
3066 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 63, NO. 10, OCTOBER 2015

Direct Finite-Element Solver of Linear Complexity
for Large-Scale 3-D Electromagnetic

Analysis and Circuit Extraction
Bangda Zhou and Dan Jiao, Senior Member, IEEE

Abstract—In this paper, we develop a linear-complexity direct
finite-element solver for the electromagnetic analysis of general
3-D problems containing arbitrarily shaped lossy or lossless
conductors in inhomogeneous materials. Both theoretical analysis
and numerical experiments have demonstrated the solver’s linear
complexity in CPU time andmemory consumption with prescribed
accuracy satisfied. The proposed direct solver has successfully
analyzed an industry product-level full package involving over
22.8488 million unknowns in approximately 16 h on a single core
running at 3 GHz. It has also rapidly solved large-scale antenna
arrays of over 73 wavelengths with 3600 antenna elements whose
number of unknowns is over 10 million. The proposed direct
solver has been compared with the finite-element methods that
utilize the most advanced direct sparse solvers and a widely used
commercial iterative finite-element solver. Clear advantages of
the proposed solver in time and memory complexity, as well as
computational efficiency, have been demonstrated.

Index Terms—Circuit analysis, direct solvers, electromagnetic
analysis, fast solvers, finite-element methods (FEMs), frequency
domain, linear-complexity solvers, 3-D structures.

I. INTRODUCTION

A MONG existing computational electromagnetic methods,
the finite-element method (FEM) has been a popular

choice for analyzing electromagnetic problems that involve
both irregular geometries and complicated materials. The
system matrix resulting from an FEM-based analysis is sparse;
however, its LU factors and inverse are, in general, dense.
Hence, it can be computationally challenging to solve a
large-scale sparse matrix.
The multifrontal method [1] is one of the most important di-

rect sparse solvers. Well-known sparse solver packages such as
UMFPACK [2], MUMPS [3], and Pardiso in Intel Math Kernel
Library (MKL) [4] are all based on the multifrontal method. The
complexity of a multifrontal solver is dependent on the ordering

Manuscript received September 20, 2014; revised December 24, 2014, April
28, 2015, July 07, 2015, and July 28, 2015; accepted August 16, 2015. Date of
publication September 11, 2015; date of current version October 02, 2015. This
work was supported by the National Science Foundation (NSF) under Grant
0802178 and Grant 1065318, by the Scientific Research Council (SRC) under
Grant Task 1292.073, and by the Defense Advanced Research Projects Agency
(DARPA) under Award N00014-10-1-0482B.
The authors are with the School of Electrical and Computer Engineering,

Purdue University, West Lafayette, IN 47907 USA (e-mail: djiao@purdue.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMTT.2015.2472003

used to reduce fill-ins. For 2-D FEM problems, the nested dis-
section ordering [5] results in a direct solution of com-
plexity in CPU time, where denotes the matrix size, which
is also the number of degrees of freedom. This complexity is
optimal in a regular grid for any ordering in exact arithmetic.
For 3-D problems, a nested-dissection-based multifrontal fac-
torization has complexity in time and com-
plexity in memory [5], neither of which is optimal. It has been
shown that for structured grids with point or edge singulari-
ties, the computational cost of a multifrontal solver may re-
duce to in exact arithmetic [6], [7]. In [8], a direct solu-
tion is presented for 2-D FEM-based electromagnetic analysis,
the complexity of which is higher than linear. Recently, it has
been proven in [9] that the sparse matrix arising from an FEM-
based analysis of general 2-D or 3-D electromagnetic problems
has an exact -matrix representation, and the inverse of this
sparse matrix has an error-controlled -matrix representation.
Based on this proof, an -matrix based fast direct finite-element
solver is developed in [9]. The storage and time complexity of
this solver are, respectively, , and for
solving 3-D problems whose -matrix representations have a
constant rank. A superfast multifrontal solver with hierarchi-
cally semiseparable representations has also been developed in
[10]. However, as yet, no (optimal) complexity direct ma-
trix solution has been achieved for the FEM-based analysis of
general 3-D problems. This is also true to a recent direct solver
reported in [11]. There also exists extensive research on paral-
lelizing direct sparse factorizations [12]. It is known that par-
allelization can reduce CPU run time, but it cannot reduce the
computational complexity of the algorithm being parallelized.
Prevailing fast FEM-based solvers for solving large-scale

problems are iterative solvers. Their best computational com-
plexity is , where is the number of iterations
and is the number of right-hand sides. The is, in
general, problem dependent. In addition, most of the iterative
solvers rely on preconditioners to reduce , which further
increases the overall computational complexity.
In this paper, we develop a direct FEM solver of

(linear) complexity for general 3-D electromagnetic analysis.
Its linear complexity in CPU time and memory consumption
is demonstrated by theoretical analysis and numerical exper-
iments. The proposed direct solver has successfully solved a
product-level full package in inhomogeneous dielectrics having
over 22.8488 million unknowns in 16 h, on a single core run-
ning at 3 GHz. Its accuracy is fully validated by both industry

0018-9480 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ZHOU AND JIAO: DIRECT FINITE-ELEMENT SOLVER OF LINEAR COMPLEXITY 3067

measurements and numerical experiments. The proposed direct
solver has also been compared with state-of-the-art direct sparse
matrix solvers, as well as a widely used commercial iterative
FEM solver. Clear advantages in computational complexity
and efficiency have been demonstrated.
This paper is a significantly extended version of our confer-

ence papers [13], [14]. In [13], we developed a direct finite-ele-
ment solver of linear complexity for large-scale 3-D circuit ex-
traction in multiple dielectrics. This work was then extended
to electrically large analysis in [14] by taking into account the
rank’s growth with electrical size in electrodynamic analysis.
Neither of the solvers we reported in [13] and [14], as well as
the recent application to signal and power integrity analysis in
[15] and antenna analysis in [16], has yet solved the realistic
industry full package simulated in this paper. Furthermore, al-
though the comparison with UMFPACK shows advantages of
the direct solvers in [13] and [14], we have not made com-
parisons with other more advanced direct sparse solvers such
as MUMPS [3], and Pardiso in Intel MKL [4], which outper-
form UMFPACK in CPU time and memory consumption. In this
paper, we present the detailed algorithms of an direct
FEM solver that outperforms MUMPS and Pardiso in com-
putational complexity and efficiency. This solver is also capable
of analyzing both large-scale electromagnetic structures such as
antennas, and large-scale integrated circuits such as an industry
product-level full package.
This paper is organized as follows. In Section II, we give

a brief review of the vector finite-element-based analysis of
electromagnetic problems, and the state-of-the-art sparse solver
technologies. In Section III, we elaborate the detailed algorithm
of the proposed linear-complexity direct finite-element solver.
In Section IV, we present a theoretical analysis on the accuracy
and complexity of the proposed direct solver. In Section V, the
choice of simulation parameters is discussed. In Section VI,
numerical and experimental results are presented to demon-
strate the linear complexity and the superior performance of the
proposed direct solver. Section VII relates to our conclusions.
Throughout this paper, for quantities involved in a matrix
equation, we use a boldface letter to denote a matrix, and an
italicized one for a vector. A symbol of denotes the entry
at the th row and th column of matrix .

II. PRELIMINARIES

A. Vector Finite-Element-Based Electromagnetic Analysis
The equation solved in this work is the second-order vector

wave equation. A finite-element-based solution of this equation
subject to boundary conditions results in the following matrix
equation:

(1)

where denotes an excitation vector, is the unknown field
vector, and is the system matrix. Different from the system
matrix resulting from the solution of Poisson’s equation, is
indefinite here, and has complex-valued eigenvalues when the
dielectrics or conductors are lossy. can further be written as

(2)

where is free-space wavenumber, , , and are sparse
matrices assembled from

(3)

where and , respectively, denotes relative perme-
ability, dielectric constant, and conductivity, is the outermost
boundary of the problem being simulated, is an outward unit
normal vector, and is the vector basis function used for field
expansion.

B. -Matrix

In an -matrix [17], the entire matrix is hierarchically par-
titioned, via a tree structure, into multilevel admissible blocks
and inadmissible blocks. An admissible block , with row
unknowns in set and column unknowns in , satisfies the fol-
lowing admissibility condition:

(4)

where denotes the region containing all field unknowns in set
is the area where all unknowns in set reside, de-

notes the Euclidean diameter of a set, stands for the Eu-
clidean distance between two sets, and is a parameter greater
than zero, which can be used to control the admissibility con-
dition. An inadmissible block does not satisfy the admissibility
condition. It keeps its original full-matrix representation. How-
ever, an admissible block is represented as

(5)

where is the rank, and denotes the number of unknowns
in or . If we sort the singular values of from the largest
to the smallest as , the relative error of (5), as
compared to its full-matrix representation, is [17]

(6)

Obviously, the accuracy of (5) can be adaptively controlled by
choosing rank based on a prescribed accuracy.

C. On the Rank

As for the rank of an -matrix representation of an FEMma-
trix, since the matrix is sparse, the rank of admissible blocks is
zero in the FEM matrix. However, the key for a fast direct so-
lution does not lie in the original matrix, but in its inverse or
LU factors. The rank of the inverse or LU factors of an electro-
magnetic problem has been studied in [18] and [19]. It is shown
that for electrically small problems, a constant rank is sufficient
in representing the inverse and LU factors of the FEM matrix
to achieve a desired order of accuracy irrespective of problem
size. For electrically large problems, given an error bound, the

3068 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 63, NO. 10, OCTOBER 2015

rank of the inverse finite-element matrix is a constant irrespec-
tive of electrical size for 1-D problems. For 2-D problems, it
grows very slowly as the square root of the logarithm of the elec-
trical size. For 3-D problems, the rank scales linearly with the
electrical size. Notice that this rank’s growth rate is the growth
rate of a minimal rank representation [such as the one gener-
ated by singular value decomposition (SVD)] that does not sepa-
rate sources from observers in characterizing the interaction be-
tween the two. In contrast, representations that separate sources
from observers do not result in a minimal-rank representation
required by accuracy, and the resultant rank is a full rank asymp-
totically.

III. PROPOSED LINEAR-COMPLEXITY DIRECT
3-D FINITE-ELEMENT SOLVER

In the proposed method, we do not blindly treat the entire
FEM matrix and its factors as a whole -matrix. If we do
so, the sparse linear algebra cannot be taken advantage of. In-
stead, we establish an elimination tree based on the nested-dis-
section ordering such that the zeros can be maximized in the

factors. We then perform a multifrontal-based factoriza-
tion of the nodes in the elimination tree from the bottom nodes
to the root node level by level. By doing so, we only need to
store and compute nonzeros in the factors without wasting
computation and storage on zeros. The intermediate frontal and
update matrices generated during the factorization procedure
are all dense matrices. If using traditional full-matrix represen-
tations, the resulting complexity would be much higher than
linear, like the complexity of existing sparse solvers. Instead of
doing so, we form the intermediate dense matrices compactly by
error-controlled -matrix representations, and use these repre-
sentations to do fast computations. Therefore, there are two tree
structures in the proposed algorithm. One is the elimination tree,
the other is the local -tree created for each node in the elimi-
nation tree to represent and compute the intermediate dense ma-
trices associated with the node. Since the -tree structure is lo-
cally created for each node in the elimination tree, all the addi-
tions and multiplications become unmatched operations, unlike
those in the traditional -matrix arithmetic. Hence, new -ma-
trix arithmetic is developed in this work to handle unmatched
operations. Moreover, the aforementioned procedure organizes
the factorization of the original 3-D finite-element matrix into a
sequence of partial factorizations of -matrices corresponding
to 2-D separators. Hence, the rank of the intermediate matrices
follows a 2-D based growth rate with electrical size, which is
much slower than a 3-D based growth rate [18], facilitating elec-
trically large analyses.
There are six major steps in the proposed direct solver, as

shown in Algorithm 1. In the next few sections, we will explain
each step one by one.

A. Partition Unknowns by Nested Dissection

With the nested dissection scheme, we recursively divide
a 3-D computational domain into two subdomains and one
separator, obtaining , as illustrated
in Figs. 1 and 2. Here, denotes a domain at level with
index represents a separator at level with index . Since

Fig. 1. Example of a level-2 nested dissection on domain .

Fig. 2. Illustration of the unknown partition by a level-2 nested dissection on
domain .

separator completely separates domains and ,
the matrix blocks and in the FEM system
matrix are zero blocks. These zero blocks will also be preserved
during the LU factorization process, hence, reducing the total
number of operations.

Algorithm 1: Proposed Direct Solver

1 Partition unknowns by nested dissection.
2 Build elimination tree from nested dissection

ordering.
3 Do symbolic factorization by elimination tree .
4 Generate a local -matrix representation for the frontal

matrix associated with each node in the elimination
tree.

5 Do numerical factorization across elimination tree
by developing fast -matrix-based algorithms.

6 Compute the solution and do post-processing.

In order to generate large zero blocks, the size of the sepa-
rator should be as small as possible and the size of two domains
being separated should be as equal as possible. These two cri-
teria guide the unknown partition based on the nested dissec-
tion. We also recursively divide the separator into subdomains
by using geometrical bisection or nested dissection, as shown in
Fig. 2. The recursive process of the nested-dissection partition
continues until the number of unknowns in each domain is no
greater than a pre-defined constant parameter leafsize, denoted
by . The resultant tree shown in Fig. 2 is denoted by , in
which represents the index set of all unknowns.

ZHOU AND JIAO: DIRECT FINITE-ELEMENT SOLVER OF LINEAR COMPLEXITY 3069

Fig. 3. Elimination tree of level-2 nested dissection on domain .

B. Construction of Elimination Tree From Nested
Dissection Ordering
An elimination tree, denoted by , is used inmost sparsema-

trix solvers [2], [20], [3], [4]. It provides a sequence of factoriza-
tion or elimination. An elimination tree is defined as a structure
with nodes such that node is the parent
node of if and only if the following is satisfied:

(7)

in which is the block in the factor of the original system
matrix , whose row unknowns are contained in node and
column unknowns in node .
Consider the example shown in Fig. 2, where domain and

domain are completely separated by separator . It is clear
that the matrix blocks corresponding to the two domains and

are completely decoupled, and hence, can be factorized inde-
pendent of each other. However, they both make contributions
to separator during the factorization process. Thus, based on
(7), it can be readily verified that separator is the parent node
of nodes and in the elimination tree. Applying this rule re-
cursively, we can find that in the final elimination tree built for
the entire unknown set, the bottom level is occupied by the do-
mains of leafsize, and the upper levels are occupied by the sep-
arators of increasing size, with the topmost level being the sep-
arator of the largest size. The overall algorithm for building the
elimination tree is given in Algorithm 2. To give an example, the
elimination tree corresponding to Fig. 2 is illustrated in Fig. 3,
where the subscripts of separator nodes have been updated to the
tree level of the elimination tree. Thus, in Fig. 3 cor-
respond to and in Fig. 1, respectively.
Different from the cluster tree used in an -matrix represen-

tation, an elimination tree satisfies the following property:

(8)

where denotes a node in the elimination tree at level with
index . This means the nodes in the entire elimination tree con-
stitute a disjoint partition of the entire unknown set . The un-
knowns in the children nodes are not contained in the parent
node. In contrast, in a cluster tree, the children nodes are sub-
sets of the parent node, and the nodes at each tree level form
a disjoint partition of the complete unknown set. The LU fac-
torization process is nothing but a post-order or bottom-up tree

traversal of the elimination tree . After all the nodes in the
elimination tree have been factorized, the entire LU factoriza-
tion is completed.

C. Symbolic Factorization

Due to the sparse nature of the partial differential operator,
only a subset of unknowns is affected by eliminating one node
in the elimination tree. In this paper, this subset is termed the
boundary cluster of one node in the elimination tree.

Algorithm 2: Build Elimination Tree

1 BuildEliminationTree
Data: domain cluster
Result: a cluster

2 if children then
3 find such that
4
5 for do
6 BuildEliminationTree
7 else
8
9 return

For each node in the elimination tree, we construct a frontal
matrix , as shown below, where denotes the boundary
cluster of node ,

(9)

If we use to represent the ancestor of node in elim-
ination tree , the following is satisfied from the definition of
elimination tree:

(10)

To identify boundary unknowns contained in , there are
two approaches: algebraic approach and geometrical approach.
Geometrically, boundary unknowns are the unknowns residing
on the bounding box of a node (a 2-D separator or a 3-D

domain), which can be determined by the mesh
information. The geometrical approach for finding boundary
unknowns could be done along with the nested dissection based
unknown partition.
In the proposed solver, we have also implemented an alge-

braic approach, known as symbolic factorization, in order to pre-
cisely determine the boundary unknowns. Since it is not efficient
to use one unknown as a node to perform the symbolic factor-
ization, we use the domains of leafsize as supernodes. These
leafsize-domains reside on the bottom level of the elimination
tree. The detailed procedure is given in Algorithm 3. As can be
seen, it starts with an initialization of all ’s from the original
matrix . The nonzero sparse pattern of is then used to fill ,
which is composed of supernodes. If is nonzero, then su-
pernode is added to . After symbolic factorization, boundary

3070 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 63, NO. 10, OCTOBER 2015

unknowns contained in for every in elimination tree can
be correctly and precisely determined.

Algorithm 3: Symbolic Factorization

1 Initialize all from
2 for is the tree depth of do
3 for each do
4 for each do
5 level of
6 index of
7 for each do
8

D. -Matrix Representations of All Frontal Matrices

Algorithm 4: Construction of -matrix Representations
of All

1 for is the tree depth of do
2 for each do
3 Build -matrix representation of
4 if then
5 Build -matrix representation of

6 for is the tree depth of do
7 for each do
8 Fill with sparse matrix from FEM
9 if then
10 Fill with sparse matrix from FEM

11 for is the tree depth of do
12 for each do
13

14 for is the tree depth of do
15 for each do
16 Link

After symbolic factorization, the row cluster , as well
as the column cluster of each frontal matrix , shown in
(9), are determined for node in elimination tree . In each
frontal matrix , there are four blocks,

and . The first three can be generated as local matrix
blocks, which are associated with node only since they are
not needed in upper level computations. However, the last one,

, which is known as the update matrix [3], has to commu-
nicate with the nodes at the upper levels of the elimination tree.
Different from traditional -matrix based computations,

where the -matrix structures to be operated on are compatible,
here, the structure of update matrix is not compatible
with either local blocks or frontal matrices
residing on the upper levels of the elimination tree. If we make
the -matrix structure of the update matrix compatible

with that of the local blocks , then we have to
perform non-conformal additions of the update matrix upon
corresponding upper-level blocks, which is not computation-
ally efficient. Hence, we choose not to make the -matrix
structure of the update matrix compatible with that of local
matrices . Instead, we form the update matrix

by grouping links to corresponding blocks in the upper

level frontal matrices. Thus, is composed of multiple
pointers that link the update matrix generated at node to
corresponding blocks in the -matrix representations of the
nodes where belongs.
Due to the symmetry of the FEMmatrix, the frontal matrix

is also symmetric and so is its -matrix representation. Hence,
we only build the -matrix representations of and
and fill them with sparse matrices from the FEM. can be
constructed by a transpose copy of . The overall process
is detailed in Algorithm 4.

Algorithm 5: Build -matrix Representation of

1 -Construction
2 if is admissible then
3 Mark as admissible
4 else if is inadmissible then
5 Mark as inadmissible
6 else
7 if then
8 for each child do
9 for each child do
10 of

-Construction

11 else
12 if then
13 for each child do
14 of

-Construction

15 else
16 for each child do
17 of

-Construction

18 return

To construct the -matrix structure for each node in the
elimination tree, we use the supernodes and devise an adaptive
subdivision scheme, which are different from the conventional
-matrix construction method [17]. For each frontal matrix
, we build a local cluster tree for , and , respectively,

with the leaf size of the cluster tree defined by , termed
h-leafsize to distinguish it from leafsize. The leafsize is the size
of a bottom-level node in the elimination tree, whereas h-leaf-
size is the number of supernodes contained in the leaf node

ZHOU AND JIAO: DIRECT FINITE-ELEMENT SOLVER OF LINEAR COMPLEXITY 3071

of an -matrix cluster tree. The local cluster tree is a binary
tree, the recursive subdivision of which is performed based on
the geometrical bisection along the largest dimension. After
the local cluster tree is built for each node in the elimination
tree, we build the block cluster tree [17] from two local cluster
trees. One is the row tree and the other is the column tree,
such as for , and for . In practice,
the cardinality of is larger than that of . If we use the
conventional way to generate the block cluster tree, the matrix
structure will become very skewed, which is not amenable for
fast computation. Hence, we perform an adaptive subdivision.
We define a positive constant to determine the structure
of the block cluster tree. If the following condition is satisfied
for block :

(11)

block is a non-skewed matrix. Otherwise, is a skewed
matrix. If a matrix is a skewed matrix, during the construction
of the block cluster tree, the division will be performed on the
cluster with a larger size, as shown in Algorithm 5. Following
Algorithms 4 and 5, we can build the -matrix structure for
every frontal matrix in the elimination tree .
Notice that the frontal matrices are not first computed as

dense matrices, and then compressed into -matrices. Instead,
they are stored and computed as -matrices directly. The initial
filling of the -based frontal matrices is straightforward since
all admissible blocks are zero, and only inadmissible blocks are
filled in their exact form. During the level-by-level factorization
procedure, the contents of the -matrix based frontal matrices
are updated from -arithmetic-based fast multiplications and
additions instead of from full-matrix-based computations.
Therefore, the frontal matrices in the proposed algorithm are
never first computed as dense matrices and then compressed
into -matrices. If so, the complexity of the proposed direct
solver cannot be linear.

E. Numerical Factorization and Solution by Fast -Matrix
Algorithms Developed for the Proposed Direct Solver

In the proposed solver, numerical factorization is done by par-
tial factorization of each frontal matrix in the elimination
tree in a bottom-up tree traversal procedure. As shown in
Algorithm 6, for each frontal matrix in (9), we first compute
LU factorization of (Step 4), then solve in Step 6,
and then compute in Step 7. All these three steps can be
done by the -LU algorithm in [17], [9] since the computa-
tions at the three steps are local without the need for the com-
munications with higher levels of the elimination tree. With the
-structure known for the node–node interaction and the

node–boundary interaction , as well as its transpose (see
Section III-D), Steps 4, 6, and 7 can be readily performed with
the -LU algorithm. The only difference is that the -LU al-
gorithm in this work is applied to the local -matrix represen-
tation of every node in the elimination tree, while in [9], the
algorithm is used for the entire matrix that is represented by a
global -matrix.

Algorithm 6: Numerical Factorization of

1 for is the tree depth of do
2 for each do
3 Collect frontal matrix
4 Compute and by -matrix based LU

factorization,
5 if then
6 Compute by solving

7 Compute by solving

8 Update by

The last step (Step 8 in Algorithm 6) is performed to gen-
erate the update matrix, and also merge it with relevant frontal
matrices in the upper levels of the elimination tree. Since for
achieving linear complexity we do not generate a global -ma-
trix structure, but build -matrix representations of all the in-
termediate dense matrices, specifically the and

blocks of each frontal matrix shown in (9), the updating/
merging step is dominant by operations with unmatched dimen-
sions and structures. In contrast, conventional -matrix arith-
metic requires matched -matrix structures of the operands.
We therefore develop new -matrix arithmetic to handle un-
matched cases present in the proposed direct solver. Below, we
provide a detailed description of the algorithm.
As mentioned in Section III-D, is constructed by

grouping links to corresponding blocks in the upper level
frontal matrices, i.e., pointing them to the right blocks of the
-matrices of the upper-level frontal matrices. Let us denote
as the -matrix of one upper-level frontal matrix where
contributes. Since each frontal matrix has a unique local

-matrix structure instead of sharing a global one in common,
the row cluster of may not match that of locally built
for node , and the column cluster of may not match that
of . The unmatched clusters are clusters that do not share
either the same set of unknowns or the same subdivision. This
is very different from the traditional -based addition given
in mathematical literature, where the clusters are matched.
Hence, we extend the original -matrix algorithms to handle
the matrix operations with unmatched row and column clusters.
Basically, we need to perform

(12)

where and are, respectively, the row cluster and the column
cluster of matrix and . Since the
multiplication of and contributes to , we have

, and are shared unknown

3072 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 63, NO. 10, OCTOBER 2015

sets that are non-null. Therefore, to perform an unmatched op-
eration, we first find the shared unknown sets and ; then
perform the matrix operation as follows:

(13)

Algorithm 7: Unmatched Updating/Merging Algorithm

1 MulAddPro
2 if is non-leaf then
3 For each child block in , do
4 MulAddPro

5 else
6 Find the shared unknown sets , and
7 Do MulAdd

The pseudo-code of the unmatched updating/merging is given
in Algorithm 7, where function is
to perform the matrix operation with matched row and column
clusters. Even though the clusters match each other, the matrices
may not share the same -matrix structure in common. In the
proposed algorithm, this is taken into consideration by modi-
fying the basic -based algorithm of computing
to handle the structure difference. The -matrix-based addition
and multiplication are implemented based on supernodes. Fur-
thermore, we develop a collect operation to handle unmatched
matrix operations related to admissible blocks, as shown in Step
3 of Algorithm 6. Consider matrix operation , if
is admissible and is much smaller than , then adding them
directly using reduced SVD is not efficient. Hence, we store the
contribution from matrix first without adding it immediately.
When need to be factorized, all the small contributions will
be added together and then added upon . This addition is per-
formed by collecting children matrix blocks to one block level
by level through an accuracy controlled addition. This process
continues until we reach the level of .
The LU solution for one right-hand side can be done as

follows, where all multiplications and additions are performed
based on the aforementioned new -matrix algorithms suitable
for the proposed direct solution:

for each bottom-up
solve
update

end

for each node top-down
update

solve
end (14)

Fig. 4. Illustration of three separators and their boundary cluster. (a) Separator.
(b) Boundary.

IV. ACCURACY AND COMPLEXITY ANALYSIS

In this section, we analyze the accuracy and computational
complexity of the proposed direct solver.

A. Accuracy
In the proposed solver, each intermediate update matrix and

frontal matrix is represented by an -matrix. The reason why
such an -representation exists is as follows. The update and
frontal matrices are associated with the Schur complement. The
Schur complement can be written as , where

is the inverse of either an original FEMmatrix block or the
Schur complement obtained at the previous level. The original
FEM matrix has an exact -representation and its inverse has
an -representation with controlled accuracy [9]. As a result, all
the intermediate Schur complements and their inverses as well
as LU factors can be represented by -matrices, the accuracy
of which can be controlled by , as shown in (6).

B. Time and Memory Complexity
Consider a general 3-D problem having , where is

the number of unknowns along each dimension. By nested dis-
section, we recursively divide the computational domain into
eight subdomains, as shown in Fig. 4(a). The three shaded sur-
face separators, as a group, are denoted by one separator cluster
, and the boundary cluster of contains all the unknowns re-
siding on the six surfaces that completely enclose the separator
cluster . The depth of the elimination tree is . With
the bottom level of the tree denoted by , in Table I, we list
level-by-level the number of unknowns contained in each node

ZHOU AND JIAO: DIRECT FINITE-ELEMENT SOLVER OF LINEAR COMPLEXITY 3073

TABLE I
SIZE AND NUMBER OF NODES AT EACH LEVEL OF

of the elimination tree , the number of nodes (num), and
the number of unknowns contained in the boundary cluster of
the node .
For each node in the elimination tree, the dimension of

(frontal matrix) is the sum of the cardinality of the node and that
of its boundary cluster shown as follows:

(15)

It can be seen clearly from Fig. 4(b) that the cardinality of
boundary cluster is proportional to , while the cardinality
of the separator cluster is proportional to , where is the
side length of the domain. Therefore, we have

(16)

where is a constant. Hence, the dimension of frontal matrix
at level is approximately 9 2 2 .
Let be , the computational cost associated with

each node in the elimination tree, with conventional methods,
scales as since the frontal matrix is a dense matrix.
However, by the fast -matrix based arithmetic, the com-
plexity of dealing with the dense frontal matrix is reduced
to in time and in memory [9],
where denotes the rank at the th level. As a result, for
each frontal matrix at level , the time complexity of LU
factorization is

(17)

Each intermediate dense frontal matrix is the Schur comple-
ment of the original sparse FEM matrix in a 2-D domain (a sur-
face separator). This matrix is the original FEM matrix in the
2-D domain superposed with the contribution from its children
domains after the children domains are eliminated. Since the
rank of is no greater than the rank of either
or , the rank of each intermediate dense frontal matrix is
bounded by the rank of the inverse of the original sparse FEM
matrix in a 2-D domain. Hence, the rank obeys the 2-D-based
growth rate with electrical size rather than a 3-D-based growth
rate. Therefore, the rank is proportional to the square root of
the logarithm of the electrical size of the 2-D surface [18], [19],
and hence, rank . Substituting
it into the above, we obtain

(18)

As a result, the overall complexity of the LU factorization of the
proposed solver is

(19)

which is linear complexity. The last equality in the above holds
true because the denominator grows with much faster than the
numerator. Similarly, we have the complexity of the memory
consumption of the proposed solver as the following:

(20)

which is also linear.

V. CHOICE OF SIMULATION PARAMETERS

In the proposed solver, there are four simulation parameters:
leafsize, h-leafsize, , and truncation error . All these parame-
ters are constant, and hence, regardless of their choices, they do
not affect the complexity of the proposed direct solver. How-
ever, better choices of these simulation parameters can help re-
duce absolute run time and memory consumption.
In our implementation, the leafsize is usually chosen propor-

tional to the number of basis functions contained in each ele-
ment. The h-leafsize is determined based on the matrix size that
can be handled efficiently in a full-matrix format. As for the
choice of and , we use the following metric. Consider an ad-
missible block . Due to its rank- representation, the
storage cost of becomes instead of . In order to
save memory, we should ensure

(21)

Therefore, we can define the following ratio to evaluate the
memory efficiency of an -matrix representation:

(22)

We use (22) to adjust and so that there are as many admis-
sible blocks as possible with . When simulating a suite of
structures of increasing size, we usually use the smallest struc-
ture to determine the simulation parameters, and use them for
all structures in the same simulation suite.

VI. NUMERICAL RESULTS
The proposed direct solver has been used to simulate a variety

of complicated 3-D circuits with inhomogeneous lossy conduc-
tors and dielectrics from small to over 22 million unknowns on

3074 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 63, NO. 10, OCTOBER 2015

a single core. It has also been used to analyze large-scale an-
tennas. Its computational performance has been benchmarked
with existing direct FEM solvers that employ most advanced
direct sparse solutions, and also with a widely used commer-
cial iterative FEM solver. In addition to numerical validation,
the accuracy of the proposed direct solver has also been val-
idated by full-package measurements provided by a semicon-
ductor company.

A. Cavity-Backed Microstrip Patch Antenna and
Antenna Arrays
We first validated the accuracy of the proposed solver on a

cavity-backed patch antenna [21], [22], whose geometrical pa-
rameters are illustrated in Fig. 5(a) and given in the caption.
The substrate has a dieletric constant of 2.17 and loss tangent
of 0.0015. The top truncation boundary is placed 0.25 cm away
from the antenna patch, which is terminated by an open (Neu-
mann) boundary condition. The ground plane is of size 15 cm
10 cm, with the center area being the cavity-backed patch

antenna. The four sides of the ground plane are truncated by
the Neumann boundary condition. The input impedance (both
resistance and reactance) of the antenna from 1 to 4 GHz ex-
tracted from the proposed method is shown in Fig. 5, which
agrees very well with the results generated from the finite-el-
ement boundary-integral (FE-BI) method. This result is also
shown to agree very well with measured data given in [22].
We then simulated an array of such a patch antenna structure,

and also increased the array element number from 2 by 2 to 34
by 34, resulting in 14 449 to 3.47 million unknowns. The fre-
quency is 2.75 GHz. In Fig. 6, we plot the factorization time,
memory, and solution error with respect to for two choices
of truncation error, , and , respectively. The
solution error is measured by relative residual ,
where denotes the right-hand-side matrix whose column di-
mension ranges from 2 to 400. From Fig. 6, it can be seen
clearly that the proposed method exhibits linear complexity in
both CPU time and memory consumption with good accuracy
achieved in the entire unknown range. The smaller error at the
early stage is due to the fact that many blocks are full-matrix
blocks when the unknown number is small, and the admissible
block number has not saturated. In addition, when truncation
error is set to be smaller, the solution error measured by rela-
tive residual also becomes smaller. Meanwhile, the complexity
of the proposed solver remains linear regardless of the choice
of accuracy parameter.
In this example, we also simulated even larger electrical sizes

and examined the maximal rank across a wide range of electrical
size from small to 73 wavelengths. As can be seen from Fig. 7,
the rank grows slowly with electrical size, and the growth rate
agrees with the theoretical bound given in [18] and [19]. For
the 73-wavelength case involving 3600 antenna elements and
10 147 169 unknowns, the CPU time of the proposed solver is
shown to be less than 4000 s for factorization and the memory
cost is less than 6.4 GB, with a truncation error of .

B. Large-Scale Inductor Array
Next, a large-scale 3-D inductor array [9], [13] is simulated

at 100 GHz. The detailed geometrical and material data of a
single inductor element can be found in [9]. Notice that the same

Fig. 5. Simulation of a cavity-backed microstrip patch antenna in compar-
ison with reference FE-boundary integral results. (a) Illustration of the structure
(after [21] and [22], cm, cm, cm, cm,

cm. The location of load is shown in the figure with origin located
at patch center). (b) Input resistance . (c) Input reactance .

structure was simulated in [13], but at a 10 lower frequency. A
UNIX server having a single AMDCPU core at 2.8 GHz is used.
The mesh density is fixed, while the array-element number is in-
creased from 2 2 to 14 14, resulting in an unknown number
from 117 287 to 5 643 240. The electrical size of the largest array
is around 15.6 wavelengths. The conductors are also discretized

ZHOU AND JIAO: DIRECT FINITE-ELEMENT SOLVER OF LINEAR COMPLEXITY 3075

0 0.5 1 1.5 2 2.5 3 3.5

x 10
6

0

200

400

600

800

1000

1200

1400

1600

Unknowns

F
ac

to
riz

at
io

n
T

im
e

(s
)

Proposed Solver with Truncation Error 10−4

Proposed Solver with Truncation Error 10−8

(a)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Unknowns

M
em

or
y

(M
B

)

Proposed Solver with Truncation Error 10−4

Proposed Solver with Truncation Error 10−8

(b)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
6

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Unknowns

S
ol

ut
io

n
E

rr
or

Proposed Solver with Truncation Error 10−4

Proposed Solver with Truncation Error 10−8

(c)
Fig. 6. Simulation of a suite of patch antenna arrays from 14 449 to 3.47million
unknowns at 2.75 GHz for two choices of truncation error. (a) LU factorization
time. (b) Memory. (c) Solution error.

because of finite conductivity S/m. The simulation pa-
rameters used are leafsize -leafsize , and . The

Fig. 7. Rank versus electrical size of the large-scale patch antenna arrays.

truncation error is set to be . In Fig. 8(b), (c), and (d),
the factorization time, memory, and accuracy (assessed by rel-
ative residual) of the proposed solver is, respectively, plotted
versus . As can be seen, good accuracy is achieved across
the entire unknown range. For a higher order accuracy, instead
of reducing , one can add a few steps of iterative refinement,
which is a common approach used in direct sparse solvers. For
example, by adding a few (less than ten) steps of iterative re-
finement after the solution is obtained, the accuracy can be im-
proved to the 10 level, as shown by triangular marks in
Fig. 8(d). Meanwhile, the cost of iterative refinement is neg-
ligible since and have been computed. For comparison, a
state-of-the-art multifrontal based solver [2] and an -matrix
based direct FEM solver [9] are also used to simulate the same
example. From Fig. 8, it can be seen that neither the multifrontal
solver, nor the conventional -matrix solver is capable of sim-
ulating larger than 7 7 arrays due to their large memory re-
quirements. In contrast, the proposed direct solver greatly out-
performs the two solvers in time and memory with excellent
accuracy achieved in the entire unknown range. More impor-
tantly, the solver demonstrates a clear linear complexity, and
hence, is capable of solving much larger problems. The pro-
posed direct solver was also compared with a commercial-grade
iterative FEM solver available to us on PC platforms. For the 7
7 array having 98 right-hand sides, on a 2.4-GHz Intel CPU,

the proposed direct solver only cost 3313 s to solve the problem
with a matrix of size , whereas the iterative FEM
solver cost 8102 s to solve the same problem with
without discretizing conductors.

C. Simulation of System-Level Signal and Power
Integrity Problems
To examine the capability of the proposed direct finite-ele-

ment solver in solving real-world large-scale problems, an IBM
product-level full package, a picture of which can be seen in
[23], is simulated from 100 MHz to 30 GHz. The package con-
sists of 92 unique lines, pins, shapes, and other elements [24],
[23], having eight metal layers and seven dielectric layers. The
metal has finite conductivity of S/m, and the dielectric
layers have different dielectric constants.
We first develop a geometrical processing module to obtain

the geometry and material data from the board file of the full
IBM package. The layout of the full package reproduced by
our geometrical processing module is plotted in Fig. 9, in
which the blue region (in online version) is occupied by metals,

3076 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 63, NO. 10, OCTOBER 2015

Fig. 8. Simulation of a suite of 3-D inductor arrays from 117 287 to 5 643 240 unknowns at 100 GHz. (a) Illustration of an 14 by 14 array. (b) LU factorization
time versus (number of unknowns). (c) Memory. (d) Accuracy.

(a) (b) (c)

Fig. 9. Layout of a product-level package in different layers. (a) Layer 0. (b) Layer 2. (c) Layer 14.

whereas the white region signifies a dielectric region. The
even-numbered layers are metal layers, while the odd-numbered
layers only contain dielectrics and vias for connection. Notice
that a metal layer in semiconductor industry does not refer to
a layer fully occupied by metal. It only means a metal layer
in the processing technology in which the metals are present

and can be etched to make conductors of all kinds of shapes.
Between conductors in the metal layer is still dielectrics. The
entire layout is meshed into triangular prism elements.
We then simulate a suite of 19 substructures of the full

package, as illustrated in Fig. 10. The size of these structures
progressively increases from the smallest one of 500 m in

ZHOU AND JIAO: DIRECT FINITE-ELEMENT SOLVER OF LINEAR COMPLEXITY 3077

Fig. 10. 19 structures generated for solver performance verification.

width, 500 m in length, and four layers in thickness, to the
largest one of 9500 m in width, and 9500 m in length.
The discretization results in from 31 276 to 15 850 600 un-
knowns. The simulation parameters used are leafsize ,
-leafsize , and truncation error . The

computer used for simulation has 64-GB memory with a single
CPU core running at 3 GHz.
In Fig. 11, we plot the CPU time and memory consumption

of the proposed solver with respect to in comparison with
the direct finite-element solver that employs the most advanced
direct sparse solvers. These solvers include SuperLU 4.3
[20], UMFPACK 5.6.2 [2], MUMPS 4.10.0 [3], and Par-
diso in Intel MKL 12.0.0 [4]. For a fair comparison, all the
solvers are executed on the same machine that has an AMD
8222SE Opteron processor running at 3 GHz with 64-GB
system memory. All the solvers including the proposed solver
are compiled with the Intel Compiler if their source codes are
available. For Pardiso whose source code is not available,
we directly use its binary library in Intel MKL, which is a
highly optimized kernel. In addition, optimization flag
was used for all solvers when compiling. Intel MKL is used for
all blas and lapack related routines; and MUMPS is run in
its in-core mode.
In Fig. 11, the CPU time of each solver is plotted up to the

largest that the solver can handle on the given computing
platform. It is clear that the proposed direct finite-element solver
is much more efficient than the other solvers in both CPU time
and memory consumption. More importantly, the proposed di-
rect solver scales linearly with in both time andmemory com-
plexity, whereas the complexity of the other direct solvers is
shown to be much higher. With its optimal complexity, the pro-
posed direct solver takes less than 1.6 h to solve the large 15.8
million unknown case on a single core. To examine the accuracy
of the proposed solver, in Fig. 11(c), we plot its relative residual

with respect to . Excellent accuracy can be
observed. Note the last point in Fig. 11(b) is due to the fact that
the computer used has only 64-GB memory. The computation

Fig. 11. Complexity and performance verification of the proposed direct solver
for simulating a product-level package from 31 276 to 15 850 600 unknowns. (a)
Time complexity. (b)Memory complexity. (c) Solution error (defined as relative
residual).

is still finished because the operating system manages to collect
memory required for computation.
We also examined the CPU cost as a function of accuracy

of the proposed method. We set the truncation error to be

3078 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 63, NO. 10, OCTOBER 2015

Fig. 12. CPU time versus as a function of accuracy. (a) CPU time. (b) So-
lution error.

10 10 10 10 10 and 10 , respectively. For
each accuracy setting, we simulated a suite of the IBM plasma
structures. The CPU time corresponding to different accuracy
settings with respect to is shown in Fig. 12(a), and the solu-
tion error in terms of relative residual is shown in Fig. 12(b).
It is evident that the accuracy of the proposed direct solution
can be controlled by parameter without sacrificing the linear
complexity of the proposed direct solver.
Next, we benchmark the accuracy of the proposed solver with

measurements. The critical circuits measured involve eight in-
terconnects having 16 ports for which S-parameters were ex-
tracted from 100 MHz to 30 GHz by the proposed solver. Since
the measurements were done in the time domain, which cov-
ered a broad frequency range from 30 GHz all the way down
to zero frequency, for low-frequency data below 100 MHz, we
employ the method in [25] to obtain field solutions and thereby
S-parameters. Basically, we can use one solution obtained at a
frequency where the FEM has not broken down to accurately
obtain the FEM solutions at any breakdown frequency, as shown
in [25]. Above the breakdown frequency, there is a range of fre-
quencies (up to 2.1 GHz) where the FEM matrix is very ill con-
ditioned although not singular yet. In this range, we set the trun-
cation error as to generate accurate results, while above
this range we use as the truncation error for all frequen-
cies. It is also worth mentioning that the ill-conditioning issue

Fig. 13. S-parameters measured at the input and the output ports versus fre-
quency. (a) Magnitude. (b) Phase.

of an FEM matrix is not as severe as that in an integral equation
solver. This is because the FEM matrix is sparse, at any point of
the direct solution procedure, one only needs to factorize a small
frontal matrix instead of the big entire systemmatrix. This is be-
cause the elimination of any unknown only affects a subset of
unknowns; whereas in a dense matrix resulting from an integral
equation formulation, the elimination of any unknown affects
all the other unknowns.
Since the interconnects are routed from the topmost layer

(chip side) to the bottom-most layer (BGA side) [23], [24], ver-
tically, the entire stack of the eight metal layers and seven inter-
layer dielectrics is simulated by the proposed solver. Horizon-
tally, the area simulated is progressively enlarged until the sim-
ulation results do not have any noticeable change. The resul-
tant number of unknowns is 3 149 880. It takes the proposed di-
rect solver less than 3.3 h and 29-GB peak memory at each fre-
quency to extract the 16 by 16 S-parameter matrix, on a single
Intel Xeon E5410 CPU running at 2.33 GHz. With this set of
S-parameters, one can study the time-domain behavior of the
interconnects under any source and load conditions. In Fig. 13,
we plot the crosstalk between the near end of line 6 located at

ZHOU AND JIAO: DIRECT FINITE-ELEMENT SOLVER OF LINEAR COMPLEXITY 3079

Fig. 14. Time-domain correlation with full-package measurements.

the chip side and the far end of line 2 located at the bottom BGA
side, with all the other ports left open, from 100MHz to 30 GHz.
Since the measurements are performed in the time domain [24],
[23], in Fig. 14 we plot the voltage obtained from the proposed
solver in comparison with the full-package measurements. Very
good agreement is observed. The voltage is measured at the far
end of line 2 located at the bottom BGA side, with the near-end
of line 6 on the chip side excited by a step function.
We have also simulated the full IBM package with the entire

package area and the full stack of 15 dielectric layers taken into
account. The total number of unknowns generated is 22.8488
million, where a fine resolution of 4 m is used for critical cir-
cuits, a resolution of 20 m for intermediate ones, and 95 m
elsewhere. It should be noted that we cannot scale the CPU time
cost in simulating the above 15.8 million unknown case to ob-
tain the time of the full-package case because the former only
consists of four dielectric layers. Hence, the constant in front
of is different in the two examples. With trunca-
tion error, the CPU time for the factorization and solution of
the full package structure is found to be 58 976 s (16 h), and
the memory consumption is 224.9 GB, on a PowerEdge R620
server having 256-GB system memory with a single Intel Xeon
E5-2690 3.0 GHz CPU. In Fig. 15, corresponding to Fig. 9, we
plot the magnitude of electric field across the whole package
area in different layers in log scale. The solution error of all
22.8488 million unknowns, measured in relative residual, is
found to be 0.000360501.

VII. CONCLUSION
A linear-complexity direct sparse solver has been developed

for FEM-based electromagnetic analysis of general 3-D prob-
lems containing arbitrarily shaped and inhomogeneous conduc-
tors and dielectrics. The computational complexity of the pro-
posed direct solver has been theoretically proven and numeri-
cally verified for analyzing both circuit problems and electri-
cally large problems. Comparisons with both state-of-the-art
direct FEM solvers that employ most advanced sparse solvers
such as SuperLU 4.3 [20], UMFPACK 5.6.2 [2], MUMPS
4.10.0 [3], andPardiso in IntelMKL [4], and a commercial
iterative FEM solver have demonstrated the clear advantages

Fig. 15. Electric field distribution of a product-level full package in different
layers simulated by the proposed solver at 30 GHz. (a) Layer 0. (b) Layer 2. (c)
Layer 14.

3080 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 63, NO. 10, OCTOBER 2015

of the proposed direct solver. In addition to numerical valida-
tion, the accuracy of the proposed direct solver has also been
validated by measurements provided by industry. Recently, this
work has also been extended to efficient LU solutions withmany
right-hand sides [26], and the solution of general sparse matrices
without mesh information [27].

REFERENCES
[1] J. W. Liu, “The multifrontal method for sparse matrix solution: Theory

and practice,” SIAM Rev., vol. 34, no. 1, pp. 82–109, 1992.
[2] T. A. Davis, “Algorithm 832: Umfpack v4. 3—An unsymmetric-pat-

tern multifrontal method,” ACM Trans. Math. Softw., vol. 30, no. 2, pp.
196–199, 2004.

[3] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent, “Multifrontal parallel
distributed symmetric and unsymmetric solvers,” Comput. Methods
Appl. Mech. Eng., vol. 184, no. 2, pp. 501–520, 2000.

[4] Intel Math Kernel Library. ver. 12.0.0, Intel Corporation, Santa Clara,
CA, USA, 2011.

[5] A. George, “Nested dissection of a regular finite element mesh,” SIAM
J. Numer. Anal., vol. 10, no. 2, pp. 345–363, 1973.

[6] P. Gurgul, “A linear complexity direct solver for -adaptive grids with
point singularities,” Procedia Comput. Sci., vol. 29, pp. 1090–1099,
2014.

[7] D. Goik, K. Jopek, M. Paszynski, A. Lenharth, D. Nguyen, and K.
Pingali, “Graph grammar based multi-thread multi-frontal direct solver
with galois scheduler,” Procedia Comput. Sci., vol. 29, pp. 960–969,
2014.

[8] J. Choi, R. J. Adams, and C. F. X. , “Sparse factorization of finite el-
ement matrices using overlapped localizing solution modes,” Microw.
Opt. Technol. Lett., vol. 50, no. 4, pp. 1050–1054, 2008.

[9] H. Liu and D. Jiao, “Existence of -matrix representations of the in-
verse finite-element matrix of electrodynamic problems and -based
fast direct finite-element solvers,” IEEE Trans. Microw. Theory Techn.,
vol. 58, no. 12, pp. 3697–3709, Dec. 2010.

[10] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, “Superfast multifrontal
method for large structured linear systems of equations,” SIAM J. Ma-
trix Anal. Appl., vol. 31, no. 3, pp. 1382–1411, 2009.

[11] H. Liu and D. Jiao, “Layered -matrix based inverse and LU algo-
rithms for fast direct finite-element-based computation of electromag-
netic problems,” IEEE Trans. Antennas Propag., vol. 61, no. 3, pp.
1273–1284, Mar. 2013.

[12] O. Schenk, K. Gartner, and W. Fichtner, “Efficient sparse LU factor-
ization with left-right looking strategy on shared memory multiproces-
sors,” BIT Numer. Math., vol. 40, no. 1, pp. 158–176, 2000.

[13] B. Zhou, H. Liu, and D. Jiao, “A direct finite element solver of
linear complexity for large-scale 3-D circuit extraction in multiple
dielectrics,” in Proc. 50th ACM/EDAC/IEEE Design Automat. Conf.,
2013, pp. 1–6.

[14] B. Zhou and D. Jiao, “A linear complexity direct finite element solver
for large-scale 3-D electromagnetic analysis,” in IEEE AP-S Int. Symp.,
2013, pp. 1684–1685.

[15] B. Zhou and D. Jiao, “Direct full-wave solvers of linear complexity for
system-level signal and power integrity co-analysis,” in IEEE Signal
Power Integrity Int. Conf., 2014, pp. 721–726.

[16] B. Zhou and D. Jiao, “Direct finite element solver of linear complexity
for analyzing electrically large problems,” in 2015 31st Int. Rev. Progr.
Appl. Comput. Electromagn., 2014, pp. 1–2.

[17] S. Börm, L. Grasedyck, and W. Hackbusch, “Hierarchical matrices,”
Max Planck Inst. Math. Sci., Leipzig, Germany, Lecture Note 21, 2003.

[18] H. Liu and D. Jiao, “A theoretical study on the rank’s dependence with
electric size of the inverse finite element matrix for large-scale electro-
dynamic analysis,” in IEEE Int. AntennasPropag. Symp., 2012, pp. 1–2.

[19] W. Chai and D. Jiao, “A theoretical study on the rank of integral opera-
tors for broadband electromagnetic modeling from static to electrody-
namic frequencies,” IEEE Trans. Compon., Packag., Manuf. Technol.,
vol. 3, no. 12, pp. 2113–2126, Dec. 2013.

[20] X. S. Li, “An overview of superlu: Algorithms, implementation, and
user interface,” ACM Trans. Math. Softw., vol. 31, no. 3, pp. 302–325,
2005.

[21] D. Jiao and J. Jin, “Fast frequency-sweep analysis of cavity-backed
microstrip patch antennas,”Microw. Opt. Technol. Lett., vol. 22, no. 6,
pp. 389–393, 1999.

[22] J.-M. Jin, The Finite Element Method in Electromagnetics. New
York, NY, USA: Wiley, 2002.

[23] J. D. Morsey et al., “Massively parallel full-wave modeling of ad-
vanced packaging structures on bluegene supercomputer,” in IEEE
Electron. Compon. Technol. Conf., 2008, pp. 1218–1224.

[24] J. Morsey, “Documents on IBM plasma package structure,” IBM,
Hopewell Junction, NY, USA, 2013.

[25] J. Zhu and D. Jiao, “A fast full-wave solution that eliminates the
low-frequency breakdown problem in a reduced system of order one,”
IEEE Trans. Compon., Packag., Manuf. Technol., vol. 2, no. 11, pp.
1871–1881, Nov. 2012.

[26] B. Zhou and D. Jiao, “Linear-complexity direct finite element solver
accelerated for many right hand sides,” in IEEE AP-S Int. Symp., 2014,
pp. 1383–1384.

[27] B. Zhou and D. Jiao, “Linear-complexity direct finite element solver
for irregular meshes and matrices without mesh,” in IEEE AP-S Int.
Symp., 2015, pp. 1–2.

Bangda Zhou received the B.S. degree in electrical
engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2010, and is currently working
toward the Ph.D. degree in electrical and computer
engineering at Purdue Univesity, West Lafayette, IN,
USA.
He is currently with the and works in the On-Chip

Electromagnetics Group, School of Electrical and
Computer Engineering, Purdue University. His
research interests include computational electromag-
netics, high-performance computing for the analysis

of very large-scale integrated circuits and package problems, and inverse
design of electromagnetic structures.
Mr. Zhou was the recipient of the Best Student Paper Award of the 2015 In-

ternational Annual Review of Progress in Applied Computational Electromag-
netics (ACES), the Best Paper in Session Award of the 2014 SRC TECHCON
conference, and an Honorable Mention Award and a Best Student Paper Finalist
Award of the IEEE International Symposium on Antennas and Propagation in
2013 and 2014, respectively.

Dan Jiao (S’00–M’02–SM’06) received the Ph.D.
degree in electrical engineering from the University
of Illinois at Urbana-Champaign, Urbana, IL, USA,
in 2001.
She then joined the Technology Computer-Aided

Design (CAD) Division, Intel Corporation, until
September 2005, where she was a Senior CAD En-
gineer, Staff Engineer, and Senior Staff Engineer. In
September 2005, she joined Purdue University, West
Lafayette, IN, USA, as an Assistant Professor with
the School of Electrical and Computer Engineering.

She is currently a Professor with Purdue University. She has authored 3 book
chapters and over 220 papers in refereed journals and international confer-
ences. Her current research interests include computational electromagnetics;
high-frequency digital, analog, mixed-signal, and RF integrated circuit (IC) de-
sign and analysis; high-performance very large scale integration (VLSI) CAD;
modeling of microscale and nanoscale circuits; applied electromagnetics; fast
and high-capacity numerical methods; fast time-domain analysis, scattering
and antenna analysis; RF, microwave, and millimeter-wave circuits; wireless
communication; and bioelectromagnetics.
Dr. Jiao has served as a reviewer formany IEEE publications and conferences.

She is an associate editor for the IEEE TRANSACTIONS ON COMPONENTS,
PACKAGING, AND MANUFACTURING TECHNOLOGY. She was the recipient
of the 2013 S. A. Schelkunoff Prize Paper Award of the IEEE Antennas and
Propagation Society, which recognizes the Best Paper published in the IEEE
TRANSACTIONS ONANTENNAS ANDPROPAGATION during the previous year. She
has been named a University Faculty Scholar by Purdue University since 2013.
She was among the 85 engineers selected throughout the nation for the National
Academy of Engineerings 2011 U.S. Frontiers of Engineering Symposium. She
was the recipient of the 2010 Ruth and Joel Spira Outstanding Teaching Award,
the 2008 National Science Foundation (NSF) CAREER Award, the 2006 Jack
and Cathie Kozik Faculty Start Up Award (which recognizes an outstanding
new faculty member of the School of Electrical and Computer Engineering,
Purdue University), a 2006 Office of Naval Research (ONR) Award under the
Young Investigator Program, the 2004 Best Paper Award presented at the Intel
Corporation’s annual corporate-wide technology conference (Design and Test
TechnologyConference) for herwork on generic broadbandmodel of high-speed
circuits, the 2003 Intel Corporation Logic Technology Development (LTD)
Divisional Achievement Award, the Intel Corporation Technology CAD Divi-
sional Achievement Award, the 2002 Intel Corporation Components Research
Award, the Intel Hero Award (Intel-wide she was the tenth recipient), the Intel
Corporation LTD Team Quality Award, and the 2000 Raj Mittra Outstanding
Research Award presented by the University of Illinois at Urbana–Champaign.

