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Fast Full-Wave Solution that Eliminates the
Low-Frequency Breakdown Problem in a
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Abstract— Full-wave solutions of Maxwell’s equations break
down at low frequencies. Existing methods for solving this
problem either are inaccurate or incur additional computational
cost. In this paper, a fast full-wave finite-element-based solution
is developed to eliminate the low-frequency breakdown problem
in a reduced system of order one. It is applicable to general
3-D problems involving ideal conductors as well as nonideal
conductors immersed in inhomogeneous, lossless, lossy, and
dispersive materials. The proposed method retains the rigor of
a theoretically rigorous full-wave solution recently developed for
solving the low-frequency breakdown problem, while eliminating
the need for an eigenvalue solution. Instead of introducing
additional computational cost to fix the low-frequency break-
down problem, the proposed method significantly speeds up the
low-frequency computation.

Index Terms— Electromagnetic analysis, fast solution, finite
element methods, full-wave analysis, low-frequency breakdown,
nullspace.

I. INTRODUCTION

IT HAS been observed that a full-wave-based solution
of Maxwell’s equations breaks down at low frequencies.

Such a problem is especially severe in digital and mixed-
signal integrated circuit (IC) applications in which signals
have a broad bandwidth from dc to about the third harmonic
frequency. In these applications, full-wave solvers typically
break down at and below tens of MHz, which are right in
the range of circuit operating frequencies. Inaccurate low-
frequency models can lead to erroneous and misleading results
in the analysis and design of ICs and systems. The inaccuracy
at low frequencies is also found to be the major contributor
to the violation of passivity, stability, and causality in existing
frequency-domain models, which leads to divergence in time-
domain simulation. Therefore, there is a critical need to solve
the low-frequency breakdown problem.

Existing solutions to the low-frequency breakdown problem
can be categorized into two classes. One class is to stitch
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a static- or quasi-static-based electromagnetic solver with
a full-wave-based electromagnetic solver. This approach is
inaccurate because static/quasi-static solvers involve funda-
mental approximations such as decoupled E and H, which
is only true at dc. Moreover, at which frequency to switch
between different solvers is an issue. As often seen in
practice, the stitched results may not reach a consensus
at their interfaces. Engineers usually have to employ an
approximation-based model to achieve a smooth transition
between static, quasi-static, and full-wave solvers. Besides
the issue of accuracy, such an artificially created model
often violates passivity, stability, and causality. The other
class of methods for solving the low-frequency breakdown
problem is to extend the validity of full-wave solvers to low
frequencies. Existing approaches that belong to this cate-
gory include introducing the loop-tree and loop-star basis
functions to achieve a natural Helmholtz decomposition of
the current in integral-equation-based methods [2]; using the
tree-cotree splitting to provide an approximate Helmholtz
decomposition for edge elements in finite-element-based
methods (FEM) [3], [4]; formulating current-charge integral
equations and the augmented electric field integral equa-
tion [5], [6], and developing Calderon preconditioner-based
methods [7], [8]. These methods have been successful in
extending the capability of existing full-wave solvers to low
frequencies that cannot be solved previously. They have also
suggested a number of new research questions to be consid-
ered. For example, if a method does not provide a universal
solution of Maxwell’s equations from high frequencies down
to any low frequency, then at which frequency should one
switch to a different solution method? If a method utilizes
certain low-frequency approximations, when are these approx-
imations valid? And to what degree of accuracy? When a
full-wave solution breaks down, is it true that natural or
approximate Helmholtz decomposition can be used to produce
accurate results? In other words, does a range of frequencies
exist, in which neither traditional full-wave solvers (due to
breakdown) nor natural or approximate Helmholtz decom-
position (due to low-frequency approximations) can produce
accurate results?

To address these questions, it becomes necessary to know
the true solution of full-wave Maxwell’s equations with E
and H coupled from dc to high frequencies. Such a solu-
tion, which is a continuous function of frequency in a full
electromagnetic spectrum, was derived in [1] and [9] without
making use of theoretical approximations. In these two papers,
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it is shown that the root cause of low-frequency breakdown
problem is finite machine precision. To bypass the barrier
of finite machine precision, the method proposed in [1] and
[9] transforms the original frequency-dependent deterministic
problem to a frequency independent generalized eigenvalue
problem. With the inexact zero eigenvalues fixed to be zero,
the method successfully bypassed the barrier of finite machine
precision, and solved the low-frequency breakdown problem
with a universal solution that is valid at both high and low
frequencies. Moreover, the frequency dependence of the solu-
tion to Maxwell’s equations is explicitly revealed from dc to
high frequencies. One can use the resultant analytical model of
frequency dependence to develop a theoretical understanding
on how the field solution should scale with frequency in
both low- and high-frequency regimes; at which frequency
full-wave effects become important; at which frequency static
assumptions yield good accuracy; etc.

The problem considered in [1] and [9] is a purely lossless
problem containing ideal dielectrics and perfect conductors
or a purely lossy problem consisting of good conductors
only. The low-frequency breakdown problem in general cases,
that involve both inhomogeneous lossless/lossy dielectrics
and nonideal conductors, is significantly complicated by
the frequency-dependent coupling between dielectrics and
nonideal conductors. In addition, the matrix resulting from
the analysis of the metal-dielectric composite is highly unbal-
anced, which further complicates the low-frequency break-
down problem. In [10] and [11], this problem was successfully
solved and a theoretically rigorous solution to Maxwell’s equa-
tions was derived for general problems with inhomogeneous
lossless and/or lossy dielectrics and nonideal conductors from
dc to high frequencies. In [14], it is further shown that the
method developed in [1] and [9]–[11] for a finite-element-
based analysis is equally applicable to solve the low-frequency
breakdown in an electric field integral equation.

The methods developed in [1], [9]–[11], and [14] require an
eigenvalue solution of a large-scale system of O(N) with N
being the problem size. Although with advanced techniques,
the eigenvalue solutions can also be found in linear complexity
[12], [13], the resultant computational cost of solving the low-
frequency problem is still not desirable. Additional compu-
tational cost is also observed in other existing methods for
solving the low-frequency breakdown problem.

In this paper, without compromising accuracy, we propose
a fast solution to eliminate the low-frequency breakdown
problem in a full-wave solver. Such a fast solution is, in fact,
a direct outcome of the theoretical model developed in [1]
and [9]–[11] that explicitly reveals the frequency dependence
of the solution to Maxwell’s equations from dc to high
frequencies. Such a theoretical model suggests that one can
use one solution vector obtained from the traditional full-
wave solver to reduce the original system of O(N) to be a
system of O(1), and then fix the low-frequency breakdown
problem readily in the reduced O(1) system. In this way,
we equally bypass the barrier of finite machine precision,
preserve the theoretical rigor of the solution developed in
[1] and [9]–[11], while obtaining the field solution at low
frequencies including dc without introducing any additional

computational cost. Instead, we accelerate the low-frequency
computation by obtaining the field solution in O(1) complexity
when simulating a frequency band of interest from high to low
frequencies.

In what follows, we first state the low-frequency breakdown
problem; then present the proposed fast low-frequency full-
wave solution. We will start with the proposed solution for
solving problems with ideal conductors; then proceed to
the solution for solving problems with nonideal conductors.
The dielectrics can be inhomogeneous, lossless, lossy, or
dispersive.

II. LOW-FREQUENCY BREAK-DOWN PROBLEM

Consider a general 3-D electromagnetic problem that
involves both inhomogeneous dielectric materials and nonideal
conductors. A full-wave FEM-based analysis of such a
problem results in the following matrix equation in frequency
domain:

A(ω)x(ω) = b(ω) (1)

where ω is angular frequency, and

A(ω) = S − ω2T + jωR (2)

in which stiffness matrix S, mass matrix T, and conductivity
related mass matrix R are assembled from their elemental
contributions as follows:

Se
i j =

∫∫∫
V e

μ−1
r (∇ × Ni ) · (∇ × N j )dV

Te
i j =

∫∫∫
V e

εr

c2 Ni · N j dV

Re
i j =

∫∫∫
V e

μ0σNi · N j dV + 1

c

∫∫
So

(n̂×Ni ) · (n̂×N j )d S

be
i = − jωμ0

∫∫∫
V e

Ni · JdV . (3)

In (3), c is the speed of light in free space, σ is conductivity,
εr is relative permittivity, J represents a current source, N
is the normalized vector basis function used to expand E
field, and superscript e denotes the contribution from an
element.

The solution of (1) breaks down at low frequencies. In
[1] and [9], the root cause is shown to be finite machine
precision, and a detailed analysis of the root cause has been
given. Here, we give a brief summary. When frequency is low
enough that the contribution of frequency dependent terms
in (2), either ω2T or jωR, is lost due to finite machine
precision, breakdown occurs. When this happens, the solution
of (1) can be completely wrong because stiffness matrix S
is not invertible. To be specific, the value of Si j is O(l)
because ∇ × N is proportional to 1/l, and the value of Ti j

is proportional to 10−17l3, where l is the average edge length
used in a 3-D discretization of an electromagnetic structure.
In state-of-the-art very-large-scale integration (VLSI) circuits,
l is at the level of 1 μm. Hence, the ratio of T’s norm
over S’s norm is in the order of 10−29, which is significantly
smaller than that in a microwave or millimeter wave circuit.
Since the norm of T is 10−29 smaller than the norm of S in
a VLSI circuit, at low frequencies where ω2T is 16 orders
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of magnitude smaller than S, even one uses double-precision
computing, the mass matrix T is essentially treated as zero by
computers when performing the addition of ω2T and S. The
same analysis applies to the lossy system where R exists.

III. PROPOSED FAST LOW-FREQUENCY FULL-WAVE

SOLUTION FOR PROBLEMS WITH IDEAL CONDUCTORS

A. Theoretical Basis of the Proposed Fast Solution

The theoretical model of the true solution to Maxwell’s
equations from dc to high frequencies developed in [1] and [9]
has provided a theoretical basis for the proposed fast solution.
Next, we will use the lossless case that only involves ideal
dielectrics and perfect conductors as an example to introduce
this theoretical model. In a lossless case, (2) becomes

A(ω) = S − ω2T. (4)

From [1] and [9], the solution of (4) can be obtained by solving
the following generalized eigenvalue problem that is frequency
independent:

Sv = λTv (5)

where λ is eigenvalue and v is eigenvector. Denoting the
diagonal matrix formed by all the eigenvalues by �, and the
matrix formed by all the eigenvectors by V , the inverse of (4)
can be written as

[A(ω)]−1 = V (� − ω2I)−1V T (6)

where I is an identity matrix. We also point out in [1] that the
eigenvalues of (5) can be divided into two groups: one group
is associated with physical dc modes as well as nonphysical
ones originated from the nullspace of S, and the other is
associated with the nonzero resonance frequencies of the
3-D structure. The first group has zero eigenvalues. However,
numerically they cannot be computed as exact zeros due to
finite machine precision. Thus, we need to correct the inexact
zeros to be exact zeros. With that, (6) becomes

[A(ω)]−1 = (V0 Vh)

[−ω2I 0
0 �h − ω2I

]−1

(V0 Vh)T

= − 1

ω2 V0V T
0 + Vh[�h − ω2I]−1V T

h (7)

where V0 denotes the eigenvectors corresponding to zero
eigenvalues, Vh and �h denote the eigenvectors and eigen-
values corresponding to nonzero eigenvalues, i.e., higher order
modes. As can be seen from (7), the frequency dependence of
the solution to the full-wave FEM system matrix is explicitly
derived. Except for ω, all the other terms are frequency inde-
pendent. With such a continuous function of frequency, one
can rigorously obtain the field solution from high frequencies
down to any low frequency including dc without suffering
from low-frequency breakdown.

To obtain a solution shown in (7) that is free of low-
frequency breakdown, apparently, one has to first solve a
generalized eigenvalue problem shown in (5), the computation
of which could be nontrivial. In fact, with its analytical
model of the frequency dependence, (7) already suggests a
fast yet rigorous low-frequency full-wave solution that avoids

the eigenvalue solution, which can be seamlessly incorporated
into existing full-wave solvers to fix the breakdown problem
readily. The details are given below.

From (7), it can be seen clearly that given any frequency
ω, the field solution is the superposition of a number of 3-D
eigenmodes. For a dc eigenmode, i.e., an eigenvector corre-
sponding to zero eigenvalue, its weight in the field solution
is proportional to (1/ω2); for a higher order eigenmode, its
weight in the field solution is proportional to 1/(λi− ω2),
where λi is the corresponding eigenvalue. At low frequencies
where the weight of the higher order eigenmodes is signifi-
cantly smaller than that of the dc eigenmodes, the contribution
of the higher order eigenmodes in the field solution is negli-
gible. As a result, (7) can be written as

[A(ω)]−1 ε=
[
− 1

ω2 V0V T
0

]
(8)

the accuracy of which, ε, can be controlled to any desired
order by choosing an ω that is low.

From (8), it is clear that at low frequencies where the
contribution from higher order eigenmodes is negligible, the
space where the field solution resides is the union of the dc
eigenmodes V0. In other words, the field solution resides in the
nullspace of stiffness matrix S. In (8), all the nullspace vectors
should be included because they are linearly independent with
each other and each of them is indispensable in building a
complete nullspace. Given a 3-D structure, even though the
number of physical dc modes could be a few, the nullspace
is mixed with both physical dc modes and nonphysical ones.
A linear combination of these two still resides in the same
nullspace. As a result, solely from nullspace vectors, one
cannot distinguish physical dc modes from nonphysical ones.
Moreover, one cannot discard a subset of nullspace vectors
to reduce the size of nullspace since the remaining ones
are not complete. Given an excitation vector, it can have a
projection onto all of the nullspace vectors, and hence each
of the nullspace vectors can have a contribution to the field
solution. However, if one keeps all the nullspace vectors, the
resultant computational cost is high because the nullspace of
stiffness matrix S is large and, also, grows with matrix size
N linearly. Therefore, how to handle the increased size of the
nullspace becomes critical in developing a fast low-frequency
solution. Our solution to this problem is to utilize the fact that
all the nullspace vectors share the same zero eigenvalue in
common although their eigenvectors are completely different.
Based on this fact, we propose to use the right-handside
vector (excitation vector) to shrink the dimension of the space
where the field solution resides. To explain, in a deterministic
solution, the right-hand side is always known. In other words,
we solve (1) for a given right-hand side b(ω). With b(ω),
effectively, all the nullspace vectors are grouped together
and the contribution from all the nullspace vectors can be
represented by a single vector w0 as shown below

x(ω) = − 1

ω2 V0V T
0 b(ω) = w0. (9)

In other words, the field solution vectors obtained at different
frequencies are linearly dependent on each other, and hence
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representing the same solution space. A grouping like (9)
would not be possible if the eigenvectors do not share the
same eigenvalue in common, which is the case for higher
order eigenvectors Vh . As can be seen from (7), even by right
multiplying with a right-hand-side vector b(ω), the eigenvec-
tors Vh cannot be grouped together and represented by a one-
vector-based space. This is because the contribution from each
Vh is different at different frequencies in the field solution
owing to the difference in eigenvalues. By right multiplying
with b(ω), although the contribution from all the higher order
eigenvectors also becomes a single vector, this vector can be
linearly independent with each other at different frequencies.

What is implied by (9) is significant: given a right-hand
side, only one vector is adequate to span the low-frequency
solution. Although the above analysis is developed based on
a lossless system shown in (4), in which both dieletrics and
conductors are lossless, the finding that the field solutions at
low frequencies can be fully represented by a reduced space
of O(1) is equally applicable to problems with dispersive and
lossy dielectrics since the field solution still resides in the same
nullspace of stiffness matrix S. To be specific, for problems
with inhomogeneous lossless and/or lossy dielectrics, T in (4)
and (5) becomes a complex-valued matrix because of complex
permittivity. At low frequencies where the contribution from
higher order modes can be neglected, based on the analysis
given in [11], (9) becomes

x(ω) = − 1

ω2 V0(V T TV )−1(V0 ,Vh)T b(ω).

Since (V T TV )−1 and Vh do not depend on frequency, again
the above can be represented by a single-vector-based space at
different frequencies. For problems filled by a dispersive mate-
rial, T in (4) and (5) becomes frequency dependent because of
frequency dependent permittivity. In this case, the V0V T

0 in (9)
will be scaled by a frequency dependent coefficient associated
with relative permittivity, while the space represented by (9)
is still of dimension 1 at different frequencies.

B. Proposed Fast Low-Frequency Full-Wave FEM Solution

Equation (9) serves as a theoretical basis for the proposed
fast low-frequency full-wave solution of O(1). As long as we
can find the single vector w0 that forms the O(1) space in
which all the low-frequency solutions reside, given a frequency
regardless of how low it is, we can expand the field solution
in this O(1) space, and transform the original system of O(N)
shown in (1) to an O(1) system, from which the low-frequency
breakdown problem can be readily fixed.

To obtain w0 and also avoid solving the generalized eigen-
value problem shown in (5), we developed the following
approach. As can be seen from (8) and (9), at a low frequency
where the contribution from higher order eigenmodes is negli-
gible, the field solution x(ω) is in the space formed by a single
vector w0. Therefore, we can use one solution vector obtained
at such a frequency as a complete and accurate representation
of the space formed by w0, i.e., the space where all the low-
frequency solutions reside. Denoting such a frequency by fref ,
we solve the original system (1) as it is and obtain a single
solution vector, which is denoted by xref . With xref , given any

low frequency ω, we can expand the solution of the FEM-
based system equation by using

x(ω) = xref y (10)

with unknown coefficient y solved as the following:

xT
ref(S − ω2T)xref y = x T

refb(ω). (11)

As a result, the system is reduced to a one by one system.
However, the low-frequency breakdown problem still remains
in the reduced O(1) system when the term associated with
ω2 is neglected due to finite machine precision. To fix this
problem, as the theoretically rigorous solution developed in
[1], we utilize the fact that Sxref = 0 to vanish Sxref . This can
be done because, as can be seen from (9), xref is a nullspace
vector that satisfies SV0 = 0. Therefore, (11) becomes

x T
ref(−ω2T)xref y = x T

refb(ω) (12)

which can be solved at any low frequency without breakdown.
With unknown coefficient y solved from (12), the field solution
can be recovered from (10). In this way, we can rapidly fix the
low-frequency breakdown problem, and meanwhile retaining
the theoretical rigor of the low-frequency solution developed
in [1] and [9].

The aforementioned solution is applicable to problems with
inhomogeneous lossless and/or lossy dielectrics, as well as
problems filled with a dispersive material. For the latter, at
low frequencies, although the field solution still resides in the
nullspace of S, the solution could scale with frequency in a
complicated way since T now becomes frequency dependent.

The remaining problem is whether we can always find an
appropriate fref . This is discussed in the following section.

C. Existence of fref and Its Choice

The choice of fref is subject to two requirements. First,
since we need to solve (1) at fref to obtain the field solution,
the fref should be chosen at a frequency where the full-wave
solution does not break down yet. Second, since we use the
solution vector obtained at fref to represent the O(1) space
formed by w0, the field solution at fref should have a form
shown in (9). In other words, the field solution at fref should
be dominated by dc eigenmodes, with the contribution from
higher order eigenmodes negligible. To summarize, the fref
should be a frequency at which the field solution is dominated
by dc eigenmodes and meanwhile the full-wave solution does
not break down yet. To choose fref , the first question we
need to answer is whether such a frequency exists or not. To
examine the existence of fref , we need to take a look at the
relative relationship between the breakdown frequency, zero
eigenvalues, the smallest nonzero eigenvalue, and the largest
eigenvalue of (5).

In lossless cases, the eigenvalue λi of (5) corresponds to one
resonant frequency fi of the 3-D structure being simulated.
The fi and λi have the following relationship:

fi =
√

λi

2π
. (13)
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Fig. 1. Illustration of eigenvalues along the axis of λ. (λmin is the smallest
nonzero eigenvalue, λmax is the largest eigenvalue, λ0 is the angular frequency
square corresponding to breakdown frequency).

In lossy cases, although the resonance frequency becomes
complex, it has the same relationship with the eigenvalue of
the numerical system.

Theoretically speaking, a 3-D structure can have an infi-
nitely large number of resonant frequencies. In reality, the
number of resonant frequencies that can be numerically found
is limited because of finite mesh size. Let the smallest nonzero
resonance frequency be fmin and the largest be fmax, with their
corresponding eigenvalues being λmin and λmax, respectively.
The fmin is determined by the largest physical dimension of
the structure; while fmax that can be numerically identified
is determined by the smallest mesh size. Therefore, the ratio
between fmax and fmin is proportional to the ratio between the
largest physical dimension of the structure and the smallest
mesh size, in other words, the aspect ratio of the problem
being considered. Since the eigenvalue λi is the square of the
resonance frequency as can be seen from (13), the ratio of λmax
to λmin is the square of the aspect ratio. We denote the distance
between λmax and λmin in terms of orders of magnitude by m.
Their relative locations are illustrated in Fig. 1 along the axis
of eigenvalue λ. Besides nonzero eigenvalues from λmin to
λmax, (5) has a large nullspace, the eigenvalues of which are
analytically known to be zero.

Next, we examine the relationship between the breakdown
frequency, 0, λmin, and λmax. Since the root cause of low-
frequency breakdown problem is finite machine precision, at
the frequency where a full-wave solution breaks down, the
corresponding ω2T should be beyond what can be captured
by machine precision with respect to S. In double precision
computing, such an ω2 should be 16 orders of magnitude
smaller than ‖T−1S‖, and hence λmax. We denote such a
breakdown ω2 by λ0 = ω2. Thus, if the distance between λ0
and λmin is n, then n = 16 − m, as illustrated in Fig. 1. The
frequency corresponding to λ0 is denoted by f0, at and below
of which the breakdown occurs. The n is always greater than
0 since m is less than 16. This is because as long as one can
mesh the structure with a computer having finite precision, the
difference between λmax and λmin is within machine precision.

Now it is ready to examine the existence of fref . From
Fig. 1, it can be seen that fref should be above f0 so that the
full-wave solution does not break down yet and well below
fmin so that the nonzero higher order eigenmodes can be
neglected without losing accuracy. In other words, fref should
fall into the range between f0 and fmin. Therefore, the angular
frequency square corresponding to fref , λref = (2π fref)

2,
should be between λ0 and λmin. To ensure good accuracy,
λref should be chosen at least two orders magnitude smaller
than λmin to obtain better than 1% accuracy. As a result, for
fref , and hence λref to exist, n shown in Fig. 1 should be no
less than 2.

Fig. 2. Illustration of the possible range for λref .

The condition of n ≥ 2 is well satisfied in most problems
encountered today. We can use an IC as an example to
quantitatively examine n. Driven by Moore’s law, the smallest
feature size of ICs has been kept pushing down to the
nanometer regime. Compared with the aspect ratio encoun-
tered in other engineering systems, the difference between
the largest geometrical scale and the smallest scale present in
today’s ICs can be viewed as one of the largest. This is also
the major reason why the low-frequency breakdown problem
is found to be most critical in IC problems. In these problems,
the ratio between the largest and the smallest feature size is
approximately 1 cm versus 10 nm, which is 106. Thus, the
ratio of fmax to fmin is 106, and hence the ratio of λmax to
λmin is 1012. Therefore, m = 12, and hence n > 2. As a
result, as can be seen from the grey region in Fig. 2, there is
a range between λ0 and (λref )max, from which we can select
any frequency to serve as fref with good accuracy achieved.
Here, the (λref )max is the largest λref that can be chosen based
on required accuracy.

It is worth mentioning that in future technologies in which
the smallest feature size will be pushed further down, for
example, to two orders of magnitude smaller than currently
available; while the largest feature size remains similar, then
λmax will be pushed four orders of magnitude higher along the
axis of λ with λmin remained almost the same as before. In
this case, n < 2 can happen. Then we cannot find a frequency
at which the field solution is dominated by dc eigenmodes
while the full-wave solution has not broken down yet. In other
words, when the full-wave solution breaks down due to finite
machine precision, some higher order eigenmodes will also
make important contributions to the field solution. For this
case, the theoretically rigorous method for handling the low-
frequency problem developed in [1] and [9] is equally valid.
As for the proposed fast low-frequency solution, in addition to
the one vector shown in (9) that covers the contribution from
all the dc eigenmodes for a given excitation, we can extend the
algorithm to cover a few other vectors that characterize higher
order eigenmodes. This will be considered in the future when
there is a practical need for such a solution.

Next, we show how to develop a fast low-frequency full-
wave solution in an O(1) system for problems that involve
nonideal conductors. Rigorously speaking, when low frequen-
cies are considered, conductors cannot be treated as perfect
conductors because fields penetrate into conductors at low
frequencies.

IV. PROPOSED FAST LOW-FREQUENCY FULL-WAVE

SOLUTION FOR PROBLEMS WITH

NONIDEAL CONDUCTORS

A. Theoretical Basis of the Proposed Fast Solution

Consider a problem that involves both inhomogeneous
dielectric materials and nonideal conductors. We divide field
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unknowns x in (1) into two groups: unknowns outside conduc-
tors xo and unknowns inside conductors xi . For unknowns
that reside on the conducting surface, we categorize them into
xi . The FEM-based system matrix A(ω) shown in (1) can be
correspondingly cast into the following form:

A(ω) =
[

Aoo(ω) Aoi (ω)
Aio(ω) Aii (ω)

]
(14)

where

Aoo(ω) = Soo − ω2Too

Aoi(ω) = Soi − ω2Toi

Aio(ω) = Sio − ω2Tio

Aii (ω) = Sii + jωRii − ω2Tii . (15)

In [10] and [11], a rigorous solution of A(ω)’s inverse is
explicitly derived, which is applicable from high frequencies
down to any low frequency including dc. With a common
excitation used in the FEM-based analysis, which is a current
source launched outside conductors, the right-hand-side vector
of (1) can be written as

b(ω) = {− jωI 0}T (16)

where the first row corresponds to xo, and the second row
corresponds to xi . At low frequencies where the contribution
from higher order eigenmodes can be neglected without losing
accuracy, it is shown in [10] and [11] that the field solution
inside conductors (xi ) and that outside conductors (xo) can be
explicitly written as

xo =
(

− 1

ω2 V0V T
0 + 1

jω
QVii,0 V T

ii,0QT
)

(− jωI )

xi = − 1

jω
Vii,0 V T

ii,0 QT (− jωI ) (17)

where
Q = V0V T

0 Toi + Vh(�h)−1V T
h Soi (18)

V0 and Vh , respectively, represent the nullspace eigenvectors
and higher order eigenvectors of the system outside conduc-
tors; and Vii,0 denotes the nullspace eigenvectors of the system
inside conductors.

A careful examination of (17) reveals that the low-frequency
solution can be expanded by two groups of vectors

�1 =
( −QVii,0

Vii,0

)
and �2 =

(
V0
0

)
(19)

which span the real and imaginary part of the solution,
respectively. The number of column vectors in �1 is equal to
the number of dc modes of the system inside conductors; the
number of column vectors in �2 is equal to the number of dc
modes for what’s outside the conductor. The total number of
vectors in [�1, �2] is the same as that of the dc modes of the
entire stiffness matrix S, i.e., the size of the nullspace of S. In
addition, all the vectors in [�1, �2] are linearly independent
with each other, which can be easily proved because V0
and Vii,0 each contain linearly independent eigenvectors, and
the two eigenvector sets are also mutually independent. In

addition, [�1, �2] resides in the nullspace of stiffness matrix
S. In other words, [�1, �2] satisfies

S[�1, �2] = 0. (20)

This can be proved as follows:

S[�1, �2] =
(

Soo Soi

Sio Sii

)( −QVii,o V0
Vii,o 0

)

=
(

(Soi − SooQ)Vii,o SooV0
(Sii − SioQ)Vii,o SioV0

)
(21)

which is zero. To see this clearly, let us analyze the matrix
entries one by one. Based on the rigorous solution devel-
oped in [10] and [11], the second-column entries in the last
matrix shown in (21), SooV0 and SioV0, can be immediately
recognized as zero because V0, the nullspace eigenvectors of
the system outside conductors, represents a gradient-type field
solution that satisfies ∇ × E = 0. In the first-column entries,
(Sii − SioQ)Vii,0 is zero because Vii,0 is the nullspace of
(Sii −Sio Q) [10], [11]; (Soi −SooQ)Vii,0 is zero because it is
(Aoi − AooQ)Vii,o at dc, and Q, as shown in (18), is nothing
but A−1

oo Aoi at dc. Hence, we prove that (21) is zero, thus
[�1, �2] belongs to the nullspace of S. Since the dimension
of [�1, �2] is the same as the nullspace of stiffness matrix
S, and (20) holds true, we conclude that [�1, �2] constitutes
a complete nullspace of stiffness matrix S.

Like in cases with ideal conductors, the dimension of the
nullspace encountered in cases with nonideal conductors also
linearly grows with matrix size N. To shrink the dimension of
the space where the field solution resides for constructing a fast
low-frequency solution, a method similar to that developed for
cases with ideal conductors can be developed. The details are
as follows. With right-hand side b(ω) known in (16), it can be
seen from (17) that the real part of the low-frequency solution
x , re(x), is nothing but a superposition of the vectors in �1;
the imaginary part of the low-frequency solution x , im(x), is
nothing but a superposition of the vectors in �2. With b(ω),
all the nullspace vectors in �1 are grouped together, yielding
a single vector wr -based representation of re(x) as shown in
the following:

re(x) =
(

re(xo)
re(xi)

)
=

( −QVii,0V T
ii,0QT I

Vii,0V T
ii,0QT I

)
= wr. (22)

Similarly, all the nullspace vectors in �2 are grouped together
via b(ω), yielding a single vector wi -based representation of
im(x) as shown in the following:

im(x) =
(

im(xo)
im(xi)

)
=

( 1
ω V0V T

0 I
0

)
= wi. (23)

The two vectors wr and wi form a complete space for
representing the field solution of (2) at low frequencies. This
finding again holds true for problems with inhomogeneous
lossless and/or lossy dielectrics as well as problems filled with
a dispersive material.

B. Proposed Fast Low-Frequency Full-Wave FEM Solution

To obtain the reduced space of O(1) composed of wr and
wi and also avoid solving the eigenvalue problem, similar to
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Fig. 3. Illustration of an on-chip 3-D interconnect.

the approach developed for cases with ideal conductors, at one
frequency fref whose corresponding angular frequency square
is between λ0 and (λref )max, we solve the original system (1)
to obtain the field solution xref . Different from cases with
ideal conductors, we separate this solution into two vectors,
namely, the real part xre and the imaginary part xim . The xre

constitutes the same O(1) space as that formed by wr , while
xim represents the same O(1) space formed by wi . Next, we
use xre and xim to form space

z = [xre, xim ]. (24)

Expanding field solution in this space, and testing the system
by the same space, we obtain a reduced system of order one
as follows:

zT (S − ω2T + jωR)z y = zT b(ω). (25)

Again, this reduced system still experiences the low-frequency
breakdown problem because of finite machine precision. To
overcome this problem, we vanish zT Sz based on the fact
shown in (20). Thus, we have

zT (−ω2T + jωR)z y = zT b(ω). (26)

The left-hand-side matrix of (26) is a 2×2 matrix. Apparently,
the solution of (26) can still break down at low frequencies
since T- and R-related terms have different frequency depen-
dence. However, this problem does not exist in (26) because
(26) is a diagonal matrix (the proof is given in the Appendix)
as shown in the following:(

− ω2
∼
T 0

0 jω
∼
R

)
y = zT b(ω) (27)

where
∼
R = x T

reRxre = x T
re,i Rii xre,i

∼
T = x T

imTxim = x T
im,oTooxim,o. (28)

After the diagonal 2 × 2 system shown in (27) is solved, y
is known. The solution of the original system (1) can then be
readily obtained from

x(ω) = zy. (29)

By doing so, we obtain the field solution at any low frequency
including dc. As can be seen from the above procedure,

(a)

(b)

Fig. 4. E field distribution of a 3-D on-chip interconnect at 10−32 Hz.
(a) Proposed method. (b) Conventional full-wave FEM method.

instead of introducing additional computational cost into a full-
wave solver, the proposed method accelerates the full-wave
computation at low frequencies.

V. NUMERICAL RESULTS

In order to validate the proposed method, we simulated a
number of on-chip and package examples.

The first example is a 3-D on-chip interconnect embedded in
inhomogeneous materials shown in Fig. 3. In this figure, the
detailed geometrical and material parameters are given. The
structure is of length 2000 μm. Along the length direction, the
front and the back end each is attached to an air layer, which
is then truncated by a Neumann-type boundary condition.
The top and bottom planes shown in Fig. 3 are backed by
a perfect electric conducting (PEC) boundary condition. The
left and right boundary conditions are Neumann-type boundary
conditions. The shaded region is occupied by conductors.
To validate the proposed fast solution for cases with ideal
conductors, the conductor is assumed to be perfect. The cases
with conductor loss will be considered in the third example.
A current source of 1 A is launched from the bottom plane to
the center conductor in the M2 layer. The smallest mesh size
is 0.1 μm. For this example, a traditional full-wave solver
breaks down at ∼10 MHz. In our simulation, we choose
fref = 100 MHz (the reason is given later in this section)
and solve the original system (1) at this frequency to obtain
xref . The field solution at any lower frequency including dc
is then solved from (10) and (12). In Fig. 4(a), we plot
the electric field distribution at 10−32 Hz in the transverse
plane of the 3-D interconnect simulated by the proposed
method. In Fig. 4(b), we plot the electric field distribution
simulated by a conventional full-wave FEM solver. Clearly,
the proposed method produces an accurate electric field distri-
bution, whereas the traditional solver breaks down. In Table
I, we compare the results generated by the proposed solution
and those obtained from the rigorous solution developed in [1]
and [9] that solved a generalized eigenvalue problem shown
in (5). The capacitances extracted by these two solutions
agree very well with each other. The relative error of the
proposed solution is shown to be very small compared to
the rigorous solution. It is clear that the proposed fast low-
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TABLE I

COMPARISON OF THE CAPACITANCES OF A 3-D INTERCONNECT

STRUCTURE

Capacitance (F)

Frequency (Hz)
The rigorous
solution [1],

[9]

The
proposed

fast solution

Solution
relative error

1e8 4.4852e-12 4.4853e-12 8.9415e-04

1e5 4.4851e-12 4.4853e-12 8.9169e-04

1e3 4.4851e-12 4.4853e-12 8.9169e-04

1e-1 4.4851e-12 4.4853e-12 8.9169e-04

1e-16 4.4851e-12 4.4853e-12 8.9169e-04

1e-32 4.4851e-12 4.4853e-12 8.9169e-04

frequency solution preserves the accuracy of the theoretically
rigorous solution in [1] and [9] while eliminating the need for
solving an eigenvalue problem.

Since the proposed solution utilizes the solution vector
obtained at one frequency, fref , to obtain the field solution at
any low frequency where a traditional full-wave solver would
break down, one might be interested to know how the fref is
determined in this example. The fref is analytically estimated
from the geometrical and mesh data based on the theoretical
analysis given in Section III-C. First, we analytically estimate
fmin, fmax, and f0, which are found to be fmin ∼3 × 1010 Hz,
fmax ∼6.7 × 1014 Hz, and f0 ∼1 × 107 Hz. In our estimation,
a uniform material with an effective permittivity is used.
These estimation results agree very well with numerical data,
in which fmin and fmax are shown to be 3.8 × 1010 and
1 × 1015 Hz, respectively. As mentioned, the conventional
full-wave solver breaks down at ∼10 MHz. This agrees with
our analytical prediction since the square of this breakdown
frequency is 16 orders of magnitude smaller than λmax. From
the estimated fmin and f0, we know that fref can be arbitrarily
chosen between 1 × 107 and 3 × 109 Hz with good accuracy.
This range is above f0 and one order of magnitude smaller
than fmin so that the resultant λref is at least two orders of
magnitude smaller than λmin. This is how fref = 100 MHz is
determined.

Next, in order to demonstrate the capability of the proposed
solver in solving problems with a dispersive material, we
consider a parallel plate structure filled with a material with
complicated frequency dependence. The width, height, and
length of the structure are set to be 10, 1, and, 35 μm,
respectively, in accordance with the typical dimensions of
on-chip circuits. The dielectric material between two PEC
plates is FR4, which is modeled by the following dielectric
loss model [15]:

εr (ω) = ε′∞ + 	ε′

1 + j ω
ω0

(30)

where ε′∞ = 4.9, 	ε′ = 0.28, and ω0 = 2 × 106s−1. A
current source of 1 A is injected from the bottom plane to
the top plane. The smallest edge length used in discretiza-
tion is 1 μm. We analytically estimate f0 ∼1×106, fmin
∼1.9×1012, and fmax ∼6.7×1013 Hz. These data are in
good agreement with the actual data, which are shown to be

Index of vector edges 
(a)

(b) 

M
ag

ni
tu

de
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 fi
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d 

Fig. 5. Electric field simulated at each edge at 10−32 Hz. (a) Proposed
method (in red dots) and rigorous method [10], [11] (in blue line).
(b) Conventional full-wave FEM method.

1.9 × 1012 Hz for fmin and 1 × 1014 Hz for fmax. In addition,
we examine the 1-norm of ω2T over that of S, we find that it
is larger than machine precision when frequency is higher than
6 × 106 Hz, which agrees with the fact that the conventional
full-wave FEM solver breaks down at ∼1 MHz. Based on
these analytical estimations, we choose 100 MHz as fref in
this simulation. In Fig. 5(a), we plot the electric field at each
edge in the computational domain at 10−32 Hz simulated
by the proposed method in comparison with that obtained
from the rigorous method developed in [10] and [11]. Two
results agree very well with each other and both exhibit an
open circuit phenomenon. In contrast, the traditional full-wave
FEM solver gives very small field values, which is wrong, as
shown in Fig. 5(b). In Table II, we compare the admittances
simulated using the proposed method, the rigorous solution
[10], [11], and a conventional FEM solver. It is clear that the
proposed solution agrees very well with the rigorous solution,
whereas the conventional FEM solver is totally wrong at low
frequencies.

The last example involves both inhomogeneous dielectrics
and nonideal conductors. It is a 3-D loop inductor residing
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TABLE II

ADMITTANCE EXTRACTED BY THREE METHODS

Real part of the admittance (1/
) Imaginary part of the admittance (1/
)

Frequency
(Hz) Proposed solution

Rigorous solution
[10], [11]

Conventional
full-wave method Proposed solution

Rigorous solution
[10], [11]

Conventional
full-wave method

108 2.7581597e-18 2.75815973e-18 2.758159737e-18 1.5163937646e-14 1.516393756e-14 1.516349335e-14
107 2.75539591e-17 2.7553958e-17 2.755395883e-17 1.5164805934e-14 1.5164805852e-14 1.51510056e-14
106 2.50443535e-16 2.50443533e-16 2.477684473e-16 1.5243647519e-14 1.5243647435e-14 1.18176313e-14
105 2.47768450e-16 2.477684473e-16 2.504435330e-16 1.595260031e-14 1.5952600245e-14 −3.7530252e-13
103 2.72219529e-18 2.72219526e-18 2.722195262e-18 1.6030430535e-14 1.6030430446e-14 −3.7530252e-09

10−1 2.72222216e-22 2.72222212e-22 0 1.603043909e-14 1.6030438998e-14 −0.3753025
10−16 2.72222216e-37 2.72222216e-37 2.72222212e-37 1.603043909e-14 1.6030438998e-14 −3.7530252e+29
10−32 2.72222216e-53 2.72222212e-53 2.722222129e-53 1.603043909e-14 1.6030438998e-14 −3.7530252e+61

TABLE III

INPUT IMPEDANCE COMPARISON

Real Part of the Input Impedance (
) Imaginary Part of the Input Impedance (
)

Frequency
(Hz) Proposed Solution Rigorous Solution

[10], [11]
Conventional

Full-wave Method Proposed Solution Rigorous Solution
[10], [11]

Conventional
Full-Wave

Method
107 2.7484e-1 2.7413e-1 2.7413e-1 −1.6252e4 −1.6252e4 −1.6252e4

105 2.7484e-1 2.7300e-1 2.4058e-1 −1.6252e6 −1.6252e6 −1.6412e6
103 2.7484e-1 2.7300e-1 1.9373e8 −1.6252e8 −1.6252e8 3.2457e8

10−1 2.7484e-1 2.7300e-1 −23.6 −1.6252e12 −1.6252e12 349.0
10−16 2.7484e-1 2.7300e-1 −6.051e-10 −1.6252e27 −1.6252e27 −2.638e-11
10−32 2.7484e-1 2.7300e-1 −5.000e-40 −1.6252e43 −1.6252e43 −7.8598e-22

0 2.7484e-1 2.7300e-1 0 ∞ ∞ 0

D

PEC

S

W

W

The bottom is backed by PEC

650 um, eps=3.4

15 um

15 um

30 um, eps=3.4

Fig. 6. Geometry and material of a 3-D loop inductor.

on a package. The geometry of the loop inductor is shown
in Fig. 6. Its diameter (D) is 1000 μm. The metallic wire
is 100-μm wide and 15-μm thick. The metal conductivity is
5.8 × 107. The port separation (S) is 50 μm. The inductor is
backed by two package planes. The backplane is 15-μm thick.
In this simulation, the smallest mesh size is 10 μm in dielectric
regions. Based on an analytical estimation, fmin and fmax are
found to be ∼15 and ∼1.5×104 GHz, respectively. Moreover,
we can estimate that f0 is between 0.1 and 1 MHz, which is
also verified by the simulation based on the conventional full-
wave solver. Based on fmin and f0, we chose 10 MHz as fref in
this simulation. In Table III, we compare the input impedance
simulated by three solutions at low frequencies: the proposed
solution, the rigorous solution [10], [11], and the conventional
full-wave FEM solution. It is clear that among the three
solutions, the proposed solution is in an excellent agreement
with the rigorous solution, both of which can generate correct
frequency dependence for real and imaginary parts. It is worth

mentioning that the input impedance is extracted between one
port of the inductor and the bottom reference ground with
the other port left open. In Table III, at zero frequency, the
imaginary part of the input impedance is infinity, which is
analytically obtained from the proposed method as can be seen
from the first row of (17). Moreover, in order to verify our
theoretical analysis of [�1, �2], we checked the number of
dc modes for the system inside and outside the conductor. One
is 356 and the other is 365. Their addition is 721, which is
exactly the number of dc modes of the entire S matrix.

VI. CONCLUSION

It has been observed that a full-wave solution of Maxwell’s
equations breaks down at low frequencies. In order to
efficiently eliminate the low-frequency breakdown problem,
this paper presents a fast low-frequency full-wave finite-
element-based solution, for both problems involving ideal
conductors and problems with nonideal conductors immersed
in inhomogeneous, lossless, lossy, and dispersive materials. It
retains the theoretical rigor of the solution developed in [1]
and [9]–[11], while eliminating the need for an eigenvalue
solution. We have identified that the low-frequency solution
is dominated by the nullspace of the stiffness matrix.
Although the dimension of the nullspace grows linearly
with the problem size, we show that a single solution vector
obtained at one low frequency serves as a complete space for
representing the contribution from all the nullspace vectors
for a given excitation. Therefore, utilizing one such vector,
we reduce the original system of O(N) to an O(1) system.
By dropping the resultant stiffness matrix rigorously based on
the fact that the field solution is in the nullspace of the
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stiffness matrix, we successfully bypass the barrier of finite
machine precision that is the root cause of low-frequency
breakdown and, also, solve the breakdown problem efficiently.
Instead of introducing additional computational cost to fix
the low-frequency breakdown problem, the proposed method
significantly speeds up the low-frequency computation. When
simulating a frequency band from high to low frequencies,
the cost of the proposed method is O(1) at all the breakdown
frequencies since the single solution vector used to obtain
the solution at low frequencies is available for use. When
simulating only low frequencies where a full-wave solver
breaks down, the proposed method will first generate a
solution at a reference frequency and then use this solution to
obtain the solution at the desired frequencies. In this case, the
proposed method does not introduce additional computational
cost to fix the low-frequency breakdown problem either.
In addition, the proposed method can be used to capture
complicated frequency dependence at low frequencies due to
material dispersion and conductor loss.

Moreover, the reduced space of O(1) identified in this paper
serves as a complete representation of the contribution from
all the nullspace vectors, i.e., dc eigenmodes, for a given
excitation. Such an O(1) space not only can be used to
rapidly fix the low-frequency breakdown problem in FEMs,
but also can be employed by other frequency- and time-
domain methods for fast and accurate low-frequency analysis.
In addition, the proposed O(1) space effectively shrinks the
dimension of the original nullspace that grows linearly with
the problem size, and hence can be used in other applications
where nullspace vectors are required.

We have also theoretically analyzed the relationship
between zero frequency, breakdown frequency, the first
nonzero eigenvalue, and the highest eigenvalue of the numer-
ical system; from which we demonstrated the validity of
the proposed O(1) solution in technologies that are avail-
able today. For future technologies or applications in which
not only dc eigenmodes but also higher order eigenmodes
contribute to the solution at the breakdown frequency, the
proposed O(1) space can be flexibly expanded to cover a few
other vectors that characterize nonzero higher order modes in
addition to the single vector that represents the contribution
from all dc modes, with the total cost still minimized to be
negligible.

A large part of this paper is devoted to derivations that serve
as the theoretical basis of the proposed fast solution. For a
quick reference, readers can refer to Sections III-B and IV-B,
which is the outcome of the proposed research. As can be seen
from these two sections, the implementation of the proposed
fast low-frequency full-wave solution is user friendly.

APPENDIX

Here, we prove that (27) is a diagonal matrix.
Based on (22), the xre in (24) can be compactly written as

xre =
( −QVii,0 yi

Vii,0 yi

)
(A.1)

where yi = V T
ii,0QT I denotes the coefficient vector that carries

the weight of each nullspace eigenvector in field solution.

Similarly, based on (23), the xim in (24) can be compactly
written as

xim =
(

V0 yo

0

)
(A.2)

where yo = V T
0 I/ω. By using (A.1) and (A.2), we have

zT (−ω2T + jωR)z =
( −yT

i (QVii,0)
T yT

i (Vii,0)T

yT
0 V T

0 0

)

×
( −ω2Too −ω2Toi

−ω2Tio jωRii

) ( −QVii,0 yi V0 yo

Vii,0 yi 0

)
. (A.3)

By utilizing the following fact:
TooQVii,0 yi − Toi Vii,0 yi = 0 (A.4)

it can be readily derived that the off-diagonal terms of (A.3)
are zero. Next, we show why (A.4) holds true.

Since xre and xim are obtained from a field solution xref
that satisfies (1), from (14) and (16), the xref s components xo

and xi satisfy

Aoo(ω)xo + Aoi(ω)xi = − jωI. (A.5)

Thus
Aoo(ω)xre,o + Aoi (ω)xre,i = 0 (A.6)

where xre,o is the real part of xo, and xre,i is the real part
of xi . Since xre,o = −QVii,0 yi and xre,i = Vii,0 yi , as can be
seen from (A.1), we have

(Soo−ω2Too)(−QVii,0 yi )+(Soi −ω2Toi )(Vii,0 yi ) = 0 (A.7)

which can be further written as

(Soi−SooQ)Vii,0 yi+ω2(TooQVii,0 yi−Toi Vii,0 yi ) = 0. (A.8)

Since (Soi −SooQ)Vii,0 = 0 as shown in Section IV.A, (A.4)
is obtained.

In addition to recognizing that (A.3) is diagonal, the deriva-
tion of (27) also utilizes the fact that the displacement current
can be neglected inside conductors compared to conduction
current from dc to very high frequencies.
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