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Fast H-Matrix-Based Direct Integral Equation
Solver With Reduced Computational Cost for

Large-Scale Interconnect Extraction
Wenwen Chai and Dan Jiao, Senior Member, IEEE

Abstract— In this paper, we propose a fast H-matrix-based
direct solution with a significantly reduced computational cost for
an integral-equation-based capacitance extraction of large-scale
3-D interconnects in multiple dielectrics. We reduce the computa-
tional cost of an H-matrix-based computation by simultaneously
optimizing the H-matrix partition to minimize the number of
matrix blocks and minimizing the rank of each matrix block
based on a prescribed accuracy. With the proposed cost-reduction
method, we develop a fast LU-based direct solver. This solver
possesses a complexity of kCspO(NlogN) in storage, a complexity
of k2C2

spO(Nlog2N) in LU factorization, and a complexity of
kCspO(NlogN) in LU solution, where k is the maximal rank, Csp
is a constant dependent on matrix partition, and the constant
kCsp is minimized based on accuracy by the proposed cost-
reduction method. The proposed solver successfully factorizes
dense matrices that involve millions of unknowns in fast CPU
time and modest memory consumption, and with the prescribed
accuracy satisfied. As an algebraic method, the underlying fast
technique is kernel independent.

Index Terms— Capacitance extraction, direct solvers, fast inte-
gral equation solvers, H matrix, interconnect extraction, multiple
dielectrics.

I. INTRODUCTION

THE high level of integration has made the analysis and
design of integrated circuits and packages increasingly

challenging. In view of the increased design challenge, there
exists an urgent need to reduce the computational complexity
of existing methods for circuit extraction. Compared to a
partial differential equation-based solver, a surface integral
equation (IE) based solver reduces the number of unknowns
and also naturally incorporates a radiation boundary condition.
However, the IE-based analysis of 3-D interconnects generally
leads to a dense system of linear equations. When a traditional
direct method is used, the operation count is proportional to
O(N3) and the memory requirement is proportional to O(N2),
with N being the matrix size. When an iterative solver is used,
the memory requirement remains the same, and the computing

Manuscript received March 6, 2012; revised September 22, 2012; accepted
November 2, 2012. Date of publication January 9, 2013; date of current
version January 31, 2013. This work was supported in part by a grant from
SRC (Task 1292.073), and grants from NSF under Award 0747578 and Award
0702567. Recommended for publication by Associate Editor E.-P. Li upon
evaluation of reviewers’ comments.

The authors are with the School of Electrical and Computer Engi-
neering, Purdue University, West Lafayette, IN 47907 USA (e-mail:
wchai@purdue.edu; djiao@purdue.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCPMT.2012.2228003

time is proportional to O(Nit Nrhs N2), where Nit denotes the
total number of iterations required to reach convergence, and
Nrhs is the number of right-hand sides. Nit is, in general,
problem-, solver-, and accuracy-dependent. In state-of-the-art
IE-based iterative solvers [1]–[7] for capacitance extraction,
fast multipole method and hierarchical algorithms [1]–[3], [6],
[7] were developed to perform a dense matrix-vector multi-
plication in O(N) complexity, thereby significantly reducing
the complexity of iterative solvers from O(Nit Nrhs N2) to
O(Nit Nrhs N). However, when Nrhs or Nit is large, iterative
solvers become inefficient.

In [8]–[10], an H2-matrix-based mathematical framework
was introduced to reduce the computational complexity of
direct matrix solutions for the IE-based analysis of large-scale
3-D interconnects. The H2-matrix framework enables a
highly compact representation and efficient computation of
dense matrices [11]–[13]. The linear complexity H2-based
dense matrix inversion was first established in [8] and [9].
In [10], it was also shown that an H2-based LU factorization
can be performed in linear complexity. The resultant O(N)
direct IE solvers have demonstrated a clear advantage over
state-of-the-art iterative solvers in both CPU time and memory
consumption.

The storage complexity of an H2 matrix is k2Csp O(N),
and the time complexity of an H2-based direct inverse is
k3C2

sp O(N) [8], [9], where k denotes the maximum rank
of admissible blocks, and Csp is the maximum number of
blocks that can be formed by a cluster in a block cluster tree,
both of which are constant irrespective of N in a frequency-
independent problem. If the rank of each admissible block
can be minimized and the matrix partition can be optimized
based on a prescribed accuracy, the constant k and Csp in
the complexity bound can be reduced. This will lead to a
further acceleration of existing fast direct IE solvers. The
H2-representation of an IE-based system matrix in [8]–[10] is
generated by an interpolation-based method. The rank of each
admissible block is determined by the number of interpolation
points. Due to the limitation of an interpolation-based method,
the resultant rank of each admissible block is often much
larger than the minimal rank required to satisfy the prescribed
accuracy. Furthermore, an interpolation-based scheme is not
as flexible as a purely algebraic approach, since an efficient
interpolation needs to take both the dimension and the
geometry of a given problem into consideration. In addition,
the matrix partition generated in [8]–[10] is a purely geometry-
based one, which is not optimized based on accuracy.
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The major contribution of this paper is a new H-matrix-
based direct IE solver with the matrix partition optimized
and the rank minimized based on a prescribed accuracy for
the capacitance extraction of large-scale 3-D interconnects in
multiple dielectrics. The H2 matrix is a special class of the
H matrix [14]–[18]. In the proposed solver, by a theoretical
analysis, we show the cost of the H-matrix-based computation
of an IE-based dense system is determined by both matrix
partition and matrix block rank. We then develop a method to
reduce the computational cost of the H-based computation.
This method is composed of three algorithms, each of which is
performed based on a prescribed accuracy. The first algorithm
is to minimize the rank of each admissible block; the
second is to determine the minimal rank of each off-diagonal
inadmissible block; and the third is to optimize the H-partition
to minimize the number of matrix blocks. The proposed
algorithms are purely algebraic and have a linear computa-
tional cost for each matrix block. Based on the proposed cost
reduction method, we develop an efficient LU-factorization
for directly solving the dense system matrix resulting from
an IE-based analysis of large-scale 3-D interconnects, with
the constant kCsp in the computational cost minimized based
on accuracy. Numerical experiments have demonstrated
the superior performance of the proposed direct IE
solver.

II. PRELIMINARIES

The H-matrix-based methods are algebraic methods that
are kernel independent. In the following, we use an integral
equation for capacitance extraction in multiple dielectrics as an
example to introduce the background of the H-matrix-based
methods.

A. Integral Equation for Capacitance Extraction in Multiple
Dielectrics

Consider a multiconductor structure embedded in an inho-
mogeneous material. An IE-based solution for capacitance
extraction results in the following dense system of equations
[3], [8], [9]:

Gq = v (1)

where G =
[

Pcc Pcd

Edc Edd

]
, q = [ qc

qd

]
, and v = [ vc

0

]
, in which

qc and qd are the charge vectors of the conductor panels and
the dielectric–dielectric interface panels, respectively, and vc

is the potential vector associated with the conductor panels.
The entries of P and E are

Pi j = 1

ai

1

a j

∫
Si

∫
S j

g(ri , r j )dri dr j

Ei j = (εa − εb)
∂

∂na

1

ai

1

a j

∫
Si

∫
S j

g(ri , r j )dri dr j (2)

where ai and a j are the areas of panel Si and Sj , g is the
static Green’s function, εa and εb are the permittivity of two
adjacent regions a and b, and na is normal to the dielectric
interface pointing to dielectric a. The diagonal entries of Edd
are ei j = (εa + εb)/(2aiε0).

In a uniform dielectric, (1) is reduced to

Pccqc = vc. (3)

B. H-Matrix-Based Representation

The H (hierarchical) matrix is a general mathematical
framework [14]–[18] which enables a highly compact repre-
sentation and efficient numerical computation of dense matri-
ces. Storage requirements and matrix–vector multiplications
using H-matrices for frequency-independent kernels have been
shown to be of complexity O(N logN), and the matrix–
matrix multiplications and matrix inversions using H-matrices
are of complexity O(N log2 N) [14]. In the H-matrix-based
representation of a dense matrix, an admissibility condition
[14] is used to partition the matrix blocks into admissible
blocks that are low rank and inadmissible blocks that are full
rank. Denoting the whole index set of the basis functions used
for discretizing an IE-based equation by I := {1, 2, …, N},
consider two subsets t and s of I, the admissibility condition
is defined as [14, pp. 32–33]

(t ,s) are admissible
if min{diam(Qt ), diam(Qs)} ≤ η dist(Qt , Qs)

(4)

where η is a positive parameter that can be used to control
the admissibility condition, Qt and Qs are, respectively, the
union of the supports of the basis functions residing in t and
s, diam(·) is the Euclidean diameter of a set, and dist(·) is the
Euclidean distance between two sets. Based on (4), a cluster
tree and a block cluster tree [14] are constructed to efficiently
carry out an H-matrix partition.

Given a matrix G, if all the blocks Gt,s formed by an
admissible (t , s) in G can be represented by a factorized low-
rank form

Gt,s
m,n = Am,kBT

n,k . (5)

G has an H-matrix representation. In (5), k ∈ N is the rank
of Gt,s . For static problems, the rank k required by accuracy
is bounded by a constant irrespective of matrix size. There
are three representative methods for efficiently generating a
rank-k representation of an IE-based dense matrix block: inter-
polation, Taylor expansion, and adaptive cross approximation
(ACA) based scheme [14], [19].

III. PROPOSED METHODS FOR REDUCING THE

COMPUTATIONAL COST OF AN H-MATRIX-BASED

SOLUTION OF IE-BASED DENSE MATRICES

A. Analysis on the Storage Requirement and Operation Counts
of an H-Based Solution of Dense Matrices

In an H matrix, each admissible block Gmi ,ni has a fac-
torized form Ami ×ki B

T
ni ×ki

with rank ki < min(mi , ni ). The
storage of each admissible block is thus reduced from mi ×ni

units to ki (mi + ni ) units. By summing up the storage over
all the admissible matrix blocks, we obtain

storage =
nk∑

i=1

ki (mi + ni ) (6)
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where nk is the total number of admissible blocks. If the
cluster tree used for the H matrix partition is a binary tree,
(6) can be bounded as

storage ≤
P∑

l=0

nkl∑
i=1

kl

(
N

2l
× 2

)

= 2N
P∑

l=0

klnkl

2l
≤ kCspO(N log N) (7)

where l is tree level, P is tree depth, l = 0 represents the
root level, nkl is the number of admissible blocks at level l,
which is partition-dependent, and Csp is the maximum number
of blocks formed by one cluster in a block cluster tree. In
(7), when deriving the first “≤”, we use the fact that the
row/column dimension of a block at level l is N /2l , and
the rank of the admissible blocks in the same tree level l is
bounded by kl , while the rank bound at different tree levels
can be different. In deriving the second “≤” in (7), we utilize
the following facts about kl , nkl , and P . First, for static
problems, a constant rank k is sufficient to achieve the same
order of accuracy irrespective of the size of the admissible
block [14]. Second, nkl is no greater than 2lCsp. Third, the
tree depth P is proportional to log2 N . Since the storage of
the inadmissible blocks is O(N) [14], the storage of an entire
H matrix including both admissible and inadmissible blocks
is still bounded by (7). The matrix–vector multiplication has
the same complexity as storage.

The complexity of an H-based matrix inversion is the
same as that of an H-based matrix–matrix multiplication
[14]–[16]. In an H-based matrix–matrix multiplication, the
cost associated with each matrix block in the matrix product
is Cspk2

i (mi + ni ) [14, pp. 127–130]. By summing up the cost
of all the matrix blocks across all the tree levels, we obtain
the operation counts for a matrix–matrix multiplication as the
following:

operation counts = Csp

P∑
l=0

nk∑
i=1

k2
i (mi + ni ). (8)

Similar to (7), we can obtain an asymptotic bound of (8) as

operation counts ≤ Csp

P∑
l=0

P∑
l=0

nkl∑
i=0

k2
i

(
N

2l
× 2

)

= 2NCsp

P∑
l=0

P∑
l=0

k2
l nkl

2l
≤ k2C2

sp O(N log2 N). (9)

From (7) and (9), it can be clearly seen that, to reduce
the computational cost of an H-based computation, we should
reduce kCsp. In existing H-matrix-based solvers, as shown
in Section II-B, the low-rank representation of each admis-
sible block is generated by interpolation, Taylor expansion,
or ACA-based approaches. The resultant rank is not the
minimal rank required by accuracy. This is because, given
an accuracy requirement, the rank obtained from singular
value decomposition (SVD) is the minimum rank required by
accuracy [20]. On the other hand, the H-partition in existing
H-matrix-based solvers, and hence Csp, is determined by a

geometry-based admissibility condition shown in (4). This
condition is controlled by an empirical parameter η, instead of
a prescribed accuracy. The resultant kCsp is not minimized for
the prescribed accuracy. In [18], the H-based block structure is
improved by a coarsening procedure. However, the procedure
only aims at reducing the storage of an H-based matrix. In
addition, the procedure has a large memory requirement for
storing matrix blocks generated by ACA.

B. Proposed Algorithm for Reducing the Cost of an H-Based
Computation for IE-Based Capacitance Extraction

Based on the analysis above, in this section, from both rank
and matrix partition perspectives, we propose a method to
reduce the computational cost of an Hmatrix-based method
based on a prescribed accuracy for 3-D capacitance extraction
in multiple dielectrics. This method simultaneously minimizes
the number of admissible blocks and the rank of each admis-
sible block. A pseudo-code of this method is shown in (10),
which includes three essential algorithms: (ACA+)&RSVD,
Rk-factor, and merge. The detail of each algorithm is given as
follows:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Cost-Reduction of H-based methods
Procedure Cost_Mini(b, ε) (the input block b is the
entire H-partition, ε denotes a prescribed accuracy)

If b is a non-leaf matrix block
for (i = 0;i <4;i++)

if b(i) is an admissible block
(ACA+)&RSVD (b(i), ε)

if b(i) is an off-diagonal inadmissible block
Rk-Factor(b(i), ε)

if b(i) is a non-leaf block
Cost_Mini(b(i), ε);

if all blocks in b are admissible blocks
Merge(b, ε)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

1) Algorithm 1: Reduced SVD performed on the factorized
low-rank form obtained from ACA+ (ACA+&RSVD).

This algorithm is developed to efficiently minimize the rank
of each admissible block based on a prescribed accuracy. If
we directly apply SVD to the original full matrix to obtain
its low-rank representation, although the resultant rank is
minimal, the computational cost is high. Alternatively, we
can use an interpolation, Taylor expansion, or ACA-based
approach to efficiently convert a full-matrix block to a low-
rank representation. However, the resultant rank is, in general,
not the minimal one required by accuracy. In this paper,
based on [14] and [18], we develop an algorithm to efficiently
determine the minimal rank of each admissible block for a
prescribed accuracy.

First, we use ACA+ to numerically obtain a factorized
low-rank form of an admissible block. The ACA+ involves
less storage and computational cost than ACA. The detailed
procedure of ACA+ is very similar to that of the conventional
ACA. The difference between them is as follows. At the begin-
ning of an ACA+ algorithm, a reference row and a reference
column of the original matrix are chosen to determine where
to start the pivot search. A row and column pivot index is
then determined from the reference ones. In the subsequent
steps, the reference row and column can still be used. But if
they are chosen as a pivot index, a new reference row and
a new reference column must be chosen. This method only
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requires assembling k rows and k columns of an admissible
block, where k is the rank determined by a certain accuracy
requirement. The output of an ACA+ algorithm is Gmn =
Am,kBT

nk where k is, in general, much less than m and n. The
ACA+ algorithm terminates when∥∥∥G − G̃

∥∥∥ =
∥∥∥G − ABT

∥∥∥ ≤ ε ‖G‖ (11)

is satisfied. Therefore, the error of the resultant H-matrix
representation is bounded by ε. After the ACA+ is completed,
we obtain a factorized form Am,kBT

nk. For such a factorized
form, SVD can be efficiently performed by a reduced SVD
[14, pp. 108]. Hence, we apply reduced SVD to the factorized
low-rank form to determine the actual rank that is needed
to satisfy the accuracy requirement. By doing so, we keep
the advantages of both SVD and ACA-based methods. The
resultant rank is minimal, and, meanwhile, it is obtained in
linear complexity for each admissible block.

2) Algorithm 2: Factorizing an off-diagonal inadmissible
block to a low-rank form (Rk-factor).

Rk-factor is performed on an off-diagonal inadmissible
block to minimize its rank for a given accuracy. It is possible
that an off-diagonal block that is inadmissible in the matrix
partition predetermined by (4) becomes admissible when its
matrix information is considered. The function Rk-Factor is
to factorize the full-matrix block to a rank-k matrix based on
SVD and error tolerance ε.

3) Algorithm 3: Merge.
Whether the interaction between two geometrically sep-

arated blocks can be represented by a low-rank matrix or
not is dependent on not only the geometry information, but
also the matrix information. However, the admissibility condi-
tion given in (4) used for a traditional H-partition is solely
based on geometry without taking the matrix information
into consideration. The resultant H-partition is not optimal in
terms of reducing the number of admissible blocks. Hence,
we propose to merge multiple small admissible blocks to
a single one based on a prescribed accuracy. By doing so,
larger admissible blocks are generated at the parent levels of
the small admissible blocks, thus reducing the total number
of admissible blocks. To give an example, four admissible
subblocks can be merged into one admissible block as follows:[

G1 G2
G3 G4

]
=

[
A1BT

1 A2BT
2

A3BT
3 A4BT

4

]

=
[

A1
0

][
B1
0

]T

+
[

A2
0

][
0
B2

]T

+
[

0
A3

][
B3
0

]T

+
[

0
A4

] [
0
B4

]T

= Ã1B̃T
1 + Ã2B̃T

2 + Ã3B̃T
3 + Ã4B̃T

4

= εABT (12)

where the addition in the final step is carried out by the
truncated addition operation in [14, p. 110], with the new
rank k determined based on the accuracy ε. To determine
whether to perform the merge operation shown in (12) or
not, we compare the operation counts of the original children
blocks with those of the new merged block. If the former is
larger than the latter, we perform merging; otherwise, we do
not perform merging, instead we keep the original children

admissible blocks. To be more specific, we check whether
k2(m + n) ≤ ∑4

i=1 k2
i (mi + ni ) is satisfied or not, where k is

the rank of the big block resulting from the merging operation,
m(n) is the row (column) dimension of the block, and ki is
the rank of each children admissible block. If the condition is
satisfied, we merge blocks based on the prescribed accuracy;
if not, we keep the original blocks. Therefore, by merging,
the number of matrix blocks is reduced, as can be seen from
(12). In addition, each merge operation is done to reduce
k2

i (mi + ni ), and hence the computational cost, as can be
seen from (8). When preformed level by level, the entire
computational cost of an H-based direct solution is reduced,
and thereby the kCsp is reduced.

In (10), the (ACA+)&RSVD and Rk-factor minimize the
rank ki of each matrix block, and the merge operation
minimizes the number of matrix blocks, with a prescribed
accuracy satisfied. Each of the three algorithms reduces the
H-based storage and operations associated with one matrix
block. Therefore, by traversing the entire matrix partition level
by level, the entire storage and computational cost an H-
based solution is reduced. The proposed algorithms are purely
algebraic, and hence are applicable to various formulations.
In addition, the algebraic procedure has a linear-time cost for
each block, and hence the computational overhead is small.
A detailed cost analysis will be given in Section V.

It is worth mentioning that the ACA+ involved in the
algorithm shown in (10) can be simply replaced by other
rank-k generation methods, for example, the interpolation
method. Such a method combined with reduced SVD can also
efficiently reduce the rank of an admissible block.

IV. PROPOSED FAST IMPLEMENTATION OF

LU FACTORIZATION

In this section, we show how to perform a fast LU fac-
torization using the H-matrix-based representation of G and
G’s LU factors. The H-based LU factorization has been
discussed in [14, p. 119]. However, no detailed implemen-
tation is given. In the following, we give a number of
pseudocodes to show a fast implementation of H-based LU
factorization. The fast H-based LU factorization proposed in
this paper has a factorization cost of k2C2

sp O(N log2 N), a
solution cost of kCsp O(N logN), and memory consumption
of kCspO(N logN), with constant kCsp minimized for a pre-
scribed accuracy by the method described in the section above.

A. LU Factorization Basics

Given an IE-based system matrix G, we cast it into a form

G =
[

G11 G12
G21 G22

]
. (13)

The LU decomposition can be recursively computed by the
equation

G =
[

G11 G12
G21 G22

]
=

[
L11 0
L21 L22

]
·
[

U11 0
U21 U22

]

= LU. (14)
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B. Proposed Fast Implementation of the LU Factorization

We develop a pseudocode shown in (15) to recursively
perform LU factorization⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

LU-Decomposition G = LU
Procedure H-LU(G)
(G is the input matrix overwritten by L and U)

If G is a non-leaf block
H-LU(G11) → L11,U11,
Solve-LX(L11,G12) → U12,
Solve-XU(G21,U11) → L21,
−L21× U12 + G22 → G22,
H-LU(G22) → L22,U22,

else
Full-LU(G)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

The underlying algorithm is as follows. When G is a non-leaf
matrix block, we recursively call (15) until G11 is a full matrix
block. We then directly compute the LU factors of the G11
using a full-matrix-based LU factorization, which generates
L11 and U11. Next, we call function Solve-LX shown in (16)
and Solve-XU to compute U12, and L21 respectively⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Algorithm for Solving a Lower Triangular System
LX = G, with G being an H matrix
Procedure Solve-LX(L,G)
(L and G are input matrices, G is overwritten by X)

If L is a non-leaf block
If G is a non-leaf block

Solve-LX(L11 ,G11), Solve-LX(L11 ,G12)
−L21× G11 + G21 → G21, Solve LX(L22,G21)
−L21× G12 + G22 → G22, Solve LX(L22,G22)

else if G is an admissible block
Solve-LF(L,A)

else
Solve-LF(L,G)

else
if G is an admissible block

Solve-LF(L,A)
else

Full-LX(L,G) (Solve a full-matrix
triangular system)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

The Solve-LX(L, G) is to solve a lower triangular system
LX = G, where L and G are input matrices having H-
representations, and X is the solution. The Solve-XU(G, U)
is to solve an upper triangular system, which can be derived
in a similar fashion as (16). In (16), a function Solve-LF is
called. Similar to Solve-LX, Solve-LF also solves a triangular
system. The difference is that the right-hand side matrix for
Solve-LX is an H matrix, whereas that for Solve-LF is a full
matrix. The pseudocode of Solve-LF is given in (17)⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Algorithm for Solving a Lower Triangular System
LX = F, with F being a Full Matrix
Procedure Solve-LF(L,F)
(L and F are input matrices, F is overwritten by X)

If L is a non-leaf block
Solve-LF(L11 , F1)
−L21× F1 + F2 → F2
Solve-LF(L22 , F2)

else
Full-LX(L, F)
(Solve a full-matrix triangular system)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

In the final step of (15), we use U12 and L21 to update G22,
and then call (15) recursively until L22 and U22 are computed.
As can be seen from (13)–(17), efficient LU factorization relies
on efficient block multiplications and block additions. In next
subsections, we show how to efficiently perform these two
operations for a prescribed accuracy.

C. Fast Implementation of the Block Multiplication
Gb = Gb1 × Gb2

We give a pseudocode of computing Gb =Gb1 ×Gb2 in (18)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Recursive Multiplication Algorithm
Procedure H-mult(Gb1,Gb2,Gb,εLU )
If Gb1,Gb2,Gb are all non-leaf blocks

for (i = 0; i < 2; i ++)
for ( j = 0; j < 2; j ++)
for (k = 0; k < 2; k ++)

H-mult(Gb1(i , k), Gb2(k, j), Gb(i, j), εLU )
else if Gb is a non-leaf block, Gb1 or Gb2 is a
leaf block

Multiply-RK(Gb1,Gb2, G̃b , εLU )
Gb = G̃b+Gb (based on εLU )

else if Gb is an admissible block
Multiply-RK(Gb1,Gb2,Gb, εLU )

else if Gb is an inadmissible block
Multiply-Full(Gb1 ,Gb2,Gb)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

where b, b1, and b2 represent three blocks in the same level
of an H-partition, and εLU represents a prescribed accuracy.
If Gb, Gb1, and Gb2 are all non-leaf blocks, we recursively
call (18). If one of Gb1 and Gb2 is a leaf block, or Gb is
an admissible block, we call function Multiply-Rk shown in
(19) to compute an admissible product. In (18), the addition is
performed based on the prescribed accuracy εLU. The detailed
procedure of the addition is given in the following subsection:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Procedure Multiply-RK(Gb1 ,Gb2,Gb , εLU )
if Gb1 and Gb2 are both non-leaf blocks

for ( i = 0; i < 2; i ++)
for ( j = 0; j < 2; j ++)

for ( k = 0; k < 2; k ++)
Multiply RK(Gb1(i , k),Gb2(k, j),
G̃b(i , j), εLU )

Gb = G̃b+Gb (based on εLU )

(G̃b is a non-leaf block)
else if Gb1 or Gb2 is an admissible block

Gb1ABT → (Gb1A)BT = ÃbBT = G̃b
( G̃b is an admissible block)
Gb = G̃b+Gb (based on εLU )

else if Gb1 or Gb2 is an inadmissible block
Gb1Gb2 = Gb1F → (Gb1A)BT = ÃbBT = G̃b
(based on εLU )

Gb = G̃b+Gb(based on εLU )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

In (20), there are two multiplication cases. One is to multiply
an admissible block Gb1 by an admissible block of an ABT

form, for which we can compute Gb1A as a new A. The other
multiplication case is to multiply Gb1 by a full matrix block
F, for which we can first apply SVD to F to generate a form
ABT based on the prescribed accuracy εLU. If Gb is a full
matrix block, a normal full matrix multiplication is computed.
The additions in (19) again are performed based on εLU.

D. Fast Implementation of the Block Addition Gb = Gb1+ Gb2

Two cases are involved in the addition operations.
Case 1: If Gb, Gb1, and Gb2 have the same H-partition,

the addition can be done using the following procedure.

1) If three blocks are all full matrices, we simply add two
full matrices up.

2) If three blocks are all admissible matrices, for example,
Gb1 = Ab1BT

b1 with rank k1, Gb2 = Ab2BT
b2 with rank

k2, and Gb = AbBT
b , the Gb = Gb1 + Gb2 can be

realized by a truncated addition operation using the
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approach shown in [14, p. 110]. The rank k of the
resultant Gb is adaptively determined by the prescribed
accuracy εLU.

3) If three blocks are all non-leaf blocks, the addition can
be carried out by summing over all the inadmissible
blocks using 1), and all the admissible ones using 2).

Case 2: If the three blocks do not share the same partition,
we convert the H-matrix partitions of Gb1 and Gb2 both into
the partition of Gb. Take the block Gb1 as an example. If Gb1
is an admissible block but Gb is a non-leaf block that has four
admissible subblocks, we convert Gb1 by the formula

Gb1 = Ab1BT
b1 =

[
Ã1

Ã2

] [
B̃1

B̃2

]T

(20)

=
[

Ã1B̃T
1 Ã1B̃T

2
Ã2B̃T

1 Ã2B̃T
2

]
= G̃b1 (21)

where G̃b1 contains four admissible subblocks, which is
exactly equal to Gb1. The opposite procedure, where Gb

is an admissible block while Gb1 contains four admissible
subblocks, can be performed by the scheme shown in (11).

V. TOTAL COMPUTATIONAL COST ANALYSIS

Two numerical procedures are involved in the proposed
direct IE solver: reduction of the computational cost by simul-
taneously optimizing the matrix partition, and minimizing the
rank and LU-based direct matrix solution. In the proposed cost
reduction method, as described in Section III-B, there are three
algorithms. The first algorithm (ACA+ and reduced SVD) has
a linear cost for each admissible block [14], [19]; the second
algorithm has a constant cost for each block since SVD is used
to do the factorization of off-diagonal inadmissible blocks,
which have a constant size (leafsize). In the third algorithm, the
conversion of non-leaf blocks to an admissible block shown
in (11) is carried out by the function Merge using a reduced-
SVD-based truncated addition, which has a linear cost for each
matrix block. As a result, the total cost of the proposed cost
reduction method is O(N logN), which is negligible compared
to matrix factorization. For the LU-based direct solution, as
can be seen from (15), at the leaf level, the computation of
the recursive LU factorization essentially includes a full-matrix
LU factorization, a full-matrix solution of a lower triangular
system, and a full-matrix solution of an upper triangular
system, all of which have the same computational cost as
a full-matrix block multiplication. At all the other levels, a
number of block–block multiplications are computed, which
have the same recursive pattern as that in an H-based matrix-
matrix multiplication. Therefore, the H-based LU factorization
has the same cost as an H-based multiplication, which is
bounded by k2C2

spO(N log2 N), where constant kCsp is reduced
in this paper based on a prescribed accuracy. The H-based LU
solution has the same complexity as an H-based matrix-vector
multiplication, which is kCsp O(N logN).

The storage and time complexity of an H2-based direct
solver in [8] and [9] are k2CspO(N) and k3C2

sp O(N), respec-
tively. Although the complexity is linear, the constant k and
Csp are not minimized based on accuracy. Therefore, for a
given accuracy, the cost of an H2-based direct solver with

Fig. 1. Illustration of a four-layer 3-D bus structure.

large k and Csp can be larger than the cost of the proposed
direct solver with k and Csp minimized based on accuracy.

VI. NUMERICAL RESULTS

A number of cases were simulated to validate the perfor-
mance of the proposed cost reduction method and the resultant
H-based fast direct IE solver for large-scale interconnect
extraction. For all these simulations, η = 2 and leafsize = 20
were used. The error tolerance ε used in (10) for optimizing
the partition and minimizing the rank was set as 10−3. The
error tolerance εLU used in the LU factorization was 10−2.
The computer used was a Dell PowerEdge 6950s server with
an 8222SE AMD Opteron processor running at 3 GHz.

A. Four-Layer 3-D Bus Structure in a Uniform Dielectric

Fig. 1 shows a four-layer 3-D bus structure. At each layer,
there are p conductors, and each conductor has a dimension
of 1 × 1× (2 p+ 1) m3, where p is chosen from 5, 10, 20
to 40. The resultant number of unknowns is from 3680 to
208 640. In Fig. 2(a), for the case of p = 40, we plot the
maximal rank k among all admissible blocks at the lowest
tree level where the admissible block size is the largest.
Two methods are used to obtain the maximal rank k: the
proposed scheme (ACA+ and SVD) and ACA+ only. An
obvious rank reduction by using the proposed method can
be seen from Fig. 2(a). The matrix accuracy is 7.57 × 10−4

without the proposed rank minimization, and 7.81 × 10−4

with the proposed minimization. The accuracy is measured by
||G-G̃||F /||G||F , where G is the original matrix, G̃ is an H-
based representation, and the subscript F denotes a Frobenius
norm. It is clear that the rank is reduced by the proposed
method without sacrificing accuracy. We have also used the
interpolation based scheme employed in [8]–[10] to obtain the
rank of each admissible block. The resultant rank is higher
than that generated by ACA+ for the same accuracy, and
hence higher than the proposed method. In Fig. 2(b), we
plot the maximum number of admissible blocks that can be
formed by one cluster in a block cluster tree (Cad) produced
by the conventional H partition constructed based on (4),
which is also the partition scheme used in [8]–[10], and the
Cad generated by the proposed optimized Hmatrix partition.
Clearly, the Cad is reduced significantly. Since the proposed
H-partition optimization does not increase the number of
inadmissible blocks, the Csp which is the sum of Cad and the
number of inadmissible blocks, is also reduced significantly.
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Fig. 2. Performance of the proposed method for partition optimization
and rank minimization in analyzing a four-layer bus structure in a uniform
material. (a) Maximal rank versus N . (b) Cad versus N .

From Fig. 2, it is evident that both k and Csp are minimized
to be a small number based on the prescribed accuracy. As a
result, the cost of the H-based computation is reduced in both
storage and CPU time as can be seen from (7) and (9).

Next, we test the effectiveness of the proposed LU-based
direct solver for simulating the m × m × m × m bus structure
shown in Fig. 1. In Fig. 3(a), we plot the total solution
time of the proposed LU-based direct solver, including the
construction time of the proposed H-matrix representation
that has an optimized partition and minimized rank, LU
decomposition time, and LU solution time. For comparison,
we also plot the total solution time using FastCap2.0, which
is available in the public domain. When using FastCap2.0, the
expansion order is chosen as 2, the convergence tolerance is set
to be 0.1%, and a similar number of unknowns are generated.
As can be seen from Fig. 3(a), the proposed direct solver
is faster than FastCap2.0. In addition, FastCap2.0 does not
exhibit a linear scaling although it performs a dense matrix–
vector multiplication in linear complexity. This is attributed
to the increased number of iterations and increased number
of right-hand sides when the number of unknowns increases.
In Fig. 3(b), we plot the accuracy of the extracted capaci-
tance matrix with respect to the number of unknowns. The
capacitance accuracy is measured by ||C-C’||F /||C||F , where
C is the capacitance matrix obtained from FastCap2.0 with
a higher expansion order 3, and C’ is that generated by the
proposed solver or by FastCap2.0 with expansion order 2. As
can be seen, the proposed solver reduces the total solution
time without compromising in accuracy.
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Fig. 3. Performance of the proposed LU-based direct IE solver for simulating
a four-layer bus structure in a uniform material. (a) Total solution time.
(b) Capacitance error.

0 0.5 1 1.5 2 2.5
x 105

10-3

10-2

Total number of unknowns

||L
U
·X
-B
|| F
/||
B|
| F

Fig. 4. LU solution accuracy for simulating a four-layer bus structure in a
uniform material.

In Fig. 4, we plot the LU solution accuracy measured by
||LU·X-B||F /||B||F , where each column bi of B represents
one right-hand side, and each column xi of X is the solution
of (1) corresponding to bi with i = 1, 2, . . ., Ncon, where Ncon
is the total number of conductors. Excellent accuracy can be
observed. In addition, the accuracy is kept to be almost a
constant in the entire unknown range. Fig. 5 shows the memory
of the proposed direct solver. An almost linear complexity can
be observed.

B. Four-Layer 3-D Bus Structure in Multiple Dielectrics

The second example is a four-layer 3-D bus structure,
similar to that shown in Fig. 1, but embedded in multiple
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Fig. 5. Memory consumption for simulating a four-layer bus structure in a
uniform material.
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Fig. 6. Performance of the proposed LU-based direct solver for simulating
a four-layer bus structure in multiple dielectrics. (a) Total solution time.
(b) Capacitance error.

dielectrics. The relative permittivity of each layer from bottom
to top is 3.9, 2.5, 7.0, and 1.0, respectively. The conductor
number in each layer, p, is chosen from 5, 10, 20 to 40. The
resultant number of unknowns ranges from 4472 to 248 492.
In Fig. 6(a), we plot the total solution time of the proposed
direct solver. An almost linear complexity can be observed.
For comparison, the total solution time of FastCap2.0 is
also plotted. The advantage of the proposed solver can be
clearly seen. The accuracy of the capacitance matrix extracted
by both solvers is shown in Fig. 6(b). It is clear that the
proposed method reduces the CPU time without sacrificing
accuracy.
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Fig. 7. LU solution accuracy for simulating a four-layer bus structure in
multiple dielectrics.
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Fig. 8. Memory consumption for simulating a four-layer bus structure in
multiple dielectrics.

Fig. 9. 3-D large-scale M1–M8 on-chip interconnect.

The accuracy of the proposed LU solution is shown in
Fig. 7, from which an excellent accuracy can be seen. In
Fig. 8, we plot the memory consumption of the proposed
direct IE solver. Again, an almost linear complexity can be
observed.

C. Large-Scale 3-D M1–M8 On-Chip Interconnects

To test the performance of the proposed direct solver in
simulating very large cases, we simulate a multilayer 3-D on-
chip interconnect structure [3] shown in Fig. 9. The relative
permittivity is 3.9 in M1, 2.5 from M2 to M6, and 7.0 from
M7 to M8. We simulate a suite of such structures, in which
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Fig. 10. Performance of the proposed method for partition optimization and
rank minimization on a 3-D large-scale M1–M8 interconnect embedded in
multiple dielectrics. (a) Maximal rank versus N . (b) Cad versus N .

the number of wires is increased from 48, 96, 192, to 384
conductors. The largest structure has over 1 million unknowns.

In Fig. 10(a), we plot the maximal rank among all admis-
sible blocks that are located at the lowest level with the
proposed scheme (ACA+ and SVD) and with ACA+. The
rank is greatly reduced by the proposed method. In Fig. 10(b),
we plot Cad in the original H partition and that in the
proposed optimized H-partition. Clearly, the Cad is reduced
significantly.

In Fig. 11(a) and (b), we plot the memory and the total
solution time of the proposed direct solver. As can be seen,
an almost linear scaling can be observed for both memory
and CPU time of the proposed direct solver. The capacitance
error shown in Fig. 11(c) is measured by ||C–C’||F /||C||F ,
where C’ is obtained by the proposed solver with ε = 10−3

and εLU = 10−2, and reference C is obtained with a higher
order accuracy setting of ε = 10−4 and εLU = 10−3 from the
proposed solver. We were not able to use other capacitance
solvers to generate reference C for such a large example. As
can be seen from Fig. 11(c), excellent accuracy in capacitance
is observed across the entire unknown range.

In Fig. 11, we also compare the performance of the H2-
based direct solver in [8] and [9] with that of the proposed
direct solver in memory, total solution time, and capacitance
error. The H2-rerpesentation in [8] and [9] is generated by an
interpolation-based method. Since the number of interpolation
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Fig. 11. Performance of the proposed LU-based direct IE solver for
simulating a 3-D large-scale M1–M8 on-chip interconnect embedded in
multiple dielectrics. (a) Memory. (b) Total solution time. (c) Capacitance error.

points used in [8] and [9] for this example, and thereby the
rank of the H2-rerpesentation, is 1, the resulting accuracy is
not as good as that of the proposed solver. From Fig. 11,
it is clear that to achieve the same level of accuracy as the
proposed solver, the H2-based direct solver in [8] and [9]
would cost more in CPU time and memory since the number
of interpolation points will have to be increased from 1 to at
least 2. Therefore, the rank will become 4 times larger.

VII. CONCLUSION

This paper presented a fast H-matrix-based direct solution
of kCsp O(N logN) complexity in storage, k2C2

sp O(N log2 N)
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complexity in LU factorization, and kCspO(N logN) complex-
ity in LU solution, with constant kCsp minimized based on
accuracy by developing an algorithm that simultaneously opti-
mizes the H-matrix partition and minimizes the rank of each
matrix block. Applications to large-scale capacitance extrac-
tion in multiple dielectrics have demonstrated the effectiveness
of the proposed algorithm in minimizing the number of matrix
blocks and the rank of each matrix block. The proposed direct
solver has also shown a clear advantage in computational
efficiency over a state-of-the-art iterative solver that performs
a dense matrix-vector multiplication in O(N) complexity. It
also outperforms a linear-complexity H2-based direct IE solver
that does not minimize the rank and optimize the H2-matrix
partition based on accuracy. In addition, the proposed method
can be applied in an H2-matrix-based framework to further
reduce the computational cost of a direct IE-based solution.
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