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Abstract—This letter presents a linear-complexity finite-ele-
ment-based eigenvalue solver for efficient analysis of 3-D on-chip
integrated circuits. In this solver, from the original 3-D quadratic
eigenvalue problem governing the on-chip circuits, we formulate
a new generalized eigenvalue problem to efficiently compute the
eigenvalues and eigenvectors of physical interest. We also develop
an efficient linear-complexity solution for the matrix equation
involved in the solution of the generalized eigenvalue problem.
Numerical results demonstrate the accuracy and efficiency of the
proposed eigenvalue solver.

Index Terms—Eigenvalue solver, finite element method, general-
ized eigenvalue problem, quadratic eigenvalue problem.

I. INTRODUCTION

M ANYproblems arising from the electromagnetics-based
analysis of integrated circuits can be formulated as a

complex-valued generalized eigenvalue problem
[1]–[3]. The computational complexity of a traditionalQR-based
eigenvalue solver is [4], with being the size of
or . This complexity can be reduced to by using
Arnoldi-based algorithms [2], [4]. In [1], the computational
bottleneck in an Arnoldi-based 3-D generalized eigenvalue
solution is overcome by a linear-complexity direct solution
via the orthogonal prism vector basis functions. Without sacri-
ficing accuracy, the eigenvalue solver in [1] has shown a clear
advantage over state-of-the-art eigenvalue solvers in fast CPU
time. The solver is efficient for finding largest eigenvalues of
interest. However, to find other arbitrary eigenvalues of in-
terest, the method in [1] may take manymore than Arnoldi
iteration steps, which becomes inefficient. In practice, the largest
eigenvalues may not be the eigenvalues of physical interest. For
example, in on-chip circuits, due to its working frequency band,
the physically important eigenvalues are, in fact, the eigenvalues
having the smallest modulus. One can use the shift-inverting
technique like that in [2] to shift the eigenvalue spectrum. How-
ever, the resultant system matrix equation does not permit a
linear-complexity solution described in [1] since the matrix be-
comes indefinite instead of being positive-definite. To overcome
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the aforementioned problem of [1], in this letter, we develop a
new eigenvalue solver to find the eigenvalues and eigenvectors
of physical interest in a much reduced number of Arnoldi steps,
while preserving the linear complexity of the eigenvalue solu-
tion. In this solver, we formulate a new generalized eigenvalue
problem for analyzing 3-D on-chip integrated circuits. We then
develop an efficient preconditioned iterative solution to solve
the resultant indefinite systemmatrix involved in the generalized
eigenvalue solution. This efficient solution is enabled by a new
preconditioner that renders the spectral radius of the precondi-
tioned matrix small, and also bounded by a constant irrespective
of the problem size. As a result, the number of iterations required
in the Generalized Minimal Residual (GMRES)-based iterative
solution [4] is shown to be a constant, holding the complexity
of the entire eigenvalue solution linear.

II. FORMULATION
A. Formulation of a New Generalized Eigenvalue Problem

The quadratic eigenvalue problem governing an arbitrary
on-chip integrated circuit containing lossy conductors and
inhomogeneous dielectrics can be converted to the following
generalized eigenvalue problem [1]:

(1)

where , and are, respectively, the stiffness matrix, the
mass matrix, and the conductivity-related matrix formulated
from a finite-element based method. The represents the
eigenvalue, and the denotes the eigenvector of (1).
To expedite the Arnoldi process for finding the eigenvalue

solutions of physical interest from (1), we propose to use the
conformal mapping technique to cluster the eigenvalues into
a unit circle and apply the shift-inverting technique to shift the
eigenvalue spectrum. We hence transform (1) to

which can be rewritten as

(2)

in which and is the initial guess
of . In an Arnoldi-based eigenvalue solution [4],
The essential computation of (2) is the matrix-vector multipli-
cation , where is a vector that is initialized to be an
arbitrary nonzero vector, and then updated to another vector at
every Arnoldi step. Denote by , which can be obtained
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in linear complexity since is sparse. Let be , the
can then be computed with the inversion lemma [5] as

(3)

where

(4)

It is evident that the efficient computation of (3) relies on the
efficient solution of and . The is a mass matrix, which is
related to the inner product of vector bases. It can be solved in
linear time with the same orthogonal finite-element reduction-
recovery (OrFE-RR) described in [1]. The same is true for the
weighted sum of and since has the same structure as .
However, the is a weighted sum of , and . Since is
formed by the curl of the vector bases, the resultant cannot
be solved in linear time by the same method in [1]. Next, we
show how to solve in linear complexity.

B. Efficient Iterative Solution of
is, in general, not positive definite. Thus, the GMRES

is the iterative method for choice. The iteration number of a
GMRES solver typical grows with matrix size. Here, we de-
velop an effective and efficient preconditioner as follows:

(5)

where is the component of that has the same structure as
and . This structure is nothing but the matrix formed by the

inner product of vector bases. Thus, we can directly apply the
OrFE-RRmethod in [1] to solve in linear complexity. On the
other hand, through the appropriate choice of , we can make
an effective preconditioner as follows.
Since the preconditioningmatrix consists of the same term

2, term 3, and one component of term 1 in (4), would domi-
nate if the norm of term 1 is smaller than that of the combined
term 2 and term 3. Here, ,
where is the initial guess of the resonant frequency, which
is the eigenvalue of (1) divided by . Since is inside a unit
circle regardless of , we have a wide range to choose to
facilitate an efficient solution of without degrading the effi-
ciency of finding eigenvalues of physical interest. Since

and , ifwe in-
crease the initial guess of , themagnitude of would be-
comesmaller and that of would remain the same.As a result,
term 1 will become smaller, and the combined term 2 and term 3
will become larger. And hence, by choosing a larger initial guess
of can be made dominate in the matrix, and thereby
reducing the number of iterations required for the convergence
of GMRES. How large should be can be quantitatively ana-
lyzedbased on thematrix normsof the three terms in (4), and then
determined such that is dominated by terms 2 and 3. Based on
the physical dimension of on-chip structures,we found thatwhen

is chosen higher than 10GHz,we can achieve the same con-
vergence performance in theGMRES-based iteration solution of
regardless of the problem size of the on-chip structures. Theo-

retically speaking, this is because has a bounded spec-
tral radius irrespective of problem size. To see this point more
clearly, let be the eigenvector of , and be eigenvalues.
We have ,where
is the difference between and . Since is only related to

Fig. 1. On-chip stripline structure.

TABLE I
THE LOWEST RESONANT FREQUENCY SIMULATED WITH A DIFFERENT

NUMBER OF ARNOLDI STEPS (UNIT: GHZ)

the stiffnessmatrix, and the stiffnessmatrix is only related to per-
meability, the norm of does not changewith problem size. On
the other hand, the normof is dominated by that of the conduc-
tivity-related , which has little dependence on the problem size
either. ’s norm over ’s norm is proportional to ,
where is the corresponding wavenumber, is
the average edge length, is metal conductivity, and is per-
mittivity. Hence, the maximum modulus of , thereby the spec-
tral radius of , has little dependence on the problem size.
More important, with a choice of high , the norm of over
that of is small, and hence the eigenvalues of are
very close to 1, thus making the iteration number small.

C. Performance Analysis

In the proposed eigenvalue solver, we transform the original
eigenvalue problem (1) to (2), and alsowe shift the largest eigen-
values of (2) to be close to the eigenvalues of interest. As a result,
we only need to perform steps to find eigenvalues of in-
terest instead of using many Arnoldi steps. In each Arnoldi step,
thecomputationof multipliedbyavector isperformed in
linear complexity as shown in (3) with the efficient solution of
and . As a result, the total complexity of the proposed eigen-
value solver is linear for finding eigenvalues of interest.

III. NUMERICAL RESULTS

A. On-Chip Stripline

The single stripline structure, illustrated in Fig. 1, is simu-
lated to examine the number of Arnoldi steps required to find
the lowest complex resonant frequency. The dimension of the
system matrix is 1 536, the conductivity is , and the ini-
tial guess is 100 GHz. Table I lists the computed lowest
resonant frequency for different number of Arnoldi steps. The
reference value is obtained from the solver in [1] with the same
system matrices. The effectiveness of the proposed eigenvalue
solver can be clearly seen from Table I. Even with 20 Arnoldi
steps, we can obtain the desired eigenvalue, in contrast to the
300 used by the method in [1].

B. On-Chip Bus Structures

Next, we examine the number of GMRES iterations required
in the proposed eigenvalue solver as the structure size increases.
The previous single stripline structure is extended horizontally
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Fig. 2. Illustration of on-chip bus structures. (unit: m).

TABLE II
GMRES ITERATIONS FOR THE BUS STRUCTURES

Fig. 3. On-chip power grid structure. (unit: m).

to a multi-line bus structure as shown in Fig. 2. It can be seen
fromTable II that, with the proposed preconditioner, the required
number of iterations is kept to be a constant in the entire range of
problem sizes. Here, the is chosen as Hz, the number
ofArnoldi iterations is 200, and the tolerance inGMRES conver-
gence is set as . The iteration number shown in Table II is
the average iteration number of the GMRES solution in the 200
Arnoldi steps of the eigenvalue solution. Table II also shows that
thespectral radiusof , forall cases is a
bounded constant, and the eigenvalues of are distributed
in a circle of radius 1.553 centered around one. In addition, the
conditionnumberof and thatof thepreconditioningmatrix ,
denoted by , and respectively, are shown tobe con-
stant although the structure is enlarged. As a result, the iteration
number required for GMRES convergence is shown to be con-
stant regardless of the number of buses included in this example.

C. On-Chip Power Grid Structures

We also examine the performance of the proposed iterative
solution of with multiple power grid structures shown in
Fig. 3. The relative permittivity for each layer is 3, 4, 3, 4, and
3.5 from bottom to top. The initial guess is Hz.
The number of Arnoldi iterations is 200 in contrast to 1000 used
in [1], and the tolerance in GMRES is set as . In Table III,
the GMRES iteration numbers are listed with respect to the size
of the power grid structure. The , and the spectral
radius are also shown to be constant regardless of the structure
size. To demonstrate that the effectiveness of the proposed pre-
conditioner is not due to the periodicity of the structure, we also
simulate an irregular power grid as shown in Fig. 4. The result
is shown in the last column of Table III. Despite the difference
in layout and its non-periodicity, we observe similar values in
the matrix condition number, the spectral radius of , and
the GMRES iteration number.

D. Performance Comparison

We compare the CPU time of the proposed eigenvalue solver
with Matlab. In Fig. 5, the CPU time is plotted for the power

Fig. 4. Irregular power grid structure. (unit: m).

Fig. 5. CPU time comparison for the power grid structures.

TABLE III
GMRES ITERATIONS FOR POWER GRID SIMULATION

grid example as the dimension of the system matrix increases.
The three lines in Fig. 5 represent the time cost by the Matlab’s
eigenvalue solver that employs a direct sparse solver for com-
puting , the Matlab’s eigenvalue solver that employs
a GMRES-based iterative solution of with the pro-
posed preconditioner, and the proposed eigenvalue solution
with a linear-complexity solution of , respectively.
The proposed solution is shown to outperform the other two
solutions. In addition, a clear linear scaling is observed.

IV. CONCLUSION

This letter presents a finite-element-based eigenvalue solver
of linear complexity for analyzing 3-D on-chip integrated
circuits consisting of lossy conductors and inhomogeneous
dielectrics. Numerical results have demonstrated the accuracy
and efficiency of the proposed solver.
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