
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 61, NO. 3, MARCH 2013 1273

Layered -Matrix Based Inverse and LU Algorithms
for Fast Direct Finite-Element-Based Computation of

Electromagnetic Problems
Haixin Liu and Dan Jiao, Senior Member, IEEE

Abstract—A layered -matrix based inverse algorithm and a
layered -matrix based LU factorization and solution algorithm
are developed to accelerate the direct solution of the finite element
matrix resulting from electromagnetics-based analysis of general
3-D problems. In these algorithms, the direct solution of the orig-
inal 3-D systemmatrix is transformed to the direct solution of mul-
tiple 2-D problems. The size of the matrix to be computed is thus
reduced from a 3-D size to a 2-D size. Moreover, the growth rate
of the rank of the inverse finite element matrix with electric size is
reduced from a 3-D based growth rate to a 2-D based growth rate.
Numerical experiments have demonstrated the clear advantages
of the proposed direct solvers over a state-of-the-art multifrontal
based direct sparse solver as well as existing fast -matrix based
direct solvers, in both CPU time and memory consumption, for fi-
nite-element analysis of general 3-D electromagnetic problems.

Index Terms— -matrix, direct matrix solution, finite element
methods, electromagnetic analysis.

I. INTRODUCTION

A FINITE-ELEMENT METHOD (FEM) based analysis of
a complex electromagnetic problem generally results in

a large-scale system matrix. Although the matrix is sparse, its
direct solution can be a computational challenge when the ma-
trix size is large. The optimal operation count of a direct so-
lution to an FEM matrix of size is shown to be
for 2-D problems, which is achieved by nested dissection [1].
For 3-D problems, the time complexity of a nested-dissection
based sparse matrix solver is [1]. A local-global solu-
tion modes based fast direct solution is developed in [2] for the
FEM based analysis of 2-D wave problems. State-of-the-art fi-
nite-element-based solvers rely on iterative approaches to solve
a large-scale 3-D problem. The resulting computational com-
plexity is , where is the number of iterations
and the number of right hand sides. When or is
large, an iterative solver becomes inefficient.
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In [3]–[5], an -matrix-based mathematical framework
[6]–[9] was introduced to accelerate the direct solution of the
FEM-based linear system of equations for large-scale electro-
magnetic analysis. It is proved in [5] that the sparse matrix
resulting from a finite-element-based analysis of electrody-
namic problems can be represented by an matrix without
any approximation, and the inverse of this sparse matrix has a
data-sparse -matrix approximation with error well controlled.
Based on this proof, an -matrix-based direct finite-element
solver having storage cost and
operation counts is developed for solving electrodynamic
problems, where rank is adaptively determined based on a
prescribed accuracy for each low-rank block in the inverse or
LU factors of the finite-element matrix. To satisfy a prescribed
accuracy, the rank required in a static analysis is shown to be a
constant regardless of matrix size. For electrodynamic analysis,
it is shown in [10], [11] that for a prescribed error bound, the
rank of the inverse finite-element matrix is a constant irrespec-
tive of electric size for analyzing 1-D electrodynamic problems;
for 2-D electrodynamic problems, the rank grows very slowly
with electric size as square root of the logarithm of the electric
size of the problems; for 3-D electrodynamic problems, the
rank scales linearly with the electric size. Since scales as
electric size cube in a 3-D finite-element based analysis, is
proportional to . Although is not a constant any more,
the resultant time complexity of the -matrix-based direct
finite element solver is still lower than existing best complexity
for 3-D electrodynamic analysis enabled by nested dissection,
which is , for directly solving the finite element matrix.
In this work, in light of the fact that the rank of a 2-D electro-

dynamic problem growswith the electric size muchmore slowly
than the rank of a 3-D problem, we propose layered -ma-
trix-based algorithms to transform the original 3-D problem to
multiple 2-D problems to solve. As a result, the rank’s growth
rate with electric size is significantly reduced from a 3-D based
growth rate to a 2-D based growth rate. The storage cost of
the -matrix-based direct finite element solver is reduced from

to , and the time cost is re-
duced from to , where is
the number of unknowns in a single 2-D problem, which can be
orders of magnitude smaller than , and is the rank of a 2-D
problem, which grows with electric size very slowly as com-
pared to the 3-D rank . If the structure is periodic, the time
cost of the proposed direct solver is ,
where is the number of periods.
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For a general 3-D problem having an equal dimension along
each of the -, -, and -directions, is proportional to

, and is in the order of . As a result, the
time complexity of the proposed direct finite element solver is

in inverse and LU factorization, while the storage
complexity is less than for obtaining the solution in any
2-D domain of interest.
The rest of the paper is organized as follows. In Section II,

we introduce the background of an -matrix based direct FEM
solver for electrodynamic analysis. In Section III, we present
the proposed layered -matrix-based inverse algorithm. In
Section IV, we elaborate a layered -matrix-based LU fac-
torization and solution algorithm. In Section V, the rank and
the complexity of the proposed direct solvers are analyzed. In
Section VI, a further complexity reduction for periodic struc-
tures is shown. In Section VII, numerical results are presented
to demonstrate the accuracy and the efficiency of the proposed
direct FEM solvers. Section VIII relates to our conclusions.

II. PRELIMINARIES

In this section, we give an overview of the basics of an -ma-
trix based direct finite element solver.

A. Formulate an FEM System Matrix

Consider the second-order vector wave equation:

(1)

subject to boundary conditions:

(2)

(3)

An FEM-based solution to the above boundary value problem
results in a linear system of equation [14]:

(4)

where is the right hand side, is sparse and can be written as

(5)

in which

(6)

where denotes the computational domain, and is the vector
basis used to expand unknown . In (6), is known to be a
mass matrix, and is a stiffness matrix. is positive definite,
is semi-positive definite, and the combined system is, in

general, indefinite.

B. Build Cluster Tree and Block Cluster Tree

To construct an -matrix representation of and its inverse,
we first build a cluster tree and then a block cluster tree [8]. A
cluster tree is used to efficiently store the -matrix-based repre-
sentation of the FEM systemmatrix as well as its inverse. Before
detailing the procedure of building a cluster tree, we introduce
the following notations:
• is the index set containing the indices
of all the basis functions used to discretize (1). A cluster
tree constructed based on is denoted by .

• is the support of the -th vector basis function .
can be chosen to be the bounding box that comprises all

the elements sharing .
• For a subset of is defined as: , which
is a union of the supports of all the basis functions in .

To build a cluster tree, we start from the whole index set
, which is the root cluster denoted by

(the superscript represents the level of the set and the subscript
denotes the index of the set at this level). We then choose the
coordinate direction of maximal extent and split set into two
subsets and . This process continues until the size of
each subset is smaller than a pre-determined parameter
(leafsize), which is used to control the depth of the cluster tree.
A block cluster tree is built from two cluster trees

and . Each block cluster has a form
with clusters and , and at the same level.
Given an admissibility condition:

(7)

where is the Euclidean diameter of a set, is
the Euclidean distance between two sets, and is a positive
constant. The block cluster tree can be constructed by testing
the admissibility condition of the blocks level by level starting
with and , and descending in the tree. If
at one level, clusters and satisfy the admissibility condition,
the block cluster is admissible and its children blocks do
not need to be checked. If the clusters and do not satisfy
the admissibility condition, their children are examined. The
above process continues until the leaf level is reached. A leaf
of block cluster tree is either admissible or non-admis-
sible. The leaves of constitute an admissible partition:

. They can be located at different levels of the
block cluster tree, thus having different matrix sizes.

C. Generate an -Matrix Representation of the FEM System
Matrix

As shown in the subsection above, there are two kinds of
leaves in a block cluster tree : non-admissible leaves and
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admissible leaves. In an -matrix, matrix blocks in non-admis-
sible leaves are stored in a full matrix form, namely all the ma-
trix entries are stored without any approximation. Matrix blocks
in admissible leaves defined by the row cluster and
column cluster are stored in a factorized form: ,
where is a matrix and is an matrix, with being
the blockwise rank. The rank can be used to control the accu-
racy of the approximation. The definition of the set of -ma-
trices on the block cluster tree with admissible partition

and blockwise rank can be written as:

where denotes the matrix corresponding to block . In math-
ematical literature of the -matrices, is, in general, treated as
a constant that does not depend on . When using -matrix
based mathematics for electrodynamic analysis, the rank of
the inverse finite element matrix is electric size, and hence
dependent in 2- and 3-D analysis [10], [11]. However, is still
less than , thus being low rank [5], [10], [11].
In the process of constructing an -matrix to represent the

original FEM matrix, all the nonzero matrix entries in the
FEM matrix are stored in non-admissible leaves and admissible
leaves do not need to be filled because the corresponding matrix
elements are zero. In other words, all the admissible blocks in
the original FEM matrix have a zero rank [5]. Thus, an FEM
matrix can be represented exactly by an -matrix without
approximation, and the assembly of an FEMmatrix has optimal
complexity .

D. -Matrix Inverse and LU Decomposition

After the -matrix representation is generated for the FEM
matrix, an -matrix based direct solution can be computed by
inverting or factorizing into and factors.
Rewriting the FEM matrix in the following form:

(8)

Its inverse can be computed hierarchically using (9), shown at
the bottom of the page, where ,
and all the additions and multiplications are performed
based on -matrix arithmetic [6]–[9], which is much faster than
the conventional matrix additions and multiplications. For ex-
ample, for a dense matrix of size , an -based matrix addition
has complexity, whereas an -based matrix-ma-
trix multiplication has complexity. The -LU-

Fig. 1. A 3-D problem sliced into layers.

based direct solution [5] has two components: 1) -based re-
cursive LU factorization; 2) matrix solution by -based back-
ward and forward substitution.
The cost of storage and CPU time for an -matrix

based inverse as well as LU factorization are shown to be
, and respectively in [5] for

solving 3-D electrodynamic problems, where is the rank
of the inverse finite element matrix for a prescribed accuracy.

III. PROPOSED LAYERED -INVERSE BASED DIRECT
FINITE ELEMENT SOLVER

Given a general 3-D electromagnetic problem, we transform
the inverse of the original 3-D FEM matrix of size to the
inverses of 2-D problems, the size of each of which is bounded
by with . By doing so, we reduce the size
of the matrices to be computed from to . In addition, we
reduce the growth rate of the rank from the original 3-D growth
rate to a 2-D growth rate, thus further accelerating the -matrix
based fast direct solution of the FEM matrix. The details of the
proposed algorithm are given below.
Since an FEM matrix is sparse, its direct solution can be de-

composed into the direct solution of 2-D problems in many
ways. Here, we decompose the original 3-D solution into the
solution of 2-D layers. We slice a 3-D problem into layers. The
material in each layer is not required to be uniform in the pro-
posed algorithm. It can be arbitrarily non-uniform. We catego-
rize unknowns into two groups: surface unknowns and volume
unknowns as shown in Fig. 1. Surface unknowns are on the in-
terfaces that separate layers, while volume unknowns are in-
ternal to each layer. The mesh in each layer can be different
from that in other layers. It can be a triangular prism element
or a tetrahedral element based mesh. The resultant number of
unknowns can be different in different layers. If the unknowns
are ordered layer by layer, the resultant FEM matrix is, also,
layered as shown in Fig. 2, where shaded blocks are non-zero
blocks and others are all zeros. Although equal-size blocks are
shown, each block can have a different size.

(9)
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Fig. 2. FEM matrix resulting from a layered ordering.

When a structure is complicated, it can be cumbersome to
partition the structure into layers geometrically. In this case, a
numerical partition can be employed. In other words, the layers
can be numerically formed instead of geometrically identified.
In a numerical way, regardless of the structure and its mesh,
we can start from the set that includes all the unknown indexes,
then partition this set into two disjoint subsets along one direc-
tion based on the physical coordinates of these unknowns. Each
subset represents one part of the original structure, which is then
partitioned to two disjoint subsets again. This process continues
until the required single-layer size is reached. For example, one
can set the number of unknowns in each single layer to be no
greater than a predefined number, . Then once the number
of unknowns in a subset is reduced to , we stop partitioning
this subset. After this process, the entire unknown set is parti-
tioned into subsets, where . The unknowns in each
subset, the size of which is , correspond to the unknowns
in a single layer. In other words, each subset constitutes a single
‘layer’. With the unknown indexes known in each layer, the ma-
trix blocks corresponding to each layer and the interaction be-
tween this layer and its adjacent two layers can be identified
numerically.

A. Introduction of Notations

We denote surface unknowns and volume unknowns in the
-th layer by and , respectively. We denote the maximal
number of unknowns on a single surface by , the maximal
number of volume unknowns in a single layer by , and the
total number of layers by .
We use , and with to re-

spectively represent the , and matrix block
at the -th level. Fig. 3 illustrates and at different
levels. As can be seen from Fig. 3(a), is the first-layer
matrix formed by (S1, V1) unknowns; is the matrix block
of the first two layers; and is the matrix block of the first
three layers. At the -th level, becomes the entire FEM
matrix . From Fig. 3(b), it is clear that the at different
levels are all of single-layer size. For example, is the
second-layer matrix formed by (S2, V2) unknowns; and
is the third-layer matrix formed by (S3, V3) unknowns. From
Fig. 3, the and at different levels can be identified
correspondingly.
We employ to represent the original FEM matrix in

the -th layer, i.e., the diagonal block formed by
unknowns. Correspondingly, stands for the off-diag-
onal block formed between the -th layer unknowns and the

Fig. 3. Illustration of and at different levels. (a) .
(b) .

-th layer unknowns. Different from , the
represents the inverse FEM matrix in the -th layer.

B. Proposed Layered -Inverse

Based on (9), we compute the inverse of an FEMmatrix level
by level, from the first level that only includes the first-layer ma-
trix block to the entire matrix level that includes all the layers.
Take the layered FEM matrix shown in Fig. 3(a) as an example,
in the first level, is the first-layer matrix block formed by
unknowns in the first layer. By performing an -matrix-based
inverse of , we obtain the inverse of the first-layer ma-
trix block . At the second level, we proceed to obtain
the inverse of the first two layers, , by using (9). In
doing so, as can be seen from Fig. 3(a), is the matrix block
formed between unknown set (S1 and V1) and unknown set (S2
and V2), is , and is the matrix formed by un-
knowns in the second layer, i.e., (S2 and V2). After computing
(9), we obtain , the inverse of the first two layers as
illustrated in Fig. 4, where all the blocks are now nonzero, de-
noted by shaded blocks. We then proceed to compute ,
the inverse of the first 3 layers. The block at this level, ,
is the matrix block formed by the first two layers, the inverse
of which has been computed; is the matrix block formed
between unknown set (S1, V1, S2, V2) and unknown set (S3
and V3), is , and is the matrix formed by un-
knowns in the third layer, i.e., (S3 and V3). The consists of
four matrix blocks , and in the original FEMmatrix
as shown in Fig. 5 which displays the inverted matrix
together with the remaining FEM matrix to be inverted.
Based on (9), to compute , which is the 22-block

in the inverse matrix , two steps are performed. First,
we compute , then
compute its inverse. The first step is illustrated in Fig. 6, where
empty blocks are zero blocks and shaded blocks are non-zero
blocks. Due to the zero blocks in and , we notice that
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Fig. 4. The inverse matrix of the first two layers with every block nonzero. (The
original FEM matrix blocks are also shown, which are overwritten by inverse
blocks).

Fig. 5. The FEM matrix after computing the inverse matrix for the first two
layers. What is outside the dashed box is the original FEM matrix that remains
to be inverted.

only , and blocks of are involved in the
multiplication. All the other blocks in are not needed
in the multiplication. These four blocks are, in fact, the 22-block
of , i.e., . Thus, we only need to store

that are of single-layer dimension instead of the
entire . In addition to single-layer storage, the matrix
multiplication cost is also of single-layer cost as can be seen
from Fig. 7. The above is true for the computation at any level.
Therefore, when proceeding from one level to the other level.
We only need to keep the 22-block of the inverse computed at
the previous level.
In a conventional scheme, for the computation associ-

ated with the -th level, let is an
matrix, is an

matrix, is an matrix, and
is an matrix. The size of matrices

involved in the computation keeps increasing with the level. In
contrast, in the proposed layered inverse, as shown in Fig. 7,

Fig. 6. Illustration of the operation
.

Fig. 7. Actual operations in ,
where .

, and all have a single-layer
size. To be specific, and

. More importantly, only , which is
the inverse in the -th single layer, denoted by , is used in
the computation of inverse in the -layer. This process
continues until the inverse in the last layer is computed. Thus,
the computation for each layer only involves the operation of
matrices of a single-layer size. Therefore, the computational
cost for each layer is fixed. In addition, the total storage is the
storage of two-layer matrices since it can be reused for each
layer.
The pseudo-code for obtaining the inverse in the last layer is

shown in (10) at the bottom of the page. In this code, the storage
space opened up for , and are reused for
each layer. The function -inverse takes as
the input, which is then overwritten by its inverse at the
output. The is a temporary space used during the inverse
procedure [5]. At the end of the computation, the inverse of the
last layer, , is stored in . In each layer, the surface
and volume unknowns are partitioned based on the admissibility

(10)
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condition, and all the matrix additions and multiplications in-
volved in the computation of (10) are performed based on the
-matrix based fast arithmetic [6]–[9].
In addition to the inverse in the last layer , the

aforementioned algorithm can be used to efficiently obtain
the inverse in any -th layer , where is from 1 to
. If the layer is in between the first and the last layer, the
aforementioned numerical procedure can be performed in
a top-down bottom-up manner until along both directions
the operations have reached the -th layer. At this point, the
original -th layer FEM matrix will be superposed with

obtained from the top-down
layered operations as well as ob-
tained from the bottom-up layered operations. The superposed
matrix will then be inverted to obtain .

IV. PROPOSED LAYERED -LU BASED DIRECT FEM SOLVER

Compared to inversion, an LU factorization based direct so-
lution is more efficient when the number of right hand sides is
less than . Therefore, we also develop a layered -LU based
direct solver to complement the layered -inverse based direct
solver. This algorithm can be used to efficiently obtain the fac-
torized and in any selected layer of interest.
Consider a non-leaf cluster in the cluster tree of an
-based representation of the FEMmatrix . The matrix block
can be subdivided into four sub blocks:

(11)

where and are the children of in the cluster tree .
Assuming can be factorized into and matrices, can

also be written as:

(12)

By comparing (11) and (12), it can be seen that the LU factor-
ization can be computed recursively by the following four steps:
1) Compute and by -LU factorization

;
2) Compute by solving ;
3) Compute by solving ;
4) Compute and by -LU factorization

.
All the additions and multiplications involved in the four steps
are performed by -matrix-based fast arithmetic [6]–[9].
Next, we use the layered FEM matrix shown in Fig. 8 as an

example to elaborate the proposed layered -LU. Without loss
of generality, assuming that the and factors of the last layer
are of interest. Now consider non-leaf cluster that includes all
the unknowns in the first three layers from S1 to V3. Its two
children clusters are that includes all the unknowns in the first
two layers from S1 to V2, and that includes unknowns from
S3 to V3. The corresponding FEM matrix blocks are denoted

Fig. 8. FEM matrix with layered ordering.

Fig. 9. and factors of the first two layers.

Fig. 10. Illustration of operation .

by , and respectively. We first perform an -LU fac-
torization to obtain the and factors of
as shown in Fig. 9. We start from the first layer, and then pro-
ceed to the second layer. With the LU factorization of the first 2
layers computed as shown in Fig. 9, we proceed to compute the
LU factorization of the first 3 layers. The factorized matrices
and shown in the left hand side of Fig. 9 will be used for the
computation of the LU factorization of the next-level matrix.
Next, to obtain the LU factorization of cluster corresponding

to the matrix of the first three layers, three steps are performed:
1) Solve ;
2) Solve ;
3) Do LU factorization .
The first step is depicted in Fig. 10. A closer look of Fig. 10

reveals that due to zero blocks in , only , and
blocks in are involved in the process of solving for
. All the other blocks in are not needed in the solution.

Thus, we only need to store three blocks that are of single-layer
dimension instead of the entire when proceeding from one
layer to the next layer. Not only the cost of storage is reduced
to single-layer cost, but also the computation cost, as can be
seen from Fig. 11. Similarly, Step 2 for computing can be
performed with single-layer cost as illustrated in Fig. 13 instead
of using the conventional scheme shown in Fig. 12. Since both

and are single-layer matrices, the computational cost
of Step 3 is also of single-layer cost.
In the conventional -LU factorization scheme, for the com-

putation associated with the th layer, is an
matrix, is an matrix, is an

matrix, and is an
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Fig. 11. Actual operations for solving .

Fig. 12. Illustration of operation .

Fig. 13. Actual operations for solving .

matrix, where is the number of unknowns in a single layer.
Except for , the size of the other three matrix blocks

and keeps increasing with the layer index. In contrast,
in the proposed layered LU factorization, and all
have a fixed size of . More importantly, only the
factorized in the previous layer is used in the computation
of the LU factorization of at the current layer. The LU fac-
tors of at the current layer will then be used for the
factorization at the next layer. The computation for each layer
only involves the operation of matrices with a single-layer size,
and only requires the matrix from the previous-layer com-
putation. This procedure stops when the LU factorization of
for the last layer is computed. The computational cost for each
layer is in the same order and the total storage is just the storage
of two-layer matrices since the storage can be reused for each
layer.
The pseudo-code of the proposed layered -LU factorization

for obtaining the LU factors in the last layer is shown in (13),
at the bottom of the page. In each layer, the surface and volume
unknowns are partitioned based on the admissibility condition,

the -matrix based fast operations are performed for the ma-
trices of a single-layer size.

V. RANK AND COMPLEXITY ANALYSIS

In this Section, we analyze the rank required by the pro-
posed layered -matrix algorithms as well as their computa-
tional complexity.

A. Rank Analysis

From Sections III and IV, it can be seen that the proposed
layered -inverse and LU algorithms transform the direct so-
lution of the original 3-D problem to the solution of
multiple single-layer problems, each of which is essentially a
2-D problem since the third dimension (along layer growth di-
rection) has a constant number of discretization elements. In a
single layer, this number is one.
In each single layer , as can be seen from (10), the essen-

tial operation performed by the proposed layered -inverse
is to compute the inverse of the Schur complement, i.e.,

, where is the original FEM
matrix in the -th single layer being computed, the unknowns of
which are Si and Vi, while is the original FEMmatrix block
formed between unknowns in the -th layer and the unknowns
in the -th layer, and is the Schur complement of the
FEM matrix in the -th layer. Each of ,
and has a single-layer size.
To analyze the rank required by the proposed algorithm, we

rewrite as below:

(14)

Since the rank of a matrix product is smaller or equal to the
minimum rank of the two matrices being multiplied, the rank of
(14) is bounded by the rank of . Since is the original
single-layer FEM matrix that is the FEM matrix formed for a
2-D single-layer problem, the rank of the proposed layered al-
gorithms is governed by the rank of a 2-D problem . As

(13)
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analyzed in [10], [11], different from a 3-D rank, grows
very slowly with electric size as square root of the logarithm
of the electric size. Moreover, the in (14) is the inverse
of the Schur complement of the FEM matrix in the -th
layer. This Schur complement is again the original FEM matrix
in the -th layer superposed with the contribution from the
layers proceeding the -th layer. Its inverse’s rank is no
greater than the rank of the inverse of the original FEM matrix
in the -th layer. Thus, the rank of is also governed by

, and so is the rank of the matrix product . As a
result, not only (14) is governed by a 2-D rank, but also the ma-
trix itself. Since in the proposed layered
inverse algorithm, at every layer, (14) is computed with corre-
sponding , and for each layer. The afore-
mentioned rank analysis applies to the computation at every
layer.
After proving the rank required for the proposed layered

-inverse computation is instead of , next, we prove
that the and factors of an FEM matrix share the same
rank as the FEM matrix inverse, and therefore their rank is
also .
Since the FEM matrix can be factorized into and fac-

tors as , we have , and thus
. We have proven in [5] that the FEM matrix inverse has

an -matrix representation and can be written in a low-rank fac-
torized form . Hence, , where

is an matrix, is the rank of the -matrix repre-
sentation of the FEM matrix inverse. As a result, has an
-matrix representation with the same rank as the FEM ma-

trix inverse. Because is an -matrix, is also an
-matrix, the rank of which is bounded by the rank of the FEM

matrix inverse. Similarly, we can prove that can also be rep-
resented by an -matrix. Therefore, the previous rank analysis
for the layered -inverse is equally applicable to the proposed
layered -LU.

B. Storage Complexity

In the proposed layered -inverse and layered -LU algo-
rithms, from operations at all previous layers, we only need to
store the inverse of a single-layer size. Although such a ma-
trix is a dense matrix of size , by using the -matrix based
data-sparse representation and applying the rank result from the
subsection above, it can be stored in units. For
a general 3-D problem having an equal dimension along each of
the , and direction, is proportional to , and is
in the order of . As a result, the storage complexity
is less than .

C. Time Complexity

The computation of the layered -inverse and layered -LU
is done layer by layer. For each layer the computational com-
plexity is the same, which involves two -matrix based multi-
plications, one -matrix based addition, and one conventional

Fig. 14. Periodic reduction of the structure with periods.

-inverse. All these operations are performed on the matrices
of size . Assuming there are layers, the total time cost is
hence

(15)

where is the total number of unknowns. It can be seen that
this complexity is much smaller than the conventional -matrix
based direct solution of a 3-D electrodynamic problem.
For a general 3-D problem having an equal dimension along

each of the -, -, and -directions, is proportional to ,
and is in the order of . As a result, the time
complexity of the proposed direct finite element solver is

in inverse and LU factorization.

VI. FURTHER ACCELERATION FOR PERIODIC STRUCTURES

Many physical structures are periodic in nature. For example,
antenna arrays, memory arrays, power grids, clock trees, etc. To
solve a periodic structure, we can first use the proposed layered
-inverse or layered -LU to reduce a one-period system ma-

trix to a single-layer matrix associated with the top-most surface
and the bottom-most surface of the period. The essential proce-
dure of this reduction is given in [12] using conventional dense
matrix operations. This reduced matrix is valid for all other pe-
riods in the structure. Assuming there are periods in the struc-
ture to be solved, we can then conduct times periodic
reduction to reduce single-layer matrices into one single-layer
system matrix as shown in Fig. 14.
Since we only need to store a single-layer matrix, the storage

complexity of the proposed acceleration for periodic structures
is the same as that analyzed in Section V, while the CPU cost
will be further reduced. Assume the total number of periods
of the whole structure is . In total, we only need to perform

times periodic reduction to obtain the final single-layer
matrix, each of which costs operations. As a
result, the total time cost is .
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Fig. 15. Simulation of a dielectric-loaded waveguide problem from 1.2 to 64
wavelengths using the proposed layered -matrix inverse. (a) ; (b) CPU
time for direct inverse; (c) Solving time.

VII. NUMERICAL RESULTS

A. Dielectric-Loaded Waveguide

To validate the proposed layered -matrix based inverse and
compare its performance with the existing -matrix based in-
verse [5], we simulate a dielectric-loaded waveguide example,
which was also simulated in [5]. The simulation parameters are
chosen as: and admissibility constant .
Fig. 15(a) shows the computed using the proposed lay-
ered -inverse from 1.5 to 2.7 wavelengths. It can be seen that
the computed agrees very well with the reference result.
We then test the computational complexity of the proposed lay-
ered inverse by increasing the length of the waveguide as well as
the dielectric load. The resultant electric size ranges from 1.2 to
64 wavelengths. Since the number of unknowns increases along
the length direction, the number of unknowns in each layer, ,
is a constant. As a result, the time complexity of the proposed

Fig. 16. Simulation of an on-chip interconnect structure using the proposed
layered -LU direct solver. (a) Side view of the structure; (b) Factorization
time; (c) Solving time.

layered -inverse is for simulating this waveguide ex-
ample, based on the theoretical complexity analysis given in
Section V. As can be seen from Fig. 15(b), the CPU time com-
plexity of the proposed layered -inverse agrees very well with
the theoretical prediction. In addition, the CPU time of the pro-
posed inverse is orders of magnitude smaller than that of the
existing -inverse for FEM-based analysis. In Fig. 15(c), we
compare the CPU time cost by the proposed solver and that by
the existing -matrix direct solver for solving one right hand
side. Unlike the existing -matrix direct solver, the proposed
layered direct solver only needs to solve the unknowns in one
layer to obtain S-parameters for this example, and hence the so-
lution time is constant, which is independent of the number of
layers. In addition, the storage of the proposed layered direct in-
verse is constant 3 MB for simulating this example.

B. Large-Scale On-Chip Interconnect

The proposed layered -LU direct solver is validated by sim-
ulating a complex 3-D on-chip interconnect structure. The side
view of this interconnect structure is illustrated in Fig. 16(a).
The top and bottom plates are perfect electric conductors (PEC).
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TABLE I
COMPUTED BY UMFAPCK AND THE PROPOSED SOLVER

In between, there are four metal layers: M4, M5, M6 and M7.
VCC wires (red wires) and VSS wires (blue wires) in different
metal layers are connected through vias at each intersection. The
wires and vias are made of copper. Different metal layers and
dielectric layers are filled by dielectrics with different dielec-
tric constants. The length of one period is 7.2 um. There are 12
ports of interest in this structure, with 6 ports at the near end and
6 ports at the far end. Since the structure of this interconnect ex-
ample is periodic along length growth direction, the algorithm
described in Section VI is used to efficiently reduce one-period
system matrix into a single-layer matrix. The periodic reduc-
tion is then performed times to obtain one single-layer
matrix containing near-end surface unknowns and far-end sur-
face unknowns. By solving the resultant single-layer matrix,
parameters can be obtained. The state-of-the-art sparse matrix
solver UMFPACK [13] is also used to compute the S-param-
eters of this example. The simulation is conducted at 5 GHz.
The number of periods along the length direction is increased
from 1 to 128. The resultant number of unknowns ranges from
12 250 to 1 483 291 and the length of the structure is from
7.2 um to 921.6 um. The simulation parameters are chosen as:

and admissibility constant . The rank
is adaptively determined. In Table I, we compare the com-
puted by UMFPACK and the proposed layered -LU based di-
rect solver. Very good agreement with UMFPACK results can
be observed. UMFPACK failed for the 128-period case since
it ran out of memory on our machine. In contrast, the memory
used by the proposed layered -LU based direct solver is con-
stant 131 MB for all the testing cases from 1 period to 128 pe-
riods. The comparison with UMFPACK is shown in Fig. 16(b)
and (c). In Fig. 16(b), the proposed layered -LU based direct
solver demonstrates a much lower complexity in factorization
as compared with UMFPACK. In Fig. 16(c), the CPU time re-
quired to solve 12 right hand sides for obtaining 12-port S pa-
rameters is plotted. As can be seen clearly, the proposed solver
outperforms UMFPACK in CPU time. Since the number of un-
knowns is increased by increasing the number of periods, while
the factorization as well as the solution cost for 1 period and
those for 128 periods are the same in the proposed algorithm,
we observe a constant CPU time cost in Fig. 16(b) and (c).

Fig. 17. Illustration of the structure.

C. A 3-D Structure With M Increasing With N

In previous two examples, the number of unknowns in a
single layer, , does not grow with . In the third example,
we consider a 3-D structure shown in Fig. 17, where grows
with . The front and back of the structure is backed by a
Neumann-type boundary condition, and the other four walls are
PEC. The inner walls are also PEC. The fill-in material between
inner and outer metallic walls is air. The dimension of this
structure is , where . The distance between
the inner walls and outer walls is 0.1 m. In the simulation, is
increased from 0.2 m to 1 m, the corresponding electric size of
which is from 2 to 10 wavelengths. As a result, the number of
unknowns is increased along every of -, -, and -directions.
The mesh size is chosen to be 10 elements per wavelength. The
excitation is placed on the front surface between the inner
wall and the outer wall, as illustrated in Fig. 17. The simulation
parameters are chosen as: and admissibility
constant . In Fig. 18(a), we plot the relative error of the
solution obtained by the proposed direct LU solver in compar-
ison with the result from UMFPACK. It can be seen that the
error is well controlled across the entire unknown range. The
error is smaller when the number of unknowns is small because
many matrix blocks are inadmissible blocks and only a few are
admissible blocks. When the number unknowns increases to a
certain level, the number of admissible blocks generated has
become saturated, and hence the error starts to saturate to the
prescribed level. In Fig. 18(b), we plot the memory usage of the
proposed direct solver. The storage complexity of the proposed
solver is shown to agree well with the theoretical analysis.
It is much smaller than linear complexity since only a 2-D
matrix needs to be stored for computing a 3-D problem in the
proposed layered algorithms. We also examine the total CPU
time of the proposed solver and plot it versus in Fig. 18(c).
The total CPU time clearly correlates well with the theoretical
complexity data depicted by the dotted line. In Fig. 19, we
plot the maximum rank adaptively determined by the proposed
direct solver during the computation. It can be seen that the
rank increases slowly with the electric size of the structure. It
is bounded by the theoretical prediction of the 2-D rank, which
is shown by the dotted line.

D. A Microstrip Patch Antenna Example

Developed as a general solver to Maxwell’s equations, the
proposed fast direct finite element solution can be employed for
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Fig. 18. Performance of the proposed direct finite element solver. (a). Accu-
racy. (b) Memory. (c) Total CPU time.

Fig. 19. Maximum rank of the proposed direct solver of a 3-D structure from
2 to 10 wavelengths.

a variety of electromagnetic applications. To demonstrate this
fact, in the last example, we consider a radiation problem of

Fig. 20. Illustration of a 2-element microstrip patch antenna array.

TABLE II
COMPARISON OF S-PARAMETERS OF A PATCH ANTENNA EXAMPLE

a microstrip patch antenna array having two elements. In re-
cent years, various antenna configurations have been explored
to realize on-package wireless communication as an alternative
solution to the wire-based interconnects. One configuration is
shown in Fig. 20, where two circular conducting patches, each
of which having a radius of 0.5 mm andmetal thickness of 0.015
mm, are etched on a dielectric substrate of relative permittivity
3.4. The thickness of the substrate is 0.03 mm. The substrate is
backed by a 0.015 mm-thick ground plane made of copper. The
conductivity of the copper used is S/m. The metallic
circular patch is made of the same type of copper. In Fig. 20,
is 1.2 mm; mm. Above the two patches is a

dielectric layer of thickness 0.65 mm and relative permittivity
3.4.
Two solvers are used to simulate this microstrip patch an-

tenna example. One is the proposed layered -LU algorithm,
the other is the conventional -LU algorithm. The frequency
simulated is 100 GHz. We excite one patch and assess its ra-
diation to the adjacent patch by extracting 2-port S-parame-
ters. In Table II, we list the S-parameters obtained from both
solvers, excellent agreement can be observed. The proposed lay-
ered -LU algorithm only cost 132.79 s in CPU time and 49MB
memory to finish the simulation while the conventional -LU
solver takes 351.46 s and 1.3 GB memory. The leafsize used is
32, the is chosen as 1, and the relative error used for adaptive
truncation in -based computation is set as 1e-8.

VIII. CONCLUSION

In this work, we develop both layered -inverse and lay-
ered -LU based direct FEM solvers for 3-D electromagnetic
analysis. Comparing with existing -matrix-based direct
solvers, the storage cost of the proposed layered solvers is re-
duced from to and the time
cost is reduced from to .
Since the number of single-layer unknowns is orders of
magnitude smaller than , the proposed -matrix-based
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layered direct solver is much faster than the existing -ma-
trix-based direct solvers. Moreover, the rank’s growth rate
with electric size for electrodynamic analysis is also reduced
from a 3-D based growth rate to a 2-D based growth rate. If
the structure is periodic, the time cost is further reduced to

, where is the number of periods.
For a general 3-D problem having a similar dimension along

each of the -, -, and -directions, is proportional to
, and is in the order of . As a result, the

time complexity of the proposed direct finite element solver
is in inverse and LU factorization, while the
storage complexity is less than for obtaining the solution
in any 2-D domain of interest. Numerical experiments and a
comparison with state-of-the-art sparse matrix solvers have
demonstrated the validity and the performance of the proposed
direct FEM solvers.
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