient way because a larger rank is only needed at a
lower level in an inverted tree. Therefore, we develop a rank
function to adaptively determine the rank based on tree level.
Compared to the constant-rank schemes, this scheme is compu-
tationally more efficient.

The rank function is defined as a polynomial order function
which increases with the decreased tree level (assuming tree
level is zero at the root). For an admissible block ,
the rank function for each cluster and is defined as

(15)

where

(16)

and are two constants that are used to control the
accuracy. Given a cluster in an tree, the rank of

in (11) becomes a variable , which can be de-
termined from (16) as

(17)

Clearly, schemes 1 and 2 can be viewed as special cases of (17),
with chosen to be zero.

For a fixed rank, it was shown that the storage requirement of
matrices is [9]–[11]. By employing a variable-order

rank, the -based can still be stored in parameters,
the proof of which is given in [14]. By using (17) to deter-
mine rank , we can achieve an -based representation of any

higher-order accuracy without compromising the linear compu-
tational complexity of the proposed solver, which is proved in
the next subsection.

B. LU-Based Direct Matrix Solution

1) Algorithms: From (4), it can be seen that the computing
task is to evaluate instead of , and hence an LU de-
composition based direct matrix solution is, in general, more
efficient than a direct inverse. In this section, we give a number
of pseudo-codes to show a detailed procedure of performing a
linear-complexity LU factorization, which are not reported any-
where else. In addition, we give a detailed complexity analysis.

We first orthogonalize the cluster bases ,
and meanwhile preserving the nested properties using
arithmetics [10], [16]. This step is done in linear complexity.
The new set of cluster bases are denoted by , which
satisfy .

Next, we perform LU decomposition. The LU decomposition
of the -based can be defined as

(18)

LU Decomposition

Procedure ( is the input matrix overwritten
by and )

if matrix is a nonleaf matrix block

(19)

else

- (normal full matrix LU decomposition)

where and are both matrices and stored in the
same format as . The LU factorization can be recursively
realized by the pseudo-code shown in (19).

In (19), the function is to solve a lower
triangular system , where and are input matrices
having representations, and is overwritten by solution .
This function can be derived from

(20)
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Recursively Solve Triangular System

Procedure

( are input matrices, is overwritten by )

If matrix is a nonleaf matrix block

If is a nonleaf matrix block

else if is an admissible block

(21)

else

else

If is an admissible block

else

(Solve full matrix triangular
system)

which can be recursively computed from the pseudo-code
shown in (21).

In (21), we employ the split operation and collect operation
in [17], which has a linear complexity.

Recursively Solve Triangular System

Procedure

( are input matrices, is overwritten by )

If matrix is a nonleaf matrix block

(22)

else

The function is to solve an upper trian-
gular system, which can be derived in a similar fashion as (21).

The function in (21) is to solve the triangular
system , with being a full matrix and an -ma-
trix. It can be realized recursively from the pseudo-code shown
in (22).

In (21) and (22), is to solve a normal
full matrix triangular system, which can be realized
straightforwardly.

2) Complexity Analysis: From (19), it can be seen that the
LU factorization is built upon two functions,
and . The former is a block forward substi-
tution, and the latter is a block backward substitution. Both have
the same complexity as a matrix–matrix multiplication. Take

as an example, as shown in (21), if is a
full matrix block in the leaf level, then in (22)
is performed.

Proof 1:
1) As shown in (22), in the leaf level is a full matrix

block, and hence a normal full-matrix triangular system
is solved. It is clear that

, where “Comp” denotes complexity.
2) In the level is computed from

and . Since we have proved

in the level , it is straightforward to see that each
step in computing has the same cost as block
multiplication. And hence

in level l.
As a direct consequence of (1) and (2),

.
Proof 2:

With the complexity of derived, the com-
plexity of can be analyzed based on (21) as
follows.

1) It can be seen that if is a full matrix block in the
leaf level, is performed, and hence

.
2) In the nonleaf level, three cases are encountered:

i) If is a full matrix, is performed,
then .

ii) If is an admissible block, the process shown in (21)
is exactly the same as an -based matrix multipli-
cation .

iii) If is a nonleaf block, has the form
defined in (20). We have proved that in the level

, which means the com-
plexity of each step in (20) is the same as that
of matrix block multiplication, and therefore

can be obtained in level .
From the aforementioned analysis, it can be seen that the

computation of the recursive LU factorization is essentially a
full-matrix LU factorization at the leaf level, a full-matrix so-
lution of a lower triangular system at the leaf level, a full-ma-
trix solution of an upper triangular system at the leaf level, and
a number of matrix–matrix multiplications at the other levels,
and hence it has a linear complexity since -based matrix–ma-
trix multiplication has a linear complexity. To explain, consider
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and , then due to the or-
thogonality of cluster bases , we have

(23)

Since the dimension of each of and is , the com-
plexity of computing is at most . The recursive ma-
trix–matrix multiplication is essentially a procedure that tra-
verses a block cluster tree from bottom to top. At each tree
level, the matrix block at that level is formed by a matrix–ma-
trix multiplication. Since each matrix–matrix multiplication has
an complexity with , and there are at
most matrix blocks in level and each block is computed
at most times by multiplication, we obtain a linear cost for
matrix multiplication.

With the higher-order scheme developed in Section IV-A, the
complexity of computing in (23) becomes . We
can still prove that the complexity of matrix–matrix multiplica-
tion is linear as the following:

(24)

3) Compute Capacitance Matrix: After matrix is factor-
ized as , matrix equation (4) can be solved in two steps:
1) Solve the lower triangular system ; 2) Solve the upper
triangular system . These two can be performed in linear
complexity following a procedure similar to (21). By adding all
the entries of for each conductor, the corresponding capaci-
tance matrix element can be obtained.

C. Discussions

The accuracy and efficiency of the proposed method are con-
trollable. They are controlled by four simulation parameters: ,
leafsize and . The and are used to determine .
From (12), the smaller is and the larger is, the better the ac-
curacy is. For static problems, is generally enough
for achieving a good accuracy; for high frequency problems,

can be chosen. Leafsize, , and can be deter-
mined together. Give a required level of accuracy across a range
of frequencies, can be determined by achieving the accuracy
requirement at the low end of the frequency range, and can

Fig. 2. Bus structure.

Fig. 3. (a) The effect of � on the � -based representation �� � ��. (b) The
effect of � on the� -based representation �� � �� �� ��.

be chosen based on . This can help make -ap-
proximation most efficient in both memory and CPU time. The
parameter can be chosen between 0 and .

V. NUMERICAL RESULTS

A. Capacitance Extraction

We first tested the accuracy of the -based representation
with respect to accuracy control parameters and . A bus struc-
ture shown in Fig. 2 involving nonuniform dielectrics was sim-
ulated [3]. The dielectric material surrounding the upper-layer
conductors has relative permittivity of 3.9, and the lower-layer
conductors are in the dielectric medium having relative permit-
tivity 7.5. Each bus is scaled to 1 1 (unit length) .
The distance between buses in the same layer is 1 unit length,
and the distance between the two bus layers is 2 unit lengths.
In this example, a 10 10 bus was simulated, and the resultant
number of unknowns was 11008.

In Fig. 3(a), we plotted the error of -based representation
with respect to with fixed. An exponential convergence can
be observed. In Fig. 3(b), we plotted the error of the -based
representation with respect to with fixed. Clearly, the smaller

is, the better the accuracy. Fig. 3 agrees very well with the
error bound we derived in (12).

We then tested the performance of the proposed LU-based
direct IE solver. The first example considered was the structure
shown in Fig. 2 but in a uniform material. The in the
bus structure was from 4 to 30. The simulation parameters were
chosen as leafsize . In Fig. 4(a)
and (b), we plotted the CPU time and memory consumption of
the proposed LU-based direct solver in comparison with that
cost by FastCap2.0, the convergence tolerance of which was set
to be 1%. A clear speedup of the proposed solver is observed. In
addition, both the time and memory complexity of the proposed
solver are shown to be linear. In Fig. 4(c), we assessed the error
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TABLE I
SOLUTION ERROR (FROBENIUS NORM) FOR THE UNIFORM DIELECTRIC CASE

Fig. 4. Simulation of a bus structure in a uniform dielectric material. (a) CPU
Time Comparison. (b) Memory Comparison. (c) Accuracy of the proposed LU
factorization.

Fig. 5. Comparison between an inverse- and an LU-based direct solution.

of the proposed LU factorization, less than 2% error is observed
in the entire range.

In Table I, we listed the solution error of the proposed direct
solver with respect to the size of the bus structure, again, good
accuracy is observed in the entire range. The solution error was
defined as , and used throughout the following
examples.

For this example, we also implemented an -based direct
inverse [8], and compared it with the proposed LU-based direct
solver. As shown in Fig. 5, the LU-based direct solver costs less
time. As mentioned earlier, for capacitance extraction, what is
needed is instead of , and hence an LU-based solu-
tion is, in general, more efficient.

Fig. 6. Performance of the higher-order-scheme based LU solver. (a) LU Fac-
torization time (b) Storage (c) Solution error.

Fig. 7. Simulation of a bus structure embedded in a nonuniform dielectric.
(a) CPU Time Comparison. (b) Memory Comparison. (c) Accuracy Compar-
ison. (d) Accuracy of the proposed LU factorization.

Next, we tested the performance of the proposed higher-order
scheme. The same example was simulated. The simulation pa-
rameters were chosen as leafsize . Three
schemes were compared: a zeroth-order scheme having

, a constant rank higher-order scheme having
, and a variable-order-rank based high order

scheme (17) having . In Fig. 6, we plotted the
CPU time, memory consumption and solution error of the three
schemes. As can be seen clearly, all these three schemes have
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TABLE II
SOLUTION ERROR (FROBENIUS NORM) FOR THE NONUNIFORM CASE

Fig. 8. On-chip interconnect having eight metal layers embedded in an inhomogeneous stack.

linear complexity in both CPU time and memory consumption,
which agree very well with our theoretical complexity analysis.
In addition, higher-order accuracy can be observed by the
proposed higher-order schemes as can be seen in Fig. 6(c).

Next, we simulated the bus structure embedded in a nonuni-
form dielectric as that simulated for Fig. 3. The was from
4 to 20. The simulation parameters were chosen as leafsize

. In Fig. 7(a) and (b), we plotted the
CPU time and memory consumption of the proposed LU-based
direct solver in comparison with that cost by FastCap2.0. Again,
a clear advantage of the proposed solver is observed. In addi-
tion, the time and memory complexity of the proposed solver are
shown to be linear. In Fig. 7(c), we plot the error of the capac-
itance matrix generated by both solvers. The capacitance error
is measured by , where is the capacitance
matrix obtained from a full-matrix-based direct solver, and
is that generated by the proposed solver or FastCap2.0. As can
be seen clearly from Fig. 7(c), good accuracy of both solvers
can be observed in capacitance matrix. In Fig. 7(d), we assessed
the error of the proposed LU factorization, good accuracy is ob-
served in the entire range. In Table II, we listed the solution error
of the proposed solver with respect to the size of the bus struc-
ture, once again, good accuracy is observed in the entire range.

To test the performance of the proposed solver in simulating
very large examples, we simulated a structure shown in Fig. 8
[3]. The relative permittivity is 3.9 in M1, 2.5 from M2 to M6,
and 7.0 from M7 to M8. The disretization of the unit struc-
ture involving 48 conductors resulted in 25 556 unknowns. The
unit structure was then duplicated horizontally, resulting in 72,
96, 120, 144, 192, 240, 288, and 336 conductors, which led to
1 047 236 unknowns. The simulation parameters were chosen as
leafsize . Fig. 9(a) shows the
total solution time of the proposed solver. For comparison, the
solution time of a HiCap [2], [3] based solver was also plotted,

Fig. 9. Simulation of a 3-D on-chip interconnect from M1 to M8. (a) CPU time.
(b) Storage.

TABLE III
SOLUTION ERROR (FROBENIUS NORM) FOR A 3-D

M1–M8 ON-CHIP INTERCONNECTF

for which the number of conductors was simulated up to 144.
We did not simulate more conductors using the HiCap based
solver due to large run time, and also because the advantage of
the proposed solver was already obvious. In Fig. 9(b), we show
the linear storage of the proposed LU solver. In Table III, we list
solution error versus the number of unknowns. Good accuracy
is observed in the entire range. In addition, given any required
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Fig. 10. Simulation of a plate from �� to ���. (a) Accuracy of � represen-
tation. (b) Solution error. (c) Storage. (d) CPU Time.

level of accuracy, the proposed solver can achieve it with the
proposed higher-order scheme.

B. Full-Wave Extraction

A square plate with electric size from to was simu-
lated, where is wavelength. An electric field integral equation
was employed [14]. The simulation parameters were chosen as

leafsize , and . The accuracy of the
representation was plotted in Fig. 10(a), which shows almost
a constant order of accuracy in the entire electric size range.
Fig. 10(a) was only plotted up to k unknowns because mea-
suring the matrix error requires the storage of the original full
matrix . In Fig. 10(b), we plotted the solution error in the en-
tire range of electric sizes, which is measured by .
Good accuracy is observed. In Fig. 10(c) and (d), we plotted
the storage and CPU time of the proposed direct solver, respec-
tively. A linear scaling can be clearly seen.

VI. CONCLUSION

An LU-factorization based direct integral equation solver of
linear complexity and higher-order accuracy was developed for
large-scale interconnect extraction. Comparsions with state-of-
the-art iterative and direct IE-based capacitance solvers have
demonstrated its superior performance. It is kernel independent,
and hence suitable for any integral equation based formulation.
In addition, it is applicable to arbitrary structures and nonuni-
form materials.
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