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Direct Solution of General H2-Matrices With
Controlled Accuracy and Concurrent Change of

Cluster Bases for Electromagnetic Analysis
Miaomiao Ma , Member, IEEE, and Dan Jiao , Fellow, IEEE

Abstract— The dense matrix resulting from an integral equa-
tion (IE)-based solution of Maxwell’s equations can be compactly
represented by an H2-matrix with controlled accuracy. In this
paper, we develop a new direct solution for general H2-matrices.
The new solution possesses not only explicitly controlled accuracy
but also a full change of cluster basis to efficiently account for
the updates to the original matrix during the direct solution
procedure. The change of cluster basis is performed concurrently
with the direct solution, without increasing its computational
complexity. Comparisons with the state-of-the-art direct solutions
have demonstrated a much reduced CPU run time of the new
solution, in addition to a significantly improved accuracy, which is
also controllable. Rapid and accurate direct solutions of millions
of unknowns have been obtained on a single CPU core.

Index Terms— Fast direct solvers, H2-matrix.

I. INTRODUCTION

MANY fast solvers have been developed to solve large-
scale electromagnetic problems [1]–[12]. To meet real-

world modeling and simulation challenges, there is a continued
need to accelerate the computation as well as increase the
accuracy and modeling capabilities of existing computational
electromagnetic methods.

The H2-matrix is a general mathematical
framework [13]–[17] for compact representation and efficient
computation of dense matrices. Such a framework can be
utilized to develop faster solvers of reduced computational
complexity for electromagnetic analysis. In [18]–[21],
the dense system matrix resulting from an integral equation
(IE)-based analysis is first represented as an H2-matrix with
controlled accuracy. Fast inversion and LU factorization
algorithms are then developed to directly solve the H2-matrix
in O(N) complexity. Despite a significantly reduced
complexity, the cluster bases used to represent the original
dense matrix are also used to represent the inverse as well
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as the LU factors of the matrix. Formatted additions and
multiplications are performed, whose accuracy can only
be indirectly controlled. This is different from formatted
additions and multiplications performed in an H-matrix,
whose format is not nested and does not involve nested
cluster bases. In an H2-matrix, the format involves both
the partition of the original matrix into admissible and
inadmissible blocks, and a set of nested cluster bases used to
represent admissible blocks in a nested way. When the cluster
bases of the original matrix are also used to represent LU
factors or inverse, the accuracy of a direct solution cannot be
directly controlled.

Recently, in [22], a new fast direct solution algorithm
with controlled accuracy is developed for solving general
H2-matrices. In this algorithm, the additions and multipli-
cations are performed as they are without using formatted
operations. Each operation is either exact or controlled by
a prescribed accuracy. The cluster bases of the original
H2-matrix are changed during factorization based on accuracy.
However, they are changed by appending new ones to account
for the fill-in’s contributions. The resulting rank, i.e., the
number of cluster bases can only be higher than the original
one instead of lower. If the cluster bases can be changed
based on the updated matrix obtained during the direct solution
procedure and with prescribed accuracy, the resulting solver
can be potentially more efficient. Despite such an advantage,
it is difficult to completely change the cluster bases during
the direct solution procedure, since the original nested struc-
ture can be ruined, and the computational complexity would
become very high.

In this paper, we develop an efficient direct solution algo-
rithm to overcome the aforementioned challenge. The cluster
bases of the original H2-matrix are completely changed to a
new set during the factorization procedure based on accuracy.
Meanwhile, the complexity of the overall algorithm is not
increased. As a result, the updates to the original matrix during
the direct solution procedure are efficiently and accurately
represented by the new cluster bases. The proposed new direct
solver has been applied to both static capacitance extraction
and full-wave scattering analysis. A clear O(N) complexity is
observed in factorization, solution time, memory, and with a
strictly controlled accuracy for constant-rank H2-matrices. For
variable-rank H2-matrices such as those commonly encoun-
tered in electrically large problems, the complexity is also
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low and can be analytically derived based on the rank’s
behavior for a given problem. The solver is also shown to
outperform the state-of-the-art direct solvers in both accuracy
and efficiency.

The basic idea of this paper has been presented in [23]–[25].
In this paper, we have significantly expanded our conference
papers to complete the algorithm development. To be more
specific, in [23]–[25], we use the original admissible blocks
together with fill-ins to update the cluster bases. However,
when clusters are eliminated one by one during the proposed
direct solution, the admissible blocks formed between the
cluster being eliminated and those already eliminated have
been changed at both leaf and nonleaf levels. They are different
from those in the original matrix. It is challenging to use
instantaneously changed admissible blocks to update cluster
basis while keeping the complexity to be linear. In this
paper, we successfully overcome this difficulty and develop
an efficient algorithm to perform a concurrent change of
cluster basis during the factorization procedure. The details of
this algorithm are given in Section IV. In addition, we have
demonstrated the performance of the proposed new direct
solution by a large number of numerical experiments. Detailed
comparisons with the state-of-the-art direct solvers in both
accuracy and efficiency are also performed.

II. PRELIMINARIES

In this section, we review the background of this paper.

A. H2-Matrix

An H2-matrix [13]–[15], [17] is generally stored in a tree
structure, with each node in the tree called a cluster. This tree
can be obtained by recursively dividing the entire unknown set
into two subsets until the number of unknowns in each subset
is no greater than leafsize, a predefined constant. Using the row
and column trees, the original matrix can be partitioned into
multilevel admissible and inadmissible blocks, by checking
the following admissibility condition level by level between a
cluster t in the row tree and a cluster s in the column tree:

max{diam(�t ), diam(�s)} ≤ ηdist(�t ,�s). (1)

Here, �t (�s) denotes the geometrical support of the unknown
set t (s), diam{·} is the Euclidean diameter of a set, dist{·, ·}
denotes the Euclidean distance between two sets, and η is a
positive parameter that can be used to control the admissibility
condition. An H2-matrix example is shown in Fig. 1. An
admissible block in an H2-matrix is represented as

Zt,s = (Vt )#t×k(St,s)k×k(Vs)
T
#s×k (2)

where Vt (Vs ) is called cluster basis of cluster t (s), and St,s is
called coupling matrix. The cluster basis in an H2-matrix has
a nested property. This means the cluster basis for a nonleaf
cluster t , Vt , can be expressed by its two children’s cluster
bases, Vt1 and Vt2 , as

(Vt )#t×k =
[
(Vt1)#t1×k1 0

0 (Vt2)#t2×k2

] [
(Tt1)k1×k

(Tt2)k2×k

]

Fig. 1. Illustration of an H2-matrix.

where Tt1 and Tt2 are called transfer matrices. In an
H2-matrix, the number of blocks formed by a single cluster
at each tree level is bounded by a constant, Csp . The size
of an inadmissible block is leafsize, and inadmissible blocks
appear only at the leaf level. Because of the nested relationship
of cluster bases, the cluster bases only need to be stored
for leaf clusters. For nonleaf clusters, transfer matrices are
stored. In fact, the matrix structure resulting from a fast
multipole method (FMM) or a multilevel fast multipole algo-
rithm (MLFMA) is also an H2-matrix. This structure is very
general, suitable for representing the IE operators encountered
in electromagnetic analysis. Methods described in [19] and
[29] can be employed to construct an H2-matrix representation
efficiently.

B. Difference Between the Error Control of an
H-Algorithm and an H2-Algorithm

The error in the H-matrix-based algorithm, such as the
H-LU decomposition based on the formatted addition and
multiplication, can be controlled. However, this is not true
for the formatted addition and multiplication performed in an
H2-matrix-based algorithm such as [13]–[15] and [17].

In an H-matrix, there is no concept of nested cluster bases.
Every admissible block is represented by an ABT form, where
A and B are generated solely by prescribed accuracy. A and
B of an admissible block do not need to have any relationship
with their children or parent blocks. That is also the reason
why an H-LU algorithm does not have a linear complexity
since the H-based representation is not a nested representation.

In contrast, in an H2-matrix, the admissible block is rep-
resented by (2), where the cluster basis Vt is required to be
nested. In an H2-matrix arithmetic, formatted multiplications
and additions are performed by keeping the cluster bases of
the original matrix in the target matrix. For example, when
performing At,r Br,s = Ct,s , if Ct,s is admissible, then its row
cluster basis is kept the same as A’s row cluster basis, and its
column cluster basis is chosen the same as B’s column cluster
basis. The accuracy of this operation is clearly not controlled.
For example, A = F is a full matrix, and B = Vr Sr,s(Vs)

T

is an admissible block; so we have C = FVr Sr,s (Vs)
T .

Obviously, C’s row cluster basis is not Vr any more but FVr .
Similarly, at a nonleaf level, we can run into the computations
of multiplying a nonleaf block by an admissible block. Again,
the product C should be changed in its row cluster basis.
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However, if one makes a brute-force change of the cluster
basis, then the nested property of the original cluster bases is
completely ruined. This is very different from an H-matrix.
In an H-matrix computation, there is no need to make the
computation nested, and the low-rank form can be generated
solely based on accuracy. In [22], which is accuracy controlled,
the factorization algorithm has to be completely changed,
as compared to [19], in order to ensure accuracy while keeping
the computation nested.

C. Integral Equations for Electromagnetic Analysis

For capacitance extraction of interconnects in a single mate-
rial, we consider charges on the conducting surfaces producing
electric potential, which results in the following IE:

φ(�r) =
∫

S

ρs(�r ′)
�

g(�r , �r ′)ds′ (3)

where ρs is the surface charge density, � is the permittivity,
and g(�r , �r ′) is the free-space Green’s function. A method-of-
moments-based solution of (3) results in the following dense
system of equations:

Zq = v (4)

where q vector consists of charges on each discretization
patch, and right-hand side vector v is composed of the poten-
tial assigned to each conductor. In nonuniform dielectrics, (3)
is augmented by the electric potential due to equivalent surface
charges at the dielectric discontinuity.

For electrodynamic scattering analysis, the most general IE
formulation would be a volume IE-based formulation, which
accounts for arbitrary dielectric and conductive inhomogeneity.
Considering an interconnect exposed to an external field �Ei (�r),
based on the volume equivalence principle, the equivalent
volume current �J = jω(�̄ − �0) �E radiating in the background
material produces the scattered field. Thus, the total field �E at
any point �r is equal to the sum of the incident field and the
scattered field

�E(�r) + ∇φs(�r) + jωAs(�r) = �Ei (�r) (5)

which is expressed in the following form of the volume IE
[26]:

�D(�r)

�̄(�r)
− μω2

∫
V

κ(�r ′) �D(�r ′)g(�r, �r ′)dv ′

−∇
∫

V
∇′ ·

(
κ(�r ′) �D(�r ′)

�0

)
g(�r, �r ′)dv ′ = �Ei (�r) (6)

where Green’s function g(�r , �r ′) = e− j k0|�r−�r ′|/4π |�r − �r ′|, ω is
the angular frequency, k0 is the free-space wavenumber, and
κ is the contrast ratio defined as

κ(�r) = �̄(�r) − �0

�̄(�r)
(7)

and �D(�r) is

�D(�r) = �̄(r) �E (8)

which is related to the equivalent volume current by �J(�r) =
jωκ(�r) �D(�r). From the third term in (6), it can be seen that

φs(�r) = −
∫

V
∇′ ·

(
κ(�r ′) �D(�r ′)

�0

)
g(�r, �r ′)dv ′ (9)

which can be further written as

φs(�r) =
∫

V

ρv(�r ′)
�0

g(�r, �r ′)dv ′ +
∫

S

ρs(�r ′)
�0

g(�r, �r ′)ds′ (10)

where ρv is the density of equivalent volume charges and
ρs is the density of the equivalent surface charges at the
material discontinuity, where κ(�r) is discontinuous. In this
paper, the vector basis functions employed to expand �D are
the Schaubert–Wilton–Glisson (SWG) bases [26].

III. PROPOSED DIRECT SOLUTION

To make the proposed algorithm easier for understanding,
we use the H2-matrix shown in Fig. 1, denoted by Z,
as an example to illustrate the overall procedure. However,
the algorithm presented here is generic, applicable to any H2-
matrix. In Fig. 1, green blocks are admissible and red ones
are inadmissible.

A. Computation at Leaf Level

Denote the tree level of the leaf level to be L, the compu-
tations at level l = L include the following steps.

1) Let Zcur = Z. For each leaf cluster i , the following
holds.

a) Change the original cluster basis of Vi to a new
cluster basis Ṽi to account for fill-ins, for i > 1.

b) Compute the complementary basis Ṽ⊥
i and build

Q̃i = [Ṽ⊥
i Ṽi ].

c) Compute QH
i Zcur Qi to introduce zeros into admis-

sible blocks, which only involves the computation
of O(Csp) inadmissible blocks. Here, Qi is block
diagonal, whose i th diagonal block is Q̃i , and other
blocks are identity matrices.

d) Let Zcur = QH
i Zcur Qi . Perform partial LU fac-

torization of Zcur to eliminate the first #i − ki

unknowns in cluster i , where ki is the rank of Ṽi .

2) Update the coupling matrix of each admissible block at
the leaf level.

3) Merge and permute the matrix to prepare for Zcur for
next-level computation.

The details of the aforementioned steps can be found in [22],
and the overall procedure is shown in Fig. 2. In this section,
we focus on the difference with [22], which is in the first
step where the bases are changed. In [22], the cluster bases
are updated by appending new ones to the original set. Here,
we propose an efficient algorithm to completely change cluster
bases as follows.

To change cluster basis Vi to accommodate the matrix
updates, we first put all the i -related admissible matrix blocks
into a single matrix denoted by Zi . Since the cluster bases
need to be nested, the i -related matrix blocks include not only
those admissible blocks formed at the same tree level as that
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of cluster i but also those admissible blocks formed by the
parents of i at all upper levels. Thus, we have

Zi = [
Zi, j1 Zi, j2 . . . , ZL−1

ip, j p1
ZL−1

ip, j p2

. . . , Zl0
ip, j p1

Zl0
ip, j p2

. . .
]

(11)

where Zi, j1 Zi, j2 . . . are the admissible blocks at the tree level
of cluster i , and the rest are from upper levels; the superscript
represents tree level, and L is the leaf level, while l0 is the
minimum level that has admissible blocks; the i p denotes
cluster i ’s parent clusters at level l, and j p1, j p2, . . . stand
for the column cluster indices of the admissible blocks formed
with row cluster i p.

To construct a new cluster basis for cluster i , we compute
the Gram matrix of Zi , which is

Zi,2 = Zi ZH
i . (12)

The computation of Zi,2 appears to be expensive. In this paper,
we develop a fast linear-time tree traversal algorithm to obtain
Zi,2 efficiently. The detailed procedure will be elaborated in
Section IV.

After computing Zi,2, we add the contributions of the fill-in
blocks associated with cluster i at i ’s tree level, obtaining

Z̃i,2 = Zi,2 +
∑

m
Fi, jm FH

i, jm (13)

in which m is the fill-in block number associated with cluster i ,
whose number is bounded by constant Csp . Note that although
we use symbol F to denote a fill-in block, it is not a full-matrix
block. In fact, it is a low-rank block. This is because a fill-
in block has a format of Zci ′ U

−1
i ′i ′ L

−1
i ′ i ′ Zi ′c. Since Zci ′ has a

column rank of #i − k and Zi ′c has a row rank of the same,
the fill-in block is low rank in nature without using any further
truncation.

We then perform a singular value decomposition (SVD) on
Z̃i,2, and the resultant singular vector matrix truncated based
on accuracy �acc is the new cluster basis for cluster i , denoted
by Ṽi . Thus,

Z̃i,2
�acc≈ Ṽi
ṼH

i . (14)

The size of Z̃i,2 is leafsize at leaf level. Hence, (14) can be
obtained in constant complexity for each cluster using SVD.
This step is reflected in Fig. 2(c), where the light blue blocks
are turned into green admissible blocks for cluster 2.

B. Computation at Non-Leaf Levels

At a nonleaf level l, the matrix to be factorized is of
size 2l(2kl+1) by 2l(2kl+1) as shown by the bottom right
block in Fig. 2(h). This is because it is formed between
2l clusters at the nonleaf level l, and each block is of size
2kl+1 × 2kl+1. Obviously, this matrix is again an H2-matrix,
as shown by green admissible blocks and red inadmissible
blocks in Fig. 2(h). The difference with the leaf level is that
each block at this level, be its inadmissible or admissible, now
is of size 2kl+1 ×2kl+1. Hence, in the proposed direct solution
algorithm, at each nonleaf level, the computation is performed
on the matrix blocks whose size is the rank at that level, and
hence efficient.

Take an admissible block formed between clusters t and s at
nonleaf level l = L−1 as an example. These blocks are shown
by the green blocks in Fig. 2(h). Originally, this block has a
form of Vt St,sVT

s . Due to the left multiplication with QH
t1 and

QH
t2 , and the right multiplication with Qs1

and Qs2
, where t1,2

and s1,2 are the two children’s of t and s, respectively, this
admissible block has been zeroed out in some of its rows and
columns, leaving the following part only:

(Admissible block)(L−1)
t,s = Tnew

t St,s
(
Tnew

s

)T (15)

where

Tnew
t =

[
ṼH

t1 Vt1Tt1
ṼH

t2 Vt2Tt2

]
=

[
BT

t1Tt1
BT

t2 Tt2

]
(16)

in which

Bi = VT
i Ṽi (17)

is the projection of the new leaf cluster basis of cluster i
generated at the leaf level onto the original cluster basis of
cluster i . As can be seen from (16), BT

i can be viewed as a
modified cluster basis at the leaf level.

For an admissible block at a level l higher than L −1, it has
the following form:

(Admissible block)l
t,s = Tnew

t TL−2
t . . . Tl

t St,s
(
Tl

s

)T

. . .
(
TL−2

s

)T (
Tnew

s

)T (18)

where T without superscript new is the original transfer matrix,
and the integer index in the superscript denotes the tree level
of the transfer matrix.

If we view the current nonleaf level L − 1 being computed
as the leaf level of the tree that remains to be factorized, then
from (15) and (18), it can be seen that Tnew

t is the new leaf-
level cluster basis, while the transfer matrices at upper levels
remain the same as before. We also note that the new leaf-level
cluster basis Tnew

t is of dimension O(2kl+1 ×kl), whereas St,s

is of size O(kl × kl).
The above is for nonleaf level L−1. For an arbitrary nonleaf

level lc, we start the computation from the following bottom-
level (we can view it as current leaf level) admissible blocks:

(Admissible block)(lc)t,s = Tnew
t St,s

(
Tnew

s

)T (19)

where

Tnew
t =

[
T̃new,H

t1 Tnew
t1 Tt1

T̃new,H
t2 Tnew

t2 Tt2

]
=

[
BT

t1Tt1
BT

t2 Tt2

]
(20)

in which

Bi = (
Tnew

i

)T T̃
new

i (21)

is the projection of the new cluster basis of cluster i generated
at the previous level (lc+1 level) onto the original cluster basis
of cluster i at the previous level (lc + 1 level). Similar to (18),
for an admissible block at a level l higher than lc, it has the
following form:

(Admissible block)l
t,s = Tnew

t Tlc−1
t . . . Tl

t St,s
(
Tl

s

)T

. . .
(
Tlc−1

s

)T (
Tnew

s

)T (22)
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Fig. 2. Illustration of the overall procedure of the proposed direct solution. (a) QH
1 ZQ1. (b) Zcur after partial LU of cluster 1 with fill-in blocks marked in

blue. (c) Fill-in blocks of cluster 2 turned green after cluster basis update. (d) QH
2 Zcur Q2. (e) Zcur after partial LU of cluster 2. (f) Zcur left to be factorized

after leaf-level computation. (g) Merging to next level. (h) Permuting to obtain Zcur to be factorized at next level.

where T without superscript new is the original transfer
matrix.

Since, at every level, we are factorizing an H2-matrix,
the computation at a nonleaf level l follows what is done at
the leaf level, which is summarized in the following.

1) For each cluster i , the following holds.

a) Change transfer matrix Tnew
i to a new T̃i to account

for fill-ins (algorithm described in Section IV).
b) Compute the complementary basis T̃⊥

i and build
Q̃i = [T̃⊥

i T̃i ].
c) Compute QH

i Zcur Qi to introduce zeros into the
admissible blocks of i , which only involves the
computation of O(Csp) blocks of rank size.

d) Let Zcur = QH
i Zcur Qi . Perform a partial LU fac-

torization of Zcur to eliminate the first (2kl+1 −kl)
unknowns in cluster i , where kl is the rank of T̃i .

2) Update the coupling matrix of each admissible block at
current level.

3) Merge and permute the matrix to prepare for Zcur ,
the matrix that remains to be factorized.

The aforementioned computation is continued level by level
until we reach the minimal level l = l0 that has admissible
matrix blocks.

C. Overall Factorization

The overall procedure results in the following factorization
of Z :

Z = LU,

L =
{∏l0

l=L

[(∏2l

i=1
Ql

i L
l
i

)
PT

l

]}
L,

U = U
{∏L

l=l0

[
Pl

(∏1

i=2l
Ul

i Q
l
i
T
)]}

(23)

where Ql
i denotes Qi at level l. Each Ql

i has only one block
that is not identity, whose size is 2kl+1 × 2kl+1 at the nonleaf
level and lea f si ze × lea f si ze at the leaf level. Each Ll

i has
O(Csp) blocks of leafsize at the leaf level, and O(Csp) blocks
of O(kl+1) size at a nonleaf level. The same is true to Ul

i .
L and U without subscripts and superscripts are the L and U
factors of the final matrix that remains to be factorized at level
l0. The nonidentity blocks in L and U are of size O(2l0 kl0) by
O(2l0 kl0). For l0 = 1, it is simply 2kl0 by 2kl0 . The Pl matrix
is a permutation matrix that merges small kl × kl matrices at
level l to one level higher. The factorization shown in (23)
also results in an explicit form of Z’s inverse. We can solve
the linear equation Zx = B in two ways. One is to use the
inverse to multiply right-hand side B . The other is to perform
a forward and backward substitution based on (23), as shown
in [22].

IV. ALGORITHM FOR CONCURRENT CHANGE OF CLUSTER

BASES DURING MATRIX FACTORIZATION

In this section, we detail the proposed algorithm on how
to change the cluster basis concurrently with the matrix
factorization, so that the update to the original matrix during
factorization can be accurately and efficiently represented.

A. Concurrent Change of Cluster Bases During the
Leaf-Level Computation

At the leaf level, for each cluster, we assemble a Zi matrix
as shown in (11), which is repeated in the following for
convenience of explanation:
Zi = [

Zi, j1 Zi, j2 . . . ZL−1
ip, j p1

ZL−1
ip, j p2

. . . Zl0
ip, j p1

Zl0
ip, j p2

. . .
]
.

(24)
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Fig. 3. Illustration of Zi for i = 1 and i = 4.

This is nothing but all the admissible blocks formed by cluster
i at its tree level as well as those in i ’s parent levels. In Fig. 3,
we give two examples: Zi for cluster i = 1 highlighted in red
rectangular box and that for cluster i = 4 highlighted in blue
box. In [23]–[25], we used the admissible blocks in the original
matrix to construct Zi . In this case, Zi, jm and Zl

ip, j pm
in (24)

have the following expressions:
Zi, jm = Vi Si, jm VT

jm , m = 1, 2, . . . , O(Csp) (25)

Zl
ip, j pm

= Vi TL−1
i . . . Tl

i S
l
ip, j pm

VT
j pm

,

l = L − 1, L − 2, . . . , l0 (26)

where Tl
i denotes the transfer matrix associated with cluster

i or its parent cluster at level l.
We then compute Gram matrix, Zi,2, which is

Zi,2 = Zi ZH
i . (27)

Due to the nested property of admissible blocks as can be seen
from (26), Zi,2 can be efficiently obtained through a top-down
tree traversal procedure. To explain, substituting (25) and (26)
into (24), and then (27), we obtain

Zi,2 = Vi Si
sumVH

i (28)

where

Si
sum =

{
S̃i

sum, l(i) = l0

S̃i
sum + Ti S

ip
sumTi

H , l0 < l(i) ≤ L
(29)

in which l(i) denotes the tree level of cluster i , i p is the
immediate parent cluster of i , Ti denotes the transfer matrix
between i and i p, l0 is the minimum level that has admissible
blocks, and

S̃i
sum =

O(Csp)∑
j=1

Si, j B j BH
j SH

i, j (30)

with

B j BH
j = VT

j V j = I (31)

for unitary cluster basis V j . Obviously, S̃i
sum includes all of

the admissible blocks at i ’s own level, and Si, j are coupling
matrices of these blocks. In contrast, nontilted Si

sum includes
both S̃i

sum and the aggregated contribution from i ’s parent
admissible blocks, as can be seen from (29).

Fig. 4. Illustration of top-down tree traversal for computing Si
sum.

Fig. 5. (a) H2-tree with eliminated and uneliminated nodes. (b) Zi matrix
(orange box) for i = 4.

To compute (28) efficiently, we need to obtain Si
sum for each

cluster i , be it nonleaf or leaf. To do so, as can be seen from
(29), we need to first compute S̃i

sum for each cluster i . S̃i
sum can

be obtained for all clusters i in linear time for constant-rank
H2-matrices, as the computational cost of (30) is O(Csp)k3

for each cluster, and there are in total O(N) clusters. After
obtaining S̃i

sum, based on (29), the nontilted Si
sum for all

nonleaf and leaf clusters can be obtained by performing a top-
down traversal of the cluster tree from level l0 down to the leaf
level. This procedure is shown in Fig. 4. First, starting from
level l0 (which is the level of cluster i = {1 − 8} in Fig. 4),
for a cluster i at this level, Si

sum = S̃i
sum, since there are no

parent-level admissible blocks. In Fig. 4, S{1−8}
sum = S̃{1−8}

sum .
Such an Si

sum is then split to its two children clusters, which
is to perform Ti S

ip
sumTi

H for its left and right child clusters i ,
respectively. As a result, Si

sum for the two children clusters can
be obtained. As can be seen from Fig. 4, S{1−4}

sum is obtained
by adding S̃{1−4}

sum with T{1−4}S{1−8}
sum T{1−4}H . Such a procedure

continues until we reach the leaf level. Since each split and
addition operation of (+Ti S

ip
sumTi

H ) costs O(k3) and there
are O(N) clusters in the tree, the whole process of obtaining
Si

sum after S̃i
sum is computed and also costs O(N) operations.

After computing Si
sum, and thereby the Gram matrix shown

in (28) for each leaf cluster, we add the fill-in’s contributions
as shown in (13). We then perform an SVD, from which the
new cluster basis of each leaf cluster is obtained. Since the
matrix on which SVD is performed is of leafsize and there
are O(N) such matrices, the total cost of this step is also
linear.

However, during the factorization procedure, when elimi-
nating a cluster i , among all of its admissible blocks shown in
(24), some have already been changed due to the computation
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performed on previous clusters. To see this point clearly, take
cluster i = 4 shown in Fig. 5(a) as an example. When this
cluster is being eliminated, clusters i = 1, 2, 3, colored in red,
are already eliminated, while clusters i = 5, 6, 7, 8, colored in
black, are not eliminated yet. The admissible blocks formed
between cluster i = 4 and eliminated clusters, which are Z4,1
and Z4,2 shown in orange box, are different from those in the
original matrix, because cluster bases of i = 1, 2 have been
changed, and the Z4,1 and Z4,2 blocks have been multiplied
from the right by Q1 and Q2 respectively.

If we number the clusters based on their elimination order
in sequence, then, for jm > i and j pm > i p, the admissible
blocks Zi, jm and Zl

ip, j pm
are formed with uneliminated clus-

ters. They have the same form as those shown in (25) and
(26). However, the admissible blocks Zi, jm and Zl

ip, j pm
for

jm < i and j pm < i p , i.e., those formed with eliminated
clusters are not the same as those in the original H2-matrix
Z anymore. Instead, they have the following form due to Q
matrix multiplication performed in Step 1:

Z̃i, jm = Vi Si, jm VT
jm Ṽ jm , jm < i (32)

Z̃l
ip, j pm

= Vi T
L−1
i . . . Tl

i S
l
ip, j pm

VT
j pm

Ṽ j pm , j pm < i p. (33)

To highlight the fact that the aforementioned blocks are
different from those in the original matrix, in (32) and (33),
we use Z̃ instead of Z to represent these blocks. Similarly,
we update (24) as follows to reflect the fact that some of the
underlying blocks have been changed:

Z̃i = [
Z̃i, j1 Z̃i, j2 . . . , Zi, jm , . . . , Z̃L−1

ip, j p1
Z̃L−1

ip, j p2
. . . ,

ZL−1
ip, jm , . . . , Z̃l0

ip, j p1
Zl0

ip, j p2
. . .

]
. (34)

We then use (34) to compute the Gram matrix of Zi , which
becomes

Zi,2 = Z̃i Z̃H
i = Vi Si,new

sum VH
i (35)

where

Si,new
sum =

{
S̃i,new

sum , l(i) = l0

S̃i,new
sum + Ti S

ip,new
sum Ti

H , l0 < l(i) ≤ L.
(36)

Using nested property, the above can still be computed via a
top-down tree traversal procedure similar to Fig. 4. However,
S̃i,new

sum now is different from (30). We can divide S̃i,new
sum into

two parts as

S̃i,new
sum = S̃i

sum,1 + S̃i
sum,2. (37)

The first part, denoted by S̃i
sum,1, is from the admissible blocks

formed between cluster i and eliminated clusters at i ’s tree
level, as shown in (32) and (33). The second part, denoted by
S̃i

sum,2, is from the admissible blocks formed between cluster
i and uneliminated clusters, whose expressions are given in
(25) and (26). For the first part, since the admissible block
has a form of (32), we compute it as

S̃i
sum,1 =

∑
j ( j<i)

Si, j Bnew
j

(
Bnew

j

)H SH
i, j (38)

Fig. 6. Illustration of the procedure for instantaneously computing Si,new
sum .

where Bnew
j is the projection of the new cluster basis onto the

original cluster basis as shown in the following:

Bnew
j = VT

j Ṽ j . (39)

For a nonleaf cluster j , using the nested property of cluster
basis V j , Bnew

j can be computed from B of its two children
clusters, Bnew

j1 and Bnew
j2 , as Bnew

j = [TT
1 Bnew

j1 TT
2 Bnew

j2 ]. Here,
T1 and T2 are the left and right transfer matrices of a nonleaf
cluster j . Bnew

j is nothing but the rightmost part of (32) and
(33). Hence, (Bnew

j )T can be viewed as the new cluster basis
for j . For the second part, since the admissible block has its
original form shown in (25), we have

S̃i
sum,2 =

∑
j ( j>i)

Si, j B j BH
j SH

i, j =
∑

j ( j>i)

Si, j SH
i, j . (40)

Like S̃i
sum, S̃i,new

sum can be obtained for all clusters in linear
time. However, unlike S̃i

sum, the S̃i,new
sum cannot be generated in

advance before the factorization, since the updated admissible
blocks formed by i are not known until we reach the step
of eliminating cluster i . Hence, S̃i,new

sum should be generated
instantaneously during the factorization procedure, when it
is time to eliminate cluster i . The same holds true for the
top-down process of splitting the parent cluster’s Si,new

sum to its
children clusters to obtain Si,new

sum for each cluster i . In what
follows, we use the cluster tree shown in Fig. 6 to illustrate
the entire process of obtaining Si,new

sum for each leaf cluster.
We number leaf clusters from left to right as 1, 2, 3, ...,

which is also the order of elimination. For the first cluster
i = 1, we first compute its S̃i,new

sum denoted by a circle around
cluster i = 1 in Fig. 6. Since no clusters have been eliminated,
S̃i,new

sum is the same as that in the original matrix, thus S̃i
sum.

We then check whether Sip,new
sum is known or not. Since the

immediate parent cluster of i = 1 has not been updated either
in its admissible blocks, Sip,new

sum = Sip
sum. As a result, (36)

can be readily computed for cluster i = 1. The arrow from
i = 1’s parent cluster to i = 1 represents the (+Ti S

ip,new
sum Ti

H )
operation in (36), which is to split Sip,new

sum to its child, and then
add it with the child’s S̃new

sum.
For cluster i = 2, since, when it is factorized, cluster

i = 1 has been factorized, we compute its S̃i
sum,1 using (38),

where Bnew
1 is employed. Meanwhile, we compute its S̃i

sum,2
using (40), which captures the admissible blocks formed
between i = 2 and uneliminated clusters. The sum of the
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two makes S̃i,new
sum , which can be different from that in the

original matrix, i.e., S̃i
sum. Note that considering all eliminated

and uneliminated clusters, there are at most O(Csp) clusters
that can form admissible blocks with a cluster. The step of
computing S̃i,new

sum for i = 2 is denoted by a circle surrounding
cluster i = 2 in Fig. 6. Since i ’s immediate parent cluster
i p has a known Sip,new

sum , which is equal to Sip
sum, summing up

S̃i,new
sum and the second term in (36) (denoted by the red arrow

pointing from i = 2’s parent to i = 2), we obtain Si,new
sum for

cluster i = 2.
We then proceed to cluster i = 3. When this cluster is

factorized, both clusters i = 1 and i = 2 have been factorized,
and we hence compute its S̃i

sum,1 using (38) and S̃i
sum,2 using

(40), the sum of which makes S̃i,new
sum . As for the parent cluster’s

contribution to i = 3, since now the parent cluster of clusters
1 and 2, cluster i = {1, 2}, has an updated Bnew

i , S̃{3,4},new
sum

would have to be computed, as it may be different from the
original one. Thus, we compute S̃i,new

sum for i = 3’s parent
cluster {3, 4}, the step of which is denoted by the circle around
{3, 4}, and then S{3,4},new

sum can be found from (36) by realizing
that Sip,new

sum = S{1,2,3,4}
sum , which is cluster {1, 2, 3, 4}’s Ssum

in the original matrix. After S{3,4},new
sum is found, Si=3,new

sum can
be readily computed by splitting S{3,4},new

sum ’s contribution to it,
denoted by the arrow labeled as h.

For cluster i = 4, we first compute its S̃4,new
sum . We then check

whether its parent cluster’s Snew
sum is known or not, which turns

out to be known since S{3,4},new
sum has been found when cluster

i = 3 is computed. Thus, a single splitting of S{3,4},new
sum to

i = 4 and adding it with S̃4,new
sum yields S{4},new

sum . This step is
represented by the yellow arrow in Fig. 6.

Algorithm 1 Proposed Algorithm for Computing Si,new
sum for

All Leaf Clusters
1: for cluster : i =1 to 2L do
2: Compute S̃i,new

sum (using (37)).
3: l = l(i): Let l to be the tree level of cluster i
4: j = i
5: while Sparent( j ),new

sum is not known do
6: j = parent( j): Let next j be j ’s parent
7: Compute S̃ j,new

sum .
8: end while
9: for l = l( j) to l(i) − 1 do

10: k = parent(i, l): Let k be i ’s parent at level l
11: Compute Sk,new

sum = S̃k,new
sum + TkSparent(k),new

sum Tk
H .

12: end for
13: Compute Si,new

sum = S̃i,new
sum + Ti S

parent(i),new
sum Ti

H .
14: end for

The algorithm shown in Algorithm 1 summarizes the overall
procedure of instantaneously computing Si,new

sum for all leaf clus-
ters. Basically, for an arbitrary leaf cluster i , we first compute
its S̃i,new

sum . We then check whether Sip,new
sum is known or not.

If known, then using (36), Si,new
sum is obtained for leaf cluster i .

If not, that means i p’s admissible blocks have been changed,
and thus we compute i p’s S̃new

sum. After that, we move one
level up and check whether Snew

sum is known for i p’s parent

cluster. We continue to do so until we reach the level where
i ’s parent cluster has a known Snew

sum. This cluster’s Snew
sum is

known either because it is the first cluster at that level,
and thus Si,new

sum is equal to the original Si
sum, or because it

is at the minimal level where admissible block exists, and
thus Si,new

sum = S̃i,new
sum , or because it has been obtained during

previous cluster computation. For example, for cluster i = 4
shown in Fig. 6, its Sip,new

sum is known from the computation
done for cluster i = 3. As another example, for cluster i = 9,
we have to reach its parent cluster at level L −4, where Si,new

sum
is known. After that, we perform a top-down tree traversal to
split Si,new

sum to children clusters and compute Si,new
sum of children

clusters level by level down until we reach leaf level. The
sequence of computation is marked in purple for cluster i = 9
using letters from a to g.

In Fig. 6, a circle around a cluster denotes the computation
of its S̃i,new

sum , and an arrow denotes a split and add operation
from its parent Si,new

sum . The sequence of computation is also
marked in letters from a to i for the computation of Si,new

sum
for clusters from i = 1 to i = 4. Obviously, it is different
from that shown in Fig. 4, which is performed in advance
before the matrix factorization. The procedure shown in Fig. 6
is performed concurrently with the factorization. Thus, S̃i,new

sum
is computed based on the updated admissible blocks at the
time when cluster i is factorized. In Fig. 6, we also use
different colors to denote the computation associated with the
generation of Si,new

sum for a leaf cluster i . For example, the circles
and arrows in red are the computations performed for cluster
i = 5; and those in purple are the computations performed
for cluster i = 9. Since each arrow in Fig. 6 is associated
with a cost of O(k3), each circle is associated with a cost of
O(k3)Csp , and there are in total O(N) clusters in the tree,
and the overall cost is O(N).

Before we move to next level, we update the S̃i,new
sum for

each cluster which is now S̃i,new
sum,1 only as all clusters at the

current level have been eliminated. After that, we obtain Si,new
sum

for each cluster, which can now be performed based on the
procedure shown in Fig. 4 since every block is known. This
Si,new

sum will be used as the initial Si
sum to start the process of

new cluster basis computation at the next nonleaf level.

B. Concurrent Change of Cluster Bases at a Nonleaf Level

At a nonleaf level l, the computation of changing cluster
bases is similar to that at the leaf level, because we can view
the current nonleaf level l as the new leaf level and Tnew

t shown
in (15) and (19) as new leaf level cluster bases. Meanwhile,
the coupling matrices at this level and up and the transfer
matrices at upper levels all stay the same as those in the
original matrix.

Similar to the leaf-level computation, for every cluster at
level l (viewed as current leaf level), we assemble all of the
i -related blocks into Zi like (24), which includes the i -related
admissible blocks at not only i ’s tree level but also i ’s parent
levels. Similar to leaf level’s situation, some of the admissible
blocks are formed between cluster i and eliminated clusters,
while the others are from uneliminated clusters. Note that now
the row dimension of these blocks is only 2kl+1 as can be
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Fig. 7. Illustration of instantaneously computing Si,new
sum during a nonleaf

level factorization.

seen from (15). The Gram matrix for nonleaf Zi can then be
computed as

Zi,2 = Zi ZH
i = Tnew

i Si,new
sum Tnew,H

i (41)

where Si,new
sum is obtained using a process similar to that at

the leaf level. The procedure is shown in Fig. 7. Again,
we instantaneously compute S̃i,new

sum and Si,new
sum . Now, we have

S̃i
sum,1 =

∑
j ( j<i)

Si, j Bnew
j

(
Bnew

j

)H SH
i, j (42)

where Bnew
j is

Bnew
j = (

Tnew
j

)T T̃
new

j (43)

and

S̃i
sum,2 =

∑
j ( j>i)

Si, j B j BH
j SH

i, j (44)

with

B j = (
Tnew

j

)T T
new
j . (45)

Here, different from (40), at a nonleaf level, B j BH
j may not

be identity any more.
We then add fill-in’s contributions to update the cluster basis

of cluster i by computing

Z̃i,2 = Zi,2 +
∑

m
Fi, jm FH

i, jm (46)

where Fi, jm are fill-in blocks associated with the admissible
blocks of cluster i . Z̃i,2 is a small matrix whose size is rank
k. Its SVD can be readily performed. The resultant singular
vector matrix truncated based on prescribed accuracy �acc is
the new transfer matrix T̃new

i , and thus

Z̃i,2,O(kl )×O(kl )
�acc≈ T̃new

i 
′T̃new,H
i . (47)

The overall computational cost is again linearly proportional
to the number of clusters in the H2-tree being handled at
level l. As a result, the overall computational cost of changing
cluster basis is O(2L−1) at tree level L − 1, O(2L−2) at tree
level L − 2, and so on. Hence, the total computational cost is
O(N).

V. ACCURACY AND COMPLEXITY ANALYSIS

The accuracy of the proposed direct solution is controlled
by �acc. This is different from [18] and [19], since it is directly
controlled. As can be seen from the previous sections, there are
no approximations involved in the proposed solution, except
that when we change the cluster bases to account for the

contribution from the fill-ins, we use (14) to truncate the
singular vectors at the leaf level and (47) to truncate the
singular vectors at a nonleaf level. The accuracy of this step is
controlled by parameter �acc, which can be set to any desired
value.

From (23), it is evident that the whole computation involves
Ql

i , Ll
i , and Ul

i for cluster i at level l, the storage and
computation of each of which are, respectively, O(k2

l ) and
O(k3

l ) at a nonleaf level and constant at the leaf level. Since
there are O(N) clusters in a tree, the total cost of generating
these factors is linear for constant-rank H2 matrices. As for
the permutation matrix Pl , it is sparse involving only O(2l)
integers to store at level l, and hence having an O(N) cost in
both memory and time. The change of the cluster basis costs
O(N) in time and memory also as analyzed in Section IV. As a
result, the time and memory complexity of the proposed direct
solution are linear for constant-rank H2-matrices. For variable-
rank H2, the complexity of the proposed direct solution can
also be analytically derived based on rank’s behavior.

VI. SIMULATION RESULTS

The accuracy and complexity of the proposed direct solver
are examined by performing both capacitance extraction and
full-wave electromagnetic analysis of large-scale structures.
The computer used has an Intel(R) Xeon(R) CPU running at
3.00 GHz, and only a single core is employed for carrying
out the computation to demonstrate the low computational
complexity of this direct solver.

A. Two-Layer Cross Bus

The first example is a two-layer cross bus structure in a
uniform dielectric, as shown in [19]. In each layer, there
are m conductors, and each conductor has a dimension of
1×1×(2m+1) m3. We simulate a suite of such structures with
m = 16, 32, 64, 128, and 512, respectively, whose number
of unknowns N is, respectively, 17 152, 67 072, 265 216,
1 055 232, and 4 206 592. The parameters used in the proposed
direct solver are lea f si ze = 20, η = 1, and �H2 = 10−4 for
H2-matrix construction and �acc = 10−8 for direct solution.
The resultant rank in the H2-matrix as well as the proposed
direct solution is found to be a constant no greater than 5
at each tree level. FastCap [2] and the O(N) inverse solver
in [19] are also used to simulate the same example. The
expansion order used in FastCap is 3. In Fig. 8(a), we compare
the total CPU run time of the three solvers as a function
of N . Clear linear scaling can be observed from the proposed
direct solver and that of [19]. Moreover, the proposed direct
solver is shown to take less CPU time. We also compare the
memory usage of the three solvers in Fig. 8(b). The fast H2-
inverse solver keeps original H2-matrix memory, which needs
least memory. The proposed solver costs only slightly more
memory than the fast H2-inverse method due to cluster basis
change during factorization, while both of them are much
more memory efficient than FastCap. We have also used the
capacitance matrix extracted from FastCap with expansion
order 3 as the reference to compare the accuracy of the
proposed direct solver with that of the fast H2-inverse. The
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Fig. 8. Capacitance extraction of a two-layer cross bus interconnect. (a) Time
complexity. (b) Memory complexity. (c) Capacitance matrix error.

error is assessed by ||C − Cref||/||Cref||, where Cref is from
FastCap and C is from either this direct solver or the fast
H2-inverse. As can be seen from Fig. 8(c), the proposed direct
solver exhibits better accuracy while using less CPU time.

B. On-Chip Interconnects

We have also performed a full-wave VIE simulation of
on-chip interconnects. A suite of large-scale on-chip bus

TABLE I

DIRECT SOLUTION ERROR MEASURED BY RELATIVE RESIDUAL �REL FOR
THE FULL-WAVE VIE INTERCONNECT SIMULATION EXAMPLE

Fig. 9. Solver performance of lossy on-chip buses. (a) Factorization time
versus N . (b) Memory versus N .

structures from 4 × 4 to 64 × 64 are simulated at 30 GHz
with an x-polarized incident electric field. The conductivity
of the metal is 5.8 × 107 S/m. The dimensions of each
bus are 1 μm × 1 μm × 20 μm. The horizontal distance
between the centers of two neighboring buses is 20 μm. And
the vertical distance is 40 μm. Each bus is discretized into
322 unknowns. The total number of unknowns ranges from
5152 to 1 318 912. For the H2 tree construction, we set leafsize
to be 25 and η = 1, with �H2 = 10−4. The accuracy parameter
for controlling the direct solution is set to be �acc = 10−4.
In Fig. 9(b), we compare the memory cost versus N of [22]
with this new solver. In Fig. 9(a), we compare factorization
time as a function of N . Clear linear complexities can be
observed in CPU time and memory consumption for both
solvers. Note that the figures are plotted in a linear scale.
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Fig. 10. Solver performance of a suite of dielectric slab for different choices
of �acc. (a) Factorization time versus N . (b) Memory versus N .

However, in [22], the cluster bases are appended instead of
completely changed during matrix factorization. The same
accuracy parameter 10−4 is used to append the original cluster
bases to take into account the fill-ins contribution during the
factorization. Specifically, after deducting the fill-in block’s
component in the original space of cluster bases from the fill-
in block, we truncate the remainder using 10−4 tolerance to
determine additional cluster bases to append. As can be seen
from Fig. 9(a) and (b), this new direct solver with a concurrent
change of the cluster basis is computationally more efficient.
The accuracy of the proposed direct solver is assessed by
relative residual and listed in Table I. Excellent accuracy can
be observed in the entire unknown range.

C. Large-Scale Dielectric Slab

We then simulate a dielectric slab with �r = 2.54 at
300 MHz, which is also simulated in [28]. The thickness
of the slab is fixed to be 0.1λ0. The width and the length
are simultaneously increased from 4λ0, 8λ0, and 16λ0, to
32λ0. With a mesh size of 0.1λ0, the resultant N ranges
from 22 560 to 1 434 880 for this suite of slab structures.

TABLE II

DIRECT SOLUTION ERROR MEASURED BY RELATIVE RESIDUAL, �REL ,
FOR THE DIELECTRIC SLAB EXAMPLE

TABLE III

PERFORMANCE COMPARISON BETWEEN THIS SOLVER WITH �ACC = 10−4

AND [29] AND FOR THE DIELECTRIC SLAB EXAMPLE

The leafsize is chosen to be 25 and η = 1. �acc is set to be
10−2, 10−4, and 10−6, respectively, to examine the solution
accuracy, computational complexity, and error controllability
of the proposed direct solution.

In Fig. 10(a), we plot the factorization time with respect to
N for all three different choices of �acc. It is clear that the
smaller the �acc, the larger the factorization time. However,
the complexity remains the same as linear regardless of the
choice of �acc. The memory cost is plotted in Fig. 10(b). Obvi-
ously, both scale linearly with the number of unknowns. The
error of the proposed direct solution is measured by computing
the relative residual �rel = ||ZH2 x − b||/||b||, where ZH2 is
the input H2-matrix in the equation to be solved. The relative
residual �rel of the proposed direct solution is listed in Table II
as a function of �acc. Excellent accuracy can be observed in
the entire unknown range. Furthermore, the accuracy can be
controlled by �acc, and in general, smaller �acc results in better
accuracy. Since this example is also simulated in our previous
work [28], [29], we have compared the two direct solvers in
CPU run time and accuracy. �acc = 10−4 is used. For a fair
comparison, we set up this solver to solve the same H2-matrix
solved in [29] and also use the same computer. As can be
seen from Table III, the proposed new direct solution takes
much less time than that of [29], which is a direct H2-matrix
inversion. The speedup is about one order of magnitude in
large examples. In addition, because of a direct error control,
the error of the proposed solution is also much less than that
of [29].

D. Large-Scale Array of Dielectric Cubes

We also simulate a large-scale array of dielectric cubes at
300 MHz. The relative permittivity of the cube is �r = 4.0.
Each cube is of size 0.3λ0 × 0.3λ0 × 0.3λ0. The distance
between adjacent cubes is kept to be 0.3λ0. The number of
the cubes is increased along the x-, y-, and z- directions
simultaneously from 2 to 14, thus producing a 3-D cube
array from 2 × 2 × 2 to 14 × 14 × 14 elements. The num-
ber of unknowns N is, respectively, 3024, 24 192, 193 536,
and 1 037 232 for these arrays. During the construction of



MA AND JIAO: DIRECT SOLUTION OF GENERAL H2-MATRICES WITH CONTROLLED ACCURACY 2125

Fig. 11. Solver performance of a suite of cube array from 2 × 2 × 2 to 14 × 14 × 14. (a) Time scaling versus N . (b) Memory scaling versus N .

Fig. 12. Time and memory scaling with N for three different distances for the cube array example. (a) Factorization time. (b) Solution time. (c) Memory.

TABLE IV

DIRECT SOLUTION ERROR MEASURED BY RELATIVE RESIDUAL

FOR THE CUBE ARRAY EXAMPLE

H2-matrix, we set leafsize = 25, η = 1, and �H2 = 10−4.
The �acc is chosen as 10−3 and 10−4, respectively. The time
and memory performance is shown in Fig. 11(a) and (b) and
the errors are shown in Table IV. In Fig. 11(a) and (b), we plot
the direct factorization time normalized by C2

sp and the storage
cost normalized with Csp with respect to N . As can be seen,
their scaling rate with N agrees very well with our theoretical
complexity analysis regardless of the choice of �acc.

The distance between two adjacent cubes in this example is
0.3λ0. To examine the effect of the distance on the complexity
of the proposed solver, we simulated the example with the
other two distances: 0.15λ0 and 0.45λ0, respectively. Since
for a given admissibility condition (1), although the number
of admissible blocks becomes less if adjacent objects are
closer, thus the absolute run time and memory usage will
increase, the complexity of the solver stays the same since the

TABLE V

MATRIX ERROR FOR THE CUBE ARRAY EXAMPLE AS A

FUNCTION OF CUBE DISTANCE

parameters related to the matrix partition (into inadmissible
and admissible blocks) are constant independent of N . These
parameters, such as the number of admissible blocks that
can be formed by one cluster, can become larger or smaller;
however, they are the same constant for different N values.
Hence, they do not change the rate at which the CPU run
time and memory scale with N . This can be seen clearly from
Fig. 12, where we plot the factorization time, the solution time,
and the memory as a function of N for three different distances
between adjacent cubes. We can observe that when the dis-
tance is closer, the total run time and memory usage increase.
However, the scaling rate, i.e., linear or quadratic or others,
with N stays the same.

The accuracy is also examined for this example as a
function of cube distance. As can be seen from Tables V
and VI, both the H2-representation and the direct solution are
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TABLE VI

DIRECT SOLUTION ERROR MEASURED BY RELATIVE RESIDUAL FOR THE
CUBE ARRAY EXAMPLE AS A FUNCTION OF CUBE DISTANCE

accurate. Furthermore, for the same structure, regardless of
the distance between adjacent cubes (this corresponds to one
vertical column in Tables V and VI), the accuracy is kept at
the same order. This is also understood, since the accuracy of
the proposed solver is controlled, and also solely controlled
by �H2 for the construction and �acc for the direct solution
independent of the distance between cubes and other structure
specifics. The results in Tables V and VI are generated based
on �H2 = 10−4 and �acc = 10−3. The accuracy can also be
changed to another desired value by setting a different error
tolerance.

VII. CONCLUSION

In this paper, we develop a new direct solution for general
H2-matrices. This new direct solution features not only a
directly controlled accuracy but also a complete change of
cluster basis that is done concurrently with the factorization
to efficiently represent the update to the original H2-matrix.
The complexity of the overall direct solution, however, is still
kept the same as before without being increased, through the
efficient algorithms developed in this paper. For example, its
complexity is linear for factorizing constant-rank H2-matrices,
and O(NlogN) for factorizing electrically large VIEs whose
rank increases with electrical size. Millions of unknowns are
directly solved on a single-core CPU in fast CPU run time.
Comparisons with the state-of-the-art H2-based direct solvers
have demonstrated the accuracy of this new direct solution
as well as its significantly improved computational efficiency.
The essential idea of this paper can also be applied to develop
an H2-matrix–matrix multiplication algorithm of controlled
accuracy. In addition, it can also be applied to solve other
IEs and partial differential equations.
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