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Abstract—A new method for making an explicit time-domain
finite-element method unconditionally stable is developed for gen-
eral electromagnetic analysis, where the dielectrics and conduc-
tors can be inhomogeneous, lossless, or lossy. In this method, for
a given time step, we find the unstable modes that are the root
cause of instability, and deduct them directly from the system ma-
trix resulting from a time-domain finite-element based analysis.
The resultant explicit time-domain simulation is absolutely stable
for the given time step no matter how large it is, and irrespective
of the space step. The accuracy of the method is also guaranteed
when the time step is chosen based on accuracy. In addition to a
formulation for lossless problems, formulations for general lossy
problems are also presented in detail. Numerical experiments have
demonstrated the accuracy, efficiency, and unconditional stability
of the proposed new explicit method.

Index Terms—Electromagnetic analysis, explicit methods, time-
domain finite-element method (TDFEM), transient analysis,
unconditionally stable schemes.

I. INTRODUCTION

T IME-DOMAIN methods are of critical importance for
analyzing transient and nonlinear physical phenomena.

Among existing time-domain methods, explicit methods can
avoid solving a matrix equation. However, their time step is tra-
ditionally restricted by the space step for ensuring the stability
of a time-domain simulation, such as the well-known Courant-
Friedrichs-Lewy (CFL) condition required by an explicit finite-
difference time-domain (FDTD) method, and a similar condition
in a time-domain finite-element method (TDFEM) [1]. Because
of the dependence of time step on space step, when the structure
being simulated involves fine features relative to the working
wavelength, a tremendous number of time steps are required
to finish one simulation, which is computationally expensive.
Indeed, some of the fine features, even though they physically
exist, can be safely ignored without affecting much the overall
solution accuracy. However, there are also fine features that must
be captured to obtain a correct solution of the original problem.
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The latter is the problem studied in this work, and also in other
works that aim to break the time step limit such as [2]–[8].

An unconditionally stable time domain method eliminates the
dependence of time step on space step. It also permits the use
of an arbitrarily large time step without making a time-domain
simulation unstable. Existing unconditionally stable methods
are mainly implicit methods such as [2]–[8]. Unlike explicit
methods that can avoid solving a matrix equation, an implicit
method requires a matrix solution, and hence becoming compu-
tationally expensive when the matrix size is large. Furthermore,
the accuracy of an implicit method degrades with the increase
of time step. Late time instability has also been observed in im-
plicit unconditionally stable methods [11]. In addition to implicit
methods, spatial filtering techniques have also been developed
to extend the CFL limit of the FDTD [9], [10].

Recently in [11], an explicit and unconditionally stable
TDFEM is created. The essential idea of this method is very
different from that of an implicit method for achieving uncon-
ditional stability. In an implicit method, the source of instability
is not removed. Instead, a different time integration technique is
employed to suppress the instability. Among the implicit meth-
ods, not all of them are unconditionally stable. If the time inte-
gration technique does not bound the error amplification factor
to be one, the resulting implicit method can still be unstable. In
the newly developed explicit and unconditionally stable TDFEM
method [11], the time integration scheme remains the same as
that of an explicit time marching scheme. However, the source
of instability is found, and subsequently eradicated from the
numerical system of an explicit time marching. As a result, an
explicit time marching can also be made unconditionally stable.

By comparing the new explicit unconditionally stable method
with the implicit method in both dispersion error and total so-
lution error [12], it has also been found that the degradation of
an implicit method in accuracy and late-time stability can be
attributed to the unremoved source of instability. This source
is, in fact, the eigenmodes present in the field solution, which
however cannot be accurately simulated by the given time step.
Although these eigenmodes are suppressed to be stable by an
implicit time integration technique, they can still negatively af-
fect the overall accuracy and stability of a time-domain solution.
On the contrary, by removing these unstable modes altogether
like what is fulfilled in [11]–[13], the remaining eigenmodes
comprising the field solution can all be accurately simulated by
the given time step, and hence ensuring not only stability but
also accuracy.
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It is also worth mentioning that for a general inhomoge-
neous problem, the eigenmodes found in [11]–[13] are not spa-
tial Fourier modes used in Von Neumann analysis and filter-
ing techniques [9], [10], and their eigenvalues are not spatial
frequencies. Instead, each of the eigenmodes is a source-free
solution of the given problem satisfying all the boundary condi-
tions at the material interfaces. Therefore, not only the unstable
eigenmodes, whose eigenvalues are the highest, but also the
stable eigenmodes capture the fine features present in the struc-
ture, including the lowest eigenmodes whose eigenvalues are
zero. If one takes a single eigenmode and performs a spatial
Fourier transform on it, he would get a range of spatial frequen-
cies from low to very high. For example, the zero-eigenvalue
mode, which is a static field distribution, also captures the rapid
space variation of the field surrounding fine features. The unsta-
ble eigenmodes in [11]–[13] are removed based on their negli-
gible weights in the field solution, which are analytically known
from their eigenvalues λi and the working frequency ω. For
example, in a lossless problem, this weight is proportional to
1/(λi − ω2). The unstable modes have the largest eigenvalues
beyond those that can be accurately simulated by a given time
step. Since their weights are negligible for the input spectrum,
removing them does not affect the accuracy. It should be empha-
sized that removing unstable modes in the methods of [11]–[13]
is not the same as removing the high spatial Fourier modes since
the two sets of modes are different. Hence, it is not the same as
ignoring the fine features or fields with fast space variations. In
the proposed method and [11]–[13], the stable eigenmodes that
are kept in the simulation have also captured the fine features,
thus, the fast space variations of the field. It is true that with-
out fine features, the unstable modes would not exist. However,
with the fine features, not only the unstable modes but also the
stable modes capture the fine features. In other words, the stable
modes are obtained subject to the presence of the fine features.
With or without the fine features, the stable eigenmodes are dif-
ferent, and their eigenvalues do not correspond to the frequency
of the space variation. No matter how fine the spatial feature
can be, the eigenvalue of an eigenmode in this fine structure can
be as small as zero, but still capturing the fine feature like the
zero-eigenvalue mode (dc mode).

In [11], for any given time step Δt, the root cause of the
instability for lossless problems is analytically found to be the
eigenmodes of the system matrix whose eigenvalues are higher
than 4/Δt2 . The method in [11] begins with a preprocessing step
that finds the space of stable eigenmodes followed by an explicit
time marching stable for the given time step no matter how
large it is. To preserve the advantage of an explicit time-domain
method in avoiding solving a matrix equation, the preprocessing
step is performed by using the conventional explicit marching.
Although the time window to be simulated in the preprocessing
can be much shorter than the total window to be simulated, the
performance of the preprocessing step may become limited in
certain applications. The same is true to the FDTD methods
developed in [12], [13].

In this paper, we propose a new method for achieving un-
conditional stability in an explicit TDFEM. In this new method,
for a given time step, we find the unstable modes, and directly
deduct them from the system matrix resulting from the TDFEM

analysis. In other words, we adapt the underlying numerical
system based on the given time step to eradicate the source of
instability. We then perform an explicit time marching on the
updated numerical system that is free of unstable modes. The
resultant explicit simulation is absolutely stable for the given
time step irrespective of its size as well as the space step. Mean-
while, the conventional explicit time marching based prepro-
cessing step required by [11] is eliminated in this new method.
Furthermore, we present algorithms for analyzing general lossy
problems where both dielectrics and conductors can be lossy
and inhomogeneous. Such a general lossy problem has not been
analyzed in [11], [13], while [12] requires finding stable modes
from a preprocessing step. Since a general lossy problem is gov-
erned by a quadratic eigenvalue problem with complex-valued
eigenvalues and eigenmodes, it is not straightforward to extend
a method for analyzing lossless problems to analyze general
lossy problems. New algorithms need to be developed to make
an explicit TDFEM unconditionally stable for analyzing gen-
eral lossy problems. This makes the other focus of this paper.
Compared to our conference paper [18], in this work, we de-
velop complete algorithms for both lossless and lossy problems.
For lossy problems, we also provide a theoretical analysis on
how the algorithm works, propose another explicit marching
scheme, and a scaling algorithm that improves accuracy. In ad-
dition, more numerical examples are simulated.

The remainder of this paper is organized as follows. In
Section II, we review the root cause of instability of an explicit
time-domain method. In Section III, we present the proposed
method for analyzing the lossless problems; in Section IV, we
describe the proposed method for analyzing general lossy prob-
lems. Section V provides abundant examples to validate the
accuracy, efficiency, and unconditional stability of the proposed
methods. Section VI concludes this paper.

II. REVIEW ON THE ROOT-CAUSE OF INSTABILITY

Consider Maxwell’s equations governing a general problem
having space-dependent conductivity σ, permittivity ε, and per-
meability μ in a source-free region. A time-domain FEM solu-
tion of such a problem results in the following linear system of
equations

Tü(t) + Ru̇(t) + Su(t) = İ(t) (1)

in which T is a mass matrix, R is related to conductivity, S is
a stiffness matrix, u is a vector containing all field unknowns
in the computational domain, and I denotes a vector of the
current sources. The single dot above a letter in (1) represents
a first-order time derivative, while the double dots signify a
second-order time derivative. The T, R, and S are assembled
from their elemental contributions as the following:

Te = μ0ε 〈Ni ,Nj 〉 (2)

Re = μ0σ 〈Ni ,Nj 〉 (3)

Se = μr
−1 〈∇ × Ni ,∇× Nj 〉 (4)

where μ0 is the free-space permeability, μr is the relative per-
meability, N is the vector basis function employed to expand
electric field E in each element, and 〈·, ·〉 denotes an inner
product. A central-difference-based time discretization of (1),
which is an explicit scheme, results in the following system of
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equations:{
1

(Δt)2 T +
1

2Δt
R

}
un+1

=
{

2
(Δt)2 T − S

}
un −

{
1

(Δt)2 T − 1
2Δt

R
}

un−1 − İn .

(5)

The solution of (1) is governed by the following quadratic
eigenvalue problem:

(λ2T + λR + S)V = 0 (6)

in which λ denotes eigenvalues, and V is the eigenvector. The
eigenvectors of (6) form a complete space to represent the field
solution’s space dependence. This is because there are N lin-
early independent eigenvectors of (6) [14]. The solution of (1)
at any time is hence nothing but a linear superposition of the
eigenvectors of (6) as the following:

u(t) = Vy(t) =
∑

i

Viyi(t) (7)

with the weight of each eigenvector, yi , being time dependent.
For lossless cases where R is absent, (6) can be simplified as

a generalized eigenvalue problem

SV = ξTV (8)

where eigenvalues ξ are real and nonnegative, since T is Hermi-
tian positive definite, and S is Hermitian positive semidefinite.
In [11], it is shown that the root cause of the instability of (5),
for any given time step Δt, is the eigenmodes of (8) that have
the following eigenvalues:√

ξi >
2

Δt
, i ∈ (1, N) . (9)

These eigenmodes are termed unstable modes for the given
time stepΔt.

For general lossy cases where R is present, the eigenvalues
of (6) come into pairs. They are either no greater than zero,
i.e., negative real or zero, or complex conjugates of each other
[14]. This is because T is Hermitian positive definite, R and S
are Hermitian and positive semidefinite. Consider a source-free
problem for stability analysis. As theoretically derived in [12],
if the two eigenvalues in an eigenvalue pair are both negative
but different, the time-dependence of their corresponding eigen-
modes is an exponential decay with time; if the two eigenvalues
are both negative but identical, the time-dependence of their
corresponding eigenmodes represents a critically damped case;
if the two eigenvalues are complex conjugates of each other,
they correspond to an under-damped time dependence. In [12],
for all of these three cases, a detailed root cause analysis of the
instability is conducted, and it is found that the eigenmodes of
(6) that have the following eigenvalues:√

|λi1λi2 | >
2

Δt
, i ∈ (1, N) (10)

cannot be stably simulated by the given time step in a central-
difference-based explicit time marching, and hence they are the
root cause of instability. In (10), λi1 and λi2 represent a pair of
eigenvalues of (6). Obviously, (10) is more general for use since
(9) is a special case of (10).

There are a few important findings that can be drawn from
(10). First, when an explicit time-domain method becomes un-

stable for a given time step, not all the eigenmodes comprising
the field solution are unstable; there always exists a set of eigen-
modes that can be stably simulated. This is because the smallest
eigenvalues of (6) and (8) are zero. The zero eigenvalues as
well as nonzero ones not satisfying (10) can be stably simulated
by the given time step no matter how large the time step is.
The second finding is on why the unstable modes exist. They
exist because of fine space discretizations relative to the work-
ing wavelength. The finer the space discretization, the larger
the largest eigenvalue of (6). The fine discretizations cannot be
avoided in a structure having fine features relative to working
wavelengths. Third, the unstable modes are also those eigen-
modes that cannot be accurately simulated by the given time
step. To see this point clearly, in lossless cases, the yi(t) in (7)
of an eigenmode, whose eigenvalue is ξi , is analytically known
as

yi(t) = A cos(
√

ξit) + B sin(
√

ξit) (11)

in a source-free problem, where A and B are arbitrary coeffi-
cients. In lossy cases, as shown in [12], the yi(t) has the follow-
ing three forms:

yi(t) =

⎧⎪⎨
⎪⎩

Aeλi 1 t + Beλi 2 t

(A + Bt)eλi t

eRe[λi ]t [A cos(Im[λi ]t) + B sin(Im[λi ]t)] .

(12)

When (10) holds true, the time variation of the specific eigen-
mode is too high to be accurately sampled by the given time step,
and hence causing instability. Last and also the most important,
when the time step is chosen based on accuracy, the unstable
modes are not required by accuracy. Hence, they can be removed
without sacrificing accuracy. A detailed analysis can be found
in [11]–[13]. To give a simple explanation, when Δt is cho-
sen based on accuracy, it generally satisfies Δt ≤ 1/(10fmax),
where fmax is the maximum frequency corresponding to the
smallest wavelength present in the problem being simulated.
The unstable modes have eigenvalues satisfying (10), and hence
|λi | > 20fmax > 2πfmax . Based on the Fourier transform of
either (11) or (12), it is evident that such a λi is beyond the max-
imum frequency required by accuracy. Both (11) and (12) are
source-free solutions. When sources are present, take a lossless
problem as an example, the field solution for a source vector b
can be written as u(ω) =

∑
i

1
ξi −ω 2 ViVi

T bin frequency domain
[11]. Thus, for a band limited input, there is a maximum eigen-
value ξi we need to capture for a prescribed accuracy, which
determines the smallest wavelength. The unstable modes have
eigenvalues larger than that, and hence can be removed without
sacrificing the prescribed accuracy.

III. PROPOSED METHOD FOR LOSSLESS PROBLEMS

Consider a general lossless problem, in a traditional explicit
time-domain method, the time step is chosen in the following
way:

Δt <
2

|λ|max
(13)

that is based on the largest eigenvalue of (6), |λ|max , so that all
eigenmodes comprising the field solution can be stably simu-
lated by the given time step. Since |λ|max is inversely propor-
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tional to the smallest space step, the time step of a traditional
explicit method is restricted by the smallest space step. In the
proposed explicit method, instead of choosing a time step to
make the explicit simulation stable, we fix the time step to be
the desired value, but choose the eigenmodes that can be stably
simulated by the given time step as the following:

|λi | <
2

Δt
(14)

while discarding the unstable modes. As a result, the time step
no longer depends on space step, and an explicit time-domain
method can also be made unconditionally stable. Meanwhile,
the accuracy is ensured when the time step is chosen based on
accuracy.

In this section, we present an alternative explicit and uncon-
ditionally stable TDFEM, which is different from [11] as well
as [12], for analyzing general lossless problems.

A. Method

Let Vh denote the matrix whose column vectors are the eigen-
vectors of (8) having eigenvalues satisfying (9). Vh thus con-
tains all the unstable modes for the given time step.

We update the original system of equations (1) to a new
system of equations as the following:

Tü(t) + S
(
I − VhVT

h T
)
u(t) = İ(t) (15)

where S is changed to S(I − VhVT
h T).

We then perform a central-difference-based explicit time
marching of (15) as the following:

ũn+1 =
{
2 − Δt2T−1S

[
I − VhVT

h T
]}

un − un−1

+ Δt2T−1 İn (16)

in which superscripts n−1, n, n+1 denote time instants.
Obviously, the only extra computation involved in (16),

as compared to the traditional TDFEM, is the evaluation of
VhVT

h Tun term. This term can be efficiently evaluated by
three matrix-vector multiplications performed in sequence from
right to left: First, sparse matrix-vector multiplication Tun ; then
a multiplication of the resultant vector by VT

h , followed by an-
other multiplication with Vh . The total computational cost is
O(kN), where k is the number of the unstable modes.

At each time step, after obtaining the field solution ũn+1 via
(16), we need to add one important step as shown below to make
the solution correct

un+1 = ũn+1 − VhVT
h Tũn+1 . (17)

B. How it Works?

Now, we shall prove the correctness of the aforementioned
method. The method essentially changes the original numerical
system consisting of both the unstable and stable modes to a
system of stable modes only. To prove, the solution of (16) is
now governed by the eigen-solution of a new system matrix
T−1S(I − VhVT

h T)instead of the original T−1S. For conve-
nience, let us denote T−1S(I − VhVT

h T) by

Mnew = T−1S
(
I − VhVT

h T
)

(18)

in contrast to the original system matrix denoted by

M = T−1S. (19)

Let V be the matrix whose column vectors are the eigenvec-
tors of M, which is the union of the unstable eigenmodes Vh

that satisfy (9), and the stable ones Vs that do not satisfy (9).
Thus,

V = [Vs Vh ] . (20)

Since (8) is a symmetric definite eigenvalue problem as T
is symmetric positive definite, and S is symmetric positive
semidefinite, the following property holds true:

VT TV = I (21)

in which I is an identity matrix. We hence can deduce

V−1 = VT T =

[
VT

s T

VT
h T

]
. (22)

From (8), the original system matrix M = T−1S can be writ-
ten as

M = VΛV−1 (23)

where Λ is the diagonal matrix of all the eigenvalues. Substitut-
ing (20) and (22) into (23), we obtain

M = VsΛsVT
s T + VhΛhVT

h T. (24)

Clearly, M has two components: one component in Vs space,
and the other inVh space. Here, Λsdenotes the diagonal matrix
containing the eigenvalues of the stable modes in Vs , and Λh is
the diagonal matrix of the eigenvalues of the unstable modes.

From (18), the new system matrix is

Mnew = M − MVhVT
h T. (25)

Substituting (24) into it, and utilizing the property of (20)
which yields VT

s TVh = 0 and VT
h TVh = I, we obtain

Mnew = VsΛsVT
s T (26)

which is nothing but the first term of M in (24), and hence the
component of M in the stable space. Multiplying both sides of
(26) from right by Vs , using (21), it is evident that

MnewVs = VsΛs . (27)

Therefore, (Λs ,Vs) is the eigen-pair of the new system ma-
trix Mnew . Hence, the explicit marching based on Mnew , as
shown in (16), is absolutely stable for the given time step no
matter how large it is. As a result, we prove the unconditional
stability of (16) irrespective of space step.

Although (16) is absolutely stable for the given time step, we
found the solution obtained from (16) is not correct. To make
the solution correct, we need to add one more important step
shown in (17). This is because the new system matrix Mnew has
not only stable eigenmodes Vs of the original system matrix
M, but also an additional nullspace. This can be readily seen
from (26). The rank of (26) and thereby Mnew is the number of
stable eigenmodes, denoted by ks , while the matrix size of (26)
is N. Mnew is therefore a low-rank matrix with (N-ks) additional
zero eigenvalues, in addition to the ks eigenvalues of the stable
eigenmodes. The solution of (16) is thus the superposition of
not only the stable eigenmodes Vs , but also the eigenvectors in
the additional nullspace. We can write the solution of (16) as

u = Vsys + Va0ya0 (28)

where Va0 denotes the additional nullspace of Mnew , ys, and
ya0 are the coefficient vectors for Vs modes, and Va0 modes,
respectively. This additional nullspace Va0 is different from the
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nullspace of the original system matrix M. Although it can be
simulated stably in (16) since its eigenvalues are zero, it makes
the solution of (16) incorrect, as numerically they are not exact
zeros.

The treatment of (17) effectively removes the second term
in the right hand side of (28), i.e., the contribution from Va0
nullspace. This is because when we multiply (28) by VhVT

h T,
since VT

h TVs = 0, the first term in the right hand side of (28)
vanishes, leaving the second term only. VhVT

h Tu thus becomes
nothing but

VhVT
h Tu = VhVT

h TVa0ya0 = Vhyh (29)

that is the Vh -component of u. As a consequence, the treatment
of (17) deducts the Vh -component from u, leaving only the
Vs -component, and hence making the solution of (16) correct.

Interestingly, we also found that if we perform a full eigen-
value analysis of M to determine Vh , and then deduct it from M,
(16) by itself can yield a correct solution. However, for the sake
of computational efficiency, if we find Vh modes only instead
of finding all eigenvectors of M, the step of (17) is necessary.
This can be due to the fact that with a full eigenvalue analysis,
the difference between (25) and (26) is at the level of machine
precision. Hence, the contribution from the additional nullspace
is negligible. However, this is not true with a partial eigenvalue
analysis of M for obtaining Vh modes only.

C. Further Simplification of the Proposed Method

With the step of (17) added for removing the contribution
from the additional nullspace, we found that the VhVT

h Tun

term can be omitted in (16). In other words, one treatment of
(17) is sufficient. This is because in the implementation of (16),
for efficient computation, instead of computing a new updated
matrix T−1S(I − VhVT

h T), we compute (I − VhVT
h T)un

first, and then multiply it with T−1S. The computation of
(I − VhVT

h T)un essentially removes the Vh -component from
the field solutionun . Since this has already been done in the pre-
vious time step via (17), we do not have to do it again unless (17)
does not clean up Vh -component completely due to numerical
round-off error. However, in this case, (17) can also be repeated
a few times to make the field solution clean of unstable modes.

Without VhVT
h T term in (16), apparently, the numerical

system would contain unstable modes. However, (17) forces the
field solution u to be in the stable space Vs at each time step,
and hence (16) is nothing but

Vsys
n+1 = 2Vsys

n − Δt2T−1SVsys
n − Vsys

n−1

+ Δt2T−1 İn .

Since T−1SVs = MVs = VsΛs , the term associated with
S in the above is actually VsΛs , and hence the space of stable
modes only.

The aforementioned simplification is attributed to the special
design of (17) that utilizes the T-orthogonality of the eigenvec-
tors to make un = Vsys

n , and hence when multiplied by M,
only the Vs -component of the system matrix M is left.

It is also worth mentioning that the proposed method can
also be leveraged in implicit time-domain methods to improve
their accuracy and late-time instability. Instead of performing
an implicit simulation of the original (1), one can perform an
implicit simulation on the updated numerical system shown in

(15). Since the unstable eigenmodes have been deducted from
(15), what is left in the numerical system can all be accurately
simulated by the given time step, the accuracy and late-time
instability of an implicit method can be improved as well.

D. Finding Unstable Modes Vh

Vhmodes have the largest eigenvalues of (8) since they satisfy
(9). This fact together with the sparsity of the TDFEM matrices
can be utilized to find Vh efficiently. In this work, we use the
implicitly restarted Arnoldi algorithm to find Vh [15], [17].
For finding k largest eigenvalues and their eigenvectors, the
computation of this algorithm is mainly O(k) sparse matrix-
vector multiplications, and the orthogonalization of the obtained
O(k) vectors. The computational complexity is O(k2N), thus
efficient as compared to a traditional full eigenvalue analysis
whose complexity is O(N3).

It is worth mentioning that if using the Arnoldi algorithm
to find the stable eigenmodes instead of the unstable ones, the
resultant computation is not efficient and robust. First of all, the
stable modes have the smallest eigenvalues of the system ma-
trix, while an Arnoldi solver converges to the largest eigenvalues
first. If we work on the inverse of the original system matrix to
transform the smallest eigenvalues to the largest ones, the spar-
sity of the original matrix is lost, and the computation becomes
much more expensive. If we still work on the original matrix,
it takes many more than k steps to find k smallest eigenvalues.
Furthermore, the eigenvalue problem (8) has a large nullspace
whose eigenvalues are zero, to find some completely is numer-
ically difficult. In contrast, the algorithm developed in [11] is
particularly robust and efficient for finding the stable eigen-
modes. However, for finding the largest eigenvalues of a sparse
numerical system, the Arnoldi solver is efficient and reliable for
use.

IV. PROPOSED METHOD FOR LOSSY PROBLEMS

Different from a lossless problem, a lossy problem is gov-
erned by a quadratic eigenvalue problem shown in (6). The
resulting eigenvalues and eigenvectors are also complex valued.
In this section, we will first perform a theoretical analysis to
understand the nature of the problem, and then proceed to the
proposed method, followed by a proof on its correctness. We
also present another explicit marching scheme, and discuss a
scaling technique.

A. Theoretical Analysis

Equation (1) can be transformed to the following first-order
partial differential equation in time without any approximation:[

R T

T 0

]
d

dt

{
u

u̇

}
+

[
S 0

0 −T

]{
u

u̇

}
=

{
İ

0

}
(30)

which can be written in short as

d

dt
ũ − Mũ = b̃ (31)

where ũ = [u u̇]T , b̃ = [0 T−1 İ]T , M is

M=A−1B (32)
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with

A =

[
R T

T 0

]
B =

[−S 0

0 T

]
. (33)

Using block matrix inversion formula, the M can be analyti-
cally found as

M =

[
0 I

−T−1S −T−1R

]
. (34)

The solution of ũ, whose upper part is the original field solu-
tion of (1), is governed by the following generalized eigenvalue
problem:

MV = VΛ (35)

in whichΛ denotes a diagonal matrix whose entries are eigenval-
ues λ, and V is the eigenvector matrix which is V = [Vs Vh ].

The original quadratic eigenvalue problem of (6) is equivalent
to the generalized eigenvalue problem shown in (35). To see this
point clearly, (6) can be rewritten as[−S 0

0 T

]{
v

λv

}
= λ

[
R T

T 0

] {
v

λv

}
(36)

and in short as

BV = λAV (37)

and hence the same as (35) since A−1B = M, as given in
(31). As a result, the eigenvalues of the generalized eigenvalue
problem (37) are the same as those of (6), and the eignvectors
of (37) in their upper half are the eigenvectors of (6).

If a forward-difference based explicit time marching is per-
formed on (31), we can find the eigenmodes, whose nonzero
eigenvalues λi satisfy the following condition, can be stably
simulated by the given time step:

|λi |2
|Re(λi)| <

2
Δt

(38)

a detailed derivation of which can be found in Appendix. In
addition, the eigenmodes whose eigenvalues are zero can always
be stably simulated. Given a time step, Vs is thus made of these
eigenmodes that can be stably simulated by the given time step.

Since Vh -modes and Vs-modes have different eigenvalues,
and both A and B of (37) are symmetric, Vhand Vssatisfy the
following property:

VT
s AVh = VT

h AVs = 0 (39)

To prove, consider two eigenpairs (λ1 , v1)and (λ2 , v2)of (37),
whose eigenvalues are different. We have

Bv1 = λ1Av1 Bv2 = λ2Av2

from which we obtain

v2
T Bv1 = λ1v2

T Av1 v1
T Bv2 = λ2v1

T Av2 .

Taking the transpose of the first equation, and subtracting
the second from it, since A and B are symmetric, and the two
eigenvalues are different, we have v2

T Av1 = v2
T Bv1 = 0.

As a result, we can deduce

VT AV =

[
VT

s

VT
h

]
A [Vs Vh ] =

[
At 0

0 Dh

]
(40)

where

At = VT
s AVs

Dh = VT
h AVh . (41)

Following the same proof as the above, Dh is also a diag-
onal matrix since the eigenvalues of Vh are nonzero, and the
nonzero eigenvalues of (37), in general, are not identical. In the
rare case where a few eigenvalues are the same, Dh is block di-
agonal with a very small block size being the number of repeated
eigenvalues. Hence, its inversion is trivial.

B. Method

Given an arbitrary time step, to overcome the instability of
an explicit marching, we simply update the original system of
(31) to a new system of equations as the following:

d

dt
ũ − M

(
I − VhD−1

h VT
h A

)
ũ = b̃ (42)

where M is changed to a new system matrix M(I −
VhD−1

h VT
h A). We then perform a forward-difference based

explicit time marching of (42) as the following:

˜̃un+1 = ũn − ΔtM
(
I − VhD−1

h VT
h A

)
ũn + Δtb̃n (43)

where the only computation additional to the conventional TD-
FEM is the evaluation of VhD−1

h VT
h Aũn . This term can be

efficiently computed by a sequence of matrix-vector multipli-
cations from right to left, the computational cost of which is
O(kN), where k is the number of columns in Vh , i.e., the
number of unstable modes.

Similar to the lossless cases, after the field solution is obtained
via (43) at each time step, we add the following treatment:

ũn+1 = ˜̃un+1 − VhD−1
h VT

h A˜̃un+1 . (44)

Since the step of (44) is performed at each step, the
VhD−1

h VT
h Aũn in (43) can be saved.

C. How it Works?

Like the lossless cases, the above modification shown in (42)
changes the original system involving both unstable and stable
modes to a system of stable modes only. To prove, now, the new
system matrix

Mnew = M
(
I − VhD−1

h VT
h A

)
. (45)

We can show it only contains the stable eigenmodes of the
original system matrix M, and an additional nullspace as the
following.

From (40), we obtain

V−1 =

[
A−1

t 0

0 D−1
h

]
VT A. (46)
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Hence, the original M can be rewritten as

M = VΛV−1 = [Vs Vh ] [Λ]

[
A−1

t 0

0 D−1
h

]
[Vs Vh ]T A

= [Vs Vh ]

[
Λs 0

0 Λh

] [
A−1

t 0

0 D−1
h

]

× [Vs Vh ]T A

= VsΛsA−1
t VT

s A + VhΛhD−1
h VT

h A

= VsΛsA−1
t VT

s A + MVhD−1
h VT

h A (47)

where in the last step, we utilize the fact that MVh = VhΛh .
Therefore, the modified system matrix is nothing but

Mnew = VsΛsA−1
t VT

s A (48)

the Vs -component of M. Multiplying both sides of the above
by Vs , recognizing VT

s AVs = At as can be seen from (41),
we obtain

MnewVs = VsΛs . (49)

Hence, (Λs , Vs) is the eigenvalue solution of Mnew . There-
fore, the new system matrix contains the stable eigenmodes only.
As a result, an explicit marching of (43) is absolutely stable for
the given time step no matter how large it is.

Similar to the lossless cases, since the rank of (48), and hence
Mnew , is the number of stable eigenmodes ks , while the matrix
size of (48) is 2N, the Mnew is a low-rank matrix with (2N-ks)
additional zero eigenvalues. The eigenvectors corresponding to
these zero eigenvalues form a nullspace that is not present in the
original system matrix M, which makes the field solution incor-
rect. Therefore, like the lossless cases, after the field solution is
obtained via (43) at each time step, we add the treatment shown
in (44) to remove the contribution from the additional nullspace,
making the field solution correct. To explain, the ũn+1again has
a form of (28), since VT

h AVs = 0, and VT
h AVh = Dh , the

VhD−1
h VT

h Aũn+1 is nothing but the component of ũn+1 con-
tributed by the additional nullspace. By deducting it from ũn+1 ,
we obtain the Vs -component only.

D. Another Explicit Time Marching Scheme Based on
Central Difference

For a general lossy problem discretized into a second-order
system shown in (1), we can directly simulate it with a central-
difference-based explicit time marching. The scheme described
above transforms (1) to a first-order system, and simulates
the resultant with a forward-difference-based explicit march-
ing. Readers who have experiences with the two explicit time
marching schemes may have realized that the two schemes have
a different requirement on time step for stability. When there is
a conductor loss, the time step required by a forward-difference
explicit marching can be much smaller than that of the central-
difference-based explicit marching. Although in the proposed
new method, we remove the unstable modes from the numeri-
cal system according to time step, and hence allowing for the
forward-difference scheme to use any large time step. However,
from an accuracy point of view, for simulating the same set of
eigenmodes kept in the numerical system, the time step required
by a forward-difference explicit marching for stably simulating

these modes is smaller than that of a central-difference-based
explicit marching. In this subsection, we analyze this problem
and present a central-difference-based explicit marching scheme
for simulating the lossy problems with unconditional stability.

Using a central-difference-based explicit marching of (1), the
time step required for stably simulating an eigenmode of λi

eigenvalue satisfies the following condition [12], as also shown
in (10):

Δt ≤ 2√|λi1λi2 |
. (50)

However, using a forward-difference scheme, as shown in
(38), the time step needs to satisfy

Δt ≤ 2|Re(λi)|
|λi |2

. (51)

For an eigenvalue pair having identical negative eigenvalues,
(51) is the same as (50). For complex conjugate eigenvalues,
from (5), we can find

λi =
−bi ±

√
bi

2 − 4ci

2
(52)

where bi = V H
i RVi/V H

i TVi, ci = V H
i SVi/V H

i TVi and both
are greater than zero. Since for complex conjugate eigenval-
ues, bi

2 < 4ci , and |λi | =
√

ci , we have |Re(λi)| = bi/2 < |λi |.
Hence, the time step of (51) is smaller than that required in (50),
because Δt ≤ 2|Re(λi )|

|λi |2 < 2
|λi | .

We propose to perform a leap-frog-based time marching of
the first-order system of (31). This will yield the same central-
difference-based time marching of the original second-order
system (1), and hence resulting in a time step of (50) for stability,
which is larger than that allowed by the forward-difference-
based time marching for simulating the same eigenmode. To
explain, we can write (31) in full as

d

dt

{
u

w

}
−

[
0 I

−T−1S −T−1R

]{
u

w

}
=

{
0
b̃2

}
(53)

where w = u̇, which is also an unknown to be solved together
with the field solution u, and b̃2 is the lower half of vector b̃.
Using a leap-frog-based time marching, the above double-sized
first-order system can be marched on in time as follows:

un − un−1 = Δtwn− 1
2

wn+ 1
2 − wn− 1

2 + ΔtT−1Sun + ΔtT−1R
wn+ 1

2 + wn− 1
2

2

= Δtb̃n
2 (54)

which can be rearranged to solve u and w at the most advanced
time step as

un = un−1 + Δtwn− 1
2 (55)

(
I + 0.5ΔtT−1R

)
wn+ 1

2 =
(
I − 0.5ΔtT−1R

)
wn− 1

2

− ΔtT−1Sun + Δtb̃n
2 (56)

The above is equivalent to a central-difference-based dis-
cretization of (1). This can be readily proved as follows. Writing
(55) for the n+1-th step, we obtain

un+1 = un + Δtwn+ 1
2 . (57)
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Multiplying both sides by (I + 0.5ΔtT−1R), we have
(
I + 0.5ΔtT−1R

)
un+1 =

(
I + 0.5ΔtT−1R

)
un

+ Δt
(
I + 0.5ΔtT−1R

)
wn+ 1

2 .
(58)

Multiplying (55) by (I − 0.5ΔtT−1R)on both sides, we ob-
tain

(
I − 0.5ΔtT−1R

)
un =

(
I − 0.5ΔtT−1R

)
un−1

+ Δt
(
I − 0.5ΔtT−1R

)
wn− 1

2 .
(59)

Subtracting (59) from (58), and substituting (56), we have

(I + 0.5ΔtT−1R)un+1 = 2un − (I − 0.5ΔtT−1R)un−1

− Δt2T−1Sun + Δt2T−1 İn

(60)

which is the same as a central-difference-based discretization
of (1). Hence, by performing a time marching of the first-order
system (31) in a leap-frog-based way shown in (55) and (56),
the time step required for stably simulating an eigenmode is
same as that of a central-difference-based time marching of the
second-order system.

With the unstable modes Vh satisfying (10) found from (37),
to make the above leap-frog scheme shown in (55–56) stable
for any time step, what we only need to do is as follows. After
(55), we form vector ũ = [unwn− 1

2 ]T , and deduct the unstable
modes from it by updating it to be ũ = (I − VhD−1

h VT
h A)ũ. un

is then taken as the upper half of ũ to be free of unstable modes,
and used in (56) to compute wn+ 1

2 . After the computation of
(56) for obtaining wn+ 1

2 , we form ũ = [unwn+ 1
2 ]T , update

it to be ũ = (I − VhD−1
h VT

h A)ũ so that the unstable modes
are removed. un is then updated to be the upper half of ũ,
while wn+ 1

2 is updated to be the lower half of ũ. We then
continue to next time step. The entire procedure is summarized
as the following:

(1) un = un−1 + Δtwn− 1
2

(2) ũ =
[
unwn− 1

2

]T

ũ = (I − VhD−1
h VT

h A)ũ

un = ũ(1 : N)

(3) (I + 0.5ΔtT−1R)wn+ 1
2

= (I − 0.5ΔtT−1R)wn− 1
2 − ΔtT−1Sun + Δtb̃n

2

(4) ũ =
[
unwn+ 1

2

]T

ũ = (I − VhD−1
h VT

h A)ũ

un = ũ(1 : N)
wn+ 1

2 = ũ(N + 1 : 2N) (61)

where steps (1) and (3) are the same as the original (55) and (56),
but steps (2) and (4) are added to ensure the unstable modes are
removed from the numerical system at each time step.

E. Scaling

During the study of this paper, we found that when T, S, and
R are very different in their norm, the solution of the general-
ized eigenvalue problem (37), which is equivalent to the original
quadratic eigenvalue problem (6), may have a poor accuracy in
numerical computation. This is especially true when the prob-
lems being simulated involve conductor loss and/or multiple
scales. We hence adopt a scaling technique introduced in [17]
to achieve good accuracy in the solution of (37) for finding the
unstable modes. Based on this scaling technique, the matrix T,
S, and R in (36) are, respectively, scaled to

T̃ = α2βT S̃ = βS R̃ = αβR (62)

where

α =
√

γ0/γ2

β = 2/
(
γ0 + γ1

√
γ0/γ2

)

γ2 = ||T||2 γ1 = ||R||2 γ0 = ||S||2 . (63)

Correspondingly, the first-order double-sized system (30) is
updated as the following:

1
α

[
R̃ T̃

T̃ 0

]
d

dt

{
u

α−1 u̇

}
+

[
S̃ 0

0 −T̃

]{
u

α−1 u̇

}
=

{
βİ

0

}

(64)

which can be compactly written as
d

dt
ũ′ − M̃ũ′ = b̃′ (65)

where

ũ′ =

[
u

α−1 u̇

]
M̃ = Ã−1B̃,

Ã =
1
α

[
R̃ T̃

T̃ 0

]
B̃ =

[−S̃ 0

0 T̃

]
. (66)

In this paper, all the lossy examples are simulated with the
above scaled numerical system (65) instead of the original un-
scaled system (31). As can be seen from ũ′ in (66), the upper
half of the solution vector obtained from (65) is the same as that
of (31). The unstable modes are hence found from the scaled
system matrix M̃, the accuracy of which is much improved.

V. NUMERICAL RESULTS

In this section, we first demonstrate the unconditional stability
of the proposed explicit time-domain method with an example
having an analytical solution. We then simulate a suite of lossless
and lossy examples to validate the accuracy, efficiency, and
stability of the proposed method. The conventional TDFEM
used for comparison employs a central-difference-based explicit
time-marching. The explicit and unconditionally stable TDFEM
recently developed in [11] is also involved for comparison. The
computer used has an Intel i5 5300U 2.30 GHz processor, unless
specified specifically.

All the examples simulated here involve fine physical fea-
tures smaller than working wavelengths. As a result, the time
step dictated by space step for stability is smaller than that re-
quired by accuracy. Hence, they represent those problems where
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the time step issue need to be overcome for computational effi-
ciency. For the fine features, multiple scenarios are considered:
the entire structure is fine as compared to working wavelengths
but we cannot ignore the entire structure to study its interior
characteristics; a part of the entire structure is fine but cannot be
ignored since the resultant solution would be very different; and
a multiscale structure. For the first scenario, all the modes are
unstable modes except for the nullspace modes (dc modes). We
show that even for such a scenario, the proposed method can
have a significant speedup because the time step is increased
significantly all the way up to that permitted by accuracy.

A. Examination of Unconditional Stability

We first examine the unconditional stability of the proposed
method with a parallel-plate example that has an analytical so-
lution. The length, width, and height of the structure are 900, 6,
and 1 μm, respectively. The input source is a Gaussian derivative
pulse of I(t) = 2(t − t0) exp(−(t − t0)2/τ 2) with τ = 0.2 s
and t0 = 4τ . The space step size is 100, 1.5, and 0.125 μm,
respectively along the length, width, and height direction. This
discretization results in 405 Ex unknowns, 360 Ey unknowns,
and 400 Ez unknowns. Excluding 170 unknowns that are on the
top and bottom PEC surfaces, the total number of unknowns is
995. Despite the low-frequency input spectrum, due to the small
space step, conventional TDFEM has to use a time step as small
as Δt = 2.5 × 10−16 s to ensure the stability of a time-domain
simulation. In contrast, the time step required by accuracy is
at the level of 0.01 s. Hence, there exists a more than thirteen-
orders-of-magnitude difference between the time step restricted
by space step for stability and the time step determined by
accuracy.

The proposed explicit method is able to use the time step
solely determined by accuracy to obtain stable and accurate re-
sults. As shown in Fig. 1(a), the voltages simulated by the pro-
posed method with a time step as large as 0.001 and 0.01 s are
in excellent agreement with the analytical solutions. The num-
ber of removed unstable modes, whose eigenvalues are greater
than 2/Δt, is 644 in this example out of 995 total number of
eigenmodes. The 995 is also the total number of electric field un-
knowns in this example. In Fig. 1(b), we plot the result obtained
from a backward-difference-based implicit method using 0.01 s
as the time step. As can be seen, the result is completely wrong,
which could be attributed to the much enlarged time step. In
Fig. 1(c), with the same time step, we simulate the example to
late time using the proposed method. The result is shown to be
stable and accurate.

An unconditionally stable method should also permit the use
of an arbitrarily large time step without becoming unstable. If
infinity is the time step required by accuracy, for example, in
the case of simulating an extremely low frequency, an uncondi-
tionally stable method should also be able use this time step to
generate accurate results. This is true in the proposed method.
In fact, in this example, after the 644 unstable modes are re-
moved, the rest of the 351 modes are all nullspace modes whose
eigenvalues are zero. We hence can use an infinitely large time
step to simulate them stably.

Fig. 1. (a) Demonstration of unconditional stability of the proposed method
with an arbitrarily large time step. (b) Simulation result from an implicit method.
(c) Late-time simulation result of the proposed method.

Notice that when different time steps are used, we do not
need to recompute the unstable modes that have already been
computed. If a larger time step is used, we add more unstable
modes; if a smaller one is used, we select from the computed
unstable modes whose eigenvalues satisfy (9) or (10).
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B. Demonstration of Accuracy, Efficiency, and Stability

1) Millimeter-Level Inhomogeneous Lossless Waveguide:
We consider an mm-level parallel-plate waveguide where fine
features coexist with regular features. The length, width, and
height of the structure are 120, 4.04, and 3.192 mm, respectively.
Along the width, it is discretized into 11 segments, with the cen-
ter one being 0.04-mm wide while the rest are 0.4-mm wide.
The 0.04 mm fine discretization is used to capture a thin film
whose dielectric constant is as high as 5000. This often arises
from the passivation/barrier layer in a device manufacturing
process. Along the length, a uniform step size of 10 mm is
used; and along the height, it is discretized into five cells with
the minimum cell size being 0.316 mm. The dielectric constant
elsewhere is 4. The number of unknowns in this example is
1928, with the number of cells along x-, y-, and z-direction be-
ing 12, 11, and 5, respectively. The input source is a Gaussian
derivative pulse of I(t) = 2(t − t0) exp(−(t − t0)2/τ 2) with
τ = 8 × 10−9 s and t0 = 3τ . Due to the presence of the 0.04-
mm thin layer, conventional TDFEM requires Δt = 10−12 s for
a stable simulation. In contrast, the proposed method is able to
use a time step of Δt = 1 × 10−10 s determined by accuracy to
generate accurate and stable results. The voltages simulated by
the proposed method at the near end of the waveguide is plotted
in Fig. 2(a), in comparison with the reference results gener-
ated by the conventional explicit TDFEM. Excellent agreement
can be observed. We find the center layer, though thin, plays a
critical role in the field solution, i.e., the field solution will be
changed if we ignore the thin layer of high permittivity. This
can be seen clearly from the voltage plotted in Fig. 2(b), where
the high permittivity layer is removed.

The CPU time of the proposed method for explicit time
marching is 29.9 s. The time used for finding the Vh modes
is 4.27 s. On the contrary, the CPU time of the traditional ex-
plicit TDFEM is 127.14 s on the same computer.

2) Lossy On-chip Power Grid Structure: The second lossy
example is a power grid structure with lossy conductors, as
shown in Fig. 3. The red lines denote power rails and the
green ones are ground rails. There is a vertical via connect-
ing two metal rails wherever the two wires of same polarity
cross each other. The top and bottom planes are set to be ground
planes and the other four sides are left open. The permittivity
is shown in Fig. 3(b) and (c), and the conductivity of the metal
is 5.0 × 107 S/ m. The minimum space step along x-, y-, and
z-direction is 0.4, 0.4, and 0.2 μm, respectively, resulting in
8, 6, and 7 number of cells. The number of unknowns in this
example is 1101, and hence a total number of 2202 modes of
(37). The current source is launched between one power rail and
one ground rail in the lower metal layer, and it has a Gaussian
derivative pulse with τ = 3 × 10−9 s and t0 = 4τ . The voltage
between the two rails is sampled. The time step used in the
proposed method is 1 × 10−10 s solely determined by accuracy
while the time step of the central difference based conventional
TDFEM is 5 × 10−16 s. Based on the required time step of
1 × 10−10 s, 1628 unstable modes are deducted from the sys-
tem matrix. In Fig. 4(a), the near end voltage of the proposed
method in comparison with the reference data obtained from the
traditional TDFEM solution is shown. Excellent agreement is
observed. In Fig. 4(b), the entire solution error is plotted versus

Fig. 2. Voltages of an mm-level inhomogeneous waveguide. (a) With a fine
feature. (b) Without the fine feature.

time, which again validates the accuracy of the proposed method
at all points in the computational domain. The large error at the
center is due to zero passing, and hence comparison with close
to zero fields. The increased error at the early and late time is
also due to the comparison with close to zero fields.

The total time of the conventional TDFEM is 5.1668 × 103 s,
while the CPU time of the proposed method is only 67.6576 s for
finding unstable modes, and 12.1992 s for explicit time march-
ing. Similar to the previous on-chip example, although most of
the eigenmodes are unstable modes since the entire structure
is small as compared to the working wavelength, the speedup
of the proposed method is still significant. The leap-frog-based
explicit marching described in Section IV-D is also used to
simulate this example, which yields the same accurate results.

3) Lossy Multiscale Structure: In the previous two lossy ex-
amples, the time step from the forward-difference-based explicit
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Fig. 3. Illustration of the on-chip bus structure (unit: μm). (a) Cross-sectional
view (y–z plane). (b) Top view of the center metal layer.

Fig. 4. Simulation of a lossy power grid structure. (a) Voltage. (b) Entire
solution error versus time.

Fig. 5. Simulation of a lossy multiscale structure. (a) Geometry. (b) Voltages.

marching is the same as that of the central-difference-based one
because the stable eigenmodes kept in the numerical system turn
out to be nullspace modes only. In the last lossy example, we
examine the validity of the proposed central-difference-based
explicit time marching scheme described in Section IV-D in a
problem where the time step resulting from a forward-difference
explicit marching and that of a central-difference marching is
very different.

The structure is illustrated in Fig. 5(a), where there are two
thin wires of width 1 nm each, and the total width of the struc-
ture is the sum of 4.05 cm, 3.5 mm, and 2 nm. This prob-
lem setup resembles a multiscale integrated structure where
board-level planes coexist with on-chip interconnects. In such
a problem, regular structures (compared to wavelength) coexist
with fine features, which is different from previous two on-chip
examples where the entire structure is electrically small. For
such a multiscale problem, unstable modes only occupy a por-
tion of the entire number of modes; and the unstable mode
number is proportional to the mesh elements used to discretize
the fine features. There are three layers of 0.5-mm-thickness
each, having the permittivities shown in Fig. 5(a). The space
step is 0.5 mm except for the 1 nm-wide wires where a step
size of 1 nm is used. The number of cells is 5,4500, and 3
along x-, y-, and z-direction, respectively. The number of un-
knowns in this example is 3628, and hence 7256 modes of (37).
The input current sources are launched from the bottom and
the top metal plate to the inner lossy conductor of conductivity
5.8 × 107 s/m. The sources have a Gaussian derivative pulse
of I(t) = 2(t − t0) exp(−(t − t0)2/τ 2) with τ = 3 × 10−11 s
and t0 = 4τ . The time step used in the proposed method is 1 ×
10−12 s solely determined by accuracy while the time step of the
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central-difference-based conventional TDFEM is 3 × 10−15 s.
Based on the required time step of 1 × 10−12 s, 130 eigen-
modes are identified as unstable modes and removed from the
numerical system based on (60). In this example, if a forward-
difference explicit marching is used, the time step would have to
be as small as 3 × 10−26 s for simulating the same set of stable
modes kept in the numerical system. This is because many of
them are complex conjugate eigenvalues, which render the time
step resulting from (51) much smaller than that of (50).

The marching time of the conventional TDFEM is 1.9923
× 102 s. In contrast, the marching time of the proposed leap-
frog central-difference algorithm is 14.1493 s, and the CPU
time spent on finding the unstable modes is only 2.1216 s.
Again, very good agreement between the proposed method and
the conventional TDFEM is observed as can be seen from the
waveforms plotted in Fig. 5(b).

The structure is then further enlarged to result in a larger
number of unknowns of 180 028, and hence 360 056 total num-
ber of modes of (37). To be specific, the left segment of 4.5 cm
width of Fig. 5(a) is duplicated to the left to enlarge the width
of the structure as well as the number of unknowns. For this
large case, the conventional TDFEM takes more than 16 h to
finish the entire explicit time marching, whereas the proposed
explicit method only takes 125 min for explicit time marching,
with less than 7 min spent on finding the unstable modes. Out
of the 360 056 total number of modes, only 130 modes are un-
stable. This number is also the same as that obtained from the
original structure. This is because the fine features remain the
same when we enlarge the structure.

VI. CONCLUSION

In this paper, an alternative explicit and unconditionally sta-
ble TDFEM is developed for analyzing both lossless and gen-
eral lossy problems. In this method, the source of instability
is upfront deducted from the system matrix before performing
explicit time marching. As a result, the explicit time march-
ing is made absolutely stable for the given time step no matter
how large it is. The accuracy of the proposed method is also
theoretically guaranteed when the time step is chosen based on
accuracy. The proposed method is convenient for implementa-
tion since it only requires a minor modification of the traditional
explicit TDFEM method to eradicate the source of instability.
The additional computation involved in the proposed method as
compared with a traditional TDFEM is mainly the cost of find-
ing unstable modes. Since the unstable modes have the largest
eigenvalues of the sparse TDFEM system matrix, they can be
found efficiently in O(k2N) complexity, where k is the number
of unstable modes. In addition, these modes are frequency, time,
and right hand side independent. Once found, they can be reused
for different simulations, and also for different choices of time
step.

The proposed new method complements the recently devel-
oped explicit and unconditionally stable TDFEM in [11]. When
the fine features only occupy a small portion of the entire struc-
ture, the proposed method can be more advantageous to use as
compared to [11], since the number of unstable modes is small
whereas the number of stable modes is many. When the unstable
mode number is large, the computational cost of finding these

modes would become large. In this case, [11] can be more effi-
cient for use. However, even in this case, one can still remove a
certain number of unstable modes allowed by his computational
resources, and thus immediately enlarging the time step. To be
specific, if we sort the eigenvalues based on their magnitude
from the largest λ1 to the smallest λN , then by removing one
largest eigenvalue, we enlarge the time step to 2/|λ2 |; by remov-
ing 20 largest eigenvalues, we enlarge the time step to 2/|λ20 |.
So the number of unstable modes to remove is up to the user’s
choice, unlike [11], where all stable modes have to be found for
an accurate solution. This is because in [11], the field solution
is expanded into these stable modes, which are also physically
important modes. If one mode is missing, the accuracy is af-
fected. Here, there is a maximum number of unstable modes
one can remove, which is determined by the time step required
by accuracy. However, there is no minimum number of unstable
modes one has to remove. One can find a few and remove only
a few to enlarge the time step. In addition, the method of this
work and [11] can also be combined for use to accentuate the
advantages of both methods.

APPENDIX

Consider a first-order differential equation in time

A
d

dt
ũ − Bũ = f̃ . (A.1)

The governing eigenvalue problem is

BV = AVΛ (A.2)

where Λ is a diagonal matrix of eigenvalues, and V is the matrix
of eigenvectors.

Expanding ũ into

ũ = Vy. (A.3)

Substituting (A.3) into (A.1), then multiplying VH on both
sides, we obtain in a source-free problem

VH AV
(

d

dt
y − Λy

)
= 0. (A.4)

Hence,
d

dt
y − Λy = 0 (A.5)

which is a fully decoupled system of equations. Consider an ith
row of (A.5), which has λi = ei + jdi , it can be written as

d

dt
yi − (ei + jdi)yi = 0. (A.6)

After applying a forward-difference-based time discretization
scheme to (A.6), we get

yn+1
i − yn

i − Δtλiy
n
i = 0. (A.7)

Performing a z-transform of the above, we find

z = 1 + Δtλi . (A.8)

To be stable, |z| < 1 should be satisfied, from which we obtain

(1 + Δtei)2 + (Δtdi)2 < 1 (A.9)

which yields

(ei
2 + di

2)Δt2 + 2eiΔt < 0. (A.10)

Since Δt > 0, and the real part of the eigenvalue ei is negative

Δt ≤ 2|ei |
ei

2 + di
2 =

2 |Re[λi ]|
|λi |2

. (A.11)
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