
state. In spite of these differences, the three structures show
fairly similar modal properties.
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( )ABSTRACT: The asymptotic wa¨eform e¨aluation AWE method is
applied to the moment-method solution of scattering by a dispersï e
dielectric object, resulting in an efficient technique for the calculation of
the radar cross section o¨er a specified frequency band. Q 2000 John
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1. INTRODUCTION

A formulation that is widely used for scattering by a dielectric
w xobject is the so-called PMCHW 1 , named after Poggio,

Miller, Chang, Harrington, and Wu, who originally developed
the formulation. In this formulation, the electric-field integral

Ž .equation EFIE for the field inside the dielectric object is
combined with the EFIE for the field outside the object to
form a combined equation. Similarly, the magnetic-field inte-

Ž .gral equation MFIE for the field inside the object is com-
bined with the MFIE for the field outside the object to form
another combined equation. These two equations are then
solved by the moment method. This formulation is found
to be free of interior resonances, and yields accurate and
stable solutions. This letter describes the application of the

Ž . w xasymptotic waveform evaluation AWE method 2 to the
PMCHW-based moment method to accelerate the calcula-
tion of the scattering by a dispersive dielectric object, whose
permittivity is characterized by the Debye model.

2. FORMULATION

Consider an arbitrarily shaped homogeneous dielectric scat-
terer characterized by permittivity e and permeability m ,2 2
and immersed in an infinite and homogeneous medium hav-
ing permittivity e and permeability m . Using either the1 1
equivalence principle or the vector Green’s theorem, one can
formulate a set of four integral equations to calculate the
electric and magnetic fields E and H in terms of equivalent
electric and magnetic currents J and M on the surface of the
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scatterer. The equation to calculate the electric field is known
as the EFIE, and there are two such equations: one is for the

Ž .field inside the object EFIE-I , and the other is for the field
Ž .outside the object EFIE-O . The equation to calculate the

magnetic field is known as the MFIE, and there are also two
Ž .such equations: one is for the field inside the object MFIE-I ,

Ž .and the other is for the field outside the object MFIE-O . A
simple combination of EFIE-I and EFIE-O yields an integral
equation:

w Ž . Ž . Ž . Ž . i x Ž .Z L J q Z L J y K M y K M s E 11 1 2 2 1 2 tan

and a similar combination of MFIE-I and MFIE-O results in
another integral equation:

w Ž . Ž . Ž . Ž . i x Ž .Z K J q Z K J q L M q L M s Z H 21 1 2 2 1 2 1 tan

where Z s m re , and L and M are integral operators'i i i i i
defined by

1
Ž . Ž . Ž . Ž . Ž .L X s jk X r9 q ==9 ? X r9 G r, r9 dS9 3Hi i i2kS i

Ž . Ž . Ž . Ž .K X s X r9 = =G r, r9 dS9 4Hi i
S

in which k s v m e , S denotes the surface of the scatterer,'i i i
Ž .and G r, r9 is the scalar Green’s function given byi

eyjk i <ryr 9 <

Ž . Ž .G r, r9 s . 5i < <4p r y r9

Ž . Ž .Equations 1 and 2 are known as the PMCHW formulation
w x Ž .1 . When r s r9, the integral in 4 is interpreted in the
principal value sense.

For a dispersive dielectric object, e and m can be a2 2
function of frequency. For simplicity, we assume that m is a2
constant, and only e varies with frequency. The complex2
permittivity of a dielectric can be described by the Debye

w xmodel 3 :

e X y e X
2 s 2`X Y XŽ . Ž . Ž . Ž .e v s e v y je v s e q 62 2 2 2` 1 q jvte

where e X denotes the static dielectric constant, e X is the2 s 2`

optical dielectric constant, and t is a relaxation time con-e
stant related to the original relaxation time constant t by

e X q 2e2 s 0 Ž .t s t 7Xe e q 2e2` 0

with e denoting the permittivity of free space.0
Ž . Ž .Equations 1 and 2 can be solved numerically using the

moment method. In this work, the Rao]Wilton]Glisson
w xfunction 4 is used both as an expansion and testing function.

The solution is shown to be accurate and stable at interior
w xresonances 5 . The resulting matrix equation can be symboli-

cally written as

Ž . Ž . Ž . Ž .A v x v s y v 8

where A is a square matrix, x is an unknown vector consist-
ing of the discretized equivalent electric and magnetic cur-
rents, and y is a known vector associated with the incident

Ž i i.electric and magnetic fields E , H . Since the matrix A
depends on frequency, it must be generated and solved
repeatedly at each frequency in order to obtain a solution
over a frequency band, which can be time consuming.

Ž .To accelerate the solution of 8 over a frequency band,
we employ the AWE method. In accordance with this method
w x Ž .2 , x v is expanded into a rational function:

iL Ž .Ý a v y vis0 i 0Ž . Ž .x v s 9jM Ž .1 q Ý b v y vjs1 j 0

where v denotes the expansion point. The expansion coef-0
ficients a and b can be determined from the inverse and thei j
L q M derivatives of A and the L q M derivatives of y at
frequency v . In the case where one expansion point is not0

Figure 1 Backscatter RCS versus frequency of a dielectric sphere having a radius of 0.5 cm
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Figure 2 Backscatter RCS versus frequency of a dielectric cube having a side length of 1 cm

sufficient to cover the desired frequency band, one can use
multipole expansion points, which can be selected automati-

w xcally using a simple binary search algorithm 6 .

3. NUMERICAL EXAMPLES

Consider a dielectric sphere of radius 0.5 cm immersed in
free space. For the numerical solution, the surface of the
sphere is modeled by 648 triangular patches, resulting in
972 edges, and thus 1944 unknowns. The permittivity of the
sphere is characterized by e X s 2.56, e X s 1.0, and t srs r`
1.59 psrrad. As a result, as the frequency varies from 0.5 to
35 GHz, the real part of the relative permittivity varies from
2.56 to 2.22, and the imaginary part varies from y0.012 to

Ž .y0.65. The backscatter radar cross section RCS of the
sphere is shown in Figure 1, where the backscatter RCS of a
nondispersive sphere of the same size and having a relative
permittivity 2.56 is also given. Three solutions are displayed
in the figure. One is the exact Mie series solution, the second

Ž .is the solution obtained by solving 8 directly at each fre-
quency, and the third is the solution obtained using the AWE
method. With a frequency step of 0.5 GHz, it takes the direct
method 24611 s to obtain the solution on a digital personal

Ž .workstation 500 MHz Alpha 21164 processor . In contrast,
the AWE method produces the solution with 0.01 GHz
increments in 2206 s on the same computer. Figure 2 shows
similar results for a 1 cm = 1 cm = 1 cm dielectric cube with
normal incidence.

4. CONCLUSIONS

This letter described the application of the AWE method to
the moment-method solution of the PMCHW equations for
scattering by a dispersive dielectric object. It was shown that
the use of AWE can speed up the calculation by more than
an order of magnitude.
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ABSTRACT: A new design of a slot-loaded rectangular microstrip
antenna for single-feed dual-frequency operation is proposed and experi-
mentally studied. The slots loaded in the patch are a pair of bent slots
centered in the patch and oriented along the resonant direction, with the
spacing between the two slots being about half the patch’s radiating-edge
length. By ¨arying the bent angle and horizontal-section length of the
slots, the frequency ratio between the two operating frequencies is tunable
in a range from about 1.28 to 1.79. The two frequencies are also of the
same polarization planes and similar broadside radiation patterns.
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