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Matrix-Free Method for Transient Maxwell-Thermal
Cosimulation in Arbitrary Unstructured Meshes
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Abstract— Existing electrical–thermal cosimulation methods
require solving a system matrix when handling inhomogeneous
materials and irregular geometries discretized into unstructured
meshes. In this paper, a matrix-free method is developed for
cosimulating full-wave Maxwell’s equations and the thermal
diffusion equation in the time domain. The method is free of
matrix solutions regardless of the shape of the element used
for space discretization. A theoretical stability analysis is also
developed for the coupled electrical and thermal analysis, which is
nonlinear in nature. Numerical experiments on both unstructured
tetrahedral and triangular prism element meshes have validated
the accuracy and efficiency of the proposed method.

Index Terms— Electrical–thermal cosimulation, matrix-free
methods, multiphysics simulation, thermal analysis, time-domain
methods.

I. INTRODUCTION

THE analysis of a multiphysics problem involves the
solution of multiple partial differential equations (PDEs).

Existing solvers for solving PDEs generally cast the original
physical problem into a matrix equation of Ax = b to
solve [1], [2], where A can be either dense or sparse. The
solution of such a matrix equation can be computationally
expensive, i.e., requiring prohibitively large memory and/or
long CPU runtime, in unstructured meshes, as system matrix
A is, in general, not diagonal. If a numerical method for
solving PDEs can be made matrix-free, i.e., free of a matrix
solution, then much larger problems can be solved using the
same computational resources.

The finite-difference time-domain (FDTD) method [3], [4]
has its merit in being simple and free of a system matrix
solution. However, it has been difficult to extend the FDTD
to arbitrary unstructured meshes [5]. Nonorthogonal FDTD
methods [6]–[11] generally require a dual mesh, which is not
straightforward to construct for a primary mesh that must cap-
ture arbitrarily shaped material discontinuities in 3-D settings.
Interpolations and projections are often employed in these
methods, and stability and accuracy may not be simultaneously
guaranteed. Recently, a matrix-free time-domain method has

Manuscript received May 2, 2018; revised August 17, 2018; accepted
August 30, 2018. Date of publication October 30, 2018; date of current
version December 11, 2018. This work was supported in part by a grant from
the National Science Foundation under Award 1619062 and in part by a grant
from DARPA under Award FA8650-18-2-7847. This paper is an expanded ver-
sion from the IEEE MTT-S International Microwave Symposium (IMS2018),
Philadelphia, PA, USA, June 10–15, 2018. (Corresponding author: Dan Jiao.)

The authors are with the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907 USA (e-mail: djiao@
purdue.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMTT.2018.2875105

been developed for solving Maxwell’s PDE equations in
unstructured meshes [12]–[14]. This method has a naturally
diagonal system matrix independent of the element shape
used for discretization, and hence, the need for numerically
finding the matrix solution is completely eliminated. Despite
the success of solving Maxwell’s equations, however, a matrix-
free time-domain method has not been developed for thermal
analysis as well as electrical–thermal codesign and analysis.
In the existing methods for thermal simulation and electrical–
thermal cosimulation [15]–[22], based on either static or full-
wave Maxwell’s equations, a matrix solution is required
when dealing with unstructured meshes. These meshes are
often necessary for discretizing irregularly shaped geometries
and materials. They also help greatly reduce the number
of unknowns as compared with a grid-based discretization.
Since the material property changes with time due to thermal
effects, the system matrix resulting from the discretization
of Maxwell’s equations is time-dependent in an electrical–
thermal cosimulation. As a result, at each time instant when
the matrix changes, one has to refactorize or solve the matrix,
which is time-consuming, especially in analyzing large-scale
problems. Although the matrix-free time-domain method [12]
has a flexible framework, it cannot be directly applied to
perform a thermal analysis, since it is formulated for vectors
while the thermal diffusion equation is a scalar equation.
In addition, the cosimulation of the coupled Maxwell’s and
thermal equations results in a nonlinear system of equations,
the stability of which has not been investigated in the existing
methods.

The electrical–thermal coanalysis is of critical importance
in advanced integrated circuit (IC) design, where emerging
interconnect solutions have been intensively pursued to over-
come the shortcoming of existing copper-based interconnects
in performance and reliability. The design of the new inter-
connect solutions typically involves many physics, such as
circuits, electromagnetics, materials, electron transport, and
thermal diffusion in a broadband of frequencies. To understand
the entire physical process happening in an advanced IC
design, a rigorous and efficient multiphysics simulation is
required.

In view of the importance of the electrical–thermal
coanalysis and the shortcoming of the existing methods, in this
paper, we develop a matrix-free algorithm for solving full-
wave Maxwell’s equations and the thermal diffusion equation
simultaneously. The proposed new algorithm is made naturally
free of matrix solutions. Hence, it has a potential of being
much more efficient in time and memory than solvers requiring
solving matrices. The matrix-free property of the proposed
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method is achieved regardless of the element shape used
for discretization, thus suitable for both regular grid-based
discretizations and unstructured meshes. The basic idea
of this paper has been presented in [23], while this paper
completes [23] from the perspectives of both algorithm
development and numerical experiments. The stability of the
coupled nonlinear system of equations is also analyzed in
detail and found to be ensured with a correct choice of time
step in explicit time marching. In [12]–[14], we develop the
matrix-free method for solving Maxwell’s equations only.
These papers do not address the thermal analysis as well as
the combined electrical–thermal analysis concerned in this
paper. Numerical experiments have validated the accuracy
and efficiency of the proposed method.

II. EQUATIONS GOVERNING ELECTRICAL–
THERMAL COSIMULATION

The electrical performance of a physical structure is
governed by the Maxwell’s equations from dc to high
frequencies [12]

∇ × E = −μ
∂H
∂ t

(1)

∇ × H = �
∂E
∂ t

+ σE + J (2)

where E is the electric field intensity, H is the magnetic
field intensity, J is the input (supply) current density, and μ,
�, and σ are the permeability, permittivity, and conductivity,
respectively.

The thermal performance is dictated by the well-known
thermal diffusion equation [15]

ρ̃cp
∂T

∂ t
− ∇ · (k∇T ) = Pjoule + P0 (3)

where k is the thermal conductivity, cp is the specific heat
capacity, ρ̃ denotes the mass density of the material, T is the
temperature, Pjoule represents the heat source

Pjoule = J · E = σ E2 (4)

and P0 denotes other heat sources. The conductivity is a
function of temperature, which obeys

σ = σ0

1 + α(T − T0)
(5)

in which σ0 is the conductivity at temperature T0 and α is the
temperature coefficient of the material.

Equations (1)–(5) can be cosimulated as follows to obtain
the electrical and thermal performance of a structure. Start-
ing from an initial temperature, and hence an initial con-
ductivity of the material, (1) and (2) can be solved to
find electric field distribution in the entire structure. This
will provide a heat source Pjoule to (3). Equation (3) can
then be simulated to find the temperature distribution. The
temperature distribution is subsequently used to update the
conductivity of the material through (5). Equations (1) and (2)
are then simulated again with the updated σ value. The entire
simulation repeats until the desired time or a steady state is
reached.

Fig. 1. Choice of H-points and directions.

III. PROPOSED WORK

In this section, we present a matrix-solution free method for
solving the coupled electrical–thermal equations.

A. Matrix-Free Time-Domain Method for Solving
Maxwell’s Equations

Consider a physical structure discretized into either a reg-
ular grid or an unstructured mesh consisting of arbitrarily
shaped elements. Based on [12], to discretize Faraday’s law,
we expand the electric field E in each element by vector
bases, yielding E = �m

j=1 u j N j , where u j is the j th basis’s
unknown coefficient and m is the basis number in each
element. The first-order vector bases are used as N j , such that
they can produce the second-order accurate magnetic fields
anywhere to facilitate an accurate discretization of Ampere’s
law (2). Substituting the expansion of E into Faraday’s law (1),
evaluating H at the point individuated by the distance vec-
tor rhi , and then taking the dot product of the resultant with
unit vector ĥi , we obtain

Se{u} = −diag({μ})∂{h}
∂ t

(6)

where u denotes a global E-unknown vector of length Ne

consisting of all u j coefficients and Se is a sparse matrix whose
i j th entry is

Se,i j = ĥi · {∇ × N j }(rhi ) (7)

and h is a global H -unknown vector of length Nh , whose i th
entry is hi = H(rhi ) · ĥi . The number of nonzero elements
in each row of Se is the number of basis functions in each
element, which is a small constant; diag({μ}) in (6) is a
diagonal matrix of magnetic permeability μ. The H-points and
directions are chosen along a rectangular loop perpendicular
to each E-unknown, and centering the E-unknown, as shown
in Fig. 1. In this way, the resultant H -fields can, in turn,
generate desired E accurately. Unlike the FDTD method, here,
the H-points and directions do not form a dual mesh. Only a
single mesh is needed. No interpolations and projections are
required either.

To discretize Ampere’s law, we apply the law at rei points
and then take the dot product of the resultant with unit
vector êi at each point, obtaining

Sh{h} = diag({�})∂{e}
∂ t

+ diag({σ }){e} + { j} (8)
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in which Sh is a sparse matrix of size Ne × Nh . Each row
of Sh has only four nonzero elements, whose column index
corresponds to the global index of the four H -points associ-
ated with one E-unknown. In (8), diag({�}) and diag({σ })
are the diagonal matrices of permittivity and conductivity,
respectively.

With {u} = {e}, (6) and (8) are connected, and they can be
solved in a leapfrog way, which is free of matrix solutions [3].
We can also eliminate H and solve E as follows:
∂2{e}
∂ t2 + diag

��
1

�

��
∂{σe}

∂ t
+ S{e} = −diag

��
1

�

��
∂{ j}
∂ t

(9)

where

S = diag

��
1

�

��

Shdiag

��
1

μ

��

Se. (10)

In (9), σ is not taken out of the time derivative because
it is time-dependent in an electrical–thermal cosimulation.
Obviously, the matrices in front of both the second- and
first-order time derivatives in (9) are diagonal. Therefore,
an explicit marching of (9), such as a central-difference-based
time marching [1], is free of matrix solutions.

B. Matrix-Free Time-Domain Method for Solving
Thermal Diffusion Equation

Although the thermal diffusion equation is a scalar equation,
its matrix-free solution in unstructured meshes does not exist
in the open literature. Using the finite-element method or other
PDE methods, the resultant numerical system involves a sparse
matrix to solve. To develop a matrix-free solution of (3),
we propose to first vectorize the scalar-based (3). Although
this approach appears to complicate the problem to be solved,
the end result is efficient as the number of temperature
unknowns to solve remains the same as before.

We append a direction to T , making it a vector T. For
example, in (3), if we attach a unit vector along z to the right-
hand side heat source Pjoule + P0, then the T’s z-component
solved from a vector-based (3) would be the real temperature.
To develop a matrix-free solution of (3), we also introduce
an auxiliary vector Tc, which corresponds to the curl of the
T vector. With the two vector variables, we transform the
original thermal diffusion equation (3) into the following two
vector equations to solve:

k∇ × T = −∂Tc

∂ t
(11)

∇ × Tc = ρ̃cpT −
�

(Pjoule + P0)dt . (12)

Next, we show the equivalency between (3) and the above-
discussed two equations. Consider a source-free region with
uniform thermal constants for convenience. Starting from
(11) and (12), we have

ρ̃cp∇ · T = ∇ · (∇ × Tc) = 0. (13)

Using the curl of the curl property [24], we obtain

∇ × ∇ × T = ∇(∇ · T) − ∇2T = −∇2T. (14)

By taking a curl of (11) and substituting (12) into the resultant,
we have

ρ̃cp
∂T
∂ t

+ k∇ × ∇ × T = Pjoule + P0. (15)

The above-mentioned equation is the same as (3) by utilizing
the relationship of (14). As a result, solving the two vec-
tor equations (11) and (12) simultaneously is equivalent to
solving (3).

Obviously, (11) has the same form as Faraday’s law,
while (12) has a form similar to Ampere’s law. Hence,
the matrix-free time-domain method can be applied to solve
(11) and (12) without any need for solving a matrix equa-
tion. First, we can expand Tc using a set of first-order
vector bases and then evaluate (12) at rt i along direction ĥt i

(i = 1, 2, . . . , Nt ). Therefore, (12) can be discretized as

Se{Tc} = diag({ρ̃cp}){T } − {P} (16)

where {P} denotes the vector associated with heat source’s
time integration. On the other hand, we can discretize (11) as

diag({k})Sh{T } = −∂{Tc}
∂ t

(17)

the accuracy of which is guaranteed by (16), since T therein
is generated at the points and along the directions that ensure
the second-order accuracy of (17). In (16) and (17), both
Se and ST

h are sparse. Their sizes are Nt × Nc, where Nt is
the number of T unknowns, while Nc is the number of
Tc unknowns. diag{k} and diag{ρ̃cp} are diagonal matrices
of ki and ρ̃i cpi , respectively. Vector {T } contains all the
T unknowns, while vector {Tc} contains all the Tc unknowns.

Equations (16) and (17) can be solved without any matrix
solution using a forward difference scheme. We can also
eliminate T and solve for Tc first as follows:

∂{Tc}
∂ t

+ Stc{Tc} = {b} (18)

where

Stc = diag({k})Shdiag

��
1

ρ̃cp

��

Se (19)

{b} = −diag({k})Shdiag

��
1

ρ̃cp

��

{P} (20)

and (18) can be discretized in time as the following:

{Tc}n+1 = {Tc}n − �tStc {Tc}n + {b}n. (21)

Once {Tc} is solved at each time step, {T } can be obtained
readily from (16). Obviously, no matrix equation needs to be
solved in (21); thus, a linear (optimal) complexity is achieved
in computation. Alternatively, we can also eliminate Tc and
directly solve for T as follows:

∂{T }
∂ t

+ St {T } = diag

��
1

ρ̃cp

��

{Pjoule + P0} (22)

where the i th entry of {Pjoule + P0} is the heat source at the
i th temperature point, and

St = diag

��
1

ρ̃cp

��

Sediag ({k}) Sh . (23)
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The aforementioned approach obviously is very different
from prevailing methods for solving the thermal equation,
where the temperature unknown is expanded into certain scalar
basis functions, and then, the equation is tested also by certain
basis functions. The resultant numerical system matrix is
not diagonal and hence must be solved at each time step.
In contrast, in the proposed matrix-free method, by introducing
a vector-based representation of temperature unknown, and its
curl vector, we can interleave the two unknowns in both time
and space and develop an explicit time-domain solution of
the thermal diffusion equation that is free of matrix solutions.
Apparently, by vectorizing T , we complicate the problem.
In fact, the size of the resulting numerical system for T ,
as shown in (22), is the same as before, which is the number
of temperature unknowns in the discretized structure.

C. System for Electrical–Thermal Cosimulation and
Stability Analysis

After using the proposed matrix-free time-domain method,
we obtain the following system of equations for electrical–
thermal cosimulation:
∂2{e}
∂ t2 + diag

��
1

�

��
∂{σe}

∂ t
+ S{e} = −diag

��
1

�

��
∂{ j}
∂ t

(24)
∂{T }
∂ t

+ St {T } = diag

��
1

ρ̃cp

��

{σe2}
(25)

σ = σ0

1 + α(T − T0)
(26)

where Pjoule is present as the heat source. The above-discussed
equations are clearly coupled. If we define a global vector of

x = {e h}T (27)

and

y = {T − T0} (28)

the coupled electrical–thermal system can be rewritten as

x �(t) = −
�

diag({�}) 0
0 diag({μ})

	−1

×
⎡

⎢
⎣

diag

��
σ0

1 + αy

��

−Sh

Se 0

⎤

⎥
⎦ x + f

y �(t) = −St y +
�

diag

�
σ0

ρ̃cp(1 + αy)

�

0

	

x2 (29)

where superscript � denotes a time derivative and f =
{− j/� 0}T is the source term.

Equation (29) constitutes a nonlinear system of equations.
The stability of a nonlinear system can be analyzed by finding
its Jacobian matrix at each solution point (xn, yn). Take the
equilibrium point as an example, this is the point (x0, y0) at
which the right-hand side of (29) becomes zero when the
source f is vanished. This point can be readily found as

x0 = 0, y0 = 0. Evaluating the Jacobian matrix of (29) at
(x0, y0), we obtain

J =
⎡

⎣−
�

diag({σ0�
−1}) −diag({�−1})Sh

diag({μ−1})Se 0

	

0

0 −St

⎤

⎦. (30)

In a regular grid, St is positive semidefinite, as Sh = ST
e .

As for the first diagonal block in (30), its eigenvalues λ and
eigenvectors v satisfy

−
�

diag({σ0�
−1}) −diag({�−1})Sh

diag({μ−1})Se 0

	 �
v1
v2

	

= λ

�
v1
v2

	

. (31)

Substituting the second subsystem of equations of the above
into the first, we obtain

λ2v1 + λdiag
��σ0

�

��
v1 + Sv1 = 0 (32)

where S is the same as shown in (10). In a regular gird, S is
positive semi-definite. Since diag({(σ0/�)}) is positive semi-
definite as well, the eigenvalues of (32) have a nonpositive real
part. Hence, the eigenvalues of the Jacobian matrix J have a
nonpositive real part. Therefore, based on the stability theory
of a nonlinear system [25], an explicit marching of (29) is
stable at (x0, y0).

The Jacobian matrix of (29) is time-dependent. At an
arbitrary solution point (xn, yn), the Jacobian matrix of (29)
can be written as

Jn =

⎡

⎢
⎢
⎣

−
�

diag({σn�−1}) −diag({�−1})Sh

diag({μ−1})Se 0

	

0

2

�

diag

�
σn

ρ̃cp

�

0

	

xn −St

⎤

⎥
⎥
⎦ (33)

in which σn and xn represent σ and x at the nth time step,
respectively. Since the above-mentioned matrix is triangular,
the eigenvalues are determined by the eigenvalues of the
diagonal blocks. Hence, the property of the eigenvalues is the
same as that of (30). Thus, an explicit time marching is stable.

From (30) and (33), it can also be seen that the Maxwell’s
subsystem and the thermal one are governed by different
eigenvalues, with the magnitude of the latter much smaller.
To see this point clearly, (29) can be split into the following
two subsystems at an arbitrary nth time step:

x �
n = Jn(1, 1)xn + fn (34)

y �
n = Jn(2, 2)yn +

�

diag

�
σn

ρ̃cp

�

0

	

x2
n (35)

where the eigenvalues of Jn(1, 1) (the first diagonal block
of Jn) are related to Maxwell’s equations, and the eigenvalues
of Jn(2, 2) = −St are solely related to the thermal equation.
Hence, the choice of time step can be made different. In this
paper, we employ a forward difference to discretize the ther-
mal equation. Performing a stability analysis of the forward
differencing of (35), it can be readily found that the time step
should satisfy

�tt <
2Re(λther)

|λther|2 (36)
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Fig. 2. Flowchart of the cosimulation algorithm.

where λther is the eigenvalue of St whose magnitude is the
largest. |λther| can be analytically estimated as

|λther| = k

(ρ̃cp) × (4/�2
min)

(37)

where �min is the smallest space step.
In unstructured meshes, using the proposed matrix-free

method, S is not symmetric; however, with the time-marching
method of [12], the explicit marching of (34) is equally stable.
The resulting time step, �tm , is the same as that used in a
conventional explicit time marching of Maxwell’s equations,
such as the Courant–Friedrichs–Lewy condition. It satisfies

�tm <
2√|ξ |max

(38)

where |ξ |max is the maximum magnitude of the eigenvalues
of S, which is proportional to the inverse of the square of
the smallest space step. For the examples simulated in this
paper, it is found that �tt is much larger than �tm . Hence,
the thermal equation can be simulated using a much larger
step, and the conductivity σ in between the two time instants
of the thermal equation is interpolated to obtain that at the time
instants for solving Maxwell’s equations. Linear interpolation
is used in this paper.

In summary, the coupled electrical–thermal system of equa-
tions shown in (24)–(26) is discretized in time as (34) and (35),
where (34) is marched on in time with the matrix-free explicit
marching scheme, as shown in [12], and (35) is marched
on in time by a forward difference. The procedure of the
cosimulation algorithm is shown in Fig. 2. The electrical
and thermal analyses are coupled through the temperature-
dependent material properties. When two different time steps
are used, within one step of a thermal simulation, there exist
ratio = �tt/�tm steps of electrical simulations, and ntotal
represents the predefined maximum number of simulation
steps.

IV. NUMERICAL RESULTS

In this section, we first validate the proposed method in
performing a thermal simulation as well as an electrical–
thermal cosimulation. We then apply the proposed method to
solve a number of coupled electrical–thermal problems in a
variety of structures and meshes. Both FDTD and the time-
domain FEM (TDFEM) are used as the reference methods for
comparison.

The conductivity σ0 of copper is 5.8 × 107 S/m. The heat
conduction parameters for copper are k = 398 W/(m · K),
cp = 386 J(kg · K), ρ̃ = 8930 kg/m3, and α = 0.0039.
All these simulations are conducted with Intel Xeon CPU E5-
2690 v2 @ 3.00 GHz having 128-GB memory.

A. Thermal Analysis: Node Basis and Vector Basis

First, we examine the correctness of the proposed
matrix-free method for thermal analysis, which involves a
vectorization of a scalar thermal equation. Three methods,
node basis-based finite-difference method, node basis based
FEM method, and vector-based FDTD method, are used as
references. In this example, we consider a piece of copper
plane whose side length is 0.3 m. The temperature on one
side of the plane is 200 ◦C while being 100 ◦C on other sides.
In Fig. 3(a), we plot the temperature distribution across the
whole plane at the steady state. In Fig. 3(b), the temperatures
generated from the proposed method and the three reference
methods at point (0.2443, 0.2443) m are plotted versus
time. Clearly, the temperature at this point gradually grows
and finally reaches its expected steady-state value. The
results from four different methods are on top of each other,
validating the correctness of the proposed vectorization of the
thermal equation and its matrix-free solution.

B. Thermal Analysis in a Tetrahedral Mesh

We then simulate a heat conduction problem, which only
requires solving the thermal equation. A copper conductor of
size 1 × 0.5 × 0.75 m3 is considered. It is discretized into a
tetrahedral mesh, which is shown in Fig. 4. The temperature
on the outermost boundary of the cube is set to be 100 ◦C.
To guarantee the stability of the proposed method, we choose
a time step of �t = 0.8 s.

In Fig. 5(a), the temperature at the point (0.4747, 0.2197,
0.6826) m is plotted versus time. Clearly, the temperature at
this point gradually grows and finally reaches its expected
steady-state value of 100 ◦C. It is also shown to agree well
with the temperature obtained from the TDFEM. In Fig. 5(b),
we plot the entire solution error as compared with the
TDFEM, which is shown to be 2.78% when the temper-
ature reaches the steady state. This error is measured by
�{T }−{T }ref�/�{T }ref�, where {T } contains the temperatures
of all cells simulated from the proposed method, and {T }ref
is the reference solution from the TDFEM. As can be seen
from Fig. 5(b), the proposed method is accurate for solving the
thermal diffusion equation in an unstructured tetrahedral mesh.
The larger difference at the early time is due to a sudden jump
from zero to nonzero in the source setup, the high-frequency
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Fig. 3. (a) Temperature distribution at steady state. (b) Transient temperature
at an observation point with four different methods.

Fig. 4. 3-D tetrahedron discretization of a copper conductor.

components of which are captured by numerical methods in a
different way. We also compare the computational efficiency
of the proposed method with the TDFEM whose discretization
results in a similar number of unknowns. It is shown that the
proposed method takes 0.53 s to finish the whole simulation,
whereas the TDFEM costs 1.24 s.

C. Electrical–Thermal Cosimulation of Copper Cube
in Tetrahedral Mesh

Next, we validate the proposed cosimulation method using
the same copper conductor shown in Fig. 4. The con-
ductor is excited by a current source, whose waveform is
2 × 104(t − t0)exp(−(t − t0)2/τ 2), with τ = 6.0 × 10−9 s

Fig. 5. (a) Transient temperature at one observation point. (b) Entire solution
error of the transient temperature at all points.

and t0 = 4τ . The time step used in the Maxwell part of
the cosimulation is �tm = 2.4 × 10−11 s, while that in
the thermal part is �tt = 2.4 × 10−9 s = 100�tm . The
temperature on the outermost boundary of the cube is set to
be 0 ◦C. The simulated temperatures in all of the tetrahedral
elements are plotted versus time in Fig. 6(a). The relative error
of these temperatures, measured by �{T } − {T }ref�/�{T }ref�,
is plotted in Fig. 6(b), where {T } contains the temperatures
of all elements simulated from the proposed method, and
{T }ref is the reference TDFEM solution. Good accuracy is
observed across the entire window. In Fig. 7(a), we plot
the electric field at an observation point (0.1971, 0.0556,
0.0662) m obtained from the cosimulation in comparison with
the result obtained from a Maxwell-only simulation. It is clear
that the thermal effect is observable in this example, and
the cosimulation is able to capture the combined electrical–
thermal effects. We also plot the TDFEM results in Fig. 7.
Excellent agreement is observed between the TDFEM and the
proposed method. Furthermore, we have compared the entire
electric field solution with those of the TDFEM, by evaluating
the total error of �{e} − {e}ref�/�{e}ref�. {e} containing all ei

unknowns is from the proposed method, and {e}ref is from the
TDFEM solution. The error is shown in Fig. 7(b) as a function
of time, validating the accuracy of the proposed method for
electrical–thermal cosimulation. Again, to demonstrate the
efficiency of the proposed method, we compare our matrix-
free method with the TDFEM method. In the cosimulation,
TDFEM needs to do LU factorization at each time when the
material properties are updated, while the proposed method
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Fig. 6. Copper cube cosimulation. (a) Temperature versus time at all points.
(b) Entire T solution error as a function of time.

Fig. 7. Copper cube cosimulation. (a) Simulated electric field at one point.
(b) Entire E-field solution error as a function of time.

has no factorization cost since it is free of matrix solution.
In contrast to the 81.39 s cost by TDFEM, the proposed
method only takes 6.85 s to finish the whole simulation.

Fig. 8. 3-D view of a u-type resistor.

Fig. 9. U-type conductor electrical–thermal cosimulation: electric field at an
observation point.

D. U-Type Conductor Discretized Into Tetrahedral Elements

A 3-D u-type resistor is discretized into tetrahedral ele-
ments, as shown in Fig. 8. These tetrahedral elements are
generated from brick elements so that FDTD can be used
for comparison. σ0 of all metal is 5.8 × 107 S/m, and the
surrounding material has a relative permittivity of 4. The two
ends of the conductor are excited by a current source, which
is shown by the red line in Fig. 8. The boundary conditions
are perfect magnetic conductor (PMC) on the left, right, front,
and back sides and perfect electric conductor (PEC) on the
top and at the bottom, with the temperature set to be 0 ◦C.
The source waveform is a Gaussian derivative pulse of
5.7×103(t − t0)exp(−(t − t0)2/τ 2), with τ = 1×10−10 s and
t0 = 4τ . In Fig. 9, we plot the electric field at the point (0.5,
0.75, 0.5) μm along the y-direction edge in the conductor
obtained with the Maxwell-thermal cosimulation versus that
from a Maxwell-only simulation. With a peak cell temperature
of 82.17 ◦C, the thermal effect on electrical performance can
be clearly observed. For validation purpose, the electric field
simulated at the same point along the same direction from the
FDTD method is also plotted in Fig. 9. Good agreement is
observed.

E. Electrical–Thermal Cosimulation of Coaxial Cylinder
in Prism Mesh

We have examined the capability of the proposed method
in handling irregular prism meshes as well. This example has
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Fig. 10. Top view of the triangular prism mesh of a coaxial cylinder structure.

Fig. 11. Coaxial cylinder cosimulation: simulated electric field at one point.

an irregular triangular prism mesh, the top view of which is
shown in Fig. 10. The structure has two layers of triangular
prism elements (into this paper) with each layer being 0.05 m
thick. The discretization results in 3092 edges and 1038 tri-
angular prisms. The conductor is excited by a current source,
whose waveform is 2.5 × 104(t − t0)exp(−(t − t0)2/τ 2), with
τ = 5.0 × 10−8 s and t0 = 4τ . The temperature on both
the innermost boundary and the outermost boundary is set to
be 0 ◦C. The time step used in both the Maxwell part and
the thermal part of the cosimulation is �tm = 2.0 × 10−10 s.
In Fig. 11(a), we plot the electric field at an observation point
(0.1845, 0.7067, 0.0250) m obtained from the cosimulation
in comparison with the result obtained from a Maxwell-only
simulation. The thermal effect is clearly observable in this
example, and the cosimulation is able to capture the combined
electrical–thermal effects. We also plot the TDFEM results
in Fig. 11. Excellent agreement is observed between the
TDFEM and the proposed method.

F. Lossy Package Inductor With Triangular Prism Elements

In this example, we simulate a package inductor made of
lossy conductors of initial conductivity 5.8×107 S/m, which is
embedded in a dielectric material of relative permittivity 3.4.
Its geometry and material parameters are shown in Fig. 12.
The inductor is discretized into layers of triangular prism
elements. The top view of the mesh is shown in Fig. 13.
The boundary conditions are PMC on the left, right, front,

Fig. 12. Illustration of materials and geometry of a package inductor.

Fig. 13. Top view of the triangular prism element mesh.

Fig. 14. Package inductor electrical–thermal cosimulation: electric field at
an observation point.

and back sides, and PEC on the top and at the bottom,
with the temperature set to be 0 ◦C. A current source is
launched at one end of the inductor, which is marked with blue
color. The source waveform is a Gaussian derivative pulse of
0.5 × 104(t − t0)exp(−(t − t0)2/τ 2), with τ = 0.5 × 10−10 s
and t0 = 4τ . In Fig. 14, we plot the electric field along the
z-direction at the point (−600,−25, 37.5) μm in the inductor
obtained with the Maxwell-thermal cosimulation versus that
from a Maxwell-only simulation. With a peak cell temperature
of 51.3 ◦C, the thermal effect on electrical performance can
be clearly observed. For validation purpose, the electric field
simulated from the TDFEM is also plotted for comparison.
Good agreement is observed.

G. 3-D On-Chip Power Grid Discretized Into
Tetrahedral Mesh

Next, we simulate a 3-D on-chip power grid, as shown
in Fig. 15(a) and (b). The power grid is discretized into
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Fig. 15. (a) 3-D view of an on-chip power grid. (b) Geometry and
cross-sectional view.

Fig. 16. Power grid electrical–thermal cosimulation: electric field at an
observation point.

a tetrahedral mesh to model nonuniform materials and
process variations with fewer unknowns. σ0 of all metal is
5.8×107 S/m, and that of the silicon substrate is 104 S/m. The
boundary conditions are PMC on the left, right, front, and back
sides, and PEC on the top and at the bottom, with the temper-
ature set to be 0 ◦C. The near end between a pair of power and
ground wires in layer M1 is excited by a current source, which
is shown by the red line in Fig. 15. The source waveform
is a Gaussian derivative pulse of 3.8 × 103(t − t0)exp(−(t −
t0)2/τ 2), with τ = 1 × 10−10 s and t0 = 4τ . In Fig. 16,
we plot the electric field along the y-direction at the point
(6, 0.75, 1.5) μm in the M1 layer obtained with the Maxwell-
thermal cosimulation versus that from a Maxwell-only
simulation. TDFEM results are also shown for comparison.
With a peak cell temperature of 78.84 ◦C, the thermal effect
on electrical performance can be clearly observed. If using
TDFEM to handle the same tetrahedral mesh and using the
same time step for the Maxwell and thermal simulations,

the TDFEM costs 47.1 s per time step, while the proposed
method costs 0.29 s only. If using two different time steps
for Maxwell and thermal simulations and only update
conductivity at thermal time step, the CPU time cost at one
thermal time step, which includes one thermal simulation
and 100 steps of Maxwell’s simulations, is 12.17 s for the
proposed method and 102.54 s for the TDFEM, demonstrating
the efficiency of the proposed method.

V. CONCLUSION

In this paper, we develop a matrix-free algorithm for
solving the coupled full-wave Maxwell’s equations and the
thermal diffusion equation in the time domain. The thermal
equation is vectorized to develop a matrix-free solution with-
out increasing the problem size. The matrix-free property is
achieved regardless of the element shape used for discretizing
Maxwell’s or thermal equations. The stability of the coupled
nonlinear system of equations is also analyzed in detail and
found to be ensured with a correct choice of time step in
explicit time marching. Numerical experiments have demon-
strated the accuracy and efficiency of the proposed matrix-free
method for simulating thermal as well as coupled electrical–
thermal problems. The proposed method can also be extended
to achieve an arbitrary higher order of accuracy in both space
and time.
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