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Abstract: An H2-matrix-based mathematical framework is introduced and further developed to reduce the computational
complexity of the volume integral equation (VIE)-based analysis of electrodynamic problems. Numerical experiments have
demonstrated a significant reduction in CPU time and memory consumption. A linear scaling with respect to matrix size in
both CPU time and memory is achieved for small and medium-sized electrodynamic problems with an interpolation-based
H2-representation of the VIE operator in conjunction with a rank function for accuracy control. The proposed solver is
applicable to arbitrarily shaped three-dimensional structures immersed in inhomogeneous materials.
1 Introduction

The ever-expanding world of electromagnetic analysis
is setting new challenges for computational
electromagnetics scientists everyday. Not only are
electromagnetic analysis and design methods pivotal in
advanced engineering systems but also find enormous
applications in the fields of medicine and defence.
In particular, the interaction of electromagnetic waves
with dielectric bodies is central in highly complicated
areas like radio-wave propagation, scattering by and
detection of airborne particulates, radome design,
non-linear eddy current analysis, surface tomography,
analysis of scattering by anisotropic and highly contrast
complex media like magnetic photonic crystals and
medical diagnostics. However, the demands of these
highly complex areas and the continued increase in the
complexity of engineering systems are yet to be met at
the same rate. To synchronise the pace of developing
electromagnetic methods with that of its demands, it is
of critical importance to develop computational
electromagnetic methods the complexity of which scales
favourably with the problem size.
Methods in computational electromagnetic can be

classified into two classes: integral equation (IE)-based
methods and partial differential equation-based ones.
IE-based methods generally lead to dense systems of linear
equations. When a conventional direct method is used, the
memory requirements are O(N2), whereas the operation
counts are proportional to O(N3), where N is the
dimension of the matrix. The utilisation of iterative
methods only helps in reducing time complexity to O
(NitN

2), where Nit is the iteration number to attain
convergence. In recent decades, fast solvers [1–6] such as
fast multipole methods and fast Fourier transform-based
methods have dramatically reduced the storage
requirements and time complexity of iterative solvers to O
(NlogN ) in each iteration for electrodynamic analysis.
These represent an impressive improvement over the
conventional O(N3) or O(N2) techniques.
Recently, in [7, 8], an H2-matrix-based mathematical

framework was introduced and further developed to
reduce the computational complexity of a surface integral
equation-based analysis of electrodynamic problems. In
an H2-matrix [9, 10], all off-diagonal blocks which
describe the interaction between two separated geometry
blocks are represented by a factorised low rank form
which has a nested property. Besides a hierarchical
low-rank representation, the H2-framework also
encompasses a system of fast arithmetics which permits
compact storage and efficient computation of dense
matrices. There has been a question on whether an
error-bounded low-rank approximation of integral
operators exists for electrodynamic analysis regardless of
electric size. This question has been answered by a
theoretical study of the rank of the integral operators
[11, 12]. This study proves that the minimal rank of the
interaction between two separated geometry blocks in an
integral-equation-based analysis of general three-
dimensional (3D) objects, for a prescribed error bound,
scales linearly with the electric size of the block diameter.
Since the number of unknowns in a surface IE-based
analysis scales as electric size square, and that in a
volume IE-based analysis scales as electric size cube, the
existence of the error-bounded low-rank representation of
both surface and volume integral operators is proved for
electrodynamic analysis, irrespective of electric size.
Methods which do not generate a minimal rank
approximation for a prescribed accuracy can result in a
rank that scales with electric size at a much higher rate.
However, they do not reflect the actual rank required for
satisfying the prescribed accuracy. In [7], a rank function
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is proposed to control the growth of the rank with electric
size to maintain a desired order of accuracy in a fairly
wide range of electric sizes from small to medium electric
sizes, without compromising the computational
complexity. Using this rank function and the H2-matrix
as a mathematical framework, in [7, 8] it is demonstrated
that from small to tens of wavelengths, the dense system
of O(N2) non-zero entries can be compactly stored in O(N)
memory units, thereby allowing for a dense matrix–
vector multiplication to be accomplished in O(N ) CPU
operations.
The major contribution of this work is that we achieved a

similar reduction in computational cost for a volume
integral equation (VIE)-based analysis of small and
medium-sized electrodynamic problems. It is well known
that the solution to inhomogeneous problems are better
addressed by VIE solvers than surface IE solvers.
Compared with a dense system formulated from a surface
IE-based analysis, the dense system constructed from a
volume IE-based analysis is much more complicated. The
VIE-based system consists of all four possible forms of
double integrals characterising volume–volume, volume–
surface, surface–volume and surface–surface interactions,
respectively, resulting in a much larger and much more
complex linear system of equations. The underlying
numerical system is also truly 3D as compared with that of
a surface IE in which a 2D based interpolation can be
applied. In this paper, we are able to overcome the
numerical challenge associated with a VIE-based analysis
and successfully develop an H2-based VIE solution. This
solution significantly reduces the computational cost of
solving a VIE-based dense system for electrodynamic
analysis. Numerical experiments from small electric sizes to
32 wavelengths have demonstrated a clear linear scaling of
the proposed method in both CPU time and memory
consumption, with prescribed accuracy achieved in the
electric size range. Application to electrically even larger
problems such as a dielectric rod of 80 wavelengths, also,
demonstrates the accuracy and efficiency of the proposed
solver. Multiple numerical examples, including both
homogeneous and inhomogeneous cases, validate the
accuracy and computational advantages of the proposed
H2-based VIE solution.
The remainder of this paper is organised as follows.

In Section 2, we formulate the volume integral equation.
∫
Vm

Ei(r) · Dm(r) dv =
∑N
n=1

Dn

∫
Vm

Dm(r)

e(r)
· Dn(

[

− m0v
2
∫
Vm

r

∫
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k(r′)D
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+
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In Section 3, we propose an H2-matrix-based representation
of the VIE dense system of equations. In Section 4, we
present a fast H2-based VIE solver which has compact
storage and efficient matrix–vector multiplication. Section 5
contains the numerical results which demonstrate the
accuracy and efficiency of the proposed solver as compared
with its conventional counterpart. The concluding remarks
are drawn in Section 6.

2 VIE formulation

Consider an arbitrarily shaped 3D inhomogeneous dielectric
body of complex permittivity ε(r) occupying volume V,
which is exposed to an incident field E i(r). The scattered
field because of the equivalent volume polarisation current
J contributes to the total field at any point r in the sense as
expressed in the form of the following volume integral
equation

Ei(r) = D(r)

e(r)
−

∫
V
m0v

2k(r′)D(r′)g(r, r′) dv′

−
∫
V
∇ ∇′ k(r)

D(r′)

e0

( )[ ]
g(r, r′) dv′

(1)

where g(r, r′) = e−jk0|r−r′|/4p|r − r′|, ω being the angular
frequency, κ is the contrast ratio defined as (ε(r)–ε0)/ε(r), D(r′)
is the electric flux density, whereas k0 is the free space
wavenumber. By expanding the unknown electric flux
density D(r′) in terms of SWG basis functions Dn(r′) each
with a coefficient Dn, and then testing the resulting equation
using Galerkin method with Dm(r), we obtain the following
linear system of VIE (see equation at the bottom of the page)

which can be written as a matrix equation

SD = E (2)

where

Em =
∫
Vm

Ei · Dm(r) dv

S = L+ G; Lmn =
∫
Vm

Dm(r)

e(r)
· Dn(r) dv
r) dv

m(r) · Dn(r
′)g(r, r′)dv′dv

(r) · n̂
)
∇′ · Dn(r

′)
( )

g(r, r′)dv′ds

r′)
)
Dm(r) · n̂
( )

Dn(r
′) · n̂′

( )
g(r, r′)ds′ds

r)
)
∇′ · Dn(r

′)
( )

g(r, r′)dv′dv

′)
)
∇ · Dm(r)
( )

Dn(r
′) · n̂′

( )
g(r, r′)ds′dv

)]
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(see equation at the bottom of the page)
A straightforward approach to solve the above complex

dense system of equations can be as expensive as O(N2).
Our approach is centred on finding an error-controlled
H2-representation of G, which will be referred to as Gis
(1≤ i≤ 4) corresponding to the volume–volume, volume–
surface, surface–volume and surface–surface interaction,
respectively, shown in Gmn above. Thus, G as a whole can
be specified by a reduced set of parameters, whereas Λ is
intrinsically sparse. Hence, an overall reduction in memory
and operation counts can be achieved.

3 Proposed H2-based representation of VIE
system

In the proposed VIE solver, the very first step is to
approximate each of the dense matrix terms Gi by a
corresponding H2-matrix with error well controlled, whose
details are elaborated in Section 3.1. Then, in Section 3.2,
we discuss how we exploit the block cluster tree to capture
the nested hierarchical dependencies present in an
H2-matrix representation for compact storage and efficient
computation. In Section 3.3, we present a rank function and
analyse how to control the accuracy of an
interpolation-based H2-representation of the VIE operator
via the rank function.

3.1 H2-Representation and its error bound

A close observation of the four different types of terms inG of
(2) reveals that each of these four terms (represented
throughout the paper as Gi) can be written as

Gi = K

∫
Pm

fm(r)

∫
Q′
n

g(r, r′)fn(r
′) dq′ dp (3)

where K is a constant which is different in each Gi, fm(r) and
fn(r′) can be any of the scalar terms or the basis functions,
depending on the types of Gi they are a part of, whereas
Pm(Q′n) can be any one of Vm(Vn) or Sm(Sn), thus
generalising each of the terms in G.
There are multiple ways of generating anH2-representation

of the dense matrix Gi. Here, we employ an
interpolation-based method with a rank function to
construct an H2-representation of Gi. This method does not
incur any compression cost for generating the
H2-representation. Meanwhile, its accuracy can be
controlled to a desired order without sacrificing
Gmn = −m0v
2
∫
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computational efficiency in a fairly wide range of electric
sizes from small to medium sizes by the use of a rank
function, which will be elaborated in Section 3.3.
The details of the interpolation-based H2-representation of

a VIE dense system are as follows. We fix two subsets t and s
of the full index set of basis functions I :=
{1, 2, . . . , Nc, I } and J := {1, 2, . . . , Nf, J } used in
the discretisation of Gi. Here, Nc(f), I (J ) may represent the
number of Dm(n) in a continuous volume, the number of
Dm(n) at a discontinuity or the number of Dm(n) on the
outermost boundary, which need not be the same in both
I and J . The corresponding domains Ωt and Ωs are
defined to be the union of the supports of the basis
functions, that is

Vt :=
⋃
i[t

supp Di

( )
, Vs :=

⋃
i[s

supp Di

( )
(4)

If diam(.) and dist(.,.), respectively, denote the Euclidean
diameter of a set and Euclidean distance between any two
sets and

max diam Vt

( )
, diam (Vs)

{ }
≤ h dist Vt, Vs

( )
(5)

in which η is a positive parameter, t and s are said to be
admissible [10]. The original kernel function g(r, r′) in (3)
for admissible (t, s) can be replaced by a degenerate
approximation

g̃t, s =
∑
n[Kt

∑
m[Ks

g jtn, jsm

( )
Ltn(r)L

s
m(r

′) (6)

where K := n [ N3:ni ≤ p, ∀i [ {1, . . . , 3}
{ }

=
1, . . . , p
{ }3

; p is the number of interpolation points along
each dimension; jtn

( )
n[Kt is a family of interpolation points

in t;
(
jsm
)
m[Ks is a family of interpolation points in s; and

Ltn
( )

n[Kt and
(
Lsm

)
m[Ks are the corresponding Lagrange

polynomials. The degenerate approximation of (6) allows
for separation of the double integral in (3) into

G̃i = K
∑
n[Kt

∑
m[Ks

g jtn, jsm

( )

×
∫
Pm

fm(r)L
t
n(r) dp

∫
Q′
n

fn(r
′)Lsm(r

′) dq′ (7)
)g(r, r′) dv′ dv

′ · Dn(r
′)
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g(r, r′) dv′ ds

r) · n̂
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Dn(r

′) · n̂′
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thereby yielding the following factorisation of G̃i

G̃i = V tSt, sV sT ; V t [ Rt×Kt

, St, s [ CKt×Ks

,

V s [ Rs×Ks (8)

where

V t
m, n =

∫
Pm

fm(r)L
t
n(r) dp, m [ t, n [ Kt

V s
n, m =

∫
Q′
n

fn(r
′)Lsm(r

′) dq′, n [ s, m [ Ks

St, s
n, m = Kg jtn, jsm

( )
, n [ Kt, m [ Ks

(9)

In comparison with (7), Vt(Vs) represent the integral over the
Pm(Qn′) domain whereas St,s represents the constant K
multiplied by g

(
jtn, jsm

)
. Clearly, the rank of each G̃i is

independent of the cardinality of either s or t and is at most
the cardinality of Kt(Ks) if the latter is less than the former.
As can be seen from (7), the cardinality of Kt or Ks is p3 in
a VIE system. The p in this work is controlled by a rank
function to be discussed in Section 3.3. Now, G̃i in (8)
constitutes an H2-representation of Gi in (3) provided the
same space of polynomials are used across t and s.
As shown in [7], once the admissibility criterion of (5) is

satisfied, the maximum approximation error of (6) is
bounded by (see (10))
where αp is a constant related to interpolation, k0 is the
wavenumber and d = 3 for a VIE.
In (10), the last term has an exponential decay rate with

respect to p. It is clear that exponential convergence with
respect to p can be obtained irrespective of the electric size
(k0η dist(Ωt, Ωs)) [It can be seen from (5) that k0η dist(Ωt,
Ωs) is proportional to the electric size of the largest block
diameter of Ωt and Ωs]. In addition, given a required level
of accuracy, when the electric size increases, the error of
the approximation can be controlled to the required level by
increasing the number of interpolation points p. With the
controlled error explained, we now can analyse the
difference between p chosen for small electric sizes and that
for large electric sizes. It can be seen from (10) that p
required for large electric sizes is larger than that for small
electric sizes to achieve the same accuracy. For very large
electric sizes, to obtain a good accuracy of (10),
asymptotically, p has to be chosen proportional to the
electric size of the block diameter. This renders the
interpolation based H2-representation not efficient for
computing electrically large problems although good
accuracy can still be obtained by choosing a large p. However,
this does not mean that H2-based methods do not apply
to electrically large problems. The H2-based methods
encompass both H2-based representations of a dense matrix
and the H2-based fast matrix computation. In addition to
‖g(r, r′)− g̃(r, r′)‖1, Vt×Vs
≤ 4ed

p
ap

(

× 1
[

× 1

[
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the interpolation-based H2-representation which does not
generate a minimal rank representation of the integral
operator because it separates sources from observers in
approximating Green’s function [11, 12], there exist other
minimal-rank-based H2-representations which are efficient
for computing electrically large problems [12, 13].
3.2 Cluster tree and block cluster tree construction

Once the admissibility criterion is set, the next step is to
partition the product index set I × J into admissible and
inadmissible blocks to realise efficient computation using
the cluster tree and block cluster tree [9, 10].
The 3D computational domain which comprises the SWG

basis functions is recursively split into subdomains till the
number of unknowns in each subdomain becomes less or
equal to the ‘leafsize’ (nmin), hence, essentially nmin controls
the depth of the tree. Each set of bases lying in a
subdomain are said to form a ‘cluster’, we can thus say that
a ‘cluster tree’ TI is generated. Clusters with indices less
than or equal to nmin are ‘leaves’ denoted by LI . Now, the
construction of any admissible ‘block cluster tree’ from
the cluster trees TI and TJ (in accordance with the
admissibility condition) is achieved recursively as follows.
As already mentioned, I is not necessarily the same as J

in a VIE-based formulation. Visualising TI to be placed in
parallel with TJ , we check blocks level by level starting
with Root(TI ) and Root(TJ ), and then descending the tree.
For instance, given two clusters t [ TI and s [ TJ , we
check the admissibility condition, if it is not satisfied, we
repeat the procedure for all the combinations of children(t)
and children(s). This results in an admissible block cluster
tree defining a matrix structure and each ‘leaf block cluster’,
LI×J . The admissible blocks denoted in [7] by L+

I×J and
the inadmissible blocks denoted by L−

I×J have an
H2-matrix-based low-rank approximation and a full matrix
representation, respectively. Owing to the appearance of all
the four possible combinations of integrals in a VIE system
matrix, four block cluster trees are constructed. Of these
four, two that represent the interactions via volume–volume
integration and (boundary)surface–(discontinuous)surface
integration are constructed based on the same pattern as in
[7]. The other two cluster trees are novel in the sense that
they result in unsymmetrical blocks, which in general have
rectangular dimensions representing interactions in terms of
volume–(discontinuous)surface and (boundary)surface–
volume integration. In case of homogeneous scatterers, the
last hybrid cluster trees are just a transpose of each other
but in general they are not.
3.3 Rank function

As shown in (10), given a prescribed accuracy, the number of
interpolation points p increases with electric size for
electrodynamic problems. Such an increase is modeled in
)2d
p

1

dist Vt, Vs

( )
+

��
2

√
h k0 dist Vt, Vs

( )
+ 1

{ }]

+ 2��
2

√
h k0 dist Vt, Vs

( )
+ 1

{ }
]−p

(10)
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[7] by a rank function given by

kvar(t) = p3(t) = â+ b̂ L− l(t)
( )[ ]3

(11)

where â and b̂ are constant coefficients, l(t) denotes the tree
level of cluster t with level zero being the root level of the
inverted tree and L is the maximum tree level which has
admissible blocks. In this section, we provide a detailed
analysis of the rank function and discuss the choice of the
two constant coefficients â and b̂ for achieving a prescribed
accuracy.
It is evident that in the above rank function, the number of

interpolation points p is defined as a function that linearly
increases with tree level L–l. For small and medium electric
sizes, the growth rate of p with respect to electric size and
hence tree level, required by accuracy of the interpolation
based H2-representation, is not that fast yet. In other words,
it has not reached its asymptotic growth rate suggested by
(10). As a result, the p determined by accuracy can be
closely bounded by the p determined by rank function.
To give an example, in Fig. 1, we plot p determined by
rank function with â = 5 and b̂ = 2 with respect to L–l in
comparison with p determined by accuracy of the
interpolation based H2-representation for three different
electric sizes from 3λ to 26λ of a perfect electric conductor
sphere example. The accuracy of the interpolation-based
H2-representation εinp, which is chosen as 0.01, is defined
as ‖G − G̃‖F/‖G‖F for each admissible block with G̃
being the H2-representation of G. It should be noted that
not only the three electric sizes, but also a range of electric
sizes are involved in this example since for each of the
three electric size cases, each tree level also corresponds to
a different electric size which increases from L–l = 0 to the
largest L–l in the given case. It is evident from Fig. 1 that
in the entire range of electric sizes being investigated, the p
determined by accuracy of the interpolation-based
H2-representation is well bounded by that determined by
rank function with a suitable choice of â and b̂, and also
closely.
Theoretically speaking, the rank function can be used to

model the rank’s growth with electric size in any finite
range of electric sizes. However, since the interpolation-
Fig. 1 Comparison between the number of interpolation points p
determined by the rank function and that determined by accuracy
of the interpolation-based approximation
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based H2-representation is not efficient for solving
electrically large problems as the resultant rank is too large,
we only use the interpolation-based H2-representation for
electrically small or medium-sized problems. Therefore the
rank function is also used in the range from small to
medium electric sizes. In this range, with the use of rank
function, not only the accuracy of the interpolation-based
H2-representation is well controlled, but also both storage
and matrix–vector multiplication cost can be made to
linearly scale with unknown number N, whose details are
given in Section 4.
The choice of constant coefficients â and b̂ can be readily

understood from Fig. 1. The â is nothing but the number of
interpolation points p at level (L–l ) = 0, that is, l = L. At this
level, we can choose â to ensure that the accuracy of
the interpolation-based H2-representation satisfies the
prescribed accuracy εinp. This can be done by progressively
increasing â until ‖G − G̃‖F/‖G‖F ≤ 1inp is satisfied for
the largest admissible block at this level. Using the same
approach, we can determine the number of interpolation
points p required to achieve the prescribed accuracy at the
largest L–l level for the given electric size range, from
which and â, slope b̂ can be determined.
4 Fast H2-matrix-based VIE solver

The nested property ofH2-matrices enables us to significantly
reduce the complexity of VIE solvers. Before deriving the
complexity, we introduce the following concepts and
notations:

1. For each cluster t [ TI , the cardinality of the sets
col(t) := s [ TJ :(t, s) [ TI×J

{ }
and row(t) := t [ TI :

{
(t, s) [ TI×J } is bounded by a constant Csp [10].
2. Each non-leaf cluster t has two children, that is,
#children(t) = 2.

Owing to the nested property of an H2-matrix, we bypass
the need of storing

(
V t

t[TI

)
for each cluster t. We only need

to store
(
V t

t[TI

)
for leaf clusters, whereas for non-leaf

clusters we store corresponding transfer matrices, which
significantly reduce the total storage requirement. As a
result,

(
V t

t[TI

)
can be stored as follows.

For each ‘leaf’ cluster t [ LI , we have

Storage V t for all leaf clusters
( )

=
∑
t[LI

O kvar(t)
( )

#t ≤ O âd
( )

N (12)

For each ‘non-leaf’ cluster t [ T I , we store the transfer
matrices Et′ for all t′∈ children(t), which requires O(kvar(t)
kvar (t′)) storage units, from which we obtain [7]

Storage V t for all non− leaf clusters
( )

= 8O
2d(â+ b̂)

ln1.5

( )2d
⎡
⎣

⎤
⎦N (13)

For an admissible block b, we store the coupling matrix Sb,
1149
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Fig. 2 Simulation of a dielectric sphere (ɛr = 36.0, k0a = 0.408)

a Field along z-axis
b RCS

Fig. 3 Upper bound on the H2-representation error for a
dielectric sphere example
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which requires O k2var(b)

( )
units of storage, thus

Storage(all admissible blocks)

=
∑

(t, s)[L+
I×J

O k2var(b)
( )

≤ 4CspO
2d(â+ b̂)

ln1.5

( )2d
⎡
⎣

⎤
⎦N

(14)

For an inadmissible block b, the admissibility condition
implies that t and s have to be leaves of TI . Hence

Storage(all inadmissible blocks)

≤
∑

(t, s)[L−
I×J

O nmin

( )2≤ 2CspO n2min

( )
N (15)

Summing over (12)–(15), since Csp, nmin, â, b̂ and d = 3 are
constants, each of the Gi contributions and hence overall, G
can be represented in O(N ) parameters and stored in O(N )
units, with the accuracy controlled to the same order by the
rank function over a range of electric sizes.
Multiplying Gi with a vector x comprises of multiplying its

‘inadmissible blocks’ and ‘admissible blocks’ as represented
in (8) with x. For admissible blocks, we perform a tree
traversal procedure consisting of forward transformation,
coupling-matrix multiplication and backward transformation
[7, 9, 10]. For inadmissible blocks, we perform a direct
multiplication. As analysed in [7], the matrix–vector
multiplication requires only O(N ) operations, with the
accuracy controlled to the same order by the rank function
for a range of N, and hence electric sizes.
The accelerated matrix–vector multiplication of the

H2-representation of the dense part of VIE system [G of
(2)] is put into use to solve the system itself using
conjugate gradient method and bi-conjugate gradient
stabilised (BiCGStab) Method. Since each iteration involves
a sparse matrix–vector multiplication associated with Λ and
an efficient H2-matrix–vector multiplication for dense
system G, the proposed VIE solver generates error-
controlled results in fast CPU time with significantly
reduced memory consumption.

5 Numerical results

In order to demonstrate the accuracy and efficiency of the
proposed H2-matrix-based VIE solver, we simulated a
dielectric sphere, a homogeneous dielectric triangular rod
and an inhomogeneous dielectric triangular rod.

5.1 Dielectric sphere

The accuracy of the proposed solver is tested on a dielectric
sphere of radius a with k0a = 0.408 and εr = 36.0 same as in
[14]. The E-field result shows very good agreement with
the reference result given in [14] as shown in Fig. 2a. In
Fig. 2b, we plot the RCS computed from the proposed
method. Excellent agreement with Mie Series solution can
be observed. The H2-representation is achieved by using
geometric splitting in the construction of the cluster trees.
The admissibility parameter η is chosen to be 3.0. In the
volume cases, nmin = 80 whereas â and b̂ of the rank
function in (11) are 2 and 0.334, respectively. For the
surface cases, nmin = 40 whereas â and b̂ of the rank
function are opted to be 2 and 0.5, respectively.
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In order to demonstrate the efficiency of the proposed
solver, the electric size of a dielectric sphere of εr = 4.0
and radius 0.065 m is then allowed to increase by doubling
the frequency from 300 MHz to 2.4 GHz, resulting in
1640–84856 unknowns (λ/10 meshing criterion). Fig. 3
depicts the relative error of the maximum admissible block
for all the volume–volume, volume–surface and surface–
surface components of matrix G, as the electric size of the
T Microw. Antennas Propag., 2013, Vol. 7, Iss. 14, pp. 1145–1153
doi: 10.1049/iet-map.2013.0090



Fig. 4 RCS comparison of a dielectric sphere

a k0a = 0.408
b k0a = 0.816
c k0a = 1.632
d k0a = 3.264
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sphere varies. A 10− 3 order of accuracy is observed in the
entire unknown range. The relative error of the maximal

admissible block is computed as ‖G(t, s) − G̃
(t, s)‖/

max ‖G(t, t)‖, ‖G(s, s)‖
( )

. The corresponding RCS for all
the electric sizes are compared against the analytical Mie
Series solution and plotted in Fig. 4 from k0a = 0.408 to
k0a = 3.264. Very good agreement can be observed. Note
that the accuracy can be controlled to a user desired order
by the choice of â and b̂. If an accuracy better than that
shown in Fig. 4 is pursued, one can increase â and b̂
based on the scheme given in Section 3.3 until the
desired accuracy is achieved. The ability of the proposed
solver in correctly modelling and predicting the sharp
whispering-gallery modes within the above resonance
range is then tested against the Mie series solution. As
Fig. 5 Normalised backscatter RCS (Qb) of dielectric sphere as a
function of electric size (k0a)
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shown in Fig. 5, the normalised backscatter RCS (Qb = σb/
(πa2), where σb is the back scattering radar cross section
of the dielectric sphere) obtained by the proposed solver
shows very good agreement with the Mie series solution
throughout the frequency band. The sharp resonance
frequency in the vicinity of electric size k0a = 2.7 is well
captured.

5.2 Homogeneous dielectric rod

In order to further elaborate the performance of the proposed
solver, a dielectric triangular rod of εr = 2.54 as simulated in
[14] is then simulated. As explained in [14], the RCS is
computed for a triangular rod having the same
cross-sectional area as that of a circular rod of radius 0.16
cm. In Fig. 6, we plot the RCS computed by the proposed
Fig. 6 RCS of a triangular dielectric rod (ɛr = 2.54) of different
lengths
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Fig. 7 Upper bound on the H2-representation error for a
dielectric rod example
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H2-based solver in comparison with that computed in [14].
Excellent agreement is observed. The time and memory
efficiency of the proposed method is examined by
increasing each cross-sectional side of the rod to 0.408λ
and the length from 4λ to 32λ, resulting in 4336–34 576
unknowns with λ/10 being the meshing criterion. The
Fig. 8 Performance comparison

a Storage
b Solution time

Fig. 9 Performance comparison for an inhomogeneous rod example

a Storage
b Solution time
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admissibility parameter η is chosen as 0.95, and the
‘leafsize’ nmin is 80. Although for the x- and y-directions
three interpolation points are chosen, for z-direction,
â and b̂ of the rank function are taken to be 4 and 4,
respectively, for the volume-type cluster tree whereas for
the surface-type both are selected to be 5 each. In Fig. 7,
we plot the relative error of the maximal admissible block
for all the volume–volume interaction, volume–surface
interaction and surface–surface interaction blocks in matrix
G. A constant order of accuracy is observed in the entire
electric size range. In Fig. 8a, we compare the memory
requirement of the proposed method with that of a
conventional solver. In Fig. 8b, we plot the solution time of
the proposed solver in comparison with that of the
conventional solver. The proposed solver demonstrates a
clear linear scaling in the electric size range being
investigated.
To demonstrate the capability of the proposed method in

simulating electrically larger examples, an 80λ (86 416
unknowns) rod is simulated. To achieve 10− 4 order of
accuracy, b̂ of the rank function is increased to 7 and 8,
respectively, for volume and surface cluster trees. It costs
the proposed solver only 13 Gb of memory as compared
with 112 Gb cost by the conventional solver, and 3575.5 s
for the solution as compared with 61 096 s cost by the
T Microw. Antennas Propag., 2013, Vol. 7, Iss. 14, pp. 1145–1153
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conventional solver. The costs of the conventional solver are
extrapolated based on its square complexity.
5.3 Inhomogeneous dielectric rod

An inhomogeneous triangular dielectric rod of cross-sectional
dimensions of 0.408λ with half of the rod being of εr = 2.54
and the other half of εr = 4.0 is then simulated. All the
parameters are kept the same as in the homogeneous case
simulated in the previous example, which results in the
same order and trend of accuracy and memory requirements
as in the previous example. The comparison of memory
resources used and the solution times for the conventional
and proposed solver are shown in Fig. 9. Again, a
significant reduction in CPU time and memory is observed.
The cost of the proposed solver is higher than that shown in
the previous example because the iteration number
increases in this inhomogeneous example.
6 Conclusions

The H2-matrix-based representation of dense systems of
equations is developed for a more general case of 3D
volume integral equation which comprises of all possible
forms of integrals. With such a representation, both memory
consumption and time complexity of a matrix–vector
multiplication are significantly reduced compared with the
conventional VIE solvers. Numerical examples of
homogeneous and inhomogeneous scatterers from small to
tens of wavelengths have demonstrated the performance of
the proposed H2-based VIE solver. The H2-representation
of the VIE system is generated by an interpolation-based
method with accuracy controlled by a rank function.
In the future, we will explore other more efficient
H2-representations of the VIE dense system so that even
larger electric sizes can be efficiently handled on a single
computer.
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