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A Recovery Algorithm for Frequency-Domain
Layered Finite Element Analysis of Large-Scale

High-Frequency Integrated Circuits
Dan Jiao, Senior Member, IEEE

Abstract—A recovery algorithm is proposed for the frequency-
domain layered finite element analysis of large-scale high-
frequency integrated circuits. Given the solution in one layer, this
algorithm can recover the solutions in other layers with single-
ayer computational complexity. Numerical and experimental
results are given to demonstrate its validity.

Index Terms—Finite element method (FEM), high frequency,
integrated circuits (ICs).

I. INTRODUCTION

HIGH-frequency digital, mixed-signal, and radio fre-
quency (RF) integrated circuit (IC) design demands

accurate full-wave analysis for pre-layout design optimization
and post-layout performance verification. However, traditional
full-wave modeling techniques suffer from the well-known
problems of large memory requirement and long CPU run time.
Although efficient algorithms have been studied to mitigate
this problem [1], very large-scale IC design: 1) demands very
large-scale electromagnetic (EM) solutions, which cannot be
offered by many current computational EM techniques and 2)
imposes many unique modeling challenges that are totally new
to the EM community [2]. Therefore, it is of critical importance
to develop high-capacity EM methods amenable for ICs to
drive continual very large scale integration (VLSI) revolution.

In [3], a layered finite element method (FEM) was developed
for high-frequency modeling of large-scale 3-D on-chip circuits.
In thismethod,first, thematrixsystemoftheoriginal3-Dproblem
is reduced to that of 2-D layers. Second, the matrix system of 2-D
layers is reduced to that of a single layer. The computational
complexity only involves solving a single layer irrespective of
the original problem size. The method is shown to possess a
high capacity to solve large-scale IC problems. In this letter, we
propose a recovery algorithm to further improve the capability of
the layered FEM. Given the solution in one layer, this algorithm
can recover the solutions in other layers. In addition, the recovery
scheme only involves single-layer computational complexity.

II. FORMULATION

The electric field inside 3-D ICs satisfies the second-order
vector wave equation

in (1)
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subject to certain boundary conditions. A finite-element solu-
tion of (1) and its boundary conditions results in a matrix equa-
tion. The matrix can be extremely large for realistic on-chip cir-
cuit problems, which constitutes a computational challenge. To
overcome this challenge, first we reduce a 3-D layered system
matrix to a matrix that only involves 2-D surface unknowns in
each layer [3]. If the reduced matrix is within the capability of
available computational resources, we stop and solve the re-
duced system matrix as a whole without further reduction. If
not, we continue to reduce the dimension of the system matrix
to the size that we can handle such as a single-layer one [3].

The aforementioned method was developed based on the ob-
servation that in many IC design cases only one layer needs to be
preserved in the final system matrix. For instance, for power grid
design, transistor switching occurs at the bottom-most layer.
This layer also features the maximum voltage droop. For RF
IC design, the topmost layer is often the layer to be calculated
because most RF components are fabricated therein. However,
there are many other cases in which multiple layers/blocks are of
interest. For example, transistor switching occurs in one circuit
block while the crosstalk noise of interest is located in the other
block. In this case, a recovery algorithm becomes necessary to
obtain the solution in other layers/blocks from the layer/block
being calculated. To describe the proposed recovery algorithm,
we will begin with a general methodology description, and then
proceed to the detailed formulation. In what follows, denotes
the number of layers; denotes the unknowns on surface ; and
layer consists of surfaces and 1.

Now assuming after solving layer/block we want to know
the solution in layer/block . Without loss of generality, we
assume that layer is to the left of layer . As depicted in
Fig. 1(a), we first project the contributions from the layers
right to the th layer to layer . Mathematically, it resembles
superposing a submatrix on the original submatrix of
layer as shown in Fig. 1(b). We then translate the solution of
the -th layer to the -th layer. It is equivalent to assembling
a translation submatrix which consists of and . The
resultant matrix is depicted in Fig. 1(c). With the solution in
layer known, the matrix system in Fig. 1(c) can be readily
transformed to that shown in Fig. 1(d), in which matrix is
multiplied by , which is known from the solution in layer
, to form the right hand side of layer . Clearly, the resultant

matrix system for layer only involves single-layer unknowns,
which can be readily solved.

Next, we give the formulation of and . We represent
the surface-based matrix in each layer as the form shown in
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Fig. 1. Illustration of the recovery scheme.

Fig. 2. Illustration of the surface-based matrix in each layer.

Fig. 2, in which denotes the layer index. can be obtained
by the following numerical procedure:

From to , do

(2)

end

Matrix can be obtained recursively as shown in (3).

From to , do

(3)

end

The matrix operation in (2) is equivalent to eliminating all the
unknowns on the surfaces right to layer . The matrix operation
in (3) is equivalent to eliminating the intermediate surface
unknowns between layer and layer . Therefore, both (2)
and (3) can be conducted using symmetric backward Gaussian
elimination. The computational cost of (2) and (3) scales
linearly with the cost of eliminating single-layer unknowns.

Fig. 3. Cross-sectional view of an on-chip power grid example (Horizontal axis
is x, vertical axis is y).

The memory usage is also modest: linearly proportional to the
storage of a single layer matrix.

If all the layers are of interest, we do not directly translate the
solution in layer to layer , instead we recover the solutions
layer by layer as the following:

For layers to

(4)

For layers to

In (4), matrices and are not involved because for any lay-
ered structure, they are equal to and , respectively in each
layer [3]. Again, (4) only involves single-layer computational
complexity.

III. NUMERICAL RESULTS

To validate the accuracy of the proposed algorithm, we consid-
ered a benchmark on-chip power grid example, the cross section
of which is shown in Fig. 3. The structure involves four pitches
and four metal layers from M4 to M7. The shaded wires are VSS
(ground) rails, and the others are VCCs (power lines). A via ex-
ists wherever like rails cross each other. The wire width in M4 is
0.42 m; that in M6 is 0.72 m. The pitch is 7.2 m. A length of
0.49 m is considered in direction (the direction that is perpen-
dicular to the paper). Forty-eight ports are sampled at the near and
far ends of the M4 and M6 wires. The ports are ordered from the
right to the left. M4 wires are ordered first. For each wire, the near
end is ordered first. In Fig. 3, the odd-number ports are labeled.
The even-number ports are located at the far end of each wire.

Since the cross section in – plane has the minimal size,
the layer growth direction is chosen to be . Using the pro-
posed method, a matrix block is formed for each pitch. In total
four matrix blocks are formed. In each block, with the volume
unknowns eliminated, only unknowns residing on the port sur-
faces are preserved, which renders six surface-unknown based
submatrices. When one port is excited, only the associated ma-
trix block is preserved in the system, with the contribution from
other matrix blocks incorporated through the projection ma-
trices. The solution in other layers is then recovered with the
proposed recovery algorithm. Table I lists the -parameters at
5 GHz simulated by the proposed algorithm in comparison with
the results obtained from a conventional FEM. Excellent agree-
ment is observed, which is as expected because the proposed re-
covery algorithm does not make any theoretical approximations.

Next, we extend the structure to incorporate 27 pitches
along . We also incorporate 16 power rails in M8 for C4
bump landing to model a realistic on-chip example. The 16
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TABLE I
SIMULATED S-PARAMETERS IN COMPARISON WITH THE RESULTS OBTAINED FROM A STANDARD FEM

Fig. 4. Crosstalk of a 3-D on-chip interconnect structure. (a) Magnitude.
(b) Phase.

wires are unevenly distributed in M8. In total, 388 ports are
generated, which lead to 389 layers in the final system. Since
every layer is of interest here, without the proposed recovery
algorithm, we have to solve the 389 layers as a whole to obtain
the crosstalk between ports, which failed on a 2 GB computer.
With the proposed recovery algorithm, we only need to deal
with single-layer computational complexity to extract the
388 388 -parameter matrix. At 10 GHz, The calculated
is 0.9071 0.0015, is 0.046 5.47 4, and
is 2.67 4 3.607 5, where port 1 is the first M4 VCC
port in the first pitch, port 216 is the M6 VCC port in the first
pitch, and port 385 is the M8 VCC port in the 27th pitch.

Finally we simulated the crosstalk of a large-scale on-chip
interconnect structure (E14 structure in [4], [5]) that was fabri-
cated on a test chip using conventional Si processing techniques.
In [3], we reduced the original system matrix to a single-layer
one that consists of the two ports of interest to simulate the
crosstalk. Here, we keep two layers and translate the solution
of one layer to the other to examine the validity of the proposed
recovery algorithm. As shown in Fig. 4, the proposed algorithm
matches measurements very well.

IV. CONCLUSION

In this letter, we propose a recovery algorithm to obtain
the solution in other layers from the solution calculated in
one layer in the framework of the layered FEM. Both CPU
run time and memory usage scale linearly with single-layer
computational complexity. The algorithm is very powerful in
performing crosstalk analysis of large-scale ICs, for which a
standard FEM will be computationally prohibitive due to large
memory requirement.
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