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Abstract—In this paper, a fast explicit and unconditionally
stable finite-difference time-domain (FDTD) method is developed,
which does not require a partial solution of a global eigenvalue
problem. In this method, a patch-based single-grid representation
of the FDTD algorithm is developed to facilitate both theoretical
analysis and efficient computation. This representation results in
a natural decomposition of the curl-curl operator into a series
of rank-1 matrices, each of which corresponds to one patch
in a single grid. The relationship is then theoretically analyzed
between the fine patches and unstable modes, based on which an
accurate and fast algorithm is developed to find unstable modes
from fine patches with a bounded error. These unstable modes
are then upfront eradicated from the numerical system before
performing an explicit time marching. The resultant simulation
is absolutely stable for the given time step irrespective of how
large it is, the accuracy of which is also ensured. In addition,
both lossless and general lossy problems are addressed in the
proposed method. The advantages of the proposed method are
demonstrated over the conventional FDTD and the state-of-
the-art explicit and unconditionally stable FDTD methods by
numerical experiments.

Index Terms— Explicit methods, fast methods, finite-difference
time-domain (FDTD) method, stability, unconditionally stable
methods.

I. INTRODUCTION

HE finite-difference time-domain (FDTD) method is one

of the most popular time-domain methods for electro-
magnetic analysis. This is mainly because of its simplicity and
optimal computational complexity at each time step. However,
the time step of a conventional FDTD [1], [2] is restricted
by space step for stability, which is known as the Courant—
Friedrich—Levy condition. Such a choice of time step is also
the time step required by accuracy, if the space step can be
determined solely from the accuracy perspective for capturing
the working wavelength. However, when there are fine features
relative to the working wavelength in the problem being
simulated, the smallest space step can be much smaller than
that determined by accuracy. Hence, the resultant time step
for ensuring stability can be much smaller than that required
by accuracy. As a consequence, a large number of time steps
must be simulated to finish one simulation, which is time
consuming.
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To overcome the aforementioned barrier, researchers have
developed implicit unconditionally stable FDTD methods,
such as the alternating-direction implicit method [3], [4], the
Crank—Nicolson (CN) method [5], the CN-based split step
scheme [6], the locally 1-D FDTD [7], [8], the pseudospectral
time-domain method [9], the Laguerre FDTD [10], [11], the
associated Hermite type FDTD [12], a series of fundamental
schemes [13], and many others, but the advantage of the
conventional FDTD is sacrificed in avoiding a matrix solution.
Research has also been pursued [14]—-[18] to address the time
step problem in the original explicit time-domain methods.
In [17] and [18], the source of instability in FDTD is identified
to be the unstable eigenmodes whose eigenvalues are larger
than what can be accurately simulated by a given time step.
The unstable modes are subsequently deducted from the under-
lying numerical system in [17] and [18] before performing an
explicit time marching. As a result, an explicit FDTD can also
be made unconditionally stable. However, to find the unstable
modes, [17] and [18] require a partial solution of a global
eigenvalue problem. The resulting computational cost may still
be high when the matrix size and/or the number of unstable
modes are large.

Since the largest eigenvalue of a discretized curl—curl oper-
ator is inversely proportional to the smallest space step, the
unstable modes exist indeed because of fine space discretiza-
tions relative to working wavelengths. It may not be necessary
to perform a global eigenvalue solution to find the unstable
modes. Along this line of thought, in this paper, we first
represent the FDTD method into a patch-based single-grid
format, in contrast to a conventional matrix representation
that can be viewed as an edge-based dual-grid one. This
new representation allows us to use patches in a single grid
to formulate the FDTD, regardless of whether the grid is
2-D or 3-D. For each patch, one only needs to generate a col-
umn vector of four nonzero entries, and a row vector that is the
transpose of the column vector in a uniform grid. The resultant
rank-1 matrix is positive semidefinite, whose eigenvalue can
also be found analytically, which we show to be inversely
proportional to the patch area. This new representation helps
us readily identify a theoretical and quantitative relationship
between the fine patches and the largest eigenmodes of the
discretized cur—curl operator. We thus prove that once there
exists a difference between the time step required by stability
and the time step determined by accuracy, i.e., a difference
between the fine-patch size and the regular-patch size, the
largest eigenmodes of the original system matrix can be
extracted from fine patches with a bounded error. The larger
the contrast ratio between the two time steps (or space steps),
the more accurate the eigenmodes extracted in this way. This
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finding can also be utilized by other research requiring finding
the largest eigenmodes. Based on this theoretical finding, we
propose an efficient algorithm to find the unstable modes
directly from the fine patches. We then deduct these unstable
modes from the numerical system of the FDTD. As a result, an
explicit time marching can be performed with unconditional
stability and fast.

The preliminary result of this paper has been reported
in [19]. In this paper, we complete the theory behind the
proposed work, which is not made clear in [19]. We also
provide a detailed description of how to reformulate the FDTD
method into a patch-based single-grid format, which is not
given in [19]. In addition, a significant amount of work is
devoted to extend the proposed method to analyze general
lossy problems where both lossy dielectrics and conductors
can coexist. In such a scenario, the unstable modes are much
more difficult to be obtained efficiently and accurately, since
the underlying eigenvalue problem is quadratic. Extensive
numerical experiments are also carried out to simulate both
lossless and lossy problems.

This paper is organized as follows. In Section II, we present
a new way of representing the FDTD method, i.e., a patch-
based single-grid representation. In Section III, we describe
the proposed method for analyzing general lossless problems,
where we provide a detailed theoretical analysis, elaborate
step-by-step the proposed method, explain how it works,
and analyze its computational efficiency. In Section IV, we
develop an algorithm for analyzing general lossy problems.
In Section V, a number of numerical examples are presented to
demonstrate the accuracy and efficiency of the proposed new
method in comparison with the original FDTD and the state-
of-the-art explicit FDTD methods that are unconditionally
stable. In Section VI, we summarize our findings.

II. PATCH-BASED SINGLE-GRID REPRESENTATION
OF THE FDTD AND ITS IMPLICATION

To facilitate the development of the proposed method, we
first present a new way of representing the FDTD. In the
original FDTD formulation, each difference equation is written
for obtaining one field unknown, either primary field unknown
or dual field one, and each of these field unknowns is defined
along the edge of a primary or a dual grid. Such a matrix-less
formulation has also been compactly written into a matrix-
based form. We can view the original FDTD formulation,
either its matrix-less formulation or its matrix-based one, an
edge-based dual-grid formulation, since each edge in the
primary and dual grid is associated with one field unknown.
The new representation presented in this section is a patch-
based single-grid one. We use only one grid. In this grid no
matter it is a 2-D or 3-D grid, we loop over all the rectangular
patches present in the grid. For each patch, we formulate a
column vector and a row vector, whose product is a rank-1
matrix. The row vector describes how the E (H) unknowns
along the contour of the patch produce the normal H (E)
field at the patch center. The column vector describes how
the normal H (E) field at the patch center is used to obtain
the E (H) unknowns. The two are transpose of each other in
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a uniform grid, but can be very different in a nonuniform grid
or a grid with subgrids. With the two vectors generated for
each patch, we can march on in time to find the electric and
magnetic field solutions. In the following presentation of the
proposed formulation, we place the normal H at each patch
center and E along the edges of the grid. But the two can also
be reversed.

Consider a single 2-D or 3-D grid. Denote the total number
of E and H unknowns by N, and N, respectively. For each
patch in the grid, we obtain the normal magnetic field at the
patch center, 4;, as follows:

1 1 1 1
T s v T 0 s [e]:

Ly Li Wi W
where subscript i denotes the patch index, which is also the
H unknown index. The L; and W; are, respectively, the two
side lengths of patch i, and y; is the permeability at the patch

center. Defining a global unknown vector {e} containing all
electric field unknowns, (1) can be rewritten as

oh;
ot

‘ah,- o
Hiey

SO en, (e} = —ui ©)
where s§’) is a row vector of length N,, with the superscript
denoting the patch index. This row vector has only four
nonzero entries shown in (1), whose column indexes are the
indexes of the four local electric field unknowns in global
vector {e}.

In the original FDTD formulation, Ampere’s law is dis-
cretized on a grid dual to the grid used for discretizing
Faraday’s law, resulting in

0
St (1) =D 1)) 0

where {h} contains all of the 4 unknowns, D, is a diagonal
matrix of permittivity, and {j} denotes a current source vector.
The above can be rewritten as follows:

S\Vh1 + 87 hy + -+ Sy, = DS% +) @
where Sﬁl’) denotes the ith column of S, and the S, {4} in (3)
is realized as the sum of weighted columns, instead of a row-
based computation that one is more used to. Each row of (3)
represents a curl of H operation producing an electric field
unknown, but each column does not. However, by doing so,
(4) allows us to discretize Ampere’s law in the original grid
and on the same patch producing #;. Each column vector Sg)
has only nonzero entries at the rows corresponding to the E

unknowns generated from #;. In a uniform grid, Sg) has only
four nonzero entries, and it is simply

(), =SV 5)

In a nonuniform grid, the Sgi) stays the same since h; is still
centered by E unknowns along the patch contour; the Sg)
can be altered for a better accuracy. In our implementation,
we observe that a length or width averaged between adjacent
patches yields a much better accuracy than its nonaveraged
counterpart. Hence, the L; and W; in Sg) are changed to the
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average ones between patch i and its adjacent patch that shares

the same E unknown. Note that each row of SL) corresponds to
one electric field unknown. So for an arbitrary jth row of S(l) s
the other patch, which shares the corresponding e;-unknown
with patch i, is known.

Now, if we take a time derivative of (4), and substitute (2)
into it, we obtain

2 .
.ty ety = -2 ©)
ot
where
C= Z’ul S(l) N xl(sg))lxNg (7)

which is clearly the sum of a rank-1 matrix obtained from
each patch.

After column vector Sfl) and row vector S() are obtained
for each patch, we can use them to perform a leap-frog time
marching based on (2) and (4). We can also directly solve (6)
as a second-order differential equation in time using a central-
difference scheme. The two can be proved to be equivalent to
each other.

Since the rank-1 matrix has a form of [a][b]T, where [a] is
a column vector and [b]7 is a row vector, its eigenvalue can
be found analytically as the following. Basically, by observing
the following eigenvalue problem of [a][b]T, where A denotes
an eigenvalue, and w is the eigenvector:

[allb]" w = 2w ®)

we can immediately identify its eigenvalue solution as
= [b]"[a] )
w = [a]. (10)

Since a rank-1 matrix has only one nonzero eigenvalue, if
A =[b]"[a] is greater than 0, then the matrix must be positive
semidefinite as the rest eigenvalues are zero. Now consider the
rank-1 matrix of an arbitrary patch i in an FDTD grid

Si=(S"), (s (11)

From (1), (5), and (9), it can be readily seen that S;’s
eigenvalue is

Nex1 1xN,*

2

L; Wi
For a square patch, it is simply 4/A;, where A; is the
area of patch i. This eigenvalue is also the 2-norm of
the rank-1 matrix, which is also the 2-norm of column
vector Sg) multiplied by that of row vector S¢. Obviously,
the contribution of every patch in an FDTD system matrix is
positive semidefinite. Thus, the sum of them is also positive
semidefinite. Furthermore, the smaller the patch, the larger the
eigenvalue of its rank-1 matrix.

From (7) and the analysis of each rank-1 matrix, it becomes
possible to find the largest k eigenvectors of the FDTD system
matrix from its & columns and k rows having the largest
norm. These columns and rows correspond to exactly those
contributed by fine patches, as analyzed in the above. Let the

ipatch(i) = + (12)
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sequence of S,(zl), S(z), ... be in a descending order of vector

S;,k-H)’

norm, with Sg)’s norm being the largest and S norm €,

times smaller than Sil)’s norm. Since Sg)’s 2-norm is

2 2

+ — 13
4 (13

s3], =

this also means that the area of patch k is about 63 times larger
than that of patch 1. C can then be well approximated as

k
C=2 wi'sy’sy
i=1

(14)

with the error of ||C — C||/||C|| bounded by 0(63). Hence,
C can be sufficient for finding m < k largest eigenvalues and
their corresponding eigenvectors with good accuracy, although
it cannot be used to find all eigenpairs. This also indicates that
the field distribution of largest eigenmodes is actually localized
in fine patches. The above analysis can still be conceptual.
In the following section, we will provide a detailed study.

III. PROPOSED METHOD FOR LOSSLESS PROBLEMS

A. Theoretical Analysis

As shown in [17], [18], and [20], the time step for a stable
FDTD simulation, At,, is required to satisfy the following
criterion:

Aty <

2

15
7® )
where p(S) denotes the spectral radius of S = Dy /¢)C, which
is the largest eigenvalue of S. Using the eigenvalue shown
in (12), dividing it by € and u, we can obtain the eigenvalue
of S for a single patch i. This is clearly 4c¢2/A; for a square
patch, where ¢ is the speed of light. Based on (15), we obtain
Aty < /Aj/c. The largest eigenvalue of S is bounded by
its norm. Because of a factorized form shown in (14), the
S’s norm can be readily found as no greater than the largest
SN 18P = 2[1SP[12, and hence the largest 4c2/A;
as can be seen from (13). Thus, At; < </ Amin/c, Where Amin
is the smallest patch area. Hence, using the proposed new
representation of the FDTD, we can also readily see that (15)
dictates that the maximum time step permitted by stability is
proportional to the smallest space step.

In [17] and [18], the eigenvectors of S corresponding
to the largest eigenvalues, which are beyond the stability
criterion, are identified as the root cause of instability. The
Arnoldi algorithm is then employed to find these unstable
eigenvectors. For a sparse matrix of size N,, finding its largest
k eigenpairs may take many more than £ Arnoldi steps, with
the computational complexity being O (k">N), where k' > k.
When N is large, the computational overhead for obtaining a
complete set of unstable modes in [18] could still be too high
to tolerate. In this section, we identify a relationship between
the unstable modes and the fine patches present in the space
discretization, from which a global eigenvalue problem can be
avoided.
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Given a time step Aft,
components

S can be partitioned into two

S=S;+S. (16)

where Sy consists of all fine patches, the rank-1 matrix
of which has an eigenvalue shown in (12) larger than that
permitted by the given time step, and S, is composed of the
rest. Consider an eigenvector, Fp,;, of Sy. It satisfies

SrFpi = AiFy;. 17
Next, we prove that it also satisfies the following with a
bounded error €,c¢:

SF); ““ 2 Fyi (18)

and thus the eigenvectors obtained from the fine patches are
also the eigenvectors of the entire problem domain with €,
accuracy.
Proof: To prove (18), we evaluate the following:
ISFni — 2iFpil

- - 19
Cace ISFyi (19)

Since SFj; = (Sy + Sc)Fp;, and Fy; satisfies (17), (19) can

be rewritten as
IScFi |l

€ace = ——— . (20)
T IScFhi + AiFn |

Since S, is positive semidefinite, the above satisfies

(ISc IHIFR; _ ISl
AillFwill A

acc = 2n
Since S, is Hermitian, its norm is also its spectral radius,
i.e., the largest eigenvalue of S.. This number determines the
maximum time step that can be used in the regular patches for
a stable simulation, denoted by Af.. Similarly, the maximum
Ai of Sy determines the time step Aty that can be used in the
fine patches for a stable simulation, which is also equal to the
Atg in (15) for the entire computational domain. As a result,
from (21), we obtain

AN Y
€ = — .
=\ At At

The last equality in the above holds true because the ratio of
Aty to At is also the ratio of time step required by stability
Aty to that determined by solution accuracy (Af), assuming the
regular-cell region is discretized based on accuracy. From (22),
it is evident that once At; is smaller than Af, which is
exactly the scenario when the time step issue should be solved,
the unstable eigenmodes can be obtained from fine patches
with a bounded error. Meanwhile, the larger the contrast
ratio of regular-patch size to the fine-patch size, the better
the accuracy of the unstable eigenmodes extracted from fine
patches. In addition, from (21), it can be seen among the
eigenvalues A; obtained from the fine patches, the larger the
eigenvalue, the better the accuracy. Based on the above finding,
we develop a fast method to achieve unconditional stability in
an explicit FDTD time marching, as shown in the next section.

(22)
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B. Proposed Algorithm

The proposed method includes three steps. First, we find
unstable modes accurately from fine patches with controlled
accuracy. Second, we upfront deduct the unstable modes from
the system matrix, and perform an explicit marching on the
updated system matrix with absolute stability. Finally, we add
back the contribution of unstable modes if necessary.

1) Step I: Finding Unstable Modes Accurately From Fine
Patches: Given any desired time step Af, we categorize the
patches in the grid into two groups. One group, denoted
by C,, consists of the regular patches, which allow for the
use of the desired time step without becoming unstable. To be
specific, the single nonzero eigenvalue of the rank-1 matrix
of a regular patch divided by its permittivity and permeability
is no greater than 4/A¢?. The other group C ¢ includes all
the fine patches and the patches immediately adjacent to the
fine patches. The rank-1 matrix of each fine patch residing in
a fine grid has an eigenvalue larger than that of the regular
patch. The same is true for the patches immediately adjacent
to the fine patches. This is because in these patches, the length
parameters L; and W; are averaged from the fine patch and
the regular patch sharing the E-unknown, when calculating the
four nonzero elements of column vector S . As a result, the
eigenvalue of the rank-1 matrix of a patch adJacent to the fine
patch is also larger than that of the regular one. Clearly,
Cy patches require a smaller At to ensure the stability. These
patches do not have to be connected. They can be arbitrarily
located in the grid. Accordingly, S can be split as shown
in (16), where S is S assembled from C and S, is from C,.
To identify Sy, the new FDTD representation presented in
Section II provides a convenient and efficient approach. Based
on (7), we obtain S ¢ by looping over all the fine patches. For
each patch, we obtain a rank-1 matrix SS)SS). We then sum
them up to obtain

D Z /‘lilszl)zvmsel 1xN, (23)

i=1,ieCy

in which k is the patch number in Cy.

Denote the E unknown number in C; by n. This is also
the edge number in C. Let the H unknown number in Cy
be k. This is also the patch number in Cy. It is evident that
n < N, and k < Nj. The column vector S;ll) in (23) has
only four nonzero entries, whose row indexes correspond to
the fine- patch electric field unknown indexes. Similarly, the
row vector S has four nonzero elements at the columns of
the fine-patch unknowns. The matrix in (23), hence, can be
rewritten as a small n by n matrix

S

£ nxn 24

where A is composed of the k columns of Sg) , and BT has

nT
the k rows of S((f) , where the zeros corresponding to the
unknowns in regular patches are removed. The permittivity is
included in A, while the permeability is included in B. Since

k is less than n, the S}f ) is intrinsically low rank. We then

extract [ unstable eigenmodes, Fj;, from S}f ), the complexity
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of doing so is only O(lzn). Here, | < k,i=1,2,...,1l. Since
| < k' and n < N,, this cost is much smaller than O(k’>N,)
in [18], which is the complexity of an Arnoldi-based global
eigenvalue solution. Given an accuracy threshold e, if the

following requirement is satisfied, the Fg ) is accurate enough
to be chosen as an unstable mode:

ISFpni — AiFpi||
€ace = ————— 10 <€ (25)
ISF;

where Fy,; is F;l{ ) extended to length N, based on the global
unknown ordering. Among / eigenvectors, assume &, of them
are accurate. They are also the k, largest eigenvalues. We then
orthogonalize them as Vj, for the use of the next step.

When calculating €,cc, 2-norm is used in this paper. The
choice of the accuracy threshold € is a user-defined parameter.
Since the larger the eigenvalue, the better the accuracy of the
eigenmode extracted from Sy, we compute the eigenvalues of
S 7 starting from the largest to smaller ones. For each eigenpair
computed, we calculate €,.. defined in (19) until it is greater
than prescribed €. The €, calculated for the largest eigenpair
represents the best accuracy one can achieve in the given grid,
which also dictates the smallest € one can choose.

2) Step 1I: Explicit and Unconditionally Stable Time
Marching: After the unstable modes are found, before per-
forming the explicit time marching, we directly deduct Vj
modes from S as follows:

Si =S —-V,VIs (26)

which permits the use of the desired time step, regardless of
how large it is. The explicit marching can then be carried out
using the updated system matrix as

(e}t = 2{e}" — {e}" 1 — AL2S{e)" + APP{FY. (27)

At each time step after finding {¢}"*!, the following treatment
is added to ensure that {e} is free of V; modes:

{e}n+1 — {e}n+l _ VhV}I;I {e}n+l ) (28)

In the special case where all patches are fine patches,
the proposed method is equally valid. In this case, only
the nullspace of S, Vp, is left in (S — VthS), ie.,
(S — Vi V}8)=VoV['S. Since the product of S and Vo is
zero, the S; term vanishes in (27). The {e}’s solution, which
contains only nullspace modes as ensured by (28), becomes
the time integration of the right-hand side performed twice.
The resultant solution is correct, as shown in [18]. Note that
one cannot just take (6) and vanish the S-related term therein
for obtaining a field solution of nullspace modes (also known
as DC modes). If one does so, the solution would be wrong.
Only the nullspace component of the field solution makes the
S-related term vanish.

3) Step 1lI: Adding Back the Contribution of Unstable
Modes if Necessary: This step is not needed when the time
step is chosen based on accuracy, since the unstable modes
removed are not required by accuracy as analyzed in [18].
In the case when time step chosen is larger than that required
by accuracy, some eigenvectors that are important to the field
solution are also removed from the numerical system, and
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therefore the solution computed from (27) and (28) is no
longer an accurate solution of the original problem in (6) any
more. In this case, the proposed algorithm allows users to add
the V), contribution back to guarantee accuracy. Basically, we
can express the field solution {e} of (6) as

{e} = V{y} = Vi{yi} + Vilyn} = {e} + {en} (29)

where V=[V;, V] is orthogonal of full rank N,. Since from
(27) and (28), {e¢;} has been obtained, we need to find
only {ep}. Since Vj, has been computed, front multiplying V,’:’
on both sides of (6), the {y,} can be readily found from

62
G{t);h} +S:{yn} = VZ; ({f} - S{el})

where Sr=V,1f SV;,, whose size k, is the number of unstable
modes. Since (30) is of small size k,, it can be efficiently
solved by the algorithm in [17], or by implicit methods.

C. How Does It Work?

Apparently, since the proposed algorithm also allows one
to add the Vj contribution back, it seems that any orthogonal
space Vj, can be used. This is not true. To obtain a correct
solution from (27) and (28), Vj, should satisfy VITSVh = 0.
This can be found as follows. Since {e} can be expanded
as (29), (6) can be rewritten as

% (V \
( z{w;; ) LS (Vi) + Vil = (). GD)

By multiplying the above by VIH , we can obtain the
V;-component of {e} by solving

o {yi}
or?
If VIH SV} is not equal to zero, (32) cannot be reduced to an
equation of {y;} only. Only when VIHSV;, = 0, (32) can be
reduced to (27), where {e} = {e;} due to (28), and I—VhV;:’ =
V,VH.

Since (25) is satisfied, Fj, is an accurate eigenvector of S.
With V}, orthogonalized from Fy,, the property of VZH SV, =0
is satisfied. This is because SV, = SF,Z = F,A}Z =
VuZ 'ApZ, and VlHVh = 0. Here, we use the relationship
of V;, = F;Z where Z is a full-rank transformation matrix, as
V,, is orthogonalized from Fj,.

(30)

+VIS(Vilyid + Vilon}) = VI (32)

D. Computational Efficiency

In the proposed method, we avoid finding the eigensolutions
of the original global system matrix S. Instead, we work
on a much smaller matrix Sy. Therefore, compared with the
approach developed in [18], the proposed method can achieve
unconditional stability more efficiently without sacrificing
accuracy. The complexity of finding unstable modes is reduced
significantly from the original O(k”>N,) to O(I*n) with n <
N, and [ < k’. This small cost is also a one-time cost, which
is performed before time marching. Since the unstable modes
found in this paper are frequency and time independent, once
found, they can be reused for different simulations of the
same physical structure. In the second step of explicit time
marching, the matrix-free property of the FDTD is preserved.
The time marching has a strict linear (optimal) complexity at
each time step.
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IV. PROPOSED METHOD FOR LOSSY PROBLEMS

In the previous section, we focus on lossless problems.
When there exist lossy dielectrics and conductors, we need
to add one more term to (6) as follows:

o{e}

0%{e} B

(33)

where D is diagonal with its ith entry being o;/€; at the point
of the ith E unknown. Different from a lossless problem, (33)
is governed by the following quadratic eigenvalue problem:

(A2 + D+ 8w = 0. (34)
The treatment of such a problem is different from that of
a generalized eigenvalue problem. We hence use a separate
section to describe our solution to general lossy problems.

A. Theoretical Analysis

The second-order differential equation (33) can be trans-
formed to the following first-order equation in time without
any approximation:

o{e}

— —M{é) = {f}

o (35)

where {f} =[0 f17, {¢} = [e é]7, in which ¢ denotes the
first-order time derivative of e, and matrix M is

0 I
vl )
where I is an identity matrix. Obviously, {€}’s upper part is
the original field solution of (33).

The solution of (35) is governed by the following general-
ized eigenvalue problem:

(36)

Mx = ix. 37
This problem is also equivalent to (34) using the relationship
of x=[v Jv]T. Since I is positive definite, D is positive
semidefinite, and S is positive semidefinite, the eigenvalues of
(37) either are nonpositive real or come as complex conjugate
pairs whose real part is less than zero. Similar to lossless
problems, to achieve unconditional stability, we also need to
remove the unstable modes from the system matrix, now M.
These modes are analyzed in [21]. They have eigenvalues
whose magnitude satisfies

2
1] > —.

At (38)

Again, given a desired time step, the unstable modes have
the largest eigenvalues in magnitude. Compared with lossless
problems, now it is even more computationally expensive to
find these unstable modes since M is double sized and can
be highly ill-conditioned when conductor loss is involved.
Therefore, similar to what we do for lossless problems, we
propose to find the unstable modes efficiently from the fine
patches only.
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B. Proposed Method

When dealing with lossless problems, all the patches in the
computational domain are divided into two groups, C and C,,
based on the time step permitted by their grid size. For
lossy problems, we incorporate into C; not only the fine
patches and their immediately adjacent patches, but also all
the patches filled with conductive metals. This is because
the conductive materials contribute eigenvalues as large as
conductivity divided by permittivity. To explain, the lowest
eigenmode of (34) satisfies Sv=0, which is a gradient field.
For this field, in addition to zero eigenvalues, there is a set of
eigenvalues whose magnitude is approximately ||D||, which is
o over permittivity. Hence, the conductive region is included
since unstable modes correspond to the largest eigenvalues.

After Cy is identified, we can form a matrix M as follows:

0 I
Mr= [_Sf —Dfi|
where Sy can be found in the same way as (24) and Dy is
obtained by selecting the diagonal entries of D corresponding
to the field unknowns in C;. As a result, My is a 2n x 2n
matrix, which is much smaller than the original size of M.
We then extract the largest eigenpairs of My using the
Arnorldi method. Similarly, an accuracy check similar to (25)
(with S replaced by M) is performed to select accurate unstable
modes obtained from My. Let k, be the unstable eigenmodes
obtained from My, the complexity of finding them is simply
O (k?n). We then orthogonalize the unstable modes obtained,
and augment them with zeros based on the global unknown
indexes to build Vj,.
Using Vj,, we upfront deduct their contributions from the
system matrix before time marching as follows:

(39)

M, =M -V, ViMm. (40)

We then perform a time marching of (35) using the updated
system matrix M; as follows:
o{e}

7 —Ml{é} = {f}

If we perform a forward-difference-based time marching
on (41), the resultant update equation is definitely explicit.
However, the stability requirement on the time step is Ar <
—2Re(2)/]A1> where A is the eigenvalue of M;. This results
in a time step smaller than At < 2/|A|, which is the time step
required by a central-difference discretization of the original
second-order (33), for stably simulating the same set of A.
To solve this problem, we propose to perform a backward
difference as shown in the following:

(41)

(I — AtM)(E ™ = (&) + Ar{f)" T (42)

A z-transform of the above results in z=1/(1—AAt). Since 1 of
M; has a nonpositive real part, the stability of (42) is ensured
for any large time step. Using the accuracy determined time
step At, and with the corresponding unstable modes removed,
all the eigenvalues of M; satisfy

1
1Al = —

<A (43)
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Hence, the inversion of the left-hand matrix of (42) can
be replaced by a series expansion with a small number of
terms. Thus, (42) can be explicitly marched on in time as
follows:

(@)~ I+ AM+(AtM)? + - - -+ (AIM)P) {5} (44)

where {y} represents the right-hand-side term in (42). In the
above, there is no need to compute the matrix—matrix product.
Instead, (44) is a summation of p vectors, and every vector
can be obtained by multiplying the previous vector by M;.
Hence, the computational cost of (44) is simply p matrix—
vector multiplications, and p < 10.

To make sure that the solution is free of unstable modes,
we need to add the following treatment after (44) at each time
Instant:

{E}n+l — {é}n+l o VhV}I;I{é}n+l (45)

C. Matrix Scaling

When conductor loss and/or multiscale structures are
involved, I, D, and S can be orders of magnitude different in
their matrix norm. The solution of the generalized eigenvalue
problem (37) may have a poor accuracy. To improve the
accuracy of finding unstable modes from My, we adopt an
optimal scaling technique introduced in [22]. Based on this
technique, the I and S in (36) are scaled to

I=ol S=S/a (46)
where
o = +/[Sll2. (47)

Consequently, the first-order double-sized system (35) is
updated as follows:

oy o

o1 —Mfe}={f} (48)
where (¢} =[e ¢/a]T, {f} =10 f/a]T, and M is

- 0 I

M:[_S _D] (49)

The M ¢ formulated for fine patches is also scaled accordingly.
As can be seen in (48), the upper half of the solution vector {é/}
is the same as that of (35).

V. NUMERICAL RESULTS

In this section, we simulate a number of 2-D and 3-D exam-
ples involving inhomogeneous materials and lossy conductors
to demonstrate the validity and efficiency of the proposed fast
unconditionally stable FDTD method. Both small and largest
contrast ratios are considered between fine and regular patches.
A nonuniform grid is used to discretize fine features. As shown
in [23] and [24], a naive nonuniform grid can produce errors
and numerical artifacts in the field solution of the FDTD
simulation. A good nonuniform grid should minimize the
solution error. In the proposed implementation, the length
parameters used in the column vector of each patch are
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averaged from adjacent patches. They have shown to produce a
better accuracy, compared with nonaveraged ones. In addition,
the proposed method can also be applied to subgridding. Its
validity is independent of how the rank-1 matrix for each fine
patch is generated. As shown in Section II, using the proposed
new way of representing FDTD, the difference between a
uniform grid, a nonuniform grid, and a grid with subgrids is
simply the difference in the column vector and the row vector
generated from each patch. The proposed method remains the
same regardless of the content of the column and the row
vector generated from each patch.

A. Validation of the Proposed Method

First, we did a detailed case study to validate the proposed
method from a variety of aspects. A wave propagation as
well as a cavity problem in a 2-D rectangular region is
considered. The grid is shown in Fig. 1(a), where fine patches
are introduced to examine the unconditional stability of the
proposed method. Along the y-axis, the cell size is uniform of
0.1 m width. Along the x-axis, we define Contrast Ratio =
Axc/Axy where Ax, = 0.1 m, and Axy is controlled by
Contrast Ratio. There are three fine patches along the
x-axis whose cell size is Axy. The total number of E
unknowns is 258. The incident electric field is E™ = y2(r —
t()—x/c)e_(’_’o_x/c)z/’2 withc =3x108m/s, 7 =2x 1078 s,
and fo = 4r. The regular grid size, Ax, = 0.1 m, satisfies
accuracy for capturing frequencies present in the input spec-
trum, which is about 1/20 of the smallest wavelength. The
computational domain is terminated by an exact absorbing
boundary condition, which is the known total field. This is
because for any problem, the total fields on the boundary
serve as an exact absorbing boundary condition to truncate a
computational domain. For most of the problems, such fields
are unknown. However, in a free-space problem studied in
this example, the total field is known since it is equal to the
incident field.

When choosing Contrast Ratio = 100, Axy=0.001 m,
which is two orders of magnitude smaller than that required
by accuracy. Hence, there is a two orders of magnitude
difference between the time step required by accuracy and
that by stability. The conventional FDTD method must use
a time step no greater than 3.84 x 107!2 s to perform a
stable simulation. In contrast, the proposed method is able
to use a time step of 2.42 x 10719 s solely determined by
accuracy to carry out the simulation. The fine patches and
their adjacent patches are identified, which are marked in red
in Fig. 1(a). They involve 50 internal E unknowns. Therefore,
the size of S ¢ is 50 by 50, from which 15 unstable eigenmodes
are found accurately for a prescribed accuracy of € = 1079,
The €, for the 16th eigenmode in (25) is 0.1036. Hence,
the 16th eigenmode and thereafter are not selected since their
accuracy does not meet the required accuracy. The 15 unstable
modes are then deducted from the system matrix, permitting
a two-orders-of-magnitude larger time step. In Fig. 1(b), the
electric fields at two observation points marked by blue cross
in Fig. 1(a) are plotted as a function of time. Obviously, they
show excellent agreement with reference analytical solutions.
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Fig. 1. Simulation of a wave propagation in a 2-D grid. (a) Space
discretization. (b) Simulated electric fields at two observation points when
Contrast Ratio = 100. (¢) Entire solution error versus time with different
Contrast Ratio from 2, 5, and 10 to 100.

In this example, we have also numerically examined
whether the eigenmodes extracted from the fine patches are
accurate approximations of the eigenmodes of the entire
problem. In Table I, we list the eigenvalues of the 15 unstable
modes and also the 16th one we extract from Sy with
Contrast Ratio = 100. It is clear to see that the largest
15 eigenvalues are at least two orders of magnitude larger
than the 16th one. Once they are removed, a much larger
time step can be used for a stable simulation. In Table II,
we list the accuracy of each unstable eigenmode with respect
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TABLE I

LARGEST 16 EIGENVALUES OBTAINED FROM Sf WHEN
Contrast Ratio = 100

A1 2.70260697E+25
A2 2.70251709E+25
A3 2.70240599E+25
A4 2.70228179E+25
A5 2.70231612E+25
A6 9.16900389E+24
A7 9.16810512E+24
A 9.16699417E+24
Ao 9.16575210E+24
Ao | 9.166095405E+24
Al11 1.23429421E+22
A12 1.22530647E+22
A13 1.21419701E+22
A4 1.20177625E+22
A5 1.20520926E+22
A6 5.89575274E+19

to different Contrast Ratios from 2, 5, and 10 to 100, by
calculating the relative error shown in (19). Obviously, for
all these contrast ratios, the eigenmodes extracted from fine
patches are shown to be accurate eigenmodes of the entire S.
Furthermore, the larger the contrast ratio of fine patches to the
coarse ones, the better the accuracy of the eigenmodes found
from fine patches. Moreover, the eigenmodes whose eigenval-
ues are larger are more accurate. All of these have verified
our theoretical analysis given in Section III. Note that when
Contrast Ratio = 2, the number of unstable eigenmodes that
can be accurately extracted is smaller. However, we still can
obtain a set of eigenmodes accurately for such a small contrast
ratio.

To examine the solution accuracy at all points in the grid,
we define the entire solution error at each time instant as

) . l{e}n, x1 — {e}anal Il
Entire Solution Error = ex AnaINe x 1

||{e}anal||1v€x1 G0
where {e} n,x1 consists of all electric field unknowns generated
by the proposed method and {e}nq) is the analytical solution
to all the unknowns. For example, considering an E unknown
located at r; with direction #;, its analytical solution for this
wave propagation problem is simply E°(r;) - #;. Two-norm is
used to calculate (50) in this paper. Meanwhile, we examine
the solution accuracy as a function of Contrast Ratio. The
entire solution error is plotted in Fig. 1(c) for four different
Contrast Ratios 2,5, 10, and 100, respectively. It is evident
that the solution accuracy of the proposed method is satisfac-
tory for all these contrast ratios. Furthermore, the larger the
contrast ratio, the better the accuracy. In this example, we also
use the conventional FDTD method with Ar = 3.84 x 10712 s
to simulate the case with Contrast Ratio = 100, and plot the
entire solution error versus time in Fig. 2. Comparing Fig. 1(c)
with Fig. 2 for Contrast Ratio = 100, it is obvious that the
proposed method can achieve the same level of accuracy as the
conventional FDTD method. As for efficiency, the CPU time
speedup is 1.58, 3.08, and 28.16, respectively, for contrast
ratios of 5, 10, and 100. However, no speedup is observed
when contrast ratio is two, because of the small time step
difference and the additional overhead of the proposed method.
The proposed method takes 0.0563 s including the CPU time
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TABLE 11
ACCURACY OF EACH UNSTABLE EIGENMODE OBTAINED FROM Sf WITH DIFFERENT Contrast Ratio

CR Fpni Fpo Fps Fpq Fps Fre Fnr

Frs Fno Frio Friin  Fpio  Fpiz  Fpia Fais

2.9e-3 2.8e-3 2.6e-3 2.5e-3 1.7e-2 1.8e-2

1.9e-2 1.9e-2 1.9e-2

5 4.4e-5 4.1e-5 3.6e-5 3.0e-5 2.8e-5 6.0e-4 5.7e-4

5.1e-4 4.5e-4 42e-4  2.2e-2 24e-2 27e-2 2.8e-2 2.9e-2

10 1.6e-6 1.4e-6 1.2e-6 1.0e-6 9.6e-7 3.0e-5 2.7e-5

2.4e-5 2.0e-5 1.9e-5 6.8¢-3  7.1e-3  7.4e-3  7.6e-3  7.5e-3

100 | 1.7e-11

1.6e-11 1.4e-11 1.1e-11 1.0e-11  4.5e-10  4.0e-10

3.5e-10  3.0e-10 2.7e-10  8.3e-5 8.2e-5 8.0e-5 7.7e-5 7.6e-5
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Fig. 2. Conventional FDTD for wave propagation problem: entire solution
error versus time with Contrast Ratio = 100.

of every step from finding the unstable eigenmodes to explicit
time marching, while the conventional FDTD method only
requires 0.0367 s to finish the simulation. We have also studied
a cavity problem using the same mesh [25], which again
reveals an excellent agreement between the proposed method
and the conventional FDTD.

In Fig. 3, we plot three eigenvectors of S whose eigen-
values are, respectively, the largest, the fifth largest, and the
15th largest eigenvalues of global S, for a contrast ratio
of 100. As can be seen from Fig. 3, the field distributions
of these eigenvectors are localized in the fine patches, with
the fields in the regular patches many orders of magnitude
smaller. For example, for the 15th largest eigenmode whose
field distribution is more spread over than the first two, its
eigenmode (eigenvector) still has a field value in the immedi-
ately adjacent coarse patches being three orders of magnitude
smaller than that in the fine patches. Fig. 3 further confirms
that the highest eigenmodes can be accurately extracted from
fine patches. Although it is plotted for contrast ratio 100,
similar localizations have been observed for other smaller
contrast ratio, which can also be seen from the small error of
eigenvectors extracted from Sy listed in Table II. Numerically,
such a localization is because the rapid field variation of
the large-eigenvalue modes cannot be captured by a coarse
discretization. This is similar to the fact that if one uses a
coarse grid to extract the cavity resonance frequencies, the
frequencies (eigenvalues) one can numerically identify are
much smaller than the ones he can find using a fine grid.
Analytically, all these eigenvalues should exist in the solution
domain. However, numerically, only finer patches can capture
larger eigenvalues. It should also be mentioned that removing
unstable modes is not the same as removing fine features or
patches, since the stable eigenmodes kept in the numerical
system also capture the fine features, i.e., these modes are
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Fig. 3.  Field distribution of the eigenvectors of S for a contrast ratio
of 100 plotted in log scale. (a) Eigenvector having the largest eigenvalue.
(b) Eigenvector having the fifth largest eigenvalue. (c) Eigenvector having the
15th largest eigenvalue.

different when there are fine features and when there are not.
Note that each eigenmode is a source-free solution in the given
problem satisfying all boundary conditions at the material
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Fig. 4. Simulation of a cavity with fins. (a) Structure illustration. (b) Electric
fields at two observation points. (c) Entire solution error as a function of time
in comparison with reference solution.

interface. The eigenvalue of an eigenmode does not reflect
the spatial frequency. For example, a zero-eigenvalue mode
(a static field distribution) also has rapid space variations.

B. Demonstration of Accuracy and Efficiency

After an extensive validation of the proposed method, we
simulate a variety of lossless and lossy examples to demon-
strate the accuracy and efficiency of the proposed new method
compared with the conventional FDTD and the state-of-the-art
unconditionally stable explicit FDTD method like [18].

1) Conductive Fins Separated by a Narrow Gap: In this
example, we simulate a 2-D PEC cavity with two conductive
fins separated by a narrow gap. The details of the structure
are shown in Fig. 4(a). The conductive fins are treated as
perfect conductors. Between the two fins, there is a small
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gap discretized into three fine grids of width 0.01 mm each
along the x-direction. The regular grid size is 0.1 mm along
both the x- and y-directions. The discretization results in
1261 edges and 602 patches. An x-orientated current source
is launched between the two fins and its waveform is I =
—72exp—(t — tg/7)?, where 7=3 x 10~!! s and 79 = 4. For
this example, 28 unstable modes are extracted from S, with
e=10"°§8 £ 1is a square matrix of size 123 assembled from
fine patches only. After unstable modes are removed from the
system matrix, we can enlarge the time step from 3.7 x 10714
to 1.59 x 10713 s. The total CPU time required is 0.4451 s
including the time for finding unstable modes. As a compar-
ison, the explicit unconditionally stable FDTD method [18]
can also increase the time step to the same value, but it takes
0.5733 s to finish the simulation. The traditional FDTD method
costs 0.9536 s to finish the simulation. Therefore, the proposed
method is more efficient.

To assess accuracy, the electric fields at two points located
at (1.0, 0.4) and (2.0, 1.1) mm are plotted in comparison
with the reference result obtained from the traditional FDTD
in Fig. 4(b). It is evident that the results from the proposed
method agree with the reference results very well. Meanwhile,
the entire solution error (50), which includes the error at all
points in the grid, is plotted versus time in Fig. 4(c). It is
shown to be small across the whole time window, validating
the accuracy of the proposed method.

2) 3-D Wave Propagation: A wave propagation problem
is simulated in a 3-D free space. The incident field is the
same as that of the first example. We also supply an exact
absorbing boundary condition to all the unknowns on the
boundary. Unlike the first example that has an abruptly
changed grid size, a progressively changed grid size is adopted
for space discretization. The space step is 0.1 m along both the
y- and z-directions. There are five cells along each of the two
directions. The grid along the x-direction has 13 cells, each of
which is of width 0.1 m except for the three cells in the middle
whose space step is 0.01, 0.001, and 0.01 m, respectively.

The time step of a conventional FDTD is less than 1.07 x
1071 s, whereas the time step of the proposed method
is 2.0 x 10710 5 chosen based on sampling accuracy. The
electric fields obtained from the proposed method are plotted
in Fig. 5(a) at two points, (0.51, 0.45, 0.2) and (0.57, 0.4, 0.2)
m, respectively. Excellent agreement with analytical solutions
can be seen. In Fig. 5(b), we plot the entire solution error,
I{e} — {e}analll/ll{e}analll, compared with the analytical solu-
tion, which reveals that the proposed method is accurate at
all points and across the whole time window simulated. It is
worth mentioning that the large errors at early and late time are
expected, since the theoretical error is infinity at these times
due to a zero denominator, since the field solution is zero.

In this simulation, the number of fine patches is 350. The
A (B) shown in (24) is of size 320 by 350. Given =102,
we obtain 120 unstable eigenmodes accurately from S;.
It takes the proposed method 0.6470 s to finish the simulation.
To simulate the same example, a conventional FDTD costs
2.1608 s. The state-of-the-art unconditionally stable explicit
FDTD method in [18] spends 0.3629 s in finding the unstable
modes and 1.2545 s for explicit marching. Hence, the proposed
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Fig. 5. Simulation of a 3-D wave propagation problem. (a) Electric fields
at two observation points. (b) Entire solution error with respect to time.

method is faster than both methods. This is because the
method in [18] finds unstable modes from a global S matrix.
In addition, the Vy, in [18] is dense. In contrast, the Vj, in this
new method is zero in regular patches, thus speeding up the
explicit time marching step as well.

3) Inhomogeneous 3-D Phantom Head Beside a Wire
Antenna: Previous examples are in free space. The third
example is a large-scale phantom head [26] beside a wire
antenna, which involves many inhomogeneous materials. The
permittivity distribution of the head at z=2.8 cm is shown in
Fig. 6(a). The wire antenna is located at (24.64, 12.32, 13.44)
cm as marked by the white dot in Fig.6(a), the current on
which has a pulse waveform of J=2(t — 9)e " —10)*/7* With
t=1.0 x 107? s and r9=47. The size of the phantom head
is 28.16 cm x 28.16 cm x 17.92 cm. The coarse step size
along the x-, y-, and z-directions is 17.6, 17.6, and 1.4 mm,
respectively, which results in 109 667 unknowns. To capture
the fine tissues located at the center of this head, three layers
of fine grid whose lengths are 1.4 xum are added in the middle
along the z-direction. As a result, the conventional FDTD
method can use only a time step less than 5.39 x 1071 s
to ensure stability. In the proposed method, 768 fine patches
are identified, which involve 4709 electric field unknowns
and 4256 magnetic field unknowns. Given e=10"7, 1088
unstable eigenmodes are obtained accurately from S;. With
the contribution of unstable eigenmodes removed, the time
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Fig. 6. Simulation of a phantom head beside a wire antenna. (a) Relative
permittivity distribution in a cross section of the phantom head at z = 2.8 cm.
(b) Simulated electric field at two observation points in comparison with
reference FDTD solutions.

step is increased to 2.56 x 10713 s. In Fig. 6(b), the electric
fields at two points (12.32, 3.52, 13.44) and (12.32, 24.64,
13.44) cm are plotted in comparison with reference FDTD
results. Again, very good agreement is observed. As for CPU
time, the proposed method takes 84.8142 s to extract unstable
eigenmodes and 2895.7305 s for explicit time marching. How-
ever, the conventional FDTD needs 29968.7009 s to finish the
same simulation. Meanwhile, although the method developed
in [18] can also boost the time step up to the same value
as the proposed method, it requires 8268.2 s instead in CPU
time. Therefore, the proposed method is not only much faster
than the conventional FDTD method, it is also more efficient
than [18] since the proposed method requires the fine region
only instead of the entire computational domain to extract
unstable eigenmodes.

4) Inhomogeneous and Lossy 3-D Microstrip Line
Structure: A microstrip line illustrated in Fig. 7(a) is simu-
lated. It has lossy conductors and inhomogeneous dielectrics.
A 3-D view of the structure can be seen in Fig. 7(a), and the
structure is 4 mm long along the y-direction. A current source
is injected between the bottom glate and the strip. It has a
pulse of I = 22(t — to)e’(t”(’)z/’ A, where 7 = 10710 5 and
to = 4t s. The space step is 0.4 mm in all directions, but
to capture skin effects in lossy conductors, the microstrip is
discretized into 0.15, 0.15, and 34.7 um in the z-direction,
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Fig. 7. Microstrip line with fine features. (a) Structure. (b) Voltages at two
ports. (c) Entire solution error in comparison with reference FDTD solutions.

respectively. The total number of E unknowns in this structure
is 4653. Due to the small space step to capture the skin effects,
a time step of 5.0 x 107'° s is required in the conventional
FDTD method. In contrast, the proposed method is able to
use a time step of 3.6 x 1073 s. The number of terms kept
in (44) is six. In Fig. 7(b), the voltage drops extracted at both
near and far ends of the strip line are plotted in comparison
with the results obtained from a conventional FDTD method.
It is clear that the results of the proposed method agree very
well with the reference solutions. The entire solution error at
each time instant is evaluated as |[{e} — {e}rpTDIl/ll{€}FDTDI,
and plotted in Fig. 7(c). Obviously, the proposed method is
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accurate not only at the two sampled points, but also in the
entire computational domain across the entire simulated time
window.

In this simulation, 1925 E unknowns are involved to assem-
ble M. The total time of the proposed method is 208.9699 s,
out of which 29.1695 s is used to extract 1317 unstable
modes for a prescribed accuracy €=107%, and 179.8004 s is
spent on explicit time marching. In contrast, a conventional
FDTD based on (6) requires 813.5459 s to finish the same
simulation. The explicit unconditionally stable FDTD method
in [18] requires 142.2547 s to extract unstable modes and
259.1829 s to perform time marching. Thus, the proposed
method is more efficient, despite the additional computational
overhead for solving lossy problems such as the requirement
of a series expansion shown in (44).

VI. CONCLUSION

In this paper, a fast explicit and unconditionally stable
FDTD method is developed. It does not require a global
eigenvalue solution. In this method, first, we represent the
FDTD method into a patch-based single-grid matrix repre-
sentation, in contrast to a conventional matrix representation
that can be viewed as an edge-based dual-grid one. This
new representation helps us identify the relationship between
unstable eigenmodes and the fine patches. We find that the
largest eigenmodes of the system matrix obtained from the
entire computational domain can be extracted from the sys-
tem matrix assembled from the fine patches with controlled
accuracy. The larger the contrast ratio of the fine-patch size to
the regular one, the more accurate the extracted eigenmodes.
This finding can also be used in other research. Based on this
theoretical finding, we develop an accurate and fast algorithm
for finding unstable modes from fine patches. We then upfront
eradicate these unstable modes from the numerical system
before performing an explicit time marching. The resultant
simulation eliminates the shortcoming of the original FDTD
in time step’s dependence on space step, without sacrificing
the merit of the FDTD in an explicit time marching. The
proposed method is also extended to handle general lossy
problems where dielectrics and conductors are inhomogeneous
and lossy. Numerical experiments including both lossless and
lossy problems have demonstrated the accuracy, efficiency, and
unconditional stability of the proposed method, by comparing
with conventional FDTD as well as the state-of-the-art explicit
and unconditionally stable method. The essential idea of this
paper is also applicable to other time-domain methods. It is
also worth mentioning that although the unstable modes are
extracted from fine patches and subsequently removed for a
stable simulation, this does not mean that the resultant field
solution in the fine patches is zero or has a large error. This
is because the stable eigenmodes preserved in the numerical
system have their field distributions all over the grid, including
both regular and fine patches. These modes are different when
there are fine features and when there are not.
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