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Abstract—Existing methods for solving the low-frequency
breakdown problem associated with full-wave solvers rely on
low-frequency approximations, which has left a number of
research questions to be answered. The conductors are also gen-
erally treated as perfect conductors and the dielectric loss is not
considered. In this work, a rigorous method that does not utilize
low-frequency approximations is developed to eliminate the low
frequency breakdown problem for the full-wave finite-element
based analysis of general 3-D problems involving inhomogeneous
lossless and/or lossy dielectrics and nonideal conductors. This
method has been validated by the analysis of realistic on-chip
circuits at frequencies as low as dc. Furthermore, it is applicable
to both low and high frequencies. In this method, the frequency
dependence of the solution to Maxwell’s equations is explicitly
and rigorously derived from dc to high frequencies. In addition
to eliminating the low-frequency breakdown, such a theoretical
model of the frequency dependence can be used to understand
how the field solution, in a complicated 3-D problem with both
lossless/lossy inhomogeneous dielectrics and nonideal conductors,
should scale with frequency and at which frequency full-wave
effects become important.

Index Terms—Broadband frequency response, electromagnetic
analysis, finite-element methods, full-wave analysis, low-frequency
breakdown.

I. INTRODUCTION

I T HAS BEEN observed that a full-wave-based solution
of Maxwell’s equations breaks down at low frequencies

[1]–[8]. Such a problem is especially severe in digital and
mixed-signal integrated circuit applications in which signals
have a wide bandwidth from dc to about the third-harmonic
frequency. In these applications, full-wave solvers typically
break down at and below tens of megahertz [7], [8], which
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are right in the range of circuit operating frequencies. More-
over, the low-frequency breakdown problem is also the major
contributor to the passivity, stability, and causality issues in fre-
quency-domain models. Therefore, it is of critical importance
to solve the low-frequency breakdown problem.

State-of-the-art methods for overcoming the low-frequency
breakdown problem can be categorized into two classes. One
class of methods is to stitch a static- or quasi-static-based
electromagnetic solver with a full-wave-based electromagnetic
solver. This approach is inaccurate because static/quasi-static
solvers involve fundamental approximations such as decou-
pled and , which is only true at dc. Moreover, at which
frequency to switch between different solvers is an issue. As
often seen in practice, the stitched solvers may not reach a
consensus at their interfaces. Engineers usually have to employ
an approximation-based model to achieve a smooth transition
between the static, quasi-static, and full-wave solvers, which
artificially introduces another level of inaccuracy. The other
class of methods for solving the low-frequency breakdown
problem is to extend the validity of full-wave solvers to low
frequencies [1]–[8]. These methods have successfully made
full-wave solvers capable of handling much lower frequencies.
Existing approaches in this category more or less rely on the-
oretical approximations, at low frequencies. For example, the
loop-tree and loop-star basis functions were used to achieve a
natural Helmholtz decomposition of the current to overcome the
low-frequency breakdown problem in integral-equation-based
methods [1]. As another example, the tree-cotree splitting [2]
was used to provide an approximate Helmholtz decomposition
for edge elements in finite-element-based methods (FEMs). The
current-charge integral equations and the augmented electric
field integral equation [3], [4] also utilize certain low-frequency
approximations that are typically invalid at high frequencies.
Calderon preconditioner [5] has been leveraged to stabilize the
system of integral equations. However, it has numerical errors
at low frequencies [6]. Other methods are inherently built upon
low-frequency approximations. These include the methods we
developed in [7] and [8].

It is true that, when low-frequency approximations are valid,
they can produce accurate results. The question is: given an ar-
bitrary problem, at which frequency are these approximations
valid, and to which level of accuracy? In reality, the solution
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to Maxwell’s equations is a continuous function of frequency.
Theoretically, there does not exist a discontinuity in the electro-
magnetic spectrum, beyond which full-wave analysis is required
and below which quasi-static or static assumptions immediately
become valid. As a result, it becomes necessary to find the true
solution of Maxwell’s equations at low frequencies. Only when
the true solution of Maxwell’s equations is known at low fre-
quencies can one quantitatively assess the accuracy of various
approximations used in existing methods for solving low-fre-
quency problems including static and quasi-static solvers. Such
a rigorous solution will also provide answers to critical design
questions such as at which frequency full-wave effects become
important. Along this line of thought, in [9] and [10], we devel-
oped a theoretically rigorous method to eliminate the low-fre-
quency breakdown problem. We showed that the root cause of
low-frequency breakdown problem is finite machine precision.
To solve the low-frequency breakdown problem, we came up
with the idea of transforming the original frequency-dependent
deterministic problem to a generalized eigenvalue problem that
is frequency-independent. With inexact zero eigenvalues fixed
to be exact zeroes, we successfully bypassed the barrier of fi-
nite machine precision and solved the low-frequency breakdown
problem without fully or partially decoupling from , i.e.,
utilizing low-frequency approximations.

The method proposed in [9] and [10] only addressed the break-
down problem encountered in the analysis of a purely lossless
system containing dielectrics and perfect conductors or a purely
lossy system consisting of good conductors only. The problem
of finding a rigorous solution to the real-world applications in
which nonideal conductors and lossless/lossy dielectrics coexist
remains open. Many existing methods for solving the low-fre-
quency breakdown problem in computational electromagnetics
treat conductors as perfect conductors. In fact, when low frequen-
cies are considered, one has to account for conductor loss be-
cause fields penetrate into conductors at low frequencies. In other
words, the skin depth of a conductor becomes comparable to the
physical dimension of the conductor. In a system involving both
nonideal conductors and dielectrics, the low-frequency break-
down problem is significantly complicated by the frequency-de-
pendent coupling between dielectrics and nonideal conductors.
In addition, the physics governing a dielectric is different from
that governing a good conductor. For that reason, the solutions in
dielectric region and conducting region have different frequency
dependences. In addition, the matrix resulting from the analysis
of the metal–dielectric composite is highly unbalanced due to the
fact that the matrix norm of the block formed inside conductors
and that of the block formed outside conductors differ from each
other by many orders of magnitude, which further complicates
the low-frequency breakdown problem. Moreover, when the di-
electric loss is present, the system is further complicated, and,
hence, the low-frequency breakdown problem is more difficult
to solve. As a result, it becomes a great challenge to overcome
the barrier of finite machine precision to develop a rigorous solu-
tionofMaxwell’sequationsforproblemsinvolvingbothnonideal
conductors and inhomogeneous lossless/lossy dielectrics.

The major contribution of this paper is a theoretically rigorous
method for finding the true solution of Maxwell’s equations
from high frequencies down to dc for general 3-D electromag-

netic problems involving both inhomogeneous lossless/lossy di-
electrics and nonideal conductors. The preliminary results were
reported in [15]. Here, we complete the method from both the-
oretical and numerical perspectives. The proposed method does
not involve theoretical approximations. Not only is it valid at
low frequencies, but it is also valid at high frequencies. To help
better convey the proposed idea, we will first present the pro-
posed method for the cases that involve inhomogeneous lossless
dielectrics and lossy conductors in Section III. We then show
how to incorporate dielectric loss into the proposed method in
Section IV. Before that, it is necessary to state the problem and
analyze its origin, which is given in Section II.

It is worth mentioning that the proposed rigorous method in-
volves an eigenvalue solution. Although, with advanced tech-
niques, the eigenvalue solutions can also be found in linear com-
plexity [13], [16], the resultant computational cost of solving the
low-frequency problem is still not desirable. However, such an
eigenvalue solution, in fact, can be avoided because, in the pro-
posed method, the analytical frequency dependence of the solu-
tion to Maxwell’s equations is explicitly derived from dc to high
frequencies. Such an analytical model of the frequency depen-
dence directly suggests a fast full-wave solution that can elimi-
nate the low-frequency breakdown problem in a reduced system
of order one, which is detailed in [17]. Such a fast method re-
tains the rigor of the theoretically rigorous solution developed
in this work, while eliminating the need for an eigenvalue so-
lution. Without the theoretical model of the frequency response
derived from the proposed rigorous solution, the fast and rig-
orous method in [17] for eliminating the low-frequency break-
down would not be feasible.

In fact, we consider the theoretical model of the frequency
dependence of the solution to Maxwell’s equations from dc to
high frequencies resulting from the proposed rigorous solution
as the main outcome of this research work. The use of such a
theoretical model of the frequency response goes beyond the
elimination of low-frequency breakdown. It can be used to de-
velop a theoretical understanding on how the field solution, in
a complicated 3-D problem with both lossless/lossy inhomoge-
neous dielectrics and nonideal conductors, should scale with fre-
quency, at which frequency full-wave effects become important,
at which frequency static assumptions yield good accuracy, and
so on.

II. LOW-FREQUENCY BREAKDOWN PROBLEM ENCOUNTERED

IN THE ANALYSIS OF A COMBINED DIELECTRIC AND

NONIDEAL CONDUCTOR SYSTEM

Consider a general 3-D electromagnetic problem that in-
volves both inhomogeneous lossless dielectrics and nonideal
conductors. A full-wave FEM-based analysis of such a problem
results in the following matrix equation in the frequency
domain:

(1)

where is angular frequency and

(2)
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in which stiffness matrix , mass matrix , and conductivity
related mass matrix are assembled from their elemental con-
tributions as follows:

(3)

In (3), is the speed of light in free space, is conductivity,
is relative permittivity, represents a current source, and is
the normalized vector basis function used to expand the field.

The solution to (1) breaks down at low frequencies. To ana-
lyze the low-frequency breakdown problem, we can examine the
ratio of ’s norm over ’s norm. From (3), it is clear that, when
using a normalized basis , the value of is because

is proportional to , and the value of is proportional
to , where is the average edge length used in a 3-D
discretization of an electromagnetic structure. In state-of-the-art
VLSI circuits, is at the level of 1 m. Hence, the ratio of ’s
norm over ’s norm is of the order of , which is signifi-
cantly smaller than that in a microwave or millimeter-wave cir-
cuit. Since the norm of is smaller than the norm of
in a VLSI circuit, at low frequencies at which is 16 or-
ders of magnitude smaller than , even using double-precision
computing, the mass matrix is essentially treated as zero by
computers when performing the addition of and . As a
result, the breakdown occurs. The same analysis applies to the
ratio of ’s norm over ’s norm. When the contributions of
the frequency-dependent terms in (2) cannot be captured cor-
rectly, breakdown occurs. In addition, different from a purely
dielectric system in which only and exist, and a purely con-
ducting system in which only and exist since displacement
current can be ignored compared with conduction current, in a
system having both dielectrics and lossy conductors, we have
to solve the breakdown problem for the combined , , and
system. Since the -associated term and the -associated term
have different frequency dependences and they also have orders
of magnitude difference in magnitude, it is very challenging to
capture the effects of both terms at low frequencies to obtain a
rigorous solution of Maxwell’s equations.

From the analysis above, the root cause of the low-frequency
breakdown problem is finite machine precision. Computers
always have a finite precision. Apparently, employing static
or quasi-static approximations to decouple from seems
to be the only way forward. However, once one employs
a static or quasi-static approximation, the accuracy of the
resultant solution is questionable. As mentioned earlier, the
solution of Maxwell’s equations is a continuous function of
frequency. In addition to the very low frequencies at which
static or quasi-static approximations yield good accuracy

and high frequencies where full-wave solutions do not break
down, there could exist a range of frequencies in which neither
static/quasi-static solvers nor existing full-wave methods can
produce accurate results. This range of frequencies is also
problem-dependent. In Section III, we show how to rigorously
bypass the barrier of the finite machine precision and solve
the low-frequency breakdown problem for general problems
in which inhomogeneous dielectrics and nonideal conduc-
tors coexist. In reality, since the skin depth of a conductor is
comparable to the physical dimension of conductors at low
frequencies, none of the conductors can be treated as perfect
electric conductors when the frequency is low.

The proposed solution preserves the same merits as the the-
oretically rigorous solution developed in [9] and [10] for prob-
lems that involve lossless dielectrics only or lossy conductors
only. The proposed solution does not involve theoretical ap-
proximations and it avoids switching basis functions. The edge
basis that is traditionally used for vector finite-element analysis
is employed across all frequencies. It preserves the system ma-
trix. The same mass and stiffness matrices that are constructed
in a traditional full-wave FEM solver are used from dc to high
frequencies. In addition, the approach is equally applicable to
high frequencies in addition to low frequencies.

III. PROPOSED RIGOROUS METHOD FOR PROBLEMS INVOLVING

INHOMOGENEOUS LOSSLESS DIELECTRICS

AND NONIDEAL CONDUCTORS

Consider a problem that involves both inhomogeneous loss-
less dielectric materials and nonideal conductors. We divide
field unknowns in (1) into two groups: unknowns outside con-
ductors and unknowns inside conductors . For unknowns
that reside on the conducting surface, we categorize them into

. The space discretization inside conductors is done in such a
way that the rapid field variation within a skin depth can be well
captured. The FEM-based system matrix shown in (1) is
correspondingly cast into the following form:

(4)

where

(5)

Based on the matrix inversion lemma [11], the inverse of (4) can
be written as

(6)

where

(7)
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which is a modified matrix that captures the coupling from
what is outside conductors to what is inside. In (6) and (7), the
argument is omitted for clarification with the understanding
that all of the terms in (6) and (7) are frequency-dependent.

From (6), it can be seen clearly that, in order to obtain
the solution of rigorously from dc to high frequen-
cies, we need to obtain , and the matrix products

, and rigorously from dc to
high frequencies. Unfortunately, the computation of all of
these terms breaks down at low frequencies. In the following
subsections, we show how to obtain a rigorous solution for
each of them.

A. Computing From DC to High Frequencies

As shown in (5), we have

(8)

It is an FEM-based system formulated for the dielectric region
that is outside conductors. This matrix suffers from low-fre-
quency breakdown when the contribution of is neglected
due to finite machine precision. However, this problem can be
readily overcome by the theoretically rigorous solution we have
developed in [9] and [10]. Basically, the solution of (8) can
be obtained by solving the following generalized eigenvalue
problem that is frequency-independent

(9)

where is eigenvalue and is eigenvector. Denoting the diag-
onal matrix formed by all of the eigenvalues as , and the matrix
formed by all of the eigenvectors by , the inverse of (8) can be
explicitly written as

(10)

where is an identity matrix. We also point out in [9] and [10]
that the eigenvalues of (9) can be divided into two groups: one
group is associated with physical dc modes and the null space of

, and the other is associated with the resonance frequencies
of the 3-D structure being simulated. The first group has zero
eigenvalues. However, numerically they cannot be computed as
exact zeros. Thus, we need to correct the inexact zeros to exact
zeros. With that, (10) becomes

(11)

where denotes the eigenvectors corresponding to zero eigen-
values, and and denote the eigenvectors and eigenvalues
corresponding to nonzero eigenvalues, i.e., higher order modes.
The solution of shown in (11) is rigorous from dc
to high frequencies. In addition, the frequency dependence of

is explicitly derived, because, in (11), except for ,
all of the other terms are frequency-independent.

In static solvers, the entire system formulated for the dielec-
tric region outside conductors is characterized as a capacitor

system. As a result, a static solver only captures the effect of the
first term in (11). At a frequency where the second term cannot
be neglected, clearly, static solvers break down. Suggested by
(11), the frequency at which one should consider the effect of
the second term is problem-dependent since the eigenvalues
are problem-dependent. In addition, ignoring the contribution
of the second term clearly yields different levels of accuracy at
different frequencies. This is the reason why we mentioned in
the Introduction that even a static/quasi-static solver needs to be
assessed in accuracy at low frequencies as long as the frequency
is not zero. As far as full-wave solvers are concerned, although
they are capable of capturing the effect of both terms in (11) at
high frequencies, they miss the effect of both terms at low fre-
quencies due to the loss of term and, hence, breaking
down.

B. Computing and From
DC to High Frequencies

From (11) and (5), we have

(12)

To avoid low-frequency breakdown in the computation of (12),
here, we have to realize an important property that is

(13)

To explain, the eigenvectors , i.e., electric field distribution
, corresponding to zero eigenvalues satisfy

(14)

which can be seen from (9). Each row of the matrix-vector mul-
tiplication is an assembled

(15)

where is the th vector basis in the region outside conduc-
tors, is the curl of the electric field in the element where

is located, and the inner product denotes a volume in-
tegral in the same element. Hence, the nonzero solution of (14)
must satisfy and thereby be a gradient field. Since

is a gradient field and each row of the matrix-vector multi-
plication is nothing but an assembled

(16)

where is the th vector basis on the conducting surface, we
have

(17)

and hence (13). As a result, when computing (12), we should
make vanish. We thus obtain

(18)
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It is very important to zero out , because otherwise we
will have left in (18) instead of ,
since the contribution of will be overwhelmed by at
low frequencies, leading to a completely wrong frequency de-
pendence. Again, in (18), only is related to frequency, and
none of the other terms depend on frequency. Therefore, the fre-
quency dependence of is also explicitly de-
rived.

The can be obtained by taking the trans-
pose of (18).

C. Computing From DC to High
Frequencies

To compute , we use (18) and the
third row in (5) to thus obtain

(19)

Once again, it is important to utilize the property (13) to make
the term vanish, from which we get

(20)

D. Rigorous Solution of From DC to High Frequencies

The can be written as

(21)

Since, inside the conductors, the displacement current carried
by the is many orders of magnitude smaller than the con-
duction current characterized by the term for all of the
nonzero frequencies that are currently used in circuit design,
(21) can be computed as

(22)

Substituting (20) into (22), at low frequencies, we obtain

(23)

which can be rewritten as

(24)

where

(25)

The solution of (24) also breaks down at low frequencies. This
is because, when frequency is low, the contribution from the fre-
quency-dependent term is ignored by computers due to
finite machine precision. The thus becomes , which

is a rank-deficient matrix (the proof is given in Section III-F).
To overcome this problem, similar to the solution of ,
we can first solve the following generalized eigenvalue problem
that is frequency-independent:

(26)

Since is symmetric, as can be seen from (25), and is
positive definite due to the fact that it is a mass matrix, (26) is
said to be a symmetric positive definite generalized eigenvalue
problem [12], which is the same as (9). For this class of problem,
the eigenvectors are both - and -orthogonal. Denoting the
matrix formed by all of the eigenvectors of (26) by , we have

if the eigenvectors are normalized with respect to
. The inverse of shown in (24) can then be rigorously

obtained as

(27)

where is a diagonal matrix consisting of all of the eigen-
values. Since is obtained numerically from computing (25),
it may not be kept strictly symmetric due to numerical roundoff
errors. As a result, becomes not strictly diagonal. In
this case, one could enforce to be symmetric before solving
the eigenvalue problem (26) or obtaining the inverse of
from the following formula:

The zero eigenvalues of (26) cannot be computed as exact zeros
either. We thus fix them to be exact zeros, from which we obtain

(28)

where denotes the eigenvectors corresponding to zero
eigenvalues, and denotes those corresponding to nonzero
ones.

E. Final Solution

From the previous four sections, we obtain , and
the matrix products , and rigor-
ously from dc to high frequencies. Substituting them into (6),
we obtain the solution of (1), which can be written as

(29)

where

(30)
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Substituting (11), (18), (20), and (28) into (30), we have

(31)

In (31), except for , all of the other terms are frequency-inde-
pendent. Clearly, the solution we obtain is a continuous func-
tion of frequency. The frequency dependence of the solution to
Maxwell’s equations is thus revealed by the proposed method
for general 3-D problems that involve both inhomogeneous di-
electrics and nonideal conductors. One can rely on it to obtain a
rigorous field solution from dc to high frequencies. One can also
use it to rigorously assess the accuracy of any low-frequency ap-
proximation and answer critical design questions such as when
full-wave effects become important.

Although the final solution shown in (31) has a long formula,
it has a clear physical meaning. To give an example, consider
a common excitation used in the FEM-based analysis of cir-
cuits, which is a current probe launched between a reference
ground and an active port located in the region outside conduc-
tors. The right-hand-side vector becomes .
Then, from (29) and (31), at very low frequencies, the field so-
lution inside conductors and that outside conductors can
be explicitly written as

(32)

where . In the above, again,
except for , all of the other terms are frequency-independent.
It is clear that, given a constant current excitation , the has
a constant real part and an imaginary part that is inversely pro-
portional to frequency, which agrees with our physical under-
standing that the electric field solution outside conductors is
dominated by RC effects at very low frequencies. On the other
hand, the is a constant real number, which also agrees with
physics: the voltage drop along each edge inside a conductor is
a constant given a constant current excitation. In addition, (32)
yields a rigorous solution at dc. At dc, is shown to have a
constant real part and an infinitely large imaginary part, and
is shown to be a constant real number. This is consistent with
the fact that the nonideal conductor has a resistance and the ca-
pacitance formed between conductors becomes an open circuit
at dc.

F. Existence of Zero Eigenvalues of

As can be seen from (25), the is composed of and
. is a stiffness matrix. However, it is

different from the stiffness matrix that is constructed solely for

Fig. 1. Mesh with element 1 in the conducting region and the other three ele-
ments in the dielectric region (after [8]).

a conducting region, which is denoted by . In fact, is
only one component of . Additionally, is supplemented
by denoting the contribution from the elements that are
external to conductors and also adjacent to the conductors, as
shown in [8, Fig. 7], which is copied in Fig. 1 for clarity. There-
fore, can be decomposed into three terms, which is shown
as follows:

(33)

Finding the null space of is equivalent to finding a nonzero
solution that satisfies the following equation:

(34)

which is

(35)

Since is the stiffness matrix that represents the system for
conductors only, it is known to have a null space. Hence, there
exists a gradient field solution satisfying . In
contrast, may have no null space; instead, it can be positive
definite due to the addition of with . However, in ,
the term, which captures the coupling
from what is outside conductors to what is inside, counteracts
the contribution from , hence inducing a null space of .
Therefore, the nonzero solution of (35) can be found, which is a
gradient field. This agrees with the physics that the system inside
the conductor also has dc modes. The above analysis could be
conceptual. Next, we give a quantitative analysis.

Equation (35) is in fact

(36)

where is the field solution outside conductors at dc. This is
because, at dc, since both and are zero, from (1) and (4)
we obtain

(37)

Substituting into the given in (5) and
shown in (20), we obtain (35), where is
nothing but at dc, which is . If we use to
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denote the union of the field solution outside conductors and that
on the nonideal conducting surface, we can rewrite (36) as

(38)

In the above, each row of the left-hand side can be written as

(39)

where is an edge basis located inside conductors or on the
conducting surface, is the curl of the electric field in-
side the element that belongs to, and is the number of el-
ements that share . No matter where the is located, a gra-
dient-field inside conductors and a gradient field outside con-
ductors will naturally vanish (39), and hence satisfy (38) auto-
matically. To be specific, the is the gradient-field solution of
the system formed for the conductors that stand alone, while
the is the gradient-field solution of the system formed for
the dielectric region with the nonideal conductor surface being
its boundary. Thus, we find the nonzero solution of (38) and
thereby the nonzero solution of (34). As a result, the null space
of is found, i.e., has zero eigenvalues.

The aforementioned theoretical analysis is further verified by
numerical experiments, which proved that and share
the same null space. The detailed numerical verification is as
follows. When we formulate the system matrix in (1), we also
directly construct the corresponding in (33), i.e., the stiff-
ness matrix formed for conducting regions only. We then per-
form eigenanalysis on both and and obtain their eigen-
vectors corresponding to zero eigenvalues, respectively. Let the
matrix formed by the eigenvectors corresponding to zero eigen-
values in be , and that in be . Since any linear
combination of null-space eigenvectors also resides in the same
null space, and may differ a lot in elements. However,
we have numerically verified that satisfies in
the same manner as satisfies . In other words,

, which is the null space of , is also the null space of .
Similarly, the is also found to satisfy .

The other numerical proof we have done is to replace with
when solving (26) for finding its null space . In other

words, instead of solving (26), we solve the following eigen-
value problem:

(40)

Denoting the eigenvectors of the above corresponding to zero
eigenvalues by , we found the following relationship:

(41)

Their relative difference is shown to be as small as in our
numerical tests. This fact further verifies that and share
the same null space in common. Because of this fact, any vector
in is a linear combination of the vectors in , thus we
have

(42)

where is a full-rank matrix. Since is an eigenvector of
(26) which is -orthogonal, we have

(43)

Similarly, since is an eigenvector of (40), which is also
- orthogonal, we have

(44)

Substituting (42) into (43) and utilizing (44), we immediately
obtain

(45)

Thus, is an orthogonal matrix. From (42) and (45), we obtain

(46)

Therefore, (41) holds true. As a result, in the solution shown in
(32), we can replace by without involving
any approximation.

To summarize, does have zero eigenvalues, the number
of which is equal to the number of zero eigenvalues in .
Furthermore, they share the same null space.

G. Remark on Computational Efficiency

Although the focus of this paper is a rigorous full-wave solu-
tion that does not break down at low frequencies, to facilitate the
application of the proposed method, here, we discuss the com-
putational efficiency of the proposed method. In the theoretical
derivation given above, we considered all of the eigenmodes of
(9) and (26) without making any approximation. For a fast com-
putation of (31), given a frequency of interest and a required
level of accuracy, one only needs to consider a reduced set of
modes that have a large weight in the final solution. This can be
seen from (10) and (27). The weight of each mode in
is determined by where is the corresponding
eigenvalue; the weight of each mode in is determined
by , where is the corresponding eigenvalue.
Assuming that the number of modes is , the computation of
(31) can be performed in complexity instead of
complexity. This is because what we need to compute is only
matrix-vector multiplications since (31) is used to multiply a
vector, and the rank of the eigenvector matrix is . Similarly,
when only a few modes are required out of (9) and (26), the
eigenvalue solutions can also be found in linear complexity [13],
[16].

Moreover, based on the theoretical model of the frequency
dependence of the solution to Maxwell’s equations derived in
this paper, which is shown in (31), one can develop a fast as well
as rigorous solution to eliminate the low-frequency breakdown
problem without solving an eigenvalue problem, as shown in
[17].
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IV. INCORPORATION OF DIELECTRIC LOSS IN THE PROPOSED

RIGOROUS METHOD

When both conductor and dielectric loss exist, different from
(2), the system matrix resulting from a full-wave FEM-based
analysis of a 3-D electromagnetic problem becomes

(47)

in which

(48)

where is assembled from its elemental contributions as fol-
lows:

(49)

where is the complex permittivity that is a practical
dielectric loss model commonly used in industry. The system
matrix shown in (47) hence becomes a complex-valued matrix
although it remains symmetric. The matrix elements of and

are the same as shown in (3). is low rank if the com-
putational domain is only partially filled by lossy dielectrics.
The analysis of the root cause of the low-frequency breakdown
problem discussed in Section II equally applies to (47). How-
ever, due to the existence of , the rigorous solution to the
low-frequency breakdown of (47) needs to be updated from
the solution developed for (2). First, the solution of
needs to be updated from (11) to

(50)

where , and the eigenvector matrix and
eigenvalues are obtained from the following system:

(51)

instead of (9). Since is a full-rank matrix and
is made of linearly independent eigenvectors and,

hence, invertible, always exists. Consequently, the
solutions of and

all need to be updated, which are
given as follows:

(52)

Again, here, the key step is to zero out , which remedies
the breakdown problem in computing these three matrix prod-
ucts.

The computation of also needs an update from that
developed in Section III-D. Since only conductor loss exists in-
side the conducting region, at low frequencies we still solve the

system as shown in (24). However, needs to be up-
dated from (25) to the following:

(53)

where the second term is at low fre-
quencies. After we solve (26) based on the updated shown
above, we rigorously obtain the inverse of as

(54)

where . The cannot be reduced to an
identity matrix since is not symmetric, and therefore (26) is
no longer a generalized symmetric definite eigenvalue problem.
However, since has a mass matrix form and is full rank,

is always invertible.
With the solution of and the matrix products

, and updated shown in the
above, we are ready to obtain a rigorous solution of (47) at any
frequency. By using (29) and (30) with (50), (52), and (54)
substituted into (30), we obtain the final solution.

V. NUMERICAL RESULTS

In order to validate the proposed method, we simulated a
number of on-chip and package examples.

A. Realistic Three-Metal-Layer Test-Chip Interconnect

The first example is a three-metal-layer on-chip interconnect
structure fabricated using silicon processing technology on a
test chip [14]. It involved a 10- m-wide strip in the M2 layer,
one ground plane in the M1 layer, and one ground plane in
the M3 layer. The distance of this strip to the M2 returns at
the left- and right-hand sides was 50 m, which is illustrated
in [14, Fig. 4]. The strip was 2000 m long. A current source
was launched from the bottom plane to the center M2 wire at
the near end of the wire with the far end left open. With the
proposed full-wave solution that is valid starting from dc, we
are able to extract a correct input impedance at any low fre-
quency. The real and imaginary parts of the input impedance
are listed in Table I from dc to 50 GHz. Three methods are com-
pared: the proposed method, the proposed method without cor-
recting the solution of by using the method described
in Section III-D, and the conventional full-wave FEM method.
Clearly, the proposed method produces correct frequency de-
pendence across the entire band from low to high frequencies,
whereas the conventional full-wave solver is wrong at low fre-
quencies. As for the proposed method without correcting the
solution of , at low frequencies, although the imaginary
part is correct, the real part of the input impedance is wrong.
This demonstrates the importance of fixing the low-frequency
breakdown problem encountered in the solution of , al-
though, compared with the breakdown of shown in (8),
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TABLE I
INPUT IMPEDANCE OF A TEST-CHIP INTERCONNECT EXTRACTED BY THREE METHODS FROM 50 GHZ DOWN TO DC

TABLE II
COMPARISON OF INPUT IMPEDANCE GENERATED BASED ON � AND THAT

BASED ON �

Fig. 2. Cross sectional view of two on-chip parallel-plate interconnects.
(a) Structure 1. (b) Structure 2.

the breakdown of shown in (24) is less severe and oc-
curs at a lower frequency. It is worth mentioning that the input
impedance is extracted between one port of the interconnect and
the bottom reference ground with the other port left open. In
Table I, “open” means open circuit.

In addition, for this example, we constructed the corre-
sponding and obtain the eigenvectors of
corresponding to zero eigenvalues, which are grouped into

. In Table II, we compare the resultant input impedance
based on and that based on obtained from (26).
Besides the same imaginary part, an excellent agreement
in the real part can also be observed, as can be seen from
Table II, which agrees with the analysis of null space given in
Section III-F.

TABLE III
CAPACITANCE SIMULATED BY THE PROPOSED METHOD (C) AND THAT

SIMULATED BY THE TRADITIONAL FULL-WAVE FEM SOLVER (C*)

TABLE IV
INPUT IMPEDANCE ��� SIMULATED BY THE PROPOSED METHOD

B. Two Parallel-Plate Structures Made of Lossy Conductors

Second, two parallel-plate examples are simulated, which
have analytical solutions. The dimensions of the two structures
are 10 3 35 m , and 10 2 35 m , respectively, as
shown in Fig. 2. The shaded regions are occupied by lossy con-
ductors, the conductivity of which is 5.0 S/m. A current
source is launched from the bottom plane to the top plane at
the near end of the parallel-plate structure. The conventional
full-wave FEM solver is shown to break down around 10 MHz,
whereas the proposed method generates accurate results down
to dc. The analytical capacitances of the two structures are the
same, which are known to be 3.0989 pF. In Table III, we
compare the capacitance of the first structure simulated by the
proposed method and that simulated by a traditional full-wave
FEM solver. It is clear that the proposed solution agrees with the
analytical data very well, whereas the traditional FEM solver is
completely wrong at low frequencies. In addition, we compare
the real and imaginary parts of the input impedance of the two
structures, which is shown in Table IV. The same imaginary
part is obtained at each frequency point for both structures,
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TABLE V
INPUT IMPEDANCE ��� COMPARISON AT HIGH FREQUENCIES

Fig. 3. Illustration of an on-chip 3-D interconnect.

Fig. 4. Simulation of a 3-D on-chip interconnect at �� Hz. (a) � field dis-
tribution generated by the conventional FEM method. (b) � field distribution
from the proposed method.

which agrees with the analytical expectation. Moreover, the
analytical resistance of the first structure is shown to be twice
as large as that of the second structure, which again shows an
excellent agreement with analytical expectation.

The proposed method is not only valid at low frequencies, but
also applicable to high frequencies. In Table V, we compare the
input impedance of the first lossy parallel-plate structure simu-
lated by the proposed method with that simulated by the con-
ventional full-wave FEM solver at high frequencies. Excellent
agreement is observed.

Fig. 5. Geometry and material of a 3-D spiral inductor.

Fig. 6. Comparison of the input impedance of a package inductor simulated by
the proposed method and that obtained from a conventional full-wave solver.
(a) Real part. (b) Imaginary part.

C. A 3-D On-Chip Interconnect

With the proposed method validated, next we simulate an-
other 3-D on-chip interconnect structure, the cross section of
which is shown in Fig. 3 with detailed geometry and material
data. The conductivity of the metal is S/m. The length
of the structure is 2000 m.

In Fig. 4(a), we plot the field distribution at Hz
simulated by a conventional full-wave FEM solver. Clearly, the
conventional solver breaks down. In contrast, accurate field
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TABLE VI
INPUT IMPEDANCE COMPARISON OF A PACKAGE SPIRAL INDUCTOR (Z: INPUT IMPENDENCE; R: RESISTANCE OF THE MICROSTRIP ���)

Fig. 7. Simulation of a 3-D spiral inductor at �� Hz. (a) Current distribution
generated by the conventional full-wave FEM method. (b) Current distribution
generated from the proposed method.

distribution is produced by the proposed full-wave method as
shown in Fig. 4(b). Moreover, the accuracy of the computed
field is quantitatively verified. To give an example, the normal
component of the electric field in the two dielectric layers above
the ground plane is sampled. The ratio between the normal com-
ponent of the field in the layer with relative permittivity 4.0
and that in the layer with relative permittivity 8.0 is 2.015, which
agrees very well with the analytical value 2.0. Different from the
on-chip interconnect example shown in [9], [10], here, the con-
ductors are not perfect conductors. As can be seen from Fig. 4(a)
and (b), there exist fields inside conductors.

D. A 3-D Package Spiral Inductor

The fourth example is a 3-D spiral inductor residing on a
package. The geometry of the spiral inductor is shown in Fig. 5.
Its diameter (D) is 1000 m. The metallic wire is 100 m wide
and 15 m thick. The port separation (S) is 50 m. The inductor
is backed by two package planes. The backplane is 15 m thick.
This structure is simulated successfully by the full-wave-based
solver in [14] at high frequencies. In Fig. 6, we compare the
input impedance simulated by the proposed method and that
obtained from the conventional full-wave method from DC to
high frequencies. As can be seen from the insets of Fig. 6(a) and
(b), an excellent agreement between the two methods can be ob-
served in both real and imaginary parts of the input impedance
at high frequencies. However, the conventional full-wave so-
lution shown in blue breaks down around 1 MHz, which can
be clearly seen from two main figures. In contrast, the pro-
posed method can generate correct frequency dependence for
both real and imaginary parts at any low frequency. It is clear
that the proposed method is able to provide a universal solu-
tion to Maxwell’s equations from DC to high frequencies. In
Fig. 7, we plot the current distribution at 10 Hz. Clearly, the

Fig. 8. Package interconnect that has lossy dielectrics and conductors.

current simulated by the proposed method agrees with theoret-
ical expectation, while the current generated by the conventional
full-wave solver is totally wrong since there is almost no current
flowing inside the conductor.

E. Package Interconnect Embedded in Lossy Dielectrics

To demonstrate the capability of the proposed method in
solving problems involving both lossy dielectrics and con-
ductors, we simulate a package microstrip-type interconnect
that resides on a lossy dielectric substrate having 0.019 loss
tangent as shown in Fig. 8. The microstrip has a conductivity of

S/m and is exposed to the air. The results simulated
by the proposed method are listed in Table VI in comparison
with those from a traditional full-wave solver. Clearly, the
traditional solver breaks down at and below 10 Hz. In con-
trast, the proposed method generates correct input impendence
down to dc. Different from lossless dielectric cases, for a lossy
dielectric that has a constant loss tangent, the real part of the
input impedance should scale with frequency inversely like
the imaginary part. This is also suggested by the final solution
based on (49), (50), and (53). The proposed method is shown
to produce correct frequency dependence, whereas the con-
ventional full-wave solver yields incorrect results. In addition,
we extract the resistance of the microstrip, R, from the field
solution down to dc. The R is shown to be 0.056975898 ,
which agrees very well with the analytical dc resistance that is
0.05698 .

VI. CONCLUSION

It has been observed that a full-wave solution of Maxwell’s
equations breaks down at low frequencies. To overcome the
low-frequency breakdown problem, one, also, has to account for
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the nonideality of conductors since fields penetrate into conduc-
tors at low frequencies. Many existing methods for solving the
low-frequency breakdown problem in computational electro-
magnetics treat conductors as perfect conductors. In addition,
in general, they rely on low-frequency approximations to over-
come the breakdown problem, which has suggested a number
of new research questions to be considered. For example, at
which frequency, the low-frequency approximations are valid,
and valid to which level of accuracy? Given a frequency, what
is the true solution of Maxwell’s equations in which and

are coupled as long as frequency is not zero? Static and
quasi-static solvers cannot provide a benchmark solution at
these breakdown frequencies either since they involve theoret-
ical approximations. Even a quasi-static solution breaks down
at low frequencies because of the underlying frequency-depen-
dent system. In reality, the solution to Maxwell’s equations is a
continuous function of frequency. Theoretically, there does not
exist a discontinuity in the frequency spectrum, beyond which
full-wave analysis is required and below which quasi-static or
static assumptions immediately become valid. The low-fre-
quency breakdown problem is also becoming more and more
critical as the smallest feature size of engineering systems is
being pushed down to the nanometer regime and beyond while
the largest feature size does not scale proportionally.

In order to fundamentally eliminate the low-frequency
breakdown problem for the development of both existing
and future technology, one has to know the true solution of
Maxwell’s equations at low frequencies. This paper provides
such a true solution for real-world 3-D problems that consist
of both inhomogeneous lossless and/or lossy dielectrics and
nonideal conductors. This solution also naturally cures the
passivity, stability, and causality issues resulted from low-fre-
quency inaccuracy in existing frequency-domain models. In
this solution, the frequency dependence of the field solu-
tion is explicitly derived from dc to high frequencies. It is a
theoretically rigorous solution that constitutes a continuous
function of frequency. Such a continuous model does not exist
previously since the electromagnetic solvers are traditionally
divided into static, quasi-static, and full-wave solvers to cover
the full electromagnetic spectrum, and at which frequency to
switch between these solvers is not quantitatively known. The
proposed method can be employed to quantitatively assess the
accuracy of existing electromagnetic solvers at low frequencies
including static and quasi-static solvers. In addition, it also
provides answers to critical design questions such as at which
frequency full-wave effects become important. The proposed
method avoids switching basis functions. The edge basis that is
traditionally used for vector finite-element analysis is employed
across all frequencies. It preserves the system matrix. The same
mass and stiffness matrices that are constructed in a traditional
full-wave FEM solver are used from dc to high frequencies.

The focus of this paper is a rigorous full-wave solution
of Maxwell’s equations that does not utilize low-frequency
approximations and does not break down at low frequencies.
Based on such a rigorous solution, one can develop fast as
well as rigorous solutions like the one developed in [17] to
eliminate the low-frequency breakdown without solving an
eigenvalue problem. Moreover, the application of the proposed

rigorous full-wave solution of Maxwell’s equations valid from
high frequencies down to dc goes beyond the elimination of
low-frequency breakdown.

Although the proposed method is developed in the context
of the finite-element method, the essential idea is equally ap-
plicable to other numerical methods such as finite difference
methods and integral-equation-based methods. This is because
all of these methods result in a system matrix that can be cast
into a form shown in (2), and the proposed method is a general
method for analyzing a frequency dependent system like (2) re-
gardless of the origin of the underlying matrices. The matrices
that are associated with , and constant can be generated
from either a partial differential equation or an integral equation
based solver. Moreover, since the root cause of low-frequency
breakdown problem is finite machine precision, the proposed
method for bypassing this fundamental barrier can also shed the
light on the solution to other unsolved research problems that are
caused by finite machine precision.
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