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Rapid Modeling and Simulation of Integrated
Circuit Layout in Both Frequency and Time

Domains From the Perspective of Inverse
Li Xue and Dan Jiao , Fellow, IEEE

Abstract— In this article, starting from full-wave partial dif-
ferential equation (PDE)-based Maxwell’s equations where E and
H are coupled, we derive a closed-form model of the inverse of
Maxwell’s system of equations in the physical layout of an inte-
grated circuit, package, and board. In this model, we decompose
the inverse rigorously into R, C, L, and full-wave components,
with neither numerical computation nor approximation, and for
an arbitrary physical layout. As a result, each component can
be found independently and then superposed to obtain the total
response of a layout to any circuit stimuli. The time marching
and point-by-point frequency sweeping are also avoided for
the RC component as this component’s time and frequency
dependencies are analytically revealed in the proposed model.
Moreover, the full-wave component is efficiently represented by
a small number of high-frequency modes. Using the proposed
model, not only many accuracy issues related to existing layout
modeling can be addressed but also we drastically speed up layout
modeling and simulation and provide circuit designers with an
effective model for layout automation. In addition, we develop fast
and large-scale algorithms to find each component of the inverse
rapidly, where many steps are made analytical, thus further
saving CPU run time. The proposed work has been applied to
large-scale layout extraction and analysis. Superior performance
has been demonstrated in accuracy, efficiency, and capacity.

Index Terms— Broadband modeling, fast solvers, finite dif-
ference methods, full-wave analysis, integrated circuits (ICs),
inverse, large-scale analysis, layout extraction, layout modeling,
layout simulation, Maxwell’s equations, model order reduction,
RC extraction, simulation.

I. INTRODUCTION

ACCURATE and large-scale layout models are of critical
importance to the design of integrated circuits (ICs),

packages, and boards. A physical design tool built upon
inaccurate or erroneous layout models, no matter how superior
it is in machine learning and optimization algorithms, will fail
to generate a working layout within feasible run time.
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In prevailing layout modeling, static or quasi-static field
solvers are employed to extract C-, R-, and L-based cir-
cuit models of the physical layout of an IC, package,
or board [1]–[10]. These models are then stitched together to
perform a circuit simulation. There are many ways to stitch the
C models with the RL-models that are extracted independently
of each other. Which one correctly captures the physics, such
as distributed effects and 3-D effects in the physical layout,
is unknown even at relatively low working frequencies, where
static physics is dominant. As another example, the substrate
is considered to be one of the main sources for interference
and crosstalk. However, the global effect of the substrate is
not well captured in existing layout models.

There exist, also, full-wave methods for layout modeling,
such as the finite difference method [11], [12], the finite
element method [13]–[18], and the integral equation-based
method [19]–[25]. In these methods, no RLC extraction is
performed, full-wave Maxwell’s equations are directly solved
to analyze the physical layout, and hence, the accuracy at high
frequencies can be ensured. However, the direct field-based
representation of the layout and the resulting field solution
remain too abstract to be put into practical use by circuit
designers for circuit diagnosis and performance optimization.
A full-wave model is expected to reduce to the static- and
quasi-static-based RLC models at low frequencies; however,
this relationship is not established by existing full-wave
solvers. In fact, full-wave solvers break down at low fre-
quencies because of finite machine precision and the loss
of frequency-dependent terms [26]–[29]. In addition, because
full-wave solvers model more physics than their static and
quasi-static-based counterparts, they are considered slower in
CPU run time and smaller in the problem size they can handle.

From the aforementioned, it can be seen that in static- or
quasi-static-based approaches, a forward model of the layout in
a SPICE-compatible format, i.e., RLC-model, is constructed.
This step is called extraction in the circuit community. After
extraction, circuit simulation is performed on the extracted
circuit model of the layout to analyze the layout response.
In contrast, in a full-wave approach, no extraction is per-
formed; the forward model of the layout is nothing but
the discretized Maxwell’s equations in the layout, which is
then directly solved in the frequency or time domain. Both
approaches focus on the forward model of the layout. This
is understandable because given a system of equations in an
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arbitrary layout, its solution or inverse generally is not known,
and it has to be numerically found.

In this article, different from prevailing approaches where
the forward model of the layout is constructed and then
simulated, we analytically derive a closed-form model of
the inverse of Maxwell’s system of equations in the phys-
ical layout. We also derive such an inverse from full-wave
Maxwell’s equations where E and H are coupled so that
we bypass the inaccuracy issue arising from stitching circuit
models independently extracted from decoupled E and H
equations. Moreover, the resultant model is correct from zero
to high frequencies where Maxwell’s equations are valid. More
importantly, in the proposed inverse model, we are able to
analytically decompose the layout response into R, C , L, and
full-wave components with neither numerical computation nor
approximation. As a result, each component can be obtained
separately and then summed up to obtain a total layout
response. This decomposed yet rigorous model greatly helps
circuit diagnoses since now designers are able to analyze each
component one by one and identify which component is the
root cause for the design failure. Such a decomposition also
facilitates efficient layout modeling and simulation since if
an IC is dominated by RC effects, then we do not have
to compute the full-wave component, and vice versa. Mean-
while, it makes parallelization straightforward. Unlike exist-
ing full-wave models, the proposed inverse model naturally
reduces to its RLC-based counterpart at low frequencies, and
it also avoids the inaccuracy issues caused by stitching R, L,
and C elements in an empirical way. Furthermore, it reveals
the relationship between a full-wave model and a static model
of the layout in a single model and in a closed form.

In addition, we develop fast algorithms to obtain each
component of the inverse rapidly. The time marching and
point-by-point frequency sweeping are also avoided for the
R and C components of the layout response as their
time and frequency dependencies are analytically known in
the proposed inverse model. The proposed work has been
applied to large-scale layout extraction and analysis. Its
performance in accuracy, efficiency, and capacity has been
demonstrated.

This article is a significant expansion of [30]. In this article,
we present a detailed derivation of the inverse of Maxwell’s
system of equations in the layout and show how it can be
decomposed into R, C , L, and full-wave components. The
analytical methods for finding the null-space governing the
RC component are presented in both uniform and nonuniform
grids. A fast algorithm for finding the full-wave component is
developed, which significantly extends this work to analyze
higher-frequency and larger-scale layouts. Many new and
realistic examples are simulated to examine the performance
of the proposed work. The rest of this article is organized as
follows. In Section II, we introduce the background of this
work and the difference between this work and existing work.
In Section III, we present the proposed inverse model and its
computation-free decomposition. In Section IV, we elaborate
the analytical methods for finding the null-space vectors of the
curl–curl operators, and explain how to efficiently find the RC

component of the layout response. In Section V, we develop
an efficient method for finding full-wave modes. In Section VI,
extensive numerical results are presented to demonstrate the
accuracy, efficiency, and capacity of the proposed work in
layout modeling and simulation. We summarize this article
in Section VII.

II. BACKGROUND

A. Discretization of Full-Wave Maxwell’s Equations in a
Physical Layout

Consider an arbitrary layout of analog and mixed-signal ICs,
packages, and boards, which consists of interconnects, RF/
analog components, substrates, materials, and so on. The phys-
ical phenomena in such a layout from dc to high frequencies
are governed by Maxwell’s equations as the following:

∇ × E = −μrμ0
∂H
∂ t

∇ × H = σE + ε
∂E
∂ t

+ J (1)

where μ0 is free-space permeability, μr is relative permeabil-
ity, ε is permittivity, σ is conductivity, J is current density,
and r denotes a point in a 3-D space.

We discretize the entire physical layout into a grid to capture
the geometry and inhomogeneous materials. A Cartesian grid
is used instead of irregular meshes because it is natural for
discretizing a majority of the layout structures, and also it
removes the step of 3-D meshing that can be computationally
expensive. Using an FDTD method [12], [31] to discretize (1)
and also to eliminate the magnetic field unknown, we can
obtain the following linear system of equations:

diag{�}d2 e

dt2 + diag{σ }de

dt
+ Se = −d J

dt
(2)

where e denotes a vector consisting of the tangential electric
field along each edge of the grid whose number is Ne , J is
a vector of current density, and diag{�} and diag{σ } are diag-
onal matrices of permittivity and conductivity, respectively.
S in (2) is a sparse matrix, and Se represents a discretized
∇ × [μ−1∇ × E] operation.

Equation (2) has an obvious frequency-domain counterpart
as the following:
−ω2diag{�}e(ω) + jωdiag{σ }e(ω) + Se(ω) = − jωJ (ω) (3)

which we denote in short by

Y(ω)e(ω) = I(ω) (4)

where

Y(ω) = D + S (5)

and

D = −ω2diag{�} + jωdiag{σ } (6)

is diagonal.
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B. Difference Between the Proposed Work and Existing
Layout Modeling and Simulation Methods

In existing layout modeling and simulation methods,
static- and quasi-static-based approaches do not solve a
full-wave system, such as (2) or (3). Instead, they solve
an electrostatic equation for C-extraction [2], [3], [5]–[7];
a quasi-magnetostatic equation for RL extraction [4], [8]. The
R, C , and L elements are then stitched together to build a
SPICE model of the layout, upon which a circuit simulation
is performed.

In full-wave-based modeling and simulation methods,
the system of equations, such as (2) and (3), is directly solved
without performing an RLC extraction. However, the direct
field-based representation of the layout and the resulting field
solution are abstract for circuit designers to put into practical
use. Furthermore, even for layouts dominated by static effects,
one still has to solve the entire full-wave equation, i.e., no
terms can be dropped directly from (2) and (3) to simplify the
analysis. Moreover, a full-wave model should reduce to the
static- and quasi-static-based RLC models at low frequencies;
however, a brute-force solution of (2) and (3) does not reveal
such a relationship. In fact, full-wave solvers break down
at low frequencies. Many methods have been studied to
extend the full-wave solvers to low frequencies, which add
extra computational cost [26]–[29]. Some stitch static and
quasi-static solvers with the full-wave solutions. However, it is
unknown how to stitch them in a rigorous way. Furthermore,
the capacity of existing full-wave solvers is limited when a
full-chip and/or complete-package analysis is required.

In this article, our approach is to derive a closed-form
model of the inverse of Y. Since this model starts from the
full-wave Maxwell’s equations, it is valid from zero to high
frequencies. In this inverse model, we analytically identify R,
C , L, and full-wave components. This approach has not been
explored in previous methods. It naturally reduces to a static
RLC-model at low frequencies and reveals that the complete
layout model is an exact summation of the RLC-model and
the full-wave model in the inverse. For layouts dominated by
static effects, no extra computation is needed for finding the
full-wave component, and vice versa. We also develop fast
methods to find each component of the inverse efficiently.

III. PROPOSED CLOSED-FORM MODEL OF THE INVERSE

OF Y AND ITS DECOMPOSITION INTO R, C , L , AND

FULL-WAVE COMPONENTS

Using the new single-grid patch-based formulation of the
FDTD developed in [34], S in (2) can be written as a sum-
mation of a rank-1 matrix of each patch over all patches in a
grid regardless of whether the grid is 2-D or 3-D. To elaborate,
for each patch, we generate one row vector S(i)

e shown as the
following:

S(i)
e =

[
− 1

Li

1

Li

1

Wi
− 1

Wi

]
⊕ zeros(1, Ne) (7)

where ⊕ denotes an extended addition based on the global
indexes of the four local E unknowns of patch i , and Li and
Wi are, respectively, the two side lengths of patch i . We also

generate one column vector S(i)
h in each patch. In a uniform

grid, the following is true:
S(i)

h = (
S(i)

e

)T
. (Uniform grid). (8)

In a nonuniform grid, for better accuracy, we should replace
the length in S(i)

h by an average length across the two patches
sharing the E edge. Hence

S(i)
h =

[
− 1

Lave
i1

1

Lave
i2

1

Lave
i3

− 1

Lave
i4

]T

⊕ zeros(Ne, 1)

(Nonuniform grid) (9)

where the subscripts i1, . . . , i4 denote the four edge indexes
in the i th patch, and the superscript ave denotes an average
length.

Multiplying S(i)
h by S(i)

e and adding the resultant rank-1
matrix of each patch, we obtain a global S as the following:

S =
Nh∑

i=1

μi
−1(S(i)

h

)(
S(i)

e

)
(10)

where Nh is the patch number, which is also the number of
magnetic field unknowns. The above-mentioned equation can
also be rewritten as

S = ShD1/μSe (11)

in which Sh’s i th column is S(i)
h , whereas Se’s i th row is S(i)

e
and D1/μ is a diagonal matrix of μ−1.

S has a null-space, which is evident from (11) as Sh ’s
column number Nh is less than row number Ne . Since S
represents a discretized ∇ ×μ−1∇× operation, the null-space
represents a gradient field in the grid. Let it be V0. It satisfies

SV0 = 0. (12)

Let Vh be its complementary space. The number of vectors
in V0 and Vh is equal to the matrix size of S. Therefore,
the solution of (3) can be rigorously expanded in the space of
[V0 D−1Vh ] as the following:

e = V0 y0︸ ︷︷ ︸
RC-effects

+ D−1Vh yh︸ ︷︷ ︸
RL and full-wave effects

. (13)

Here, we use [V0 D−1Vh] instead of [V0 Vh ] because in this
way, after testing (3) by VT

0 and (D−1Vh)T , we can decouple
the solution of y0 from that of yh , which will become clear
in the sequel. Otherwise, the two are coupled, and it becomes
difficult to develop an explicit inverse model. In addition, since
D is diagonal, computing D−1 is trivial. The V0 component
of e has a zero curl; hence, it represents the RC component
of the layout response, as noted in (13). In contrast, the Vh

component characterizes the inductance and full-wave effects.
V0 can be found by solving the eigenvectors of S corre-

sponding to zero eigenvalues; however, this is computationally
expensive. In this article, we develop an analytical method
for finding V0 solely based on the mesh information, thus
removing the cost of numerically computing V0. The details
are given in Section IV. As far as Vh is concerned, if we
use the eigenvectors of S corresponding to the nonzero eigen-
values, we can also find an analytical way to obtain them.
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However, the number of such Vh can be too many to use
even for an electrically small structure. For example, a static
field distribution can also be decomposed into many of such
Vh modes since the static field distribution can also have a
rapid space variation. In contrast, if using the eigenvectors
of a quadratic eigenvalue problem governing (2), the number
of Vh required is small since each of these eigenvectors is a
source-free solution of the original problem. The weight of
these modes in the field solution is inversely proportional to
the magnitude of the eigenvalue [32]. Nevertheless, solving
the quadratic eigenvalue problem can also be computationally
expensive. In this article, we develop an efficient solution for
finding Vh , and the details of which are given in Section V.

Now, assuming V0 and Vh have been obtained, we show
how to derive a closed-form model of the inverse. To find the
solution of y0, we can substitute (13) into (3) and multiply (3)
from the left-hand side by VT

0 , obtaining

VT
0 (D + S)(V0 y0 + D−1Vh yh) = − jωVT

0 J. (14)

If VT
0 S = 0, then the above-mentioned equation can be readily

simplified to

VT
0 DV0 y0 = − jωVT

0 J. (15)

However, we find the above-mentioned equation is only true
in a uniform grid. This is because in a uniform grid, S
is symmetric; hence, from SV0 = 0, taking a transpose,
we obtain VT

0 S = 0. This is not the case in a nonuniform grid,
as can be seen from (9). A nonuniform grid is unavoidable
in discretizing a physical layout. If using a uniform grid,
then the number of discretzation cells could be too many to
be computed efficiently due to the presence of various fine
features in the layout. This problem is solved in this article by
finding a left null-space of S and also analytically. This left
null-space is denoted by V0a , which satisfies

VT
0aS = 0 (16)

while preserving the property of

VT
0aVh = 0. (17)

The analytical approach for finding V0a is detailed in
Section IV.

Multiplying VT
0a on both sides of (3) and utilizing (16)

and (17), we obtain

VT
0a(−ω2diag{�} + jωdiag{σ })V0 y0 = − jωVT

0a J (18)

which is a system of equations for y0 only, and hence, we can
solve the above-mentioned equation without concerning about
the yh component. We further decompose the solution of the
above-mentioned equation into

V0 y0 = V0d y0d + V0c y0c (19)

where V0d is in the null-space of diag{σ }, denoting the field
outside the conductors, and V0c is V0d ’s complementary space
in V0. These two column spaces can again be analytically
obtained without any computation, and the details of which
are given in Section IV. The left null-space V0a can also be
decomposed into V0da and V0ca, in the same way as V0 is

decomposed into V0d and V0c. Substituting (19) into (18),
the resulting rows of equations corresponding to V0da can be
written as

VT
0da(−ω2diag{�} + jωdiag{σ })

(V0d y0d + V0c y0c) = − jωVT
0da J (20)

and the rest corresponding to V0ca can be written as

VT
0ca(−ω2diag{�} + jωdiag{σ })(V0d y0d + V0c y0c)

= − jωVT
0ca J. (21)

Since diag{σ }V0d = 0 and VT
0dadiag{σ } = 0, (20) can be

rewritten as

VT
0da( jωdiag{�})V0d y0d +VT

0da( jωdiag{�})V0c y0c =−VT
0da J.

(22)

Also, because diag{σ }V0d = 0, (21) becomes

VT
0ca( jωdiag{�})V0d y0d +VT

0ca( jωdiag{�}
+ diag{σ })V0c y0c = −VT

0ca J. (23)

Because in the conductor, the displacement current is much
smaller than the conduction current, and (23) can be accurately
approximated as

VT
0ca( jωdiag{�})V0d y0d

+VT
0cadiag{σ }V0c y0c = −VT

0ca J. (24)

Notice that the displacement current ignored in the
above-mentioned equation is the displacement current inside
conductors. This can be done because for ω� to be higher than
σ inside a good conductor of 107 conductivity, the frequency
has to be higher than 1017 Hz. In addition, when the working
frequency is really that high, the curl of electric field is not
zero any more, and hence, there is no need to find the V0
solution.

In order to solve y0, we first solve the imaginary part of
y0d , Im[y0d], from (22) as

Im[y0d ] =
(
VT

0dadiag{�}V0d
)−1(VT

0da J
)

ω
. (25)

Denote it in short by y0d,i/ω. We then substitute Im[y0d]
into (24) to solve y0c, which is

y0c = (
VT

0cadiag{σ }V0c
)−1( − VT

0ca J

+VT
0cadiag{�}V0d y0d,i

)
. (26)

After getting y0c, we substitute it back to (22) to obtain the
real part of y0d , which is

Re[y0d ] = −(
VT

0dadiag{�}V0d
)−1(VT

0dadiag{�}V0c y0c
)
. (27)

Equations (25)–(27) make the complete solution of y0 in (19).
Multiplying (D−1Vh1)

T on both sides of (3) (where
VT

h1V0 = 0), we obtain(
VT

h1D−1YD−1Vh
)
yh = − jωVT

h1D−1 J (28)

from which yh can be solved.
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Summarizing the results in (25)–(28), we obtain a final
model of the inverse of Y as

Y−1

= V0d D−1
�,0VT

0da︸ ︷︷ ︸
C component

/(− jω)

+ V0dD−1
�,0V

T
0dadiag{�}V0cD−1

σ,0VT
0ca

(
I−diag{�}V0dD−1

�,0VT
0da

)
︸ ︷︷ ︸

R component

+V0cD−1
σ,0VT

0ca

(
diag{�}V0dD−1

�,0VT
0da − I

)
︸ ︷︷ ︸

R component

− jω D−1Vh
(
VT

h1D−1YD−1Vh
)−1VT

h1D−1︸ ︷︷ ︸
L and full-wave component

(29)

in which

D�,0 = VT
0dadiag{�}V0d (30)

Dσ,0 = VT
0cadiag{σ }V0c (31)

are both frequency independent. From (29), we can clearly
identify the C , R, L, and full-wave components of the layout
response. For the RC component, their frequency, and hence
time dependence, are also analytically revealed. In the follow-
ing, we present fast algorithms for computing each component.

It is also worth mentioning although (2) is free of matrix
solution in its explicit time marching, direct simulation of
(2) is computationally prohibitive for large layouts because
a tremendous number of time steps must be simulated due to
the extremely small space step. Meanwhile, even though the
simulation can be carried out, the field-based solution is not
circuit intuitive and is difficult to be used to guide the design.
In addition, one cannot separately obtain each component of
the layout response, such as in the proposed method.

On the Truncation Boundary Condition: The integrated
circuit layout problem is, in general, a closed-region problem,
where a perfect electric conductor (PEC) or first-kind bound-
ary condition, or a perfect magnetic conductor (PMC, also
known as the Neumann or second-kind boundary condition) is
imposed. For structures that have strong radiation, an absorb-
ing boundary condition (ABC) may need to be used. However,
the numerical system inside the solution domain remains the
same as (2), such as that shown in [35]. Specifically, with an
ABC, such as a perfectly matched layer (PML), (2) becomes

diag{�}d2 e

dt2 + diag{σ }de

dt
+ Se = −d J

dt
− Shhb (32)

where hb denotes the magnetic field adjacent to the solu-
tion domain in the PML region. Notice that in the FDTD,
an electric field is obtained from the curl operation on its
four surrounding magnetic fields. For an electric field located
at the interface between PML and the solution domain, its
solution at the next time instant requires a magnetic field
solution in the PML region at the previous time step. This
is what the Shhb term stands for in (32). As can be seen
from (32), the left-hand side system matrix remains the same
as that in the solution domain, and hence, the proposed
inverse model is equally applicable. We only need to build the
inverse model for the solution domain, whereas the fictitious

Fig. 1. Illustration of the null-space vector at a node.

absorber can be simulated as it is. In this article, we use
the first- or second-kind boundary conditions to truncate the
solution domain, as the structures simulated do not have strong
radiations. Other boundary conditions will be incorporated into
our future work.

IV. ANALYTICAL METHOD FOR FINDING V0 AND

EFFICIENT COMPUTATION OF THE RC COMPONENT

OF LAYOUT RESPONSE

We find an analytical method to generate V0 from the
mesh information without the need for solving an eigenvalue
problem of S. The number of V0 modes is the total number
of nodes in the grid n minus 1

#V0 = n − 1. (33)

Each node has a null-space vector, whose number of nonzero
entries is the number of edges connected to the node. Such a
vector can be generated in the following way.

1) If the electric field reference direction along an edge
enters the node, (1/ li ) appears on the row corresponding
to the global e index of this edge.

2) If the electric field reference direction along the edge
leaves the node, −(1/ li ) appears on the row correspond-
ing to the global index of this e edge.

Here, li is the length of the i th edge, at which the i th electric
field unknown is located. In the above-mentioned equation,
we use a positive sign for edges whose directions enter the
node and a minus sign for edges leaving the node. Certainly,
an opposite sign convention can also be used. An edge’s
direction here is referred to as the electric field reference
direction defined on the edge. The aforementioned description
could be abstract, take the node k shown in Fig. 1 as an
example, and its associated null-space vector can be written
as

V0,k =
[

1

l1
,− 1

l2
,

1

l3
,− 1

l4
,

1

l5
,− 1

l6

]T

⊕ zeros(Ne, 1) (34)

in which ⊕zeros(Ne, 1) again denotes adding the preceding
nonzero entries associated with each edge at the rows corre-
sponding to the global index of the edge, in a vector of length
Ne . Because S has a format shown in (10), when multiplying
S by the V0,k , only those patches that contain the six edges
associated with the node are involved in the product of SV0,k .
The number of such patches is 12 in a 3-D grid and 4 in a
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Fig. 2. Illustration of the null-space vector for PEC boundary nodes.

2-D grid. On each of these patches, S(i)
e V0,k = 0, and hence,

SV0,k = 0 is satisfied. To see this point clearly, take the blue
patch shown in Fig. 1 as an example, its S(i)

e can be written
as

S(i)
e =

[
1

l6
,− 1

l6
,

1

l1
,− 1

l1

]
⊕ zeros(1, Ne). (35)

When multiplying the above-mentioned equation by V0,k ,
we obtain

S(i)
e V0,k = 1

l6l1
− 1

l6l1
= 0. (36)

The same is true for all other patches that own node k.
When there is a PEC boundary condition, all the null-space

vectors generated for the nodes on the PEC boundary should
be added up, thus becoming one vector. This is because all
the nodes on the PEC have the same potential. For example,
in Fig. 2, if the PEC includes all the four nodes, then the
null-space vector corresponding to the PEC can be written as

v0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/ l1
0

−1/ l3
1/ l4

0
−1/ l6
1/ l7
1/ l8

0
0

−1/ l11
−1/ l12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (37)

For a nonuniform grid, since S is not symmetric anymore,
the aforementioned V0 satisfies SV0 = 0, but it does not make
VT

0 S vanish. Thus, we also find a way to analytically generate
the left null-space of S, V0a . For each node, there is also one
V0a vector. The nonzero entries in this vector are at the same
entries as those in V0. However, different from V0, we need
to use an average length to build V0a instead of the original
length of the edge. The rule to generate a V0a vector is as
follows.

1) If the electric field reference direction along an edge
enters the node, (1/ lave

i ) appears on the row corre-
sponding to the global e index of this edge, where lave

i

denotes the average length of edge i and its adjacent edge
connected to the node along the same direction;

2) If the electric field reference direction along an edge
leaves the node, −(1/ lave

i ) appears on the row corre-
sponding to the global e index of this edge, where lave

i
denotes the average length of edge i and its adjacent edge
connected to the node along the same direction.

Using the node k shown in Fig. 1 as an example, its V0a vector
can be written as

V0a,k =
[

2

l1 + l2
,− 2

l1+l2
,

2

l3 + l4
− 2

l3 + l4

2

l5 + l6
,− 2

l5 + l6

]T

⊕ zeros(Ne, 1).

(38)

When computing VT
0a,kS, VT

0a,k is multiplied by Sh . In a

nonuniform grid, S(i)
h has a form shown in (9), where the

average length is used. Take the blue patch shown in Fig. 1
as an example, its S(i)

h can be written as

S(i)
h =

[
2

l5 + l6
,− 2

l6 + l7
,

2

l1 + l2
− 2

l1 + l8

]T

⊕ zeros(Ne, 1).

(39)

When multiplying VT
0a,k by the above-mentioned equation,

we obtain

VT
0a,kS(i)

h = 2

l1 + l2

2

l5 + l6
− 2

l1 + l2

2

l5 + l6
= 0. (40)

As can be seen, the average length is used in V0a,k to vanish
VT

0a,kS(i)
h .

In (19), we further decompose V0 into two sets: V0d and
V0c. V0d is composed of all the null-space vectors obtained
at the nodes outside conductors, i.e., whose node conductivity
is zero, and additional #c vectors, where #c is the number of
conductors in the layout. In these #c vectors, each vector cor-
responds to one conductor, which is the sum of the null-space
vectors generated at the nodes inside and on the surface of the
conductor. V0d can be written as

V0d =

⎡
⎢⎢⎢⎢⎢⎣{V0,i (σi = 0)}︸ ︷︷ ︸

nd − 1 vectors

|
⎛
⎝ ∑

rk∈�c,1

V0,k

⎞
⎠ | . . . |

⎛
⎝ ∑

rk∈�c,#c

V0,k

⎞
⎠

︸ ︷︷ ︸
#c vectors

⎤
⎥⎥⎥⎥⎥⎦

(41)

where in the first set, nd denotes the number of dielectric
nodes, σi denotes the conductivity at node i , and rk ∈ �c,k

(k = 1, 2, . . . , #c) represents the nodes in the kth conductor,
including those falling onto the kth conductor’s surface. Each
summation in (41) results in a vector containing all the edges
exterior to the conductor and perpendicular to the conductor
surface, which has one and only one node falling onto the
conductor. All the entries corresponding to the edges, thus,
electric field unknowns, inside the conductors are canceled in
the summation because of opposite signs. From (41), it can
be seen that V0d satisfies

diag{σ }V0d = 0. (42)
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Each vector in V0c is the null-space vector corresponding
to one node inside or on the surface of the conductors. The
number of V0c for each conductor is nci −1, where nci denotes
the number of nodes in the i th conductor. Hence

V0c,k = V0,k(σk �= 0) (43)

and for each conductor, one node is excluded for generating
the above-mentioned equation since there is one vector con-
sidered in (41).

The left null-space V0a can also be decomposed into V0da
and V0ca, in the same way as V0 is decomposed into V0d

and V0c. V0da contains all the null-space vectors obtained at
the nodes outside conductors plus #c vectors. Each vector in #c
vectors corresponds to one conductor, which is the weighted
sum of the V0a vectors from the nodes inside and on the
surface of the conductor. The weights are chosen such that the
summation eliminates the edges inside and on the surface of
each conductor, which makes V0da have only nonzeros entries
in the dielectric part, and thus

diag{σ }V0da = VT
0dadiag{σ } = 0. (44)

This weight (for the V0a vector at a conductor node) can be
readily found as la

x la
y la

z , where la
x,y,z represents the average

length of the two edges connected to the node along the
x-, y-, and z-directions, respectively. V0ca is the subset of
V0a generated at the node inside or on the surface of the
conductors, which is similar to V0c.

As shown earlier, V0d , V0c, V0da, and V0ca in (29) are all
found analytically in this article from mesh information, hence
greatly saving the computational cost. Furthermore, the num-
ber of nonzero entries in each V0d (V0da) and V0c(V0ca) vector
is bounded by the number of edges connected to a single node,
thus very sparse; D is diagonal. As for D�,0 and Dσ,0 shown
in (30), after substituting the analytical null-space vectors into
their expressions, we find the two matrices are nothing but the
Laplacian operator formulated for the dielectric region, and the
conductor region, respectively, i.e., discretized ∇(� · ∇) and
∇(σ ·∇) using a finite difference method. Hence, their matrix
solutions can be obtained efficiently using either an iterative
solver, such as a multigrid method [38], or an advanced
direct solver [6], both of which have been achieved in linear
complexity. Hence, the V0 component can be found rapidly in
this article.

V. EFFICIENT METHOD FOR FINDING Vh AND FAST

COMPUTATION OF THE L AND FULL-WAVE

COMPONENTS OF LAYOUT RESPONSE

For many of the IC layouts, we find the V0 solution is
sufficient to obtain an accurate layout response at their current
operating frequencies. However, when frequency increases,
and/or the layout becomes larger such as the layout of pack-
ages and boards, the Vh part becomes important in the layout
solution, and we need to find an efficient way to obtain
it. In this section, we show how to obtain the high-order
space Ṽh = D−1Vh fast in order to solve (28) with little
computational cost.

The solution of (2) is governed by a quadratic eigenvalue
problem

(λ2D� + λDσ + S)v = 0 (45)

where D� and Dσ are, respectively, diagonal matrices of
permittivity and conductivity, λ is an eigenvalue whose unit is
rad/s, and v is the corresponding eigenvector. The eigenvectors
corresponding to nonzero eigenvalues of (45) can be used
as Vh . These eigenvectors are also frequency- and time-
independent. Compared with using the nonnull-space eigen-
vectors of S, we find that using the eigenvectors of (45),
the resulting number of Vh modes to synthesize the layout
solution is very small. This is because each eigenvector of (45)
represents a source-free solution in the original physical
problem satisfying all the material and boundary conditions.
In contrast, the eigenvector of S is a source-free solution in
an empty computational domain, which does not represent the
solution well in the actual problem. The eigenvalue of (45)
has a clear physical meaning, which is the complex resonance
frequency of the layout. For a prescribed frequency, the weight
of an eigenmode of (45) in the field solution is inversely
proportional to the difference between the eigenvalue and
the solving frequency. In other words, the contribution of
those eigenvectors that resonate at a higher frequency is little
to the layout response at a lower working frequency. Hence,
the number of Vh computed in this way is small, thus making
the whole solution efficient. However, solving (45) is known to
be computationally expensive, especially when conductor loss
is involved, which is true in the problem studied in this article.
Most of the eigenvalues and eigenmodes are complex valued,
and due to the large discrepancy in the norm of the underlying
matrices, the solution of (45) is also error prone. In this article,
based on our prior work in [36] and [37], we develop a fast
algorithm to extract Vh without solving (45).

In this fast algorithm, we solve (2) in a small time window
using an explicit time marching. In this way, there is no
matrix solution involved. The computational complexity is
linear (optimal) at every time step. Although the time step
is restricted by the smallest space step for stability, we do
not need to perform the time marching for a long time since
we can identify Vh from a short time simulation. We collect
the solution of (2) every SG step, which is chosen based on
SG ≤ 1/((10 fmax)	t), where fmax is the maximum frequency
present in the system, and 	t is the time step required by the
stability criterion. At the first sampling step, we record the
solution e, normalize it, and store it as a column vector in X;
in the following sampling steps, we orthogonalize the newly
obtained solution with existing columns in X and store the
resultant in X. Using such X, we transform (45) to a much
smaller eigenvalue problem of

(λ2D�r + λDσr + Sr )vr = 0 (46)

where

D�r = XT D�X (47)

Dσr = XT Dσ X (48)

Sr = XT SX. (49)

Authorized licensed use limited to: Purdue University. Downloaded on May 20,2020 at 19:37:41 UTC from IEEE Xplore.  Restrictions apply. 



XUE AND JIAO: RAPID MODELING AND SIMULATION OF IC LAYOUT IN BOTH FREQUENCY AND TIME DOMAINS 1277

The (46) can further be transformed to a generalized eigen-
value problem as the following:

A
[

v
λv

]
= λB

[
v
λv

]
(50)

in which

A =
[ −Sr 0

0 D�r

]

B =
[

Dσr D�r

D�r 0

]
. (51)

The size of (50) is 2 p, where p is the column size of X, i.e., the
number of time domain solutions that have been collected.

There exists a big difference in the norms of S, D� , and Dσ ;
directly calculating (50) may not be accurate. In order to solve
that based on [39], we multiply scaling factors ρ to make A
and B balanced in norm. Hence, we transform the matrices to

Ã =
[−Sr 0

0 ρ2D�r

]

B̃ =
[

ρDσr ρ2D�r

ρ2D�r 0

]
(52)

and (50) to

Ã

⎡
⎣ v

λ

ρ
v

⎤
⎦ = λ

ρ
B̃

⎡
⎣ v

λ

ρ
v

⎤
⎦ . (53)

The above-mentioned scaling does not change the upper
part of the eigenvectors. The original eigenvalues can be
obtained by multiplying the eigenvalues of (53) by ρ. From
the expression of each matrix, we know that �S� ≈ (1/ l2μ),
�Dσ � = σ , and �D�� = �, where l is feature size. Based on
this information, we can determine the scaling factor ρ [39].
For example, for a μm-scale circuit, we choose ρ = 1012

based on the scaling technique given in [39].
Since we need to select eigenmodes corresponding to the

nonzero eigenvalues to build Vh , there should be an estimation
of the magnitude of the smallest nonzero eigenvalue. From
(45), the magnitude of the eigenvalues can be analyzed from
the norm of each matrix. Specifically, the eigenvalues can
be estimated as (−�Dσ � ± (�Dσ �2 − 4�D���S�)1/2)/2�D��.
Using this method, for a microscale circuit whose feature size
is at the level of μm, the magnitude of the eigenvalues can
be found in the range of 1010 and 1018. Therefore, for those
eigenvalues smaller than 1010, we can identify them as zero
eigenvalues and exclude their eigenmodes from Ṽh .

When we march on in time, we find eigenvalues repeatedly
show up from the small eigenvalue problem (53). The reason
for this can be found from [36]. Although a lossless problem
is studied in [36], the same theoretical reason applies to the
lossy problem studied in this article. There are two criteria we
use to terminate the time-domain solution collection process.
First, we need to make sure that the eigenmodes corresponding
to the repeating eigenvalues become dominant in the field
solution. If the weight of the modes corresponding to the
repeating eigenvalues is larger than that of the other modes
based on an accuracy parameter �1, they can be collected
as Vh . To calculate the weight of the modes, we denote

the upper half of the eigenvectors of (53) corresponding
to the repeating eigenvalues by Vre and other eigenvectors
by Vnre. Let � = [Vre, Vnre]. First, we orthogonalize Vre
to be unitary Ṽre. Next, we remove Vnre’s Ṽre component,
as Ṽnre = Vnre − ṼreṼH

re Vnre. Then, from �new = [Ṽre, Ṽnre],
the coefficient w is calculated as

w = (
�H

new�new
)−1(

�H
newe

)
(54)

where w = [wre, wnre]. If the weight ratio(
wH

re wre
)
/
(
wH

nrewnre
)

> �1 (55)

Vre would be counted as Vh .
The second criterion is used to ensure the accuracy of Vh .

At every SG steps, we compare the eigenvalues from two
adjacent steps: q and q + 1. If the difference between the
eigenvalues is less than a prescribed error tolerance �2, which
is

|λq − λq+1|
|λq | < �2 (56)

the corresponding eigenmode can be identified as an accurate
Vh mode. After (55) and (56) are satisfied, the solution
collection process is terminated.

Let the mode extracted from the aforementioned procedure
be Ṽh . It may contain a V0 component due to numerical error,
i.e., it is not purely a high-order mode we look for. Writing it
as

Ṽh,i = U0u0,i + D−1Vh,i uh,i (57)

the second component is the one we want to find. Here, U0 is
comprised of only two vectors

U0 = [U0,C U0,R] (58)

where U0,C is the C component of the layout solution

U0,C = V0dD−1
�,0VT

0da

/
(− jω)J (59)

and U0,R is the R component of the layout solution

U0,R = V0dD−1
�,0VT

0dadiag{�}V0cD−1
σ,0VT

0ca

× (
I − diag{�}V0dD−1

�,0VT
0da

)
J

+ V0cD−1
σ,0VT

0ca

(
diag{�}V0dD−1

�,0VT
0da − I

)
J (60)

both of which have been found when computing the V0
component of the field solution.

Multiplying (57) by the left null-space U T
0a , which is similar

to U T
0 except that it is in the V0a space, and thus

U0a,C = V0daD−1
�,0VT

0da/(− jω)J (61)

and

U0a,R = V0daD−1
�,0VT

0dadiag{�}V0cD−1
σ,0VT

0ca

× (
I − diag{�}V0dD−1

�,0VT
0da

)
J

+ V0caD−1
σ,0VT

0ca

(
diag{�}V0dD−1

�,0VT
0da − I

)
J. (62)

The multiplication results in

U T
0aDṼh,i = U T

0aDU0u0,i . (63)
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Fig. 3. Illustration of a 3-D on-chip interconnect layout.

Hence

u0,i = (
U T

0aDU0
)−1

U T
0aDṼh,i . (64)

As a result, we can obtain a pure Vh part from the contami-
nated Ṽh as the following:

Ṽh = Ṽh − U0
(
U T

0aDu0
)−1(

U T
0aDṼh

)
(65)

which satisfies VT
0aDṼh = 0, and, thereby, VT

0aVh = 0. Then,
we can apply this Ṽh in (28) to obtain the Vh part of the
solution. Since VT

0 Vh = 0 is not satisfied but VT
0aVh = 0 is

satisfied, if we use Ṽh as the testing column space in (28),
there is a term VT

h V0 y0 left, which cannot be vanished.
However, this term is known, which can be moved to the
right-hand side of (28). Hence, yh can still be readily solved.
After we solve yh , the final solution is combined as

e = V0d y0d + V0c y0c + Ṽh yh (66)

which contains the complete R, C , L, and full-wave compo-
nents. The number of Vh modes is usually small for IC layouts;
thus, (28) has a very small dimension, whose solution can be
readily computed.

VI. LAYOUT MODELING AND SIMULATION RESULTS

In this section, we simulate a variety of IC layouts to
examine the performance of the proposed work. For all the
examples, the top and bottom boundaries are truncated by the
PEC, and the other four sides are terminated by PMC.

A. Bus Wire

A 3-D on-chip interconnect example is simulated, which
is shown in Fig. 3. The sizes along the x-, y-, and z-
directions are 31, 10, and 3 μm, respectively. The yellow
regions are conductors. Their conductivity is 5.7 × 107 S/m.
The material and geometrical data are specified in Fig. 3.
The current source is imposed across the red line. In Table I,
we list the capacitance obtained from the proposed inverse
model in comparison with the reference result obtained from a
brute-force finite-difference solution in the frequency domain.
Excellent agreement is observed.

TABLE I

CAPACITANCE COMPUTED AT THE NEAR (PORT 1) AND FAR END (PORT 2)

Fig. 4. Structure of a test-chip interconnect.

Fig. 5. S-parameters of the test-chip interconnect of 100-μm length. (a) |S11|.
(b) S11 phase (radians). (c) |S12|. (d) S12 phase (radians).

B. Test-Chip Interconnect

A test-chip interconnect is simulated, whose structure is
shown in Fig. 4. The yellow regions are conductors, the con-
ductivity of which is 5.7 × 107 S/m. The dimension along the
x-, y- and z-directions is 300, 100, and 3.912 μm, respectively.
The current source is launched from the bottom ground
plane to the conductor in the metal-3 layer. We compare the
S-parameters extracted from our method from 45 MHz to
10 GHz with the measured data in Fig. 5, which is the result of
the V0 mode solution. As can be seen, they agree very well
with each other. This verifies the accuracy of the proposed
method.

When we increase the frequency up to 100 GHz, we find
that the RC component is not sufficient anymore in producing
good accuracy. As can be seen from Fig. 6, without consid-
ering Vh , the entire solution error becomes worse and worse
when the frequency is increased, and it becomes 16.9% at
50 GHz and even exceeds 40% at 100 GHz. Here, the entire
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Fig. 6. Entire solution error before and after adding the Vh part of the
solution as a function of frequency for the test-chip interconnect example.

TABLE II

FIRST 20 EIGENVALUES FROM THE PROPOSED FAST EIGENVALUE

SOLUTION COMPARED WITH THOSE FROM THE ORIGINAL

EIGENVALUE SOLUTION FOR THE
INTERCONNECT EXAMPLE

solution error is measured by

Entire Solution Error = �e − eref�
�eref� (67)

where e is from the proposed solution that contains all electric
field unknowns in the layout, whereas eref is a brute-force
solution obtained by solving (3) as it is. Hence, we employ
the algorithm described in Section V to extract Vh modes
and add the Vh component into the solution of e. In the
time-marching procedure, we use a Gaussian derivative source
with τ = 10−11 s. 	t is chosen to be 10−15 s for the
time-domain stability. Other simulation parameters are chosen
as �1 = 10−5, �2 = 10−2, and SG = 100. From the procedure,
we identify 30 Vh modes. After adding the Vh part of the
solution, we obtain the entire solution error shown by the
red line in Fig. 6. The error is significantly reduced from
16.9% to 1.06% at 50 GHz and from 40% to 2% at 100 GHz.
Only 32 steps of sampling are performed in the time-marching
procedure, and hence, the time window simulated is short,
and, thereby, the overall simulation is efficient. The proposed
algorithm also allows one to achieve even higher accuracy
by performing the time marching in a longer time window
and, hence, extracting more Vh modes. For example, using
400 steps of sampling, we find 231 Vh modes, using which the
accuracy of the field solution is further reduced from 1.06%
to 0.04% at 50 GHz.

In Table II, we list the first 20 eigenvalues, sorted based on
the imaginary part’s magnitude, found from the proposed fast

Fig. 7. S-parameters of the test-chip interconnect of 2000-μm length.
(a) |S11|. (b) S11 phase (degrees). (c) |S12|. (d) S12 phase (degrees).
(Reference is from measurements.)

Fig. 8. Structure of an on-chip power grid.

solution in comparison with those computed from a brute-force
eigenvalue solution of (45). The excellent agreement can be
observed, which validates the proposed fast algorithm for
finding physically important eigenvectors.

In this example, we also elongate the structure to a length
of 2000 μm. The S-parameters extracted from the proposed
method are shown in Fig. 7. The blue line shows the result
generated by using V0 only and, hence, the RC component of
the layout solution. The green line depicts the result with both
V0 and Vh components, where 27 Vh modes are used. As can
be seen, only the green line matches the reference result. Vh

becomes important in this structure since its electrical size is
larger than the 100-μm-long one.

C. On-Chip Power Grid

In this example, we simulate an on-chip power grid shown
in Fig. 8. The power wire is colored in yellow, while the
ground wire is in blue. The regions other than conductors
are dielectrics. The current source is a Gaussian derivative
with τ = 10−12 s, and it is injected from the ground wire
to the power wire, which is shown by the red line in Fig. 8.
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Fig. 9. Entire solution error before and after adding the Vh part of the
solution for different frequencies for the power grid structure.

Fig. 10. Comparison of the eigenvalues from the proposed fast solution and
the original eigenvalue solution with (a) five steps of sampling with SG = 100
and (b) 300 steps of sampling with SG = 5 for the power grid example.

In this example, the Vh part is also needed to obtain good
accuracy at high frequencies. To find Ṽh , the parameters used
are �1 = 10−5, �2 = 10−2, and SG = 100. The time
step used in the explicit time marching is 	t = 10−15 s.
There are four Vh modes found with five steps of sampling.
Their eigenvalues are −5.3506 × 1010 ± 2.0334 × 1013 j
and −1.2362 × 1011 ± 5.2297 × 1013 j . Without adding the
four modes, the error of the entire solution is 34.48% at
1000 GHz; adding them, the error is greatly reduced to 4.4%.
The accuracy before and after adding the four Vh modes is
shown in Fig. 9. Again, when we increase the time window
for time marching, we find more Vh modes, and also they
are more accurate. In Fig. 10(a) and (b), we plot the error of
the complex eigenvalues of the Vh modes extracted using five
steps of sampling with SG = 100 and 300 steps of sampling
with SG = 5, respectively. As can be seen, although the
accuracy of both is good, the latter case is more accurate, and
having more Vh modes is identified. For the latter case, 299 Vh

modes are identified, using which the entire solution error is
reduced to 1.7131× 10−6 at 1000 GHz. We also compare the
S-parameters extracted from this method (with both V0 and Vh

modes) and those from the finite difference method in Fig. 11.
As can be seen, they agree very well with each other.

In Table III, we list the first 20 eigenvalues found from
the proposed fast algorithm in comparison with those of the
original eigenvalue solution. As can be seen, they match each
other very well, which validates the proposed method for
finding high-order modes.

D. Scan D Flip-Flop Layout

Next, to examine the capability of the proposed work,
we take a GDSII file from a 45-nm Scan D flip-flop design [40]
and analyze its layout performance. The top view of the

Fig. 11. S-parameters of an on-chip power grid. (a) |S11|. (b) S11 phase
(degrees). (c) |S12|. (d) S12 phase (degrees).

TABLE III

FIRST 20 EIGENVALUES FROM THE PROPOSED FAST EIGENVALUE
SOLUTION COMPARED WITH THOSE FROM THE ORIGINAL

EIGENVALUE SOLUTION FOR THE POWER GRID EXAMPLE

structure in layers 9–11 is shown in Fig. 12, with each
layer plotted in different colors. The length and width of this
structure are 13 and 3.33 μm. The blue and green regions are
occupied by conductors, whose conductivity is 5.7×107 S/m.
The current is injected from the VSS conductor to the VDD
conductor, the waveform of which is a Gaussian derivative
with τ = 10−11 s and t0 = 3τ . In this example, there
are around 3,616,773 unknowns. To simulate this example,
the time step of a traditional FDTD must be as small as
10−16 s to ensure stability. The proposed method is able to
use an arbitrarily large time step since its time dependence
is analytically derived in the inverse model for the RC
component. The proposed method uses a time step of 10−12 s
solely determined by accuracy. It only takes 34.02 s, whereas
the FDTD costs 6.9×105 s to finish the simulation of the whole
structure in the same time window. In Fig. 13, we compare the
port voltages in the time domain simulated from the proposed
method and the FDTD. As can be seen, they agree very well
with each other. In Fig. 14, we also compare the impedance
Z-parameters extracted from the proposed method with those
from the finite difference method in the frequency domain,
which also shows excellent agreement.
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Fig. 12. Top view of the Scan D flip-flop layout in layers 9–11.

TABLE IV

Z-PARAMETERS EXTRACTED AT f = 10 GHz FROM THE PORTS SHOWN IN FIG. 15

Fig. 13. Port response of the Scan D flip-flop simulated from this method
(blue line) and the FDTD (red line).

Fig. 14. Comparison of the Z-parameters of the Scan D flip-flop between this
method and the finite difference method. (a) Magnitude. (b) Phase (degrees).

E. Intel 4004

The last example is an Intel 4004 processor (a 4-bit central
processing unit), the layout of which is shown in Fig. 15. It has
seven layers and over 86,220 objects, and the discretization
of which results in 115,455,658 unknowns, which is over
115 million. The GDSII file of the processor is directly loaded
into the software developed based on the proposed algorithm,
and the layout analysis is fully automated. It only takes the

Fig. 15. Layout of Intel 4004 processor where the seven ports are marked
by the blue dots.

proposed method 729 s to finish the extraction and analysis of
the entire layout for one circuit stimulus, which demonstrates
the efficiency and high capacity of this work. This is the result
of the V0 part solution since this digital IC is electrically
small. There are seven ports of interest as marked by the
blue dots in Fig. 15. The impedance Z-parameters extracted
at f = 10 GHz are shown in Table IV, where the value on
the i th row and j th column denotes Zi j . The FDTD failed
to simulate this example in feasible run time because of the
requirement of a small-time step of 10−17 s for stability.

VII. CONCLUSION

In this article, a closed-form model of the inverse of
full-wave Maxwell’s system of equations is found for an
arbitrary physical layout in both frequency and time domains.
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The advantages of the proposed inverse model of IC layouts
are multifaceted. First, it is accurate from zero to high frequen-
cies. Second, the layout response is explicitly decomposed into
R, C , L, and full-wave components, without computation or
approximation, each of which can be obtained independently,
and then superposed to obtain the final layout response. This
not only is much more efficient than a brute-force simulation
but also provides circuit designers with key insights for
layout automation. In addition, neither time marching nor
point-by-point frequency sweep needs to be performed for
the RC component as its time and frequency dependencies
are analytically known from the inverse model. Moreover,
the full-wave component is also efficiently represented by
Vh modes whose number is small. Hence, both its time-
and frequency-domain representations can be readily obtained.
The proposed work has been applied to large-scale layout
modeling and simulation. Superior performance in efficiency,
accuracy, and capacity has been demonstrated. In addition to
ICs, this article also provides package and board designers
with a rapid, accurate, and circuit-intuitive tool for layout
automation. Its broadband inverse model is also applicable to
the electromagnetic analysis of other physical problems.
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