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Abstract—A fast and high-capacity electromagnetic solu-
tion, time-domain layered finite element reduction recovery
(LAFE-RR) method, is proposed for high-frequency modeling and
simulation of large-scale on-chip circuits. This method rigorously
reduces the matrix of a multilayer system to that of a single-layer
system, regardless of the problem size. More importantly, the
matrix reduction is achieved analytically, and hence the CPU
and memory overheads are minimal. The recovery of solutions
in all other layers involves only forward and backward substi-
tution of matrices of single-layer size. The memory cost is also
modest-requiring only the memory needed for the factorization of
two sparse matrices of half-layer size. The superior performance
applies to any arbitrarily shaped multilayer structure. Numerical
and experimental results are presented to demonstrate the accu-
racy, efficiency, and capacity of the proposed method.

Index Terms—Electromagnetics, finite element methods, high
frequency, on-chip circuits, time domain analysis.

I. INTRODUCTION

AS ON-CHIP circuits have scaled into the deep submicron
regime (and the nanometer regime), full-wave electromag-

netics-based analysis has increasingly become essential for the
following reasons:

• Reduced feature sizes. At the 45 nm processing technology
node and beyond, the IC industry will have to print fea-
tures that are several times less than the wavelength of light
(193nm) being used in optical lithography. In this regime,
the wave nature of light is manifest. In order to ensure IC
can be manufactured as designed, it is crucial to model light
as a wave rather than as a ray approximation.

• Increased clock frequency. Currently the clock frequency
of microprocessors is in the gigahertz regime. Since it is
necessary to analyze the chip response to harmonics 5
times the clock frequency, it is expected that interconnects
at high frequencies would have to be analyzed with certain
electromagnetic effects incorporated. The importance of
electromagnetic (EM) analysis at tens of GHz was quan-
titatively demonstrated, via simulation and real silicon
measurements in [1], [7].

Manuscript received April 20, 2007; revised July 31, 2007. This work was
supported by the Office of Naval Research under award N00014-06-1-0716 and
by a grant from Intel Corporation

The authors are with the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAP.2007.910473

• The transition from single core to multicore. Active power
management of multicore processors requires large-scale
EM analysis of the global power supply network in order
to accurately model current variations and transient power
drops and ground bounce.

• Increased level of integration. Integrating RF, analog, and
digital circuitry on a same chip leads often to undesired
coupling and sometimes to system failure. For high-fre-
quency mixed-signal design, an electromagnetic solution
is required to overcome the fundamental limits of circuit-
based solutions.

Since the advent of computational electromagnetics (CEM)
in the 1960s, numerous fast algorithms have been developed
[2]. They have been widely applied to microwave engineering,
antenna analysis, scattering analysis, wireless communications,
and optoelectronics. They have also been applied to board and
packaging problems. However, traditional CEM technology has
been found not amenable for very-large-scale on-chip design
problems [3]. This is mainly because VLSI design demands
very large-scale electromagnetic solutions, which cannot be of-
fered by many current CEM techniques. In addition, the unique
modeling challenges of on-chip problems [3] further complicate
electromagnetic analysis.

In view of the importance and challenges of full-wave
electromagnetic analysis in high-frequency VLSI design, in
recent years, CEM techniques have been developed for on-chip
problems [4]–[13]. They can be categorized into two classes:
partial differential equation (PDE) based and integral equation
(IE) based methods. A representative of the former method is
the finite difference time domain (FDTD) method. Two-dimen-
sional FDTD approaches have been developed for full-wave
modeling of on-chip transmission line structures. For 3-D
on-chip structures, an FDTD solver was recognized as compu-
tationally expensive. In contrast, the partial element equivalent
circuit (PEEC) method is an IE-based method [4], [5], [9].
PEEC was first utilized to solve quasi-static problems. It was
then extended to full-wave analysis. Recently, surface-based
PEEC methods have also been developed which significantly
reduce the number of unknowns involved in a volume IE-based
PEEC method [5], [9]. Since IE-based methods incorporate
dense matrices, a direct solver requires operations
and storage in dealing with number of unknowns,
which is computationally expensive. The surface-based PEEC
is under way to be accelerated by fast algorithms such as the
fast multipole method, FFT-based method, adaptive integral
method, and fast QR-based methods. Another surface IE-based
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formulation was developed in [6]. A fast pre-corrected FFT
scheme was formulated to accelerate the iterative solution of
the dense matrix equation. The multi-layered dielectric has not
yet been included. IE -based methods have also been developed
in [8], [10], [11] for the application to on-chip problems. It is
expected that an IE-based solution that takes all the on-chip in-
tricacies into consideration, accelerated by the fast algorithms,
will soon be completed.

However, ultra large scale IC design results in numerical
problems of ultra large scale, requiring billions of parameters
to describe them accurately. To solve number of parameters,
the optimal computational complexity one can hope for is
linear complexity . However, even is inadequate
in practice since is too large in practical integrated systems.
Therefore, it is important to develop high-capacity electro-
magnetic solutions that can overcome the barrier to
achieve with . In addition, it is desirable that
the solutions be obtained in a rigorous fashion. Along this
line of thought, a time-domain layered finite element reduc-
tion recovery (TD-LAFE-RR) method is proposed herein to
solve large-scale IC design problems at high frequencies. This
method rigorously reduces the matrix of a multilayer system to
that of a single-layer system regardless of the original problem
size. More importantly, the matrix reduction is achieved analyt-
ically, and hence the CPU and memory overheads are minimal.
In addition, the reduced system matrix preserves the sparsity of
the original system matrix. Compared to the layered finite-ele-
ment method developed in [12], the proposed method further
improves the modeling capacity and performance since the ma-
trix reduction is achieved analytically and the reduced system
matrix is sparse. In addition, since the method is developed in
the time domain, the method permits nonlinear modeling and
broadband simulation within one simulation.

The remainder of this paper is as follows. In Section II, the
problem statement is presented. In Section III, the time-domain
finite-element framework is introduced. Section IV delineates
the proposed time-domain LAFE-RR method. In Section V, nu-
merical and experimental results demonstrate the capacity, effi-
ciency, and accuracy of the proposed method.

II. PROBLEM STATEMENT

Consider the 3-D integrated circuits in Fig. 1. Generally, these
circuits are multilayered structures. They are embedded in a
multilayer dielectric media backed by silicon, GaAs, InP, SiC,
or other semiconductor substrates. A Manhattan-type integrated
circuit as shown in Fig. 1(a) and (b) is layered in any of the -,

-, and -directions.
Inside these circuits, the electric field satisfies the second-

order vector wave equation

(1)

subject to certain boundary conditions. In (1), are per-
meability, permittivity, and conductivity, respectively; is the
current source; is the computational domain that encloses
the circuit. Due to the computational complexity of on-chip cir-
cuits, the resultant numerical system is generally prohibitively

Fig. 1. Illustration of 3-D IC problems. (a) A RF CMOS device. (b) Global
on-chip interconnects. (c) A RF IC.

large even for small circuits. In this work, a new time-domain
finite-element method is proposed to address the challenges as-
sociated with the large problem size.

III. TIME-DOMAIN FINITE-ELEMENT FRAMEWORK

Compared to other time-domain CEM methods such as
FDTD-based methods and time-domain IE-based methods, a
time-domain finite-element method (TDFEM) [14]–[21] deals
with sparse matrices as well as possessing increased capability
in handling irregular geometries. In this section, the basic
numerical scheme of the TDFEM is outlined.

The solution to the boundary value problem defined by (1)
and its boundary conditions can be obtained by seeking the sta-
tionary point of the functional

(2)

In (2), is the surface that encloses computational domain ,
and is the absorbing boundary condition imposed on to
absorb the outgoing wave [12]. To discretize (2), the computa-
tional domain is divided into small elements. In each element,

is expanded as

(3)



3622 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 55, NO. 12, DECEMBER 2007

where denotes the total number of expansion terms, and
and are the vector expansion functions and corre-

sponding expansion coefficients, respectively. Substituting (3)
into (2), taking the partial derivative of the functional with
respect to the expansion coefficients , and setting the re-
sulting equation to zero yields the following system of ordinary
differential equations [16]:

(4)

in which , and are square matrices, and , and are
column vectors. Their elements are given by

(5)

where and denote volume and surface integration,
respectively.

Adopting a central difference scheme to approximate the first-
and second-order time derivatives in (4), we obtain

(6)

in which

(7)

and represents the time step. Clearly, (the field value
at the th time step) can be solved in a time marching
fashion from the solution of at previous time steps. The di-
mension of can be very large for realistic on-chip problems,
which constitutes a computational challenge. An efficient and
high-capacity solution, time-domain LAFE-RR method, is pro-
posed to solve this problem in the following section.

IV. PROPOSED TIME-DOMAIN LAYERED FINITE-ELEMENT

REDUCTION RECOVERY (LAFE-RR) METHOD

In the description that follows, the number of layers is de-
noted by , the total number of unknowns is denoted by the
number of volume unknowns per layer is , and the number
of top/bottom surface unknowns is . The stack-growth direc-
tion is defined as . The layer-growth direction can be chosen
the same as the stack-growth direction; it can also be chosen
from and .

A. Discretization

First, the computational domain is discretized into triangular
prism elements. Conductors are also discretized to accurately
capture the fields inside conductors. In each prism element, the

Fig. 2. Illustration of prism vector basis functions.

Fig. 3. (a) Unknown ordering scheme. (b) Matrix pattern.

electric field is expanded into prism vector bases [22] as shown
in Fig. 2. These functions can be written as

(8)

In (8), , and are area coordinates; is 0 at the bottom
plane, and 1 at the top plane; are the well-known edge basis
functions.

The unknowns are ordered layer-by-layer starting from
surface unknowns of , and proceeding to volume unknowns
of , surface unknowns of , volume unknowns of , and
surface unknowns of , as shown in Fig. 3(a). Proceeding
in this way, a banded matrix is generated, as illustrated in
Fig. 3(b). Clearly, it is less computationally expensive to solve
a banded matrix than to solve a general matrix. However, when
the number of unknowns is large, the solution remains com-
putationally intensive. To solve this problem, an algorithm is
proposed to analytically reduce the 3-D layered matrix system
to a single-layer one.

B. Analytical Reduction of the 3-D System Matrix

First, the 3-D layered system matrix is reduced to a 2-D
layered one. To form a matrix system that only involves 2-D
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Fig. 4. Decomposition of the original 3-D layered system matrix. (a) A sparse
matrix formed by surface unknowns in all layers. (b) L decoupled sparse ma-
trices formed in each layer by volume unknowns.

surface unknowns in each layer, volume unknowns are elimi-
nated. Since the number of volume unknowns is , at least

operations and storage are required to eliminate them.
Here, the unknowns can be eliminated analytically without any
CPU and memory cost. This is achieved by utilizing the or-
thogonality between volume unknowns and surface unknowns.
As shown in Fig. 2, the volume vector bases , and
are perpendicular to surface vector bases , and
hence the coupling between volume unknowns and surface
unknowns is zero in matrices and . As a result, volume
unknowns and surface unknowns are decoupled in , i.e., all
the matrices in Fig. 3(b) vanish, and hence volume unknowns
are analytically eliminated from the final matrix equation. As
a result, the final matrix is decomposed into one sparse matrix
that involves only 2-D surface unknowns in all layers as shown
in Fig. 4(a), which is denoted by , and decoupled small
sparse matrices formed by volume unknowns in each layer,

, as shown in Fig. 4(b). Hence, matrix
equation (6) is decomposed into

(9)

Note that this does not lead to the conclusion that there is no
physical coupling between volume and surface unknowns. In
fact, the surface unknowns influence the volume ones by altering
their right hand sides at each time step through the stiffness
matrix in (6); similarly, the volume unknowns influence the
surface ones by changing their right hand sides at each time
step.

Next, a procedure is proposed to analytically reduce the 2-D
layered system matrix to a single-layer one. Denoting the layer
to be reduced to as , a top-down-bottom-up procedure is per-
formed to eliminate other layers and project their contributions
to layer . For the bottom-up elimination, as shown in Fig. 5,
the finite-element sub-matrix in the th layer is first formed. It is

Fig. 5. Illustration of the bottom-up elimination.

Fig. 6. Illustration of the top-down elimination.

then eliminated and its contribution is projected to the th
layer. Next, the modified th layer is projected to the

th layer. This procedure is continued until reaching the
th layer. From left to right, Fig. 5 lists the sub-matrix in the

th layer, the modified sub-matrix in the th layer, ,
and the modified sub-matrix in the th layer. Mathematically, it
can be represented as

(10)

For the top-down elimination, as shown in Fig. 6, first the fi-
nite-element sub-matrix in the first layer is formed. It is then
eliminated and its contribution is projected down to the second
layer. Next, the contribution from the modified second layer is
projected down to the third layer. This procedure is continued
until reaching the th layer. Mathematically it can be written as

(11)

The system of equations in (10) and (11) involve matrix inverse
and matrix-matrix multiplication in each layer, which can be
computationally intensive. However, they can be performed an-
alytically because and are assembled from their elemental
contributions as

(12)

in which subscript is the layer index, denotes each trian-
gular element, is the edge vector basis function as shown in
(8), is the thickness of layer is the permittivity of layer

in element , and is the conductivity of layer in element
. If the layer-growth direction is chosen as or different

layers would feature the same permittivity configuration. If the
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Fig. 7. Updates in the right hand side.

layer-growth direction is chosen as , then the elements in each
layer share the same permittivity. In either case, and are
linearly proportional to permittivity as well as layer thickness.
If different layers have different conductivity configuration and
the conductivity in each layer is not a constant, the term associ-
ated with loss, i.e., matrix in (4), is moved to the right hand
side. Hence, are linearly proportional to
each other, and are linearly proportional
to each other. Moreover, are also lin-
early proportional to . Therefore,

of primed quantities are also linearly proportional
to as can be seen from (10) and (11). As
a result, the reduction shown in Figs. 5 and 6, which is mathe-
matically represented by (10) and (11), is achieved without any
numerical calculation. To be more specific, if , which is
in the first layer, is taken as the reference, then and
can be obtained instantly by scaling by a certain coefficient
made of permittivity and layer thickness in different layers. This
also shows that the reduced single-layer matrix preserves the
sparsity of the original system matrix.

The right hand sides of each layer are also updated during
the reduction process as illustrated in Fig. 7. As an example, the
bottom-up path can be recursively written as

(13)

Again there is no need to perform matrix inversion and matrix
vector multiplication in (13) because and are linearly pro-
portional to each other, and of primed quantities and are
also linearly proportional to each other.

After the aforementioned reduction process, the original
system matrix equation is rigorously reduced to the following
matrix equation that only involves the surface unknowns (
and ) in layer

(14)

which can be solved readily. In (14), incorporates the ef-
fects from layers above , and carries the contributions
from those below. Due to the analytical reduction process, the
final reduced matrix is obtained instantly without the need of
any computation.

Equation (14) can be further reduced to

(15)

where and

. As in the previous case, since of primed quan-
tities and are linearly proportional to each other, there is no
need to perform matrix inverse, matrix-matrix multiplication,
and matrix-vector multiplication to obtain (15).

C. Recovery of the Solutions in All Other Layers

Once the top surface unknowns in the th layer are known
from (15), the surface unknowns in other layers can be calcu-
lated as

(16)

Due to the linear dependence of and , the cost of computing
(16) is reduced to the evaluation of in each layer. Since

are linearly proportional to each other,
their inverse only needs to be conducted once. The dimension
of is .

The volume unknowns in layer can be calculated as

(17)

where matrix is assembled from their elemental contribu-
tions as

(18)

Clearly, in different layers are also linearly proportional to
each other. Hence its inverse only needs to be done once irre-
spective of the number of layers. The dimension of is .

D. Performance Analysis

The numerical steps of the proposed method can be summa-
rized as follows.
Step 1: Reduce the original matrix equation to a single-layer

matrix equation as shown in (15);
Step 2: Pre-calculate the LU factorization of in (12) and

in (18) for the time marching process;
Beginning of the Time Marching

Step 3: Solve (15) and obtain the solution of top surface un-
knowns in that single layer;

Step 4: Recover solutions of surface unknowns in all other
layers using (16), and recover solutions of volume
ones in all layers using (17);

Step 5: Construct the new right hand side of (6) for the next
time step. Go back to step 3.
End of the Time Marching.

The computational cost of each step is as follows.
Step 1: Negligible since the reduction is done analytically;
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TABLE I
PERFORMANCE ANALYSIS

Step 2: The cost of the LU factorization of two small ma-
trices. The dimension of one matrix is . The dimension
of the other is . Both sizes are approximately equal to

;
Assuming that the LU factorization of a matrix of size
requires operations and storage. The time
complexity of step 2 is
with memory con-
sumption. This is a worst-case estimation. Since the single-
layer matrix is small and sparse, the factorization often can
be performed in linear complexity.
Steps 3 and 4: The cost is -time backward and forward
substitutions of one sparse matrix of size and one
sparse matrix of size .
Assuming that the backward and forward substitu-
tions scale as in both CPU time and memory
consumption. The time complexity of steps 3 and
4 is with

memory consumption.
Again, this is the upper bound of the complexity;
Step 5: The cost of a sparse matrix-vector multiplication,
which has a linear complexity.

The performance comparison with a traditional time-domain
finite element method is given in Table I. Note that the perfor-
mance gain listed in Table I applies to any arbitrarily shaped
multilayer structure. No periodicity or special structure features
are needed to obtain the listed performance gain. For on-chip
circuits, or are often chosen as the layer growth direction
to minimize the number of unknowns in a single layer. In this
case, the number of layers encountered is an extremely large
number. Hence, the performance gain of the proposed method
is significant. More importantly, when the total number of un-
knowns is large, it is impossible to factorize the original matrix
with existing computational resources. However, with the pro-
posed method, as long as there is sufficient memory to factorize
a single-layer sparse matrix, there exists sufficient memory to
solve the entire system.

It should be noted that the comparison in Table I is given
for large-scale problems in which is large. When is
small, the traditional method can perform better than
in matrix factorization, and better than in forward and
backward substitution. However, the proposed method still offers

significant gains in both memory and CPU time. For example,
if the traditional method performs the matrix factorization
in computational complexity, the improvement of the
proposed-method in the matrix factorization is ; if the
traditional method performs forward and backward substitution
in complexity, the improvementof theproposedmethod
at each time step is . In addition, in Table I, it is assumed
that the complexity of factorizing a matrix of half-layer size

is the same as that of factorizing the original matrix
of dimension . In reality, the former is computationally
much less intense than the latter due to the reduced size.
Hence, the performance gain of the proposed method can be
even better.

In recent years, the traditional time-domain finite-element
method has been accelerated by domain-decomposition tech-
niques. Assuming one subdomain is one layer, for a general lay-
ered structure, the domain decomposition technique factorizes
the matrix in each subdomain, while the proposed method only
needs to factorize a sparse matrix in a single subdomain regard-
less of the original problem size.

E. Stability Analysis

What is solved by the proposed time-domain LAFE-RR
method is still (6). It is in essence a high-capacity and effi-
cient direct solver of (6) by fully exploring the property of
layered structures. Hence, its stability analysis follows that for
a traditional time-domain finite element method as given by
[23]. Although (6) is decomposed into (9), it is a natural and
rigorous decomposition because the basis functions associated
with volume unknowns and those associated with surface ones
are perpendicular to each other. The time step used for (6) is
used for (9). The unknowns solved from (9) at each time step
are exactly the same as those solved from (6).

V. EXAMPLES

The proposed method is first validated with a structure
having an analytical solution: a parallel-plate waveguide
structure. According to typical geometrical dimensions of
on-chip problems, the waveguide width (along ) was set as 1

m; the waveguide height (along ) was set as 0.1 m. The
waveguide length (3.5 m) was subdivided into 35 layers.
The dominant TEM mode was launched on the incident plane
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Fig. 8. Simulation of a parallel-plate waveguide in comparison with the ana-
lytical solution. (a) Electric field sampled at z = 1:1 �m. (b) Electric fields
sampled at z = 0; 0:1 �m, 0:6 �m, 1:1 �m, and 2.9 �m. (c) A magnified plot
showing time delay at z = 0; 0:1 �m, 0:6 �m, 1:1 �m, and 2.9 �m.

at . The exact absorbing boundary condition for the
dominant mode was placed on both the incident and exiting
planes. The incident pulse was the time derivative of a Gaussian
pulse, , in which was chosen to
be 3.0e–13 s. The time step was chosen to be 1.0e–16 s. In

Fig. 9. Time-domain waveforms of a 100-�m long test-chip interconnect struc-
ture simulated by the proposed method. (i is the current source placed at the
near end of an interconnect line; V and V are the voltages observed at
the near end, and far end respectively.)

total 15 000 time steps were simulated. The electric field at
m was sampled and compared with the analytical

solution, which revealed an excellent agreement, as shown in
Fig. 8(a). Fig. 8 (b) and (c) depicts the electric fields sampled at

m, m, m, and m respectively. The
delay and waveform are accurately simulated by the proposed
method.

With the accuracy validated, next, a test-chip interconnect
structure of length 100 m was simulated, and the performance
of the proposed time-domain LAFE-RR method was com-
pared against that of the traditional time-domain finite element
method. The structure was fabricated using conventional silicon
processing technology. It comprised three metal layers and
thirteen inhomogeneous dielectric stacks. The structure was
subdivided into 102 layers along its length. Each layer was
divided into 676 triangular prism elements, rendering 1053
surface unknowns and 378 volume unknowns per layer. The
total number of unknowns was 147015. A comparison of the
performance between the proposed method and the standard
TDFEM is given Table II.

As shown in Table II, the speedup in matrix factorization is
more than four orders of magnitude. The speedup in the time-
marching process is more than seven. The performance gain
listed here is not as ideal as that listed in Table I because the
multi-frontal solver [24] used in this example for the matrix
solution performed better than in matrix factorization,
and better than in the forward and backward substitu-
tion when handling a matrix of size 147015. For example, its
performance is shown to be proportional to in the forward
and backward substitution. The computing platform here is a PC
with AMD Athlon 64 X2 Dual Core processors running
at 2.21 GHz with 2 GB RAM.

Fig. 9 depicts the time-domain waveforms of the sampled
voltages at the near- and far-end of one wire in the intercon-
nect structure with its near end excited by a current source and
the far end left open. Clearly, as expected, RC effects domi-
nate the behavior of this short interconnect structure because
the sampled voltage behaves as an integration of the current
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Fig. 10. Simulated S-parameters of a test-chip interconnect of 100 �m length.
(a) jS11j. (b) S11 Phase. (c) jS12j. (d) S12 Phase.

over the time. Fig. 10 shows the frequency-domain S-parame-
ters extracted from the time-domain results in comparison with

Fig. 11. Time-domain waveforms of a large-scale test-chip interconnect simu-
lated by the proposed method. (a) Current source launched at the near end. (b)
Voltage sampled at the near end. (c) Voltage sampled at the far end.

the measured data. Excellent agreement was observed. In addi-
tion, the method has shown to be robust from high frequencies
all the way down to DC.

Finally a large-scale test-chip interconnect structure of length
2000 m was simulated. Along the length of the interconnect,
the structure was discretized into 2000 layers. Due to the large
scale of the resultant matrix, the traditional TDFEM fails to
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TABLE II
PERFORMANCE COMPARISON

Fig. 12. Simulated Crosstalk of a large-scale test-chip interconnect. (a) S12
magnitude. (b) S12 Phase.

factorize the system matrix, whereas the proposed method suc-
cessfully simulated the S-parameters of the test-chip structure.
Fig. 11 depicts the time-domain waveforms sampled at the near
and far end of an interconnect line, which demonstrate an induc-
tance effect. Fig. 12 plots the simulated crosstalk in comparison
with the measured data. Once again, the agreement is very good.

VI. CONCLUSION

The analysis and design of next generation high-speed
ICs using the most accurate electromagnetics-based models
results in numerical problems of ultra large scale, requiring
billions of parameters to describe them accurately. In order
to address the large problem size, electromagnetic solutions
have to scale favorably. The proposed time-domain LAFE-RR
method is capable of producing a smaller problem (by several
orders of magnitude) to rigorously obtain the solution of the

original large problem. In essence, it solves rigorously
by solving with the dimension of orders of
magnitude smaller than . Hence, large-scale problems can
be made tractable using the proposed method with existing
computational resources. Furthermore, due to the analytical
reduction procedure, the CPU time is dramatically reduced.
Numerical and experimental results have demonstrated the
accuracy, efficiency, and capacity of the proposed method.
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