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Matrix-Free Time-Domain Method for General
Electromagnetic Analysis in 3-D Unstructured
Meshes—Modified-Basis Formulation
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Abstract— We develop a new matrix-free time-domain method,
which requires no matrix solution, in unstructured meshes for
general 3-D electromagnetic analysis. The method handles arbi-
trary unstructured meshes with the same ease as a finite-element
method. Meanwhile, it is free of matrix solutions manifested by a
naturally diagonal mass matrix, just like a finite-difference time-
domain method. Different from our previous formulation where
traditional curl-conforming vector bases are employed, modified
vector bases are developed in this paper to directly connect the
unknown coefficients of the vector basis functions employed to
represent E (or H) with the unknowns obtained from the curl
of H (or E), without any need for transformation. The proposed
method employs only a single mesh. It does not require any
interpolation and projection to obtain one field unknown from
the other. Its accuracy and stability are guaranteed theoretically.
Numerous experiments on unstructured triangular prism and
tetrahedral meshes, involving both homogeneous and inhomoge-
neous and lossy materials, demonstrate the generality, accuracy,
stability, and computational efficiency of the proposed method.
The modified higher order vector bases developed in this paper
can also be used in any other method that employs higher order
bases to obtain an explicit relationship between unknown fields
and unknown coefficients of vector bases.

Index Terms— Electromagnetic analysis, finite-difference
time-domain (FDTD) method, higher order vector basis, matrix-
free method, time-domain finite-element method (TDFEM),
time-domain method, unstructured mesh.

I. INTRODUCTION

MONG time-domain methods for solving electro-

magnetic  problems, the finite-difference  time-
domain (FDTD) method [1], [2] has its merits in being simple
and free of a system matrix solution (matrix-free). However, it
has been difficult to extend the FDTD to arbitrary unstructured
meshes with theoretically guaranteed accuracy and stability.
Dual mesh is, in general, required in nonorthogonal FDTD
methods [3]-[15]. Such a dual mesh is not straightforward
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to construct for a primary mesh that must capture arbitrarily
shaped material discontinuities in 3-D settings. In an arbitrary
unstructured mesh, the dual mesh may not even exist.
In addition, in the existing nonorthogonal FDTD schemes,
both primary and dual field unknowns are placed along the
edges of the mesh, and assumed to be constant. From such
a discretization of field unknowns, the dual fields obtained
from the primary ones are only second-order accurate at the
center point of the primary-field loop, and along the direction
perpendicular to the area of this loop. Elsewhere and/or along
other directions, the dual fields do not have second-order
accuracy. However, in a general unstructured mesh, the
points and directions, where the dual field unknowns can
be accurately obtained, are not coincident with the points
and directions where the dual field unknowns are located.
As a result, we observe that interpolation and projection are
employed to obtain one field from the other field. However,
the accuracy of the resultant scheme is not guaranteed in an
irregular mesh. Meanwhile, the interpolation and projection
techniques can also negatively affect the stability of the time
marching, since they have changed the way the curl operators
are discretized. In addition, the curl operator for E, in general,
cannot be made reciprocal to that for H in an unstructured
mesh. This results in an unsymmetrical curl—curl operator.
Such an operator can support complex-valued and even
negative eigenvalues. The resultant explicit time marching
can be proved to be absolutely unstable [11], [16].

The time-domain finite-element method (TDFEM) [17]
has great flexibility in dealing with any unstructured mesh,
but it is not matrix-free, requiring the solution of a mass
matrix. Mass lumping is known to be error prone. Orthog-
onal vector bases have been developed [18], [19]. However,
an approximate integration rule is utilized to diagonalize
the mass matrix. In the discontinuous Galerkin time-domain
methods [20], [21], small local matrices are solved. However,
this is because the field’s tangential continuity is not enforced
at the same time instant. Instead, the flux is communicated
between adjacent elements. Building local matrices of small
sizes is equivalent to moving the crosstalk terms in the original
system matrix to the right-hand side of the system matrix
equation, which can also be viewed as an iterative solution of
the original matrix equation. The accuracy and convergence of
such a solution in time domain are dependent on the problems
being simulated and the time step used.

In this paper, we develop a new matrix-free time-domain
method for arbitrary unstructured meshes. This method
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handles arbitrary unstructured meshes with the same ease as
an FEM. Meanwhile, advantageous to the FEM, this new time-
domain method produces a naturally diagonal mass matrix
regardless of the element shape used for discretization. Hence,
it facilitates a matrix-free solution of Maxwell’s equations.
Different from the existing nonorthogonal FDTD methods,
the new method does not involve the use of dual mesh,
interpolation, and projection. It employs only a single mesh.
Furthermore, the electric field unknowns obtained from the
discretized magnetic fields are exactly the same as the electric
field unknowns used in the discretization of Faraday’s law.
Similarly, the magnetic field unknowns obtained from the
discretized electric fields are exactly equal to the magnetic
field unknowns used in the discretization of Ampere’s law,
without any need for interpolation and projection. Such an
algorithm ensures the accuracy of the resulting discretization
of Maxwell’s equations. Moreover, the tangential continuity of
the fields is enforced across element interfaces. In addition, the
new method overcomes the absolute instability of an explicit
method when simulating an unsymmetrical operator whose
eigenvalues are complex and even negative. Such an operator
is often unavoidable in an unstructured mesh. Higher order
accuracy can also be flexibly achieved in the proposed method
for both E and H fields.

In our NEMO conference paper [22], we present detailed
2-D formulations of a matrix-free time-domain method
in unstructured meshes, which are not given in [23].
In [16] and [24], we provide a 3-D formulation based on
traditional vector basis functions. In this paper, based on our
preliminary work reported in conference papers [25], [26], we
develop a new 3-D matrix-free formulation by constructing
a set of new vector bases modified from the original bases.
As a result, the electric field unknowns obtained from the
discretization of Ampere’s law are made the same as the
unknown coefficients of the vector basis functions used to
expand E in Faraday’s law. Hence, the transformation used
in [16] is avoided between the two sets of unknowns. The
discretized Faraday’s law is thereby directly connected to
the discretized Ampere’s law without any need for transfor-
mation. This saves the computational cost in generating the
transformation matrix and its related computation. Numerous
numerical experiments have been conducted on a variety
of 3-D unstructured meshes, for both homogeneous and
inhomogeneous as well as lossy problems. Comparisons with
analytical solutions and the results obtained from the TDFEM
as well as our previous matrix-free formulation [16] have
validated the proposed new matrix-free method.

II. PROPOSED METHOD

Considering a general 3-D problem meshed into arbitrarily
shaped elements, which can even be a mix of different shapes
of elements, we start from the differential form of Faraday’s
law and Ampere’s law

V x E oH 1)
xE=—u—
Y
oE
VxH=c"+0E+] )
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Fig. 1. Tllustration of magnetic field points and directions for obtaining e;.

we pursue a discretization of the two equations in time domain,
such that the resultant numerical system is free of matrix
solutions.

A. Discretization of Faraday’s Law

In each element, we expand E by vector bases N;
(j=1,2,...,m), obtaining

m
E= Zuij
j=1

where u; is the jth basis’s unknown coefficient. Substituting
(3) into (1) to evaluate H at rp; point and along the h; direc-

3)

tion, with i = 1,2, ..., N}, we have
. o{h}
Sefu} = —dlag({ﬂ})T 4)
where the ith entry of vector {h} is
hi = H(ep) - hi (5)

{u} is of length N, consisting of all u; coefficients, diag({u})
is a diagonal matrix of permeability, and S, is a sparse matrix
having the following entry:

Se.ij = hi - {V x Nj}(tn). (6)

Apparently, we have an infinite number of choices of
H points and directions to build (4). However, to ensure the
accuracy of the overall scheme which involves the discretiza-
tion of not only Faraday’s law but also Ampere’s law, we
should select the H points and directions in such a way that the
resultant H fields can, in turn, generate desired E accurately.
Although there are many choices to do so, the simplest choice
is to choose a rectangular loop centering the E unknown
and perpendicular to it, as shown in Fig. 1. Then, along this
loop, we select the midpoint of each side as H point, and the
unit vector tangential to each side as the H’s direction. The
H fields obtained at these points and along these directions
can certainly ensure the accuracy of E when we discretize
Ampere’s law. In addition, regardless of the element shape,
there is no difficulty to define such a rectangular loop for
each E unknown.

B. Discretization of Ampere’s Law

From Ampere’s law, by evaluating E at r,; point and along
the ¢; direction (i = 1,2,..., N,), respectively, we obtain

bV X H) () = €)= + o Ea)er +830) ()
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in which
e; = E(ry) - ¢;. €))

Based on the choice of H points and directions shown in
Fig. 1, the ¢; - V x H in (7) can be discretized accurately as

éi : {V X H}(rei) = (hml + hmZ)/llm + (hnl + hnZ)/lin 9)

where [;,,, is the distance between h,,; and h,,», while i, is
the distance between h,; and h,», as shown in Fig. 1.
With (9), (7) can be rewritten as
: ole} | . .
Sn{h} = diag ({€}) —, T diag (oD e} +{/j}
where {;j}’s entries are ¢; - J(r,;), and diag({€}) and diag({c'})
are diagonal matrices whose entries are permittivity, and
conductivity, respectively. Matrix S, is the sparse of size
N, x Np, each row of which has four nonzero entries only
being

(10)

Sp,ij = 1/1;; (11)

where j is the global index of the H unknown used to generate
e;, and [;; is simply the distance between the E point (r,;) and
the H point (r;;) multiplied by two.

C. Formulation of Modified Vector Basis Functions

Can we use zeroth-order vector basis functions in (3)? The
answer is negative. This is because they produce a constant
H field in each element. As a result, they fail to accurately
generate the H fields at an arbitrary point along an arbitrary
direction, and thereby at the points and along the directions
desired for generating accurate E. For example, the H fields
desired at the points along the directions shown in Fig. 1
cannot be accurately obtained from zeroth-order vector basis
functions. Hence, we propose to use higher order vector bases.
However, they need modifications to satisfy

{u) = {e} (12)

to connect (10) with (4) directly. As shown in (3), {u} is the
vector containing all the unknown coefficients of the vector
basis functions; while {e} is the vector of discretized electric
fields, as shown in (8). They may not be the same. If we use
the normalized zeroth-order vector bases, {u} = E(r.;) - ¢;,
and therefore, (12) is satisfied. However, higher order curl-
conforming bases [27] do not completely satisfy this property.
In [16], we do not modify the original higher order vector
bases. Instead, we find the relationship between {e} and {u},
which is {e} = P{u}, where P is a block diagonal matrix.
We then use this relationship to connect (10) with (4). In this
paper, we show by developing a set of modified higher order
vector bases, we can make {u} equal to {e}, and hence bypass-
ing the need for transformation. This saves the computational
cost of generating the transformation matrix P and its related
computation.

To see the point why higher order curl-conforming bases
do not satisfy (12) more clearly, we can substitute (3) into
e; = E(r,;) - ¢;, obtaining

m
ei =D ujNj(re) - ;.

j=1

13)
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Fig. 2. TIllustration of the first-order curl-conforming vector bases in a
tetrahedral element.

Obviously, for (12) to hold true, it is required that

Nj(l‘ei)'éi =5ji~ (14)
In other words, the jth vector basis’s projection should be
zero onto the direction and at the point associated with the
ith vector basis’s degree of freedom. This property is naturally
satisfied by edge vector basis functions. To explain, along any
edge, the unit vector associated with the vector basis defined
on this edge is tangential to the edge. Hence, (14) is naturally
satisfied, since it is how the curl-conforming vector bases
ensure the tangential continuity of the fields at the element
interface. However, in higher order vector bases, there also
exist face vector basis functions and basis functions defined
internal to the element. They, in general, do not satisfy the
property of (14). Take the face vector bases as an example,
their degrees of freedom are tangential to the face. However,
each pair of the face vector bases is defined at the same point,
and their directions are not perpendicular to each other. Hence,
they do not satisfy the property of (14), and thus require
modifications. Since first-order bases are sufficient for use in
terms of generating second-order accuracy in the proposed
method, next, we will use this set of bases as an example to
show how to modify them. However, the essential idea applies
to other higher order bases.

In a tetrahedral element, there are 20 first-order vector
bases [27]. Among them, 12 bases are edge vector basis
functions, as shown in Fig. 2. They are defined as

N; = 3& — DWyy
N3 = (3¢ — DWy3
N5 = (3&% — HWyy
N7 = 385 — DHW3,
Nog = (3& — H)Wo4
Ni1 = 3& — 1)Way3

N2 = (3¢ — HWoy
Ny = (3G - DHWi3
Ne = (3&1 — DWyy
Ng = (3& — W3
Nio = (3% — )W

Ni2 = (385 — 1)Wa3 (15)

where & (i = 1,2,3,4) are the volume coordinates at four
vertices, and W;; denotes the zeroth-order basis associated
with the edge connecting vertex i to vertex j.

Basically, along each edge, there are two degrees of freedom
of the vector bases, located at the points r,; whose distance is
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respectively 1/3, and 2/3 edge length to any one of the two
nodes forming the edge. ¢; associated with each edge basis is
simply the unit tangential vector of the edge where the basis
is defined. The 12 edge bases satisfy the property of (14).

However, the other eight vector bases defined on the four
faces of the tetrahedron do not satisfy the property of (14).
These eight face bases can be written as

Ni3 = 4.50Wy3 Nig = 4.5 Wy

Nis = 4.58GWa Nig = 4.58Wi3

Ni7 = 4.564W21 Nig = 4.5 Wy

Nig = 4.561W32 Ny =4.56Wis. (16)
The locations r.; (i = 13, 14, ...,20) and corresponding unit

vectors ¢; associated with the eight face vector bases are

en=1i13 r3=(G=8=&=1/3,5=0)
blu=hy ru=(E=E=&=1/3,§=0)
bis=1ty ris=E=8=4=1/3,6=0)
el =113 re=(&E=86=4=1/3,5=0)
=01 rp=&=6=&=1/3,5=0)
big =ty rg=(E1=H=&=1/3,85=0)
blo=1tn ro=(E=6==1/3,84=0)
=103 =0 =6=8§=1/3,4=0) (17)

in which f; ; stands for a unit tangential vector along the edge
connecting vertex i to vertex j. As can be seen, at the center of
each face, there are two vector bases defined. Obviously, they
do not satisfy the property of (14). For example, N19(rz0) - €20
is not zero. This is because at the center point of the face
formed by nodes 1-3, Njg is not perpendicular to é9 whose
direction is along the edge connecting vertices 1-3.
If we rewrite (13) as

{e} = P{u}. (18)
P matrix obviously has the following entries:
Pij =Nj(r.)-é. (19)

As shown in [16], with the first-order vector bases, P is block
diagonal whose diagonal block dimension is either one or two.
The diagonal block of size two corresponds to the two vector
bases on each face, while each edge basis only corresponds
to one diagonal entry, which is 1, in P. Next, we show how
to modify the face bases to make P an identity matrix.

Since the two face vector bases are defined at the same
point, a linear combination of the two also makes a valid basis.
The definitions of the face bases are hence not unique, which
is also shown in [27]. We can modify them. To do so, we keep
one face vector basis intact, but revise the other one. For a face
having vertices i, j, and k, the two face bases we develop are

Ny =4.55W éfl :tAjk (20)
A ﬁfXij

Np =cjaVé ep = =—0 (2D

f T R T i Wl

and for both face bases, their degrees of freedom are located
at the face center, and hence,

rh=rp =G =& =&=1/3) (22)
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Clearly, N, in (20) is kept the same as before. It is the second
face basis Ny, that is changed. In (20), ; denotes the volume
coordinate associated with node i, W is the normalized
zeroth-order edge basis with the subscripts denoting the two
nodes of an edge, unit vector f ik points from node j to k, c is
the normalization coefficient making Ny, -4, = 1 at the face
center, and unit vector 71 ¢ is normal to the face.

With the aforementioned modification, the revised first-
order bases are equally complete, and meanwhile satisfying
the desired property of (14). To see this point more clearly,
now, we have

Ny, (rfz) : éfz =0

Ny, (rfl) 'éfl =0. (23)

The second row in the above holds true, because V¢
is perpendicular to fjk. As a result, the original nonzero
off-diagonal terms in P become zero. In addition to satisfy-
ing (23), we also have to ensure that the modified second face
basis does not bring any new change to the original P, i.e.,
changing the original zeros in P to nonzeros. If this happens,
then the new bases defined in (20) cannot achieve the goal
of making (12) true. This can be examined by evaluating the
entries residing in the column and the row in P corresponding
to the second new face basis, as other rows and columns
are not affected. Essentially, we have to assess the following
entries to see whether they are zero:

Pr,i =Np(re) -6 (i # f2)
Pip =Ni(rp)-ép (0 # f2).

The entries of Py, ; = Ny, (r.) - é; reside on the row
corresponding to the second face basis in P. When r,; and ¢;
correspond to an edge basis, Ny, = 0 since ;¢ = 0 on all
edges except for the edge connecting j to k. On this edge,
Ny, is perpendicular to the edge, and hence, N, (r.;) - é; also
vanishes. When r,; and é; belong to a face basis, Ny, = 0
since £;& = 0 on all faces except for the two faces sharing
edge connecting j to k. On the same face where N, is defined,
as shown in (23), the corresponding P term is zero. On the
other face, Ny, is not zero; however, Ny, is perpendicular to
this face since it is along the direction of V¢;. As a result,
Ny, (rei) - €; also vanishes. In summary, the modified new face
basis preserves the original zeros in the row of this basis in P,
while vanishing the original nonzero entry in this row.

As for the entries of P; r, = N;(rp,) - éy,, they are located
in the column corresponding to the second face basis in P.
If basis i is an edge basis, it is zero at the center points
of three of the four faces and perpendicular to the fourth
face. Hence, P; p, = 0. If basis i is a face basis, it can be
either the first face basis or the second face basis. If it is
the first face basis, based on its expression shown in (20),
among the other three faces where it is not located, it is zero
on one of the three faces, and perpendicular to the rest two.
Hence, P; s, = 0 if i-basis does not belong to the face where
Jf>-basis is defined. If i-basis and f>-basis belong to the same
face, from (23), P; 4, is also zero. If the basis i is the second
face basis, among the other three faces where it is not located,
it is zero on two of the three faces, and perpendicular to the

(24)
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rest one. Hence, P; y, is also zero. As a result, the new change
of the second face basis also preserves the original zeros in
the column corresponding to the second face basis in P, while
vanishing the original nonzero entry in this column.

Based on (20), the complete set of modified face bases and
their projection directions, in accordance with the notations
of (16), can be written as follows:

(234 x Wa3)

Nis = clal3&yVE 14 = —
[171234 x Wa3]|
. (1134 x Wap)
Nig = c1661&4VE 16 =
[17134 X Wai]|
. (1124 X Way1)
Nig = c1861&H2VE 1y = —(————
[17124 x Wail|
. (1123 x W32)
Nog = 206283VE e = (25)
[17123 x W33]]

where 71;j denotes a unit vector normal to the face formed by
vertices i, j, and k.

The basic idea of the aforementioned approach to make
é; -Nj(r.;) = d;; satisfied is to choose appropriate basis and
projection directions of the second basis, when encountering
a pair of bases defined at the same point. The projection
direction of the second basis is chosen perpendicular to the
first basis at the point where the second basis’s degree of
the freedom is located. Meanwhile, the basis direction of the
second basis is chosen to be perpendicular to the projection
direction of the first basis. The essential idea of this approach
is equally applicable to higher order bases in other types of
elements such as the triangular prism elements.

In a triangular prism element, there are 36 first-order bases.
Among them, the three pairs of bases associated with the
center of the upper face, the prism center, and the center of
the lower face do not satisfy (14), while other bases satisfy.
Similar to the treatment in a tetrahedron element, for the three
sets, we keep the first basis, but modify the second basis. For
the top face formed by nodes 1-3, we construct the following
two bases and their projection directions:

Ny = 4560020 — DWaz ép =13 (26)
. (ny x Wa3)

N, = 201 — 1)V =] = 27

h=c8BOQROH -1V e 17 < Wasll @7)

where (1 = 1 on the upper face and 0 on the lower one, and
W12 is the normalized zeroth-order vector basis defined on the
edge connecting nodes land 2.

With the modified vector bases, the entries in sparse
matrix S, shown in (6) can be determined. Since each vector
basis N; has an analytical expression, V x N; and thereby S,
can be analytically evaluated. In addition, when building S,
the field tangential continuity is rigorously enforced across the
element interface, since {u}, which is also {e} now with the
newly developed modified bases, is shared in common by
adjacent elements. This is the same as how an FEM ensures
the tangential continuity of the electric field.

D. Matrix-Free Time Marching

With {u} = {e}, we can solve (4) and (10) in a leapfrog
way, which requires no matrix solutions. The two can also be
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combined to solve as the following:

ey . o1\ ofe} . 1 o{j}
T —i—dlag({z}) = + S{e} = —diag (IE]) e
(28)

where

([ (]

Obviously, the matrices in front of the second- and first-
order time derivatives are both diagonal. Hence, the proposed
method possesses a naturally diagonal mass matrix. Therefore,
an explicit marching of (28), such as a central-difference-based
time marching, is free of matrix solutions. However, a brute-
force explicit marching of (28) is absolutely unstable, because
S is not symmetric in an unstructured mesh and it can support
complex-valued and even negative eigenvalues. This has been
proved in [16].

The stability problem can be solved as follows. Basically,
we can begin with the following backward-difference-based
time marching of (28):

(29)

{e}" T — 2{e}" + {e})" ! + At diag
% ({%}) ({e}n+1 _ {e}n) + Atzs{e}n-i-l

. n+1
o) ()

Rearranging the terms in (30), we obtain

(30)

(D + Ar*S){e})" !
=2{e}" — {e}" ! + At diag

x ({%}) {e}" — Ai’diag ([é]) (%{})Hl 31)

D=1+ At diag({%})

which is diagonal. Front multiplying both sides of (31)
by D!, we obtain

A+M)e})"™ =D 1{f}

where

(32)

(33)
where

M= A’D!S (34)
and {f} is the right-hand side of (31).

Although the backward-difference-based (31) is stable for
an infinitely large time step as analyzed in [16], we choose a
time step based on the stability criterion of traditional explicit
time marching. This time step satisfies

1
vp(S)
It is also the time step required by accuracy when there
is no fine feature relative to working wavelength, since the
maximum eigenvalue’s square root, (|Amax|)!/?, corresponds

to the maximum angular frequency present in the system
response. With such a choice of time step, the spectral radius

At < (35)
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Fig. 3. Illustration of the tetrahedron mesh of a 1 x0.5x0.75 m3 rectangular
box.

of M is guaranteed to be less than 1. This is because in this
case, time step satisfies (35), and hence,

A?p(S) < 1 (36)

in which p(-) denotes the spectral radius, which is the modulus
of the largest eigenvalue. D is a diagonal matrix shown in (32).
Hence,

1

D)= =1 37
D) mini<;j<p, (1 + Ato;/€;) G7

We therefore obtain from (36) and (37)
p(M) = Ap(D~'S) < ApD)p(S) < 1. (38)

As a result, without loss of accuracy, the inverse of I +M can
be evaluated by

A+M) '=I-M+M —M>+ -+ (=M} (39)

where k is guaranteed to be small since (38) is satisfied. Thus,
the system matrix has an explicit inverse, and hence, no matrix
solutions are required. Equation (33) can then be computed as

{e}n+1 — (I _ M + 1\7[2 — e+ (—M)k)Dz{f} (40)

where D; is the diagonal matrix D’s inverse. The computa-
tional cost of (40) is k sparse matrix-vector multiplications,
since each term can be computed from the previous term
recursively, thus efficient.

III. NUMERICAL RESULTS

To validate the proposed new formulation-based matrix-
free method, in this section, we simulate a variety of 3-D
unstructured meshes. The aspect ratio of the mesh is defined
as the longest edge length divided by the shortest edge length.
The number of expansion terms k used in (39) is nine for all
examples simulated. The time step chosen is the same as that
of the explicit TDFEM.

A. Wave Propagation in a Tetrahedral Mesh of a 3-D Box

The first example is a 3-D free-space box of dimension
1 x 0.5 x 0.75 m? discretized into tetrahedral elements. Its
mesh is shown in Fig. 3 with 350 tetrahedral elements and
544 edges. The aspect ratio of the tetrahedral mesh is 3.67.
To assess the accuracy of the proposed method, we simulate
a free-space wave propagation problem, since its analytical
solution is known.
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Fig. 4.  Simulation of a 3-D rectangular box discretized into tetrahedral
elements. (a) Electric fields obtained from the proposed method as compared
with analytical results. (b) Entire solution error as a function of time.

The incident E, which is also the total field in the given
problem, is specified as E = 3 f(r — x/cp), where f(¢) =
2(t — to)exp(—(t — 10)%/7%), © = 6 x 1077 s, 1y = 41,
and co is the speed of light. The time step is chosen as
At = 1.6x 107! s. The proposed method takes only 2.12 MB
to store sparse matrices S, and Sy, and 5.2 x 10~ s to finish
the simulation at one time step. In Fig. 4(a), we plot the 1st and
1832th entries randomly selected from the unknown {e} vector,
which represent E(r,;) - ¢; with i = 1 and 1832, respectively.
It can be seen clearly that the results of the proposed method
agree very well with the analytical solutions.

To examine the accuracy of all unknowns solved from the
proposed method, and also across all time instants, we consider
the relative error of the whole solution vector defined by

[1{e}nis (1) — {e}ret ()|
[I{e}rer ()]

as a function of time, where {e}wis(f) denotes the entire
unknown vector {e} of length N, obtained from this method,
whereas {e}r(t) denotes the reference solution, which is
analytical result {e}ana(¢) in this example. In Fig. 4(b), we
plot Errorepire (f) across the whole time window in which the
fields are not zero. It is evident that less than 4% error is
observed at each time instant, demonstrating the accuracy of
the proposed method. The center peak in Fig. 4(b) is due to
the comparison with close to zero fields.

Errofengire (f )= 41)
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Se rows of equations. (b) Entire solution error versus time of all E unknowns
obtained from Sj, rows of equations.

This example has also been simulated in [16]. In Fig. 4(b),
we compare the accuracy of the proposed new formulation
with the formulation given in [16]. Obviously, the proposed
new formulation with modified vector bases exhibits the same
accuracy as the formulation given in [16].

In addition to the accuracy of the entire method, we have
also examined the accuracy of S., and S;, individually, since
each is important to ensure the accuracy of the whole scheme.
First, to solely assess the accuracy of S,, we perform the time
marching of (4) only without (10) by providing an analytical
{e} to (4) at each time step. The resultant {/} is then compared
with analytical {h}anq at each time step. As can be seen from
Fig. 5(a), where the following entire H solution error:

||h(t) - hanal(t)H

42
||hanal(t)|| “2)

is plotted with respect to time, the error of all H unknowns
is <3% across the whole time window, verifying the accuracy
of S.. Similarly, in order to examine the accuracy of Sj,
we perform the time marching of (10) only without (4)
by providing an analytical {h} to (10) at each time step.
In Fig. 5(b), we plot (41) versus time. Again, very good
accuracy is observed across the whole time window, verifying
the accuracy of Sj,.
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Fig. 7. Simulation of a sphere discretized into tetrahedral elements.

(a) Electric fields obtained from the proposed method as compared with the
analytical results. (b) Entire solution error as a function of time for E.

B. Wave Propagation in a Tetrahedral Mesh of a Sphere

The second example is a sphere of radius 0.24 m centering
at the origin. It is discretized into tetrahedral elements in
free space, whose 3-D mesh is shown in Fig. 6. The mesh
consists of 1987 tetrahedrons and 3183 edges. The aspect ratio
of the tetrahedral mesh is 6.19. The outermost boundary is
truncated by analytically known electric fields. The time step is
At =2 x 1072 5. The same incident E is as that in the first
example is used, but 7 =2 x 107 s is chosen in accordance
with the new structure’s dimension.
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The proposed method takes only 10.07 MB to store sparse
matrices S, and Sz, and 0.003 s to finish the simulation at
one time step. Two randomly selected electric field unknowns,
whose indices are 1 and 9762 in {e}, are shown in Fig. 7(a)
against analytical data. Excellent agreement can be seen.

In Fig. 7(b), the entire solution error shown in (41) is plotted
as a function of time, which is shown to be less than 3%.
To compare the accuracy of the proposed new formulation
having modified vector bases with that of the traditional
vector bases in [16], the entire solution error obtained by the
formulation in [16] is also shown in Fig. 7(b). Obviously, the
two exhibit the same accuracy, validating the proposed new
vector bases, and its resulting matrix-free formulation.

C. Wave Propagation in a Tetrahedral Mesh
of a Rectangular Box With a Hole

The third example is a rectangular box whose size is
0.6 x 0.8 x 1.4 m> with a hole in the center, whose structure
is shown in Fig. 8(a). Its mesh is shown in Fig. 8(b). The
shape of the hole is also a rectangular box but of size
0.2 x 0.4 x 1 m>. It is discretized into tetrahedral elements
having 1637 tetrahedrons and 2456 edges. The aspect ratio
of the tetrahedral mesh is 5.36. The time step is chosen as
At =2 x 1071 5. A free-space wave propagation problem
is simulated in the given mesh, with the same incident E the
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Fig. 9. Simulation of a rectangular box with a hole discretized into
tetrahedral elements. (a) Electric fields from the proposed method and those
from analytical results. (b) Entire solution error versus time for E.

same as that of the first example, except for 7 = 1 x 1073 s.
Both the innermost and outermost boundaries of the mesh are
truncated by analytically known electric fields.

The proposed method takes 9.89 MB to store sparse matri-
ces S, and S, and 2.7 x 1073 s to finish the simulation
at one time step. We randomly select the 1st and 8612th
entries of vector {e}, and plot them in Fig. 9(a) in comparison
with analytical solution. Excellent agreement can be observed.
To assess the error of the entire {e}, we plot the entire solution
error in Fig. 9(b) with respect to time, which again reveals
good accuracy. In this example, we have also simulated to
very late time to examine late-time stability. As can be seen
from Fig. 10, the proposed method is stable.

D. Wave Propagation in a Spherical Shell

This example is a spherical shell whose inner radius
is 0.8 m, and outer radius is 1.2 m. It is discretized into
tetrahedral elements in free space. The discretization results
in 2704 edges and 1956 tetrahedrons. The aspect ratio of the
tetrahedral mesh is 5.67. The incident E is the same as that
of the first example, except for 7 = 4 x 1078 s.

Analytically known electric fields are imposed to truncate
the computational domain. The time step is chosen as
At = 2 x 107! 5. The proposed method takes 13.63 MB
to store S, and S, and 3.6 x 1073 s to finish the simulation
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10

at one time step. In Fig. 11(a), we plot two electric field
unknowns randomly selected from the entire {e} vector,
whose indices are 1 and 11064. In Fig. 11(b), we plot the
entire solution error shown in (41) with respect to time.
Excellent agreement with analytical data can be observed
from Fig. 11(a) and (b).

E. Lossy and Inhomogeneous Example Discretized
Into Triangular Prism Elements

Previous examples are all in free space. In this example, we
simulate a structure with lossy conductors and inhomogeneous
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Fig. 12. Simulation of a lossy and inhomogeneous example discretized into
triangular prism elements. (a) Illustration of the structure. (b) Top view of the
mesh. (c) Electric fields solved from the proposed method as compared with
the TDFEM results.

materials shown in Fig. 12(a). The structure is discretized into
three layers of triangular prism elements. The thickness of
each layer is 5 mm. The top view of the mesh is shown
in Fig. 12(b). The aspect ratio of the triangular mesh on the
xy plane is 15.18. The discretization results in 12574 trian-
gular prism elements and 5022 edges. A square conductor is
located at the center of the second layer, which is shown in
blue in Fig. 12(b). The metal conductivity is 5 x 107 S/m. The
second layer is filled by a material of dielectric constant 4.
The rest of the two layers have dielectric constant 1. The
top and bottom boundaries are truncated by perfect electric
conducting (PEC) boundary condition, while perfect magnetic
conductor (PMC) boundary condition is imposed on the other
four sides. A current source with a Gaussian’s derivative pulse
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the proposed method compared with the TDFEM results.

is launched having 7 = 2 x 10712 5. At = 5 x 10710 5 is
chosen, since the smallest size has a micrometer dimension.
The proposed method takes 0.12 GB to store sparse S, and Sy,
and 0.10 s to finish the simulation at one time step. To examine
the accuracy of the proposed method, we simulate the same
example by using the TDFEM as the reference. Fig. 12(c)
compares the simulated electric fields at two observation points
located at the front and back end of the square conductor with
those simulated by TDFEM. Excellent agreement is observed.

F. Lossy and Inhomogeneous Microstrip Line
Discretized Into Tetrahedral Elements

In this example, we simulate a 20-mm-long inhomogeneous
and lossy microstrip line discretized into tetrahedral elements.
The structure details can be found in Fig. 13(a). The aspect
ratio of the tetrahedral mesh is 8.78. The substrate has a
material of ¢, = 4. The conductivity of the metal strip is
5.8 x 107 S/m. The discretization results in 35283 edges
and 28365 tetrahedrons. A current source is imposed at the
near end with j = 2(r — fo) exp(—(t — 1p/7)%) and 7 =
2.5 x 10710 5. The bottom plane is terminated with PEC,
while PMC is applied to other boundaries. The time step used
is 6 x 10714 5. The proposed method takes only 0.22 GB to
store sparse S, and Sy, and 0.10 s to finish the simulation
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Fig. 14. Simulation of a lossy and inhomogeneous microstrip line discretized
into tetrahedral elements. (a) S-parameter magnitude. (b) S-parameter phase
(degrees).

at one time step. The voltage between the microstrip and the
ground plane at the near end (z = 0) and far end (z = 20 mm)
is extracted, and compared with the reference TDFEM solution
in Fig. 13(b). It is evident that the results obtained from the
proposed method agree very well with the reference results.
In Fig. 14, we plot the S-parameters extracted from the time-
domain waveforms of the proposed method in comparison
with those generated from TDFEM. Excellent agreement is
observed in the entire frequency band simulated.

G. CPU Time and Memory Comparison

In this section, we simulate a large example to compare the
performance of the proposed matrix-free method against the
TDFEM which is equally capable of handling unstructured
meshes, but not free of matrix solutions. This example is
a circular cylinder of radius 1 m discretized into 25 layers
of triangular prism elements. The incident field is a plane
wave having a Gaussian’s derivative pulse with 7 = 1078 s.
An analytical absorbing boundary condition is imposed at the
outermost boundary. The discretization results in 3718900 E
unknowns using the zeroth-order TDFEM. A similar number
of unknowns, 3741700 E unknowns, is generated in the pro-
posed method for a fair comparison. Since TDFEM requires
solving a mass matrix, we perform the LU factorization of
the sparse mass matrix once before time marching, and use
backward/forward substitution to obtain the solution at each
time step. The TDFEM takes 2267.71 s and more than 72-GB
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memory to finish the factorization. This large memory cost
is due to the fact that although the matrix being factorized
is sparse, its L and U factors are generally dense. During
time marching, the TDFEM costs 9.22 s at each time step.
In contrast, since the proposed method is matrix-free, it does
not need any memory as well as CPU time to factorize
and solve the matrix. It takes only 5.2-GB memory to store
the sparse S, and Sj;, and 2.7 s for performing the time
marching for one time step. Obviously, the proposed method
significantly outperforms TDFEM in terms of computational
efficiency. As for accuracy, the entire solution error across
the whole time window is <0.01% for TDFEM and 0.05%
for the proposed method, as compared with the analytical
result. Therefore, the proposed method can achieve a similar
level of good accuracy as TDFEM. The difference in accuracy
can be attributed to the difference in space as well as time
discretizations of the two methods.

IV. CONCLUSION

In this paper, a new matrix-free time-domain method with a
modified-basis formulation is developed for solving Maxwell’s
equations in general 3-D unstructured meshes. The method
is naturally free of matrix solutions. No mass lumping is
required, as the mass matrix is diagonal in nature by the
proposed algorithm of discretizing Maxwell’s equations. The
method handles arbitrary unstructured meshes with the same
ease as an FEM. It overcomes the absolute instability of
an explicit method when an unsymmetrical operator having
complex-valued and even negative eigenvalues is involved.
Both stability and accuracy are theoretically guaranteed, and
the tangential continuity of the fields is enforced at the
material interfaces. It does not require dual mesh, projection,
and interpolation. Unlike our previous 3-D formulation, a set
of modified vector basis functions are developed to directly
connect the discretized Ampere’s law with the discretized
Faraday’s law without any need for unknown transformation.
Extensive numerical experiments on unstructured tetrahedral
and triangular prism meshes, involving inhomogeneous, loss-
less, as well as lossy materials, have validated the accuracy,
generality, and matrix-free property of the proposed method.

It is also worth mentioning that the proposed method can be
flexibly extended to achieve any desired higher order accuracy
by expanding one field unknown using arbitrary-order vector
bases, and sampling the other field unknown in the loop
orthogonal to the first field unknown in a higher order way.
The modified higher order vector bases developed in this paper
can also be used in any other method that employs higher
order bases. With these new bases, the relationship is explicitly
known between unknown fields and unknown coefficients of
vector bases. The approach developed here and in [16] for
stably simulating an unsymmetrical curl—curl operator can also
be leveraged by the existing nonorthogonal FDTD methods for
controlling stability.
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