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Time-Domain Method Having a Naturally Diagonal
Mass Matrix Independent of Element
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Abstract—In this paper, we present a new time-domain method
that has a naturally diagonal mass matrix and thereby a strict
linear computational complexity per time step, regardless of
whether the discretization is a structured grid or an unstructured
mesh. This property is obtained independent of the element shape
used for discretization. No interpolations, projections, and mass
lumping are required. The accuracy and stability of the proposed
method are both theoretically guaranteed. In addition, no dual
mesh is needed and the tangential continuity of the fields is
satisfied across the element interface. The flexible framework of
the proposed method also allows for a straightforward extension
to higher order accuracy in both electric and magnetic fields.
Numerical experiments have been conducted on a variety of
unstructured triangular-element meshes. Correlations with ana-
lytical solutions and the time-domain finite-element method have
validated the accuracy and generality of the proposed new time-
domain method.

Index Terms—Diagonal mass matrix, electromagnetic analy-
sis, finite-difference time-domain (FDTD) methods, linear com-
plexity, optimal complexity, time-domain finite-element methods
(TDFEMs), time-domain methods, unstructured mesh.

I. INTRODUCTION

N TIME-DOMAIN methods for electromagnetic analysis,

the finite-difference time-domain (FDTD) method [1], [2]
has been a popular choice due to its simplicity and merit of
being free of a system matrix solution. The computational
complexity of the FDTD is linear (optimal) at each time step
since the underlying mass matrix is diagonal, thus a matrix
solution is avoided. The traditional FDTD method requires
a structured grid. Its generalization to an unstructured mesh
has been extensively studied. In [3]-[16] and many others,
various schemes have been developed to extend the FDTD
to deal with nonorthogonal grids and curved interfaces. They
have significantly advanced the capability of the traditional
FDTD method.
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Many of the non-orthogonal FDTD methods require a dual
mesh that satisfies a certain relationship with the primary
mesh. Such a dual mesh may not exist in a general unstruc-
tured mesh. For cases where the dual mesh exists, the accuracy
of the resulting scheme can be low since between E and H,
one of them cannot be centered by the integration loop of the
other, and be perpendicular to the loop area. In the discrete
surface integral-based methods [8], [12], local interpolation
and projection techniques are developed to find the dual field
from the primary field, and vice versa, which are shown to
provide more accurate electric and magnetic fields. In addition
to accuracy, the stability of the nonorthogonal FDTD methods
has been studied. It is shown in [16] that as long as the
discrete curl—curl operator supports complex-valued eigenval-
ues, an explicit scheme is unconditionally unstable. In theory,
any real-valued but unsymmetrical matrix can have complex-
valued eigenvalues that come in conjugate pairs. Therefore,
once the discretized curl—curl operator is unsymmetric, the
stability of the resultant explicit time marching cannot be
guaranteed. However, the unsymmetric curl-curl operator is
common in existing nonorthogonal FDTD methods, which is
also often necessary in order to ensure the accuracy of these
methods in an unstructured mesh. As a consequence, it remains
a research problem how to ensure both accuracy and stability
while preserving the matrix-free property of an FDTD-like
method in an arbitrary unstructured mesh.

The finite-element method in time domain (TDFEM) [17] is
capable of handling unstructured meshes. However, in both the
first-order mixed E-B form [18] and [19] and the second-order
vector wave equation based form [17], the TDFEM requires
the solution of a mass matrix. The mass-lumping techniques
enforce a matrix that is not diagonal in nature to be a diagonal
one, which is error prone in an unstructured mesh [19].
Orthogonal vector basis functions have also been developed to
render the mass matrix diagonal [20], [21]. Existing orthogonal
vector bases are element-shape dependent, which further rely
on an approximate integration to diagonalize the mass matrix.
In addition, there exists a class of discontinuous Galerkin
time-domain methods [22], [23], which only involves the
solution of local matrices of a small size. However, this is
achieved by not enforcing the tangential continuity of the fields
across the element interface at the same time instant. Instead,
the continuity is imposed through fluxes at previous time
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steps. In contrast, both FDTD and TDFEM strictly impose
the tangential continuity of the fields across the interfaces of
discretization cells at the same time instant.

One observation that can be made on existing nonorthogonal
Yee-like methods is that they all employ zeroth-order basis
functions to represent the fields, in other words, both primary
and dual fields are assumed to be constant along grid edges
and tangential to the grid edges. Furthermore, both primary
and dual fields are located on the surfaces of their respective
mesh cells. Such a representation of the fields, though advan-
tageous in preserving the divergence-free property of the fields
locally, limits the accuracy of existing nonorthogonal methods
especially in general unstructured meshes. To be specific, the
H field is only second-order accurate at the center point of
each E’s face and along the direction normal to E’s face.
These points and directions are not coincident with the points
and directions of the H located on the dual mesh. Hence,
the desired H fields have to be obtained by interpolations
and projections, which limits the accuracy and more critically,
affects the stability. The same is true for the E field.

In this paper, we present a time-domain method that has
a diagonal mass matrix in nature independent of the element
shape used for discretization. In this method, given an arbitrary
unstructured mesh, we use higher order vector bases to expand
one field unknown in each element, whose curl is at least a
linear function in space. As a result, we are able to obtain
the other field unknown at any point along any direction
accurately without a need for interpolation and projection.
With this freedom, we can sample the other field unknown
across the elements sharing the first field unknown in such a
way that they can reversely produce the first field unknown
accurately, without any need for interpolation and projection
either. The resultant mass matrix is naturally diagonal, regard-
less of whether the discretization is structured or irregular. Its
diagonal property is independent of the element shape, and its
implementation is straightforward. The tangential continuity
of the fields is also enforced across the element interface at
each time instant. In addition, no dual mesh is needed in
the proposed method. The flexible framework of the proposed
method also allows for a straightforward extension to higher
order accuracy in both E and H. Equally important, we
have developed a new time-marching scheme to overcome
the absolute instability caused by an unsymmetrical curl—
curl operator, without sacrificing the optimal computational
complexity resulting from the diagonal mass matrix, as well as
the accuracy of the proposed method. Numerical simulations
on various highly unstructured meshes have demonstrated the
validity, accuracy, and stability of the proposed new method.
Limited by space, only 2-D formulations and examples are
presented in this paper. However, the essential idea of this
paper is equally applicable to a 3-D analysis as can be seen
from [24]-[27].

II. PROPOSED FRAMEWORK

Consider a general electromagnetic problem discretized into
arbitrarily shaped elements, which can also be a mix of
different kinds of elements such as a mix of brick, triangular
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prism, and tetrahedral elements. Starting from the differential
form of Faraday’s law and Ampere’s law

V xE oH (1)
xE=—u—
Y
OE
VxH=c=+oE+] )

we pursue a discretization of the above two equations, which
results in a numerical system having a diagonal mass matrix
in nature. Notice that the other two Maxwell’s equations are
implicitly satisfied by (1) and (2).

To discretize Faraday’s law (1), we expand the electric
field E in each element by certain vector basis functions
N; i=1,2,...,m) as follows:

m
E=>¢N; (3)
j=1

where e; is the unknown coefficient of the jth vector basis.
Using (1) and (3), we can obtain magnetic field H at any
point. Assume that we compute H at Ny, discrete points, each
of which is denoted by ry;,i = 1,2, ..., Nj. At each H-point,
assume the unit vector along which we compute H is hi.
Substituting (3) into (1), evaluating H at the Nj points, and
taking the dot product of the resultant with corresponding hi
at each point, we obtain the following N} equations:

i 3 eV 5N o) = - ey )
@i=12,....,Ny) &

which can further be compactly written as the following matrix
equation:

ofh
Sele} = —diag({ﬂ})% (5)

where {e} is a global vector containing the unknown coef-
ficients e¢; of E’s vector bases, and {h} is a global vector
containing discretized H. Their ith entries are

ei = E(r) - ¢ (6)
hi = H(rp;) - hi (7
in which r,; and ¢; (i =1,2,..., N,) are, respectively, the

points and the unit-vectors associated with the vector E’s
degrees of freedom. In (5), diag({u}) is a diagonal matrix of
size Nj, whose ith diagonal entry is the permeability at point
r;i. The sparse matrix S, is rectangular of dimension N; by
N, the length of {e} is N,; while that of {h} is Nj.

To discretize Ampere’s law (2), we evaluate E at the r,;
@ =1,2,...,N,) points, and take the dot product of the
resultant with ¢; at each point, obtaining

iV x H) (1) = () o o (i)ei + & - 3(re)
@i=1,2,...,N.) (8

where ¢; - V x H is generated by using {A} obtained from (5).
As a result, we obtain the following discretization of Ampere’s
law:

0
Sn{h} = diag({f})% + diag({o }){e} + {j} €
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where the sparse matrix Sy is of dimension N, x Nj, and the
ith entry of current source vector {j} in (9) is

Ji=ei-Je), G(=1,2,...,N,). (10)

In addition, diag({€}) and diag({c}) are diagonal, whose ith
entry is, respectively, the permittivity and conductivity at
point r;.

A leap-frog-based time discretization of (5) and (9) clearly
provides us with a time-marching scheme free of matrix
solutions as follows:

1 1 i 1
{hy"7 = {h}""2 — diag ({;]) AtScfe}" (1D
A
(diag({e}) + {diag({a}))

A
(et = (diag({f}) - {diag({a})) (e)"

+ AL, {R)" T — Ar{j)" (12)

where Ar is the time step, and the time instants for {e} and
{h}, denoted by superscripts, are staggered by half. Note that
neither (11) nor (12) involves a matrix solution.

Equations (5) and (9) can also be solved in a second-
order fashion. Taking another time derivative of (9) and
substituting (5), we obtain

o*e} | . (oY) dle) . 1 o4}
o2 +dlag({;})7*5{"}—“@({;])7
(13)
where
. 1 ) 1
S:dlag([—])shdlag([—])se. (14)
€ JZ

It is obvious that the above numerical system is also free of
matrix solutions with a central-difference-based discretization
in time. In fact, it can be readily proved that (11) and (12)
are the same as the central-difference-based discretization of
second-order system (13) after eliminating the {A}-unknown.
In addition, the mass matrix shown in (13), which is the matrix
in front of the second-order time derivative, is obviously
diagonal. Hence, no mass lumping is needed. For anisotropic
materials whose permittivity and permeability are tensors, the
diagonal mass matrix simply becomes a block diagonal matrix
whose block size is 3. Hence, its inverse is also explicit, which
can be found analytically.

III. PROPOSED FORMULATIONS
A. General Idea

At this point, it can be seen that the accuracy of the
proposed method relies on an accurate construction of (9)
for an arbitrary unstructured mesh, since the accuracy of (5)
is not a concern at all—with a set of well-established curl-
conforming vector basis functions for discretizing E, the
accuracy of (5) is guaranteed for producing H at any point
and along any direction. Therefore, the key issue is how to
build an accurate (9). To be more precise, how to construct
S, {h}, i.e., a discretization of the curl of H, such that it can
accurately produce the desired {e}.
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Fig. 1. H points and directions determined based on E’s degrees of freedom.

We propose to determine H points and directions based
on discretized E unknowns so that the resultant H fields can
generate the desired {e} accurately. From the integral form of
Ampere’s law, we know that the circulation of the tangential H
in a loop can produce an accurate E along the direction normal
to the loop at the center point of the loop area. Hence, the
simplest approach is for each ¢; located at point r;, define a
rectangular loop perpendicular to ¢; and centered at point r,;,
as illustrated in Fig. 1. Along this loop, we define H-points
and H-directions associated with ¢;. The set of H-points and
H-directions found for each ¢; at r,; makes the whole set of
H-points denoted by {rj;}, and the whole set of H-directions
denoted by {h;}, with (i =1,2,...,Np). The {h} is simply
the vector of H(ry;) - ﬁi (i=1,2,...,Np) as shown in (7).
With such an {A}, the S;, can be readily built with guaranteed
accuracy. In addition, no dual mesh needs to be constructed for
discretizing H since the H is known from (5) at any point and
along any direction. We only need to sample H at the points
along the directions shown in Fig. 1 based on E’s points and
directions. In fact, our discrete H does not form a mesh at all.

B. Vector Basis Functions for the Expansion of E

Consider an arbitrary ith edge in a triangular mesh residing
on an xy plane, as the one labeled by e in Fig. 2(a). Using
the normalized zeroth-order edge elements to expand E, the ¢;
shown in (6) has ¢; the unit vector tangential to the ith edge,
and r,; the center point of the ith edge. To obtain such an e;
accurately from the discrete H (now H, only for a 2-D TE
case), the two H-points should be located on the line that is
perpendicular to the ith edge and centered at the point r;, as
illustrated in Fig. 2(a). In this way, the edge is perpendicular
to the H-loop (in the plane defined by z-direction and the line
normal to the edge), and resides at the center of the loop.
As a result, an accurate E - ¢; can be obtained. However,
using the zeroth-order edge elements, the curl of E is constant
in every element, thus we cannot generate H at the desired
points accurately. From another point of view, we can view
the H obtained at the center point of every element to be
second-order accurate, but not at other points. However, in an
arbitrary unstructured mesh, the line segment connecting the
center points of the two elements sharing an edge may not
be perpendicular to the edge, and the two center points may
not have the same distance to the edge either, as illustrated
in Fig. 2(b).

To overcome the aforementioned problem, we propose to
use a higher order curl-conforming vector basis to expand E
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(a)

Fig. 2. (a) Locations of H points required for the accurate evaluation of e
at point r,. (b) Locations of H points with zeroth-order edge bases.

in each element. With an order higher than zero, the curl of
E and hence H is at least a linear function in each element.
In this way, we can generate H at any desired point accurately
from (5).

However, we cannot blindly use the original set of the first-
order curl-conforming vector bases in [28]. They need certain
modifications to fit the need of this paper. This is because
the unknown coefficient ¢; shown in (3) should be equal
to (6) to connect (5) with (9) directly without any need for
transformation (if conventional first-order bases are used, the
proposed method equally produces a diagonal mass matrix by
using an unknown transformation [25], [26]). This results in
the following property of the desired vector basis functions:

e -Njry) =1,
éi -Nj(r,) =0,

j=i
J#FI 15)
which can be readily obtained by taking a dot product with ¢;
on both sides of (3) at point r,;, and recognizing that the left-
hand side of the resultant is required to be equal to ¢;. Notice
that (15) is not mass lumping that enforces the volume/area
integral of N; - N; to be ¢;;. The zeroth-order edge bases in
a triangular or other shaped elements naturally satisfy (15).
As for the first-order edge basis functions, there are not only
six edge degrees of freedom, but also two internal degrees of
freedom at the center point of a triangular element. The former
six bases satisfy (15), but the latter two do not. They hence
need a modification. The definitions of these two bases are
not unique either, thus they can be modified to satisfy (15)
without sacrificing the completeness of the bases.

To elaborate, first, we list the original six edge vector
basis functions N; (i = 1,2,...,6) together with their unit
tangential vectors ¢; as follows:

er = v23/llvasll, Ni=(@B&H - 1DHW,
er = v23/[v23ll, No= (35 — )W
e3 = 031/lv31ll, N3 = (@3S - HWs
eq = v31/llo31ll, N4 = (35 — HW2
és = v12/llv12ll, Ns = (3¢ — W3

é6 = v12/llv12ll, Ne = (3% — HW3 (16)
where v;; denotes the vector pointing from node i to node j,
as shown in Fig. 3, & (i = 1,2,3) are area coordi-

nates, and W denotes the normalized zeroth-order edge basis

1205

Zero-order vector bases First-order vector bases

Fig. 3. Illustration of the degrees of freedom of the zeroth- and the first-order
vector bases in a triangular element.

as follows:

Wi = Li(HEVE - &VE)
Wy = Ly(&HVE —&1VE)

W3 = L3(&1VEH — HVEG) a7

in which L; is the length of the ith edge. The degrees of
freedom of the above six edge vector bases are located,
respectively, at the following points in each element:

rei = (& =2/3,53=1/3)
re = (& =1/3,83=2/3)
re3 = (&1 =1/3,853=2/3)
fe4 = (1 =2/3,853=1/3)
res = (&1 =2/3,6=1/3)

reo = (&1 =1/3,84 =2/3). (18)

The projection of ¢; (i = 1,2,...,6) onto any jth vector
basis in (16) at the point of the ith degree of freedom, i.e.,
é; - Nj(r.;), is obviously zero for j # i and 1 for j = i. This
can be analytically verified, and also conceptually understood
because if it is not zero, the first-order bases (16) cannot ensure
the tangential continuity of E across the element interfaces,
which is not true. Therefore, the property of (15) is satisfied
for ( =1,2,...,6)and (j =1,2,...,6).

For the two vector basis functions whose degrees of freedom
are internal at the element center, we have

reg = (1 =1/3,6=1/3)

reg = (&1 =1/3,6=1/3). 19)

If we choose the two vector bases as Ny = (9/2)¢; W, and
Ng = (9/2)&W, as those suggested in [28], with é7 =
023/ ||v23] along edge 1, and ég = v31/||v31] along edge 2,
although they make ¢; - N (r,;) zero for (i =1,2,...,6) and
(j =17,8), the é7-Ng(r.7) is, in general, not zero since edge 1
may not be perpendicular to W5 at the element center. Thus,
(15) is not satisfied. If we keep N7 as it is, but choosing Ng as
&HEVEL, although é7 - Ng(re7) becomes zero now, ég - N7(res)
is not zero in general at the element center. Even though we
change ég to be along the direction of V¢, ég - N7(reg) is
not zero either since W is not parallel to edge 1 at element
center. In view of the aforementioned problem, we propose to
keep one basis (N7) the same as before, but modify the second
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basis (Ng) as follows:

o - - 9
v23/|lv23ll, N7 = §§1W1
3 = (2 x W1)/llz x Will, Ng=cgHr&3Ve

where cg is the normalization coefficient that makes eg -
Ng(reg) = 1. In (20), instead of using the V¢ direction as ég,
we employ the direction of (Z x W1). By doing so, ég-N7(r.3)
is ensured to be zero. Furthermore, 7 - Ng(r.7) = 0 still
holds true. In addition, with the choice of (20), the property
of é - Nj(re;) =0 with ( = 1,2,...,6) and (j = 7,8) is
still satisfied. Meanwhile, the property of &; -N;(r.;) = 0 with
i=17,8and (j =1,2,...,6) is also satisfied since all the
six edge vector bases vanish at the element center.

In summary, the six vector basis functions shown in (16)
and the two vector bases given by (20) make a complete set of
the first-order vector basis functions for a triangular element.
Together with the unit vectors ¢; defined in (16) and (20), they
meet the requirements of (15), and hence making each entry
in {e} nothing but E - ¢; (r,;). It is also worth mentioning that
the approach shown in (20) for modifying bases is equally
applicable to other higher order bases to make the unknown
coefficient vector of the basis functions equal to the unknown
electric field vector shown in (6).

&)
~
I

(20)

S
=)
Il

C. Choice of H-Points and H-Directions

With the points and directions of the E’s degrees of freedom
known from the above section, it also becomes clear at which
points and along which directions we evaluate H. As shown
in Fig. 2(a), for each ¢; located at r,, we draw a line
perpendicular to ¢; at r,;. On this line, we find two points such
that the center point of the two points is r.;. The two points
are where we need to prepare for H such that E - ¢; can be
accurately evaluated at r,;. For ¢; located at the edge, the two
points straddle the edge, and reside, respectively, in the two
elements sharing the edge; for the internal degree of freedom
whose ¢; is located at the element center, both H-points are
chosen inside the element. The union of the two points we
find for each ¢; makes the whole set of rp; i = 1,2, ..., Np).
As for the direction used at each H-point, for analyzing 2-D
problems, it is hi =2 i=1,2,...,Np).

Fig. 4 illustrates the locations of the H-points drawn for
the E unknowns located in a single element. Basically, each
E unknown is associated with a pair of H-points. Each pair is
marked by a different color in Fig. 4. Coincident H-field points
are permitted in the proposed algorithm. No extra checking to
avoid overlapping points is needed.

The total number of E unknowns, i.e., the length of {e}
vector in (5), is N, = 2Nedge + 2Nparch; Whereas the total
number of H unknowns, i.e., the length of {h} vector, is N}, =
10Npageh since there are 10 H-points in each patch.

D. Formulations of S, and Sy,

S. is a sparse matrix of size Ny x N,, whose ijth entry can
be written as

Seij = hi - {V x Nj}(rp) 1)
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| " *star marker denotes
| the location of H points

Fig. 4. Tllustration of H-points (stars) for all E’s degrees of freedom (arrows)
in one element.

where i denotes the global index of the H-point, while j is the
global index of the E’s vector basis function. The number of
nonzero elements in each row of S, is 8 since the H, at each
specified point is evaluated from the curl of E expanded into
eight vector basis functions in the element where the H-point
resides. When S, is constructed, the elements share the same
tangential E, i.e., {e}, in common along the edges, thus the
tangential continuity of E is enforced during the construction
of S.. The curl of each vector basis N; in (21) can be evaluated
analytically based on their expressions given in (16) and (20),
and then the point ry; is substituted into the resulting analytical
expression to obtain the curl at the point.

The size of Sy, is still the same as that of the transpose
of S., namely, N, x Nj,. However, it is not the transpose of
S.. Consider an arbitrary E-unknown e;, and denote the two
H-unknowns associated with it to be 4,,, and h;,, respectively.
Assume the distance between h,, and h, is [;. Since the
two H-points of each e; are positioned in a way as that
shown in Fig. 4, the discretization of V x H for ¢; becomes
+(hm — hy)/l;. Therefore, every row of S, has only two
nonzero elements, whose entries are

1
Shij = :I:—.
1

(22)
where j denotes the global index of the H-point associated
with the e;.

E. Time Marching Scheme and Stability Analysis

For a general unstructured mesh, if we choose S;, = SeT, the
accuracy cannot be ensured. For an accurate Sy, constructed in
the proposed work, it is not the transpose of S,. The resultant
S is not symmetric. As a result, the explicit marching like (11)
and (12) or a central-difference-based explicit time marching
of (13) is absolutely unstable.

To understand the stability problem more clearly, we can
perform a stability analysis of the central-difference-based
time discretization of (13) based on the approach given in
[16] and [29]. We start with a general inhomogeneous lossless
problem since the analysis of a lossy problem can be done in
a similar way. The z-transform of the central-difference-based
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time marching of (13) results in the following equation:
z—1D*4+A*2z=0 (23)

where 4 is the eigenvalue of S. The two roots of (23) can be
readily found as

12 = (24)

2 — APPL VAP A(AP L — 4)
> )

If S is Hermitian positive semidefinite, its 1 is real and no
less than zero. Thus, we can always find a time step to make
z in (24) bounded by 1, and hence the explicit simulation
of (13) stable. Such a time step satisfies At < 2/+/Amax, Where
Amax 18 the maximum eigenvalue, which is also S’s spectral
radius. However, if S is not Hermitian positive semidefinite,
its eigenvalues either are real or come in complex-conjugate
pairs [30]. For complex-valued or negative eigenvalues 4, the
two roots z; and zo shown in (24) satisfy zjzo = 1 and
neither of them has modulus equal to 1. As a result, the
modulus of one of them must be greater than 1, and hence
the explicit time-domain simulation of (13) must be unstable.
Similarly, we can perform a stability analysis of a general lossy
problem, and find the same conclusion—if S is not symmetric
and supports complex-valued and/or negative eigenvalues,
the central-difference-based explicit timed-domain simulation
of (13) is absolutely unstable.

The stability problem is solved in this paper by develop-
ing a time marching scheme that is stable and requires no
matrix inversion. We will start with the following backward-
difference-based discretization of (13) to explain the basic
idea. But the final time marching equation only involves the
field solutions at previous time steps for obtaining the field
solution at current time step. The backward-difference-based
discretization of (13) results in

{e}n+1 _ 2{6}}’1 + {e}n—l
+ Ardiag ({%}) ({e}™! — (e)") + APS{e}"™!

- e (|1]) ()"
- g € ot

which is obtained by approximating both first- and second-
order time derivatives by a backward-difference scheme [17].
Performing a stability analysis of (25), we find the two roots
of z as

(25)

1

1+ A7
As a result, z can still be bounded by 1 even for an infinitely
large time step. However, this does not mean the backward
difference is unconditionally stable since now the A can be
complex-valued or even negative. To make the magnitude
of (26) bounded by 1, we find that the time step needs to
satisfy the following condition:

[Im(v/2)|
Va2
where Im(-) denotes the imaginary part of (-). Interestingly,

the scheme is stable for large time step, but not stable for
small time step. For real eigenvalues, it is absolutely stable.

212 = (26)

At >2 (27)
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However, for complex or negative eigenvalues, to be stable,
one should not choose a small time step that violates (27).
Rearranging the terms in (25), we obtain

Die}™! = 2{e}" — (e}~ + Ardiag ({” }) {e}"

€

1 ofi n+1
— Ar’diag ([ - ]) (i}) (28)
€ ot
where
D =1+ Ardiag ({5}) +ALS. (29)
€
Let the diagonal part of D be D, thus
D = I + Ardiag ({3}) (30)
€
Front multiplying both sides of (28) by D™!, we obtain
I+M)fe)"™ =D7'{f) 3D
where {f} is the right-hand side of (28), and
M = A’D'S. (32)

Although (28) permits the use of any large time step, we
choose the time step in the following way:

2 L (33)
IS
and hence
A2|S| < 1 (34)

where ||S|| denotes the norm of S. Notice that the time step
determined from (33) is the same as that of a traditional
explicit scheme for stability. This is also the time step required
by accuracy when space step is determined based on the input
spectrum. This is because the square root of spectral radius and
thereby the norm of S corresponds to the largest frequency
present in the system response. To capture this frequency
accurately, a time step of (33) is necessary. It is also worth
mentioning that the time step that violates (27) turns out to be
very small in the proposed method since the imaginary part
of the complex eigenvalues is generally negligible compared
to the real part. Thus, (33) satisfies (27) in general.

The D is a diagonal matrix shown in (30). The norm of its
inverse can be analytically evaluated as

D~ = 1/minj<;<n,(1 4+ Ato;/€;) =1 (35)
we hence obtain, from (34) and (35)
IM[l = A2 [D7'S| < AIDTH|ISI < 1. (36)
As a result, we can evaluate the inverse of I + M by
A+M) ' =I-M+M —M +--- 37)

which can be truncated since (36) is satisfied. Together with
the fact that the mass matrix D is diagonal, and thus M does
not involve any matrix inversion, the system matrix has an
explicit inverse, and hence no matrix solutions are required in
the proposed method. This is very different from an iterative
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matrix solution that does not have an explicit inverse of the
system matrix. Equation (31) can then be computed as

(e = A=M+M =+ (=M)OD,{f}  (38)

where D; is diagonal matrix D’s inverse. The number of
terms k is ensured to be small (less than 10) since (36) holds
true. When mesh changes, the spectral radius of S changes.
However, the time step required by accuracy or by a traditional
explicit scheme for stability also changes. Since such a time
step is chosen based on the criterion of (33), the convergence
of (37) is guaranteed and the convergence rate does not depend
on the mesh quality.

The computational cost of (38) is k sparse matrix-vector
multiplications since each term can be computed from the
previous term. For example, after D;{ f} is computed, let the
resultant be vector y, the second term in (38) can be obtained
from —My. Let the resultant be y. The third term relating

to M2 is nothing but My. Therefore, the cost for computing
each term in (38) is the cost of multiplying M by the vector
obtained at the previous step, thus the overall computational
complexity is strictly linear (optimal).

When the proposed method is applied to a regular orthog-
onal grid, we do not need to add a few more sparse matrix-
vector multiplications shown in (38). One sparse matrix-vector
multiplication based on M is sufficient for stability. Only
for unstructured meshes where complex-valued or negative
eigenvalues exist, (38) is necessary for stability. The key
for (38) to be free of matrix inversion is the diagonal mass
matrix created by the proposed new method for discretizing
Maxwell’s equations in unstructured meshes. The same series
expansion can be applied to the backward-difference-based
TDFEM, but the resultant scheme still involves a matrix
solution.

FE. Imposing Boundary Conditions

The implementation of boundary conditions in the proposed
method is similar to that in the TDFEM and FDTD, since the
proposed method has a numerical system conformal to the two
methods.

For closed-region problems, the perfect electric conduc-
tor (PEC), the perfect magnetic conductor (PMC), or other
nonzero prescribed tangential E or tangential H are commonly
used at the boundary. To impose prescribed tangential E at
Np boundary points, in (5), we simply set the {e} entries
at the N points to be the prescribed value, and keep the
size of S, the same as before to produce all N, discrete H
from the N, discrete E. In (9), since the {e} entries at the
Np points are known, the updating of (9) only needs to be
performed for the rest (N, — Np) {e} entries. As a result,
we can remove the Np rows from Sj; corresponding to the
Np boundary E fields, while keeping the column dimension
of S; the same as before. The above treatment, from the
perspective of the second-order system shown in (13), is
the same as keeping just (N, — Np) rows of S, providing
the full-length {e} (with the boundary entries specified) for
the {e} multiplied by S, but taking only the N, — N, rows
of all the other terms involved in (13). To impose a PMC
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Fig. 5. Illustration of the mesh of a ring structure.

to truncate the computational domain, the total E unknown
number is N, without any reduction. The (5) is formulated as
it is since the H-points having the PMC boundary condition
can be placed outside the computational domain, instead of
right on the boundary where E is located. As for (9), there
is no need to make any change either since the tangential
H is set to be zero outside the computational domain. For
open-region problems, the framework of (5) and (9) in the
proposed method is conformal to that of the FDTD. As a result,
the various absorbing boundary conditions that have been
implemented in FDTD such as the commonly used perfectly
matched layer (PML) can be implemented in the same way in
the proposed method.

IV. NUMERICAL RESULTS

In this section, we simulate a variety of 2-D unstructured
meshes to demonstrate the validity and generality of the
proposed method in analyzing arbitrarily shaped structures
discretized into irregular mesh elements. The accuracy of
the proposed method is validated by comparison with both
analytical solutions and the TDFEM method that is capable
of handling unstructured meshes but having a mass matrix
that is not diagonal.

A. Wave Propagation in a 2-D Ring Mesh

A 2-D ring centered at (1.0 m, 1.0 m) with inner radius
0.5 m and outer radius 1.0 m is simulated in free space. The
triangular mesh is generated by DistMesh [31], the details
of which are shown in Fig. 5. The discretization results in
826 edges and 519 triangular patches. To investigate the
accuracy of the proposed method in such a mesh, we consider
that the most convincing comparison is the comparison with an
analytical solution. Although the structure is irregular, we can
use it to study a free-space wave propagation problem whose
analytical solution is known. To do so, we impose an analytical
boundary condition, i.e., the known value of tangential E, on
the boundary of the problem, which comprises the innermost
and outermost circles; we then numerically simulate the fields
inside the computational domain and correlate the results with
the analytical solution.

The incident E, which is also the total field in the given
problem, is specified as E = yf(t — x/c), where f(t) =
2(t — to)exp(—(t — 10)%/7%), © = 2.5 x 1078 s, 19 = 4z,
and c¢ denotes the speed of light. The time step used in the
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Fig. 6. Two electric fields of the ring mesh simulated from the proposed
method in comparison with analytical results.
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Fig. 7. log of the entire solution error for all E unknowns versus time.

proposed method is A7 = 2.0 x 107! s, which is the same as
what a traditional central-difference-based TDFEM has to use
for stability. With this time step, the spectral radius of Ar2S
is 0.7359, and the number of expansion terms is 9 in (37). In
Fig. 6, we plot the 2689th and 2690th entry randomly selected
from the unknown {e} vector, which represent E(r,;) - ¢;, with
i = 2689 and 2690, respectively. The point r,; for both i is
(1.0789 m, 0.3497 m), thus the two E fields are sampled at the
center point of one patch. From Fig. 6, it can be seen clearly
that the electric fields solved from the proposed method have
an excellent agreement with analytical results.

To further verify the accuracy of the proposed method,
we consider the relative error of the whole solution vector
defined by

[I{e}this(?) — {e}rer ()]
[1{e}rer (1)1

as a function of time, where {e}wis(f) denotes the entire
unknown vector {e} of length N, solved from this method,
while {e}r(t) denotes the reference solution, which is ana-
Iytical result {e}anai(¢) in this example. Equation (39) allows
us to evaluate the accuracy of the proposed method at all
points for all time instants. In Fig. 7, we plot Errorepgire (¢)
across the whole time window in which the fields are not
zero. Notice that the vertical axis displays the error in log;

Errorenire (t )= (39)
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Fig. 8. (a) log of the entire solution error versus time of all H unknowns
obtained from S.-rows of equations. (b) log|y of the entire solution error
versus time of all E unknowns obtained from Sj,-rows of equations.

scale, i.e., log;q Errorensire (7). It is evident that less than 1%
error is observed in the entire time window, demonstrating the
accuracy of the proposed method. The center peak in Fig. 7
is due to the comparison with close to zero fields.

In addition to the accuracy of the entire method, we have
also examined the accuracy of the individual S., and Sj
separately, since each is important to ensure the accuracy of
the whole scheme. First, to solely assess the accuracy of S., we
perform the time marching of (5) only without (9) by providing
an analytical {e} to (5) at each time step. The resultant {A} is
then compared to analytical {h}ana at each time step. As can
be seen from Fig. 8(a) where the following H-error:

Hh(t) - hanal(t)”
||hanal(t)||

is plotted with respect to time, the error of all H unknowns
is less than 1% across the whole time window, verifying the
accuracy of S,.

Similarly, in order to examine the accuracy of S;, we
perform the time marching of (9) only without (5) by providing
an analytical {h} to (9) at each time step. The relative error of
all E unknowns shown in (39) compared to analytical solutions
in log, scale is plotted with time in Fig. 8(b). Again, less
than 1% error is observed across the whole time window,
verifying the accuracy of Sy.

log;q (40)
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Fig. 10. TIllustration of the mesh of an octagonal spiral inductor.

In this example, we have also varied the spacing between
H points to examine its impact on time step and solution
accuracy. Assume the ith vector basis at point r,; is shared
by two elements el and e2. We draw a line passing r;
and perpendicular to the edge where the vector basis resides.
Assume the line intersects element el at point ri, and e2 at
point ry. If |r| — re| < |ra — re;l, then the distance between
the two H points is set to be (2|r; — r;|)/Hlratio. With this
definition, the smaller Hlratio, the larger the distance between
the two H points, and the smallest Hlratio one can choose
is 1 for both points to fall inside the el and e2. As can be
seen from Fig. 9, the solution accuracy is good irrespective of
the choice of spacing, but larger spacing results in even better
accuracy. This can be attributed to a less skewed discretization.
The time step allowed by an explicit marching is 2.0 x 1071,
1.5x107 " and 10711, respectively, for Hlratio = 2, 5, and
10. Hence, in general, a larger spacing is better for choice.

B. Wave Propagation in an Octagonal Spiral Inductor Mesh

The second example is a 1.5-turn octagonal spiral inductor
in free space, whose 2-D mesh is shown in Fig. 10. The dis-
cretization results in 2081 edges and 1325 triangular patches.
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Fig. 11. Simulation of an octagonal spiral inductor mesh in comparison with
analytical results. (a) Simulated two electric field waveforms. (b) log;( of the
entire solution error versus time for all electric fields.

Again, we set up a free-space wave propagation problem in the
given mesh to validate the accuracy of the proposed method
against analytical results. The incident E has the same form
as that of the first example, but with 7 = 2.0 x 107!2 s in
accordance with the new structure’s dimension. The outermost
boundary of the mesh is truncated by analytical E fields. The
time step used is Ar = 2.0 x 107'° s for simulating this
um-level structure, which is the same as that used in a tradi-
tional TDFEM method. This time step results in the spectral
radius of Ar>S = 0.8930. The number of expansion terms is
9 in (37). The two degrees of freedom of the electric field
located at one patch’s center point (206.83 um, 12.65 pm)
are plotted in Fig. 11(a) in comparison with analytical data.
Excellent agreement can be observed.

In Fig. 11(b), we plot the entire solution error shown in (39)
versus time, where the vertical axis displays the error in
log;q scale. Less than 3% error is observed in the entire time
window. It is evident that the proposed method is not just
accurate at certain points, but accurate at all points in the
computational domain for all time instants simulated. Note
that the center peak error is due to zero passing, thus the
comparison with close to zero fields at the specific time
instant. The actual behavior at the zero-passing time instant
is more objectively reflected in Fig. 11(a). In addition, we
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Fig. 12. Tllustration of the mesh of a square inductor.

have examined the impact of k£ on solution accuracy. We have
enlarged k from 9 to 18 and 36, the solution accuracy has no
visible difference.

C. Wave Propagation and Reflection in an
Inhomogeneous Medium

The third example is a wave propagation and reflection
problem in an inductor mesh with dielectric materials. Fig. 12
displays the mesh details, where ¢, = 4 in the red shaded
region and 1 elsewhere. The top, bottom, and right boundaries
are terminated by perfect conductors, while the left boundary
is truncated by the sum of the incident and reflected E fields.
The incident E has the same form as that in the first example,
but with 7 = 8.0 x 10713 s. The At used is 5.0 x 10716,
and the spectral radius of A¢2S is 0.8119. The number of
expansion terms is 9. In Fig. 13(a), the electric fields at two
points (—59.12, —71.31,0) xgm and (—63.25, —64.3,0) um
are plotted in comparison with TDFEM results. Excellent
agreement can be observed. Again, such an agreement is also
observed at all points for all time. As shown in Fig. 13(b),
the entire solution error compared with the TDFEM solution
is less than 3% at all time instants even though the mesh is
highly skewed. A few peak errors are due to the comparison
with close-to-zero fields.

D. Simulation of a PEC Cavity

The fourth example is a 2-D cavity. The cavity is filled with
air and terminated by PEC on four sides. The mesh is shown
in Fig. 14. We solve the transverse magnetic fields of TM11
mode for this cavity. The Ar used is 2.0 x 107! 5. Nine
terms are kept in (38). The same problem is also simulated
using TDFEM for comparison. In Fig. 15(a), the magnetic field
waveform at a randomly selected point (0.2415, —0.0145) m
is plotted in comparison with analytical results. Excellent
agreement can be observed. Meanwhile, we calculate the entire
solution error, which measures the error of the entire set of
field unknowns, compared with the analytical solution at each
time step for both the proposed method and the TDFEM.
The errors of the two methods are shown in Fig. 15(b) as
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Fig. 13. (a) Electric fields at two points of a square inductor mesh simulated

from the proposed method in comparison with TDFEM results. (b) Entire
solution error including all electric fields versus time compared to reference
TDFEM results.
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Fig. 14. Tllustration of the mesh of a cavity.

a function of time. Obviously, both methods are accurate, and
the proposed method is shown to have a better accuracy. This
can be attributed to the better space discretization accuracy of
the proposed method for the same mesh.

E. Dependence of Error on Time Step Size

To analyze how the error depends on the time step size, we
simulate a wave propagation problem in a 2-D circle, whose



1212 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 65, NO. 3, MARCH 2017

1 ‘ ‘ ‘ ‘ ‘
v,
ORI T
SRR IR I
JavLy ava) ORI
" A \ r ’ A R R
f f \ \ N RS REETIIRR
A \ I\ / I\ f\ { 0.5¢ ORI oy
— I\ I\ \ ! . OSSN R o
E \ ! \ 1 SRR R 22
e o504 1V Y vy s 22
Svans roarava, AVav,v,7)Y RIS
Jrairava OB OO v av)
< A W I Y L Y Y L O I TR s S St
= 1 | 1 SRR A REOA
k] 1 | | I [ o SSESH e
AR S iArary
) A N T N T L N A S R B E ol B
= | A | | | R RN e R
= ot [ | A T S R N > B v o
2 A T A A A [ ]
= \ R R S R
© \ : V1 1] l. N T A B P S X 5
00 RESS
c 1 1 1 1 1 \ VAVAVAVAY o
S \ 1 { |/ \ \ { \ | XX RO
I f | \ ! | \ { 0.5f SRR
\ \ | \ | \ —u. R LR SRERS:
S -0.5¢ | | \ \ \ | POORERRIRE]
. \ \ i | \ ORISR
\ | i 1 SRR
\/ \/ / \/ SRR RRERRRRERE]
V v \ V SRRkt
05 PORARRIRKIKIREL
ropose: K IRRIRRIKIRIY
SR ERRISERS
An alytical 1 . RIS L
o o5 1 15 2 25 3 -t 05 0 0.5 !
Time(s) 1078 X(m)
(@
(a)
10(J i :
—TDFEM

—+— Coarse: 5e-11s
©— Coarse:2.5e-11s
Coarse:1.25e-11s
Fine:1.25e-11s
== Fine:6.25e-12 s
Fine:3.125e-12 s
I

12

Iite}—{e}, Vel I

lthj=hy,, Ieh, |

8

x10°

(b)

(b) Fig. 16. (a) Illustration of the fine mesh of a circle. (b) Entire solution
Fig. 15. (a) Magnetic field of TM11 mode at a point for a cavity simulated ~ CITOT Versus time compared to reference analytical results with the choice of
from the proposed method in comparison with analytical results. (b) Entire ~ different time steps for two meshes.
solution errors for all magnetic fields of the proposed method and the TDFEM
versus time compared to analytical results.

finding the eigenvalue solution of S. This is because the field
mesh is shown in Fig. 16(a). The incident E field has the same solution at any time and any frequency is a superposition of
form as is shown in 'Sectioil IV-A. but with 7 = 2.0 x 10-8 the eigenvectors of S, and the weight of each eigenvector
s. An explicit marching is stable for a time step no greater can be determined from the corresponding eigenvalue. As

than 1.25 x 10-1! s Therefore. we choose the time step o result, the correctness of the time-domain or frequency-
be 1 2'5 % 10-11 .6 25 10112 s. and 3.125 x 10_3 s domain results of the proposed method for any excitation can

be found out by checking the eigensolution of S. We thus
simulate a cavity whose analytical eigenvalues are known. The
cavity is discretized into a highly irregular mesh as shown in
Fig. 17 to examine the robustness of the proposed method
in handling unstructured meshes. The mesh is provided by
a semiconductor industry company from discretizing a real
product. It appears to be of very poor quality because of
accommodating all spatial features of the product, but is still
a correct mesh.

We first construct matrices S, and S, separately, and then
compute S based on (14), which is still a sparse matrix. We
then find the eigensolution of S and compare the computed
eigenvalues with analytical ones. The analytical eigenvalues
can be found from the resonance frequencies of the cavity
w, based on 1 = a)f In Table I, the smallest ten eigenval-

The previous examples are simulated for a certain exci- ues obtained from the proposed method are compared with
tation. One may be interested to know the accuracy for analytical results in a descending order. It is clear that the
other excitations. Furthermore, the previous examples are proposed method successfully generates accurate resonance
all simulated in time domain. How about the accuracy in frequencies despite the poor quality of the mesh. This example
frequency domain? All these questions can be addressed by also serves as a good example to show that choosing S, = SeT

respectively, to run the simulation. In Fig. 16(b), the entire
solution error compared with analytical solution is plotted for
different time step sizes. Obviously, the proposed method can
produce accurate results for all three choices of time step. As
the time step decreases, there is no significant improvement
in accuracy since the time step allowed by a stable explicit
marching is also the one required by accuracy in the given
mesh. However, the accuracy is improved more at time instants
where the field solution has a more rapid temporal variation.
This can be seen more clearly from the results generated from
a coarser mesh, which are also plotted in Fig. 16(b).

F. Eigensolution of a Cavity Discretized Into a
Highly Unstructured Mesh
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Fig. 17. Tllustration of a highly irregular mesh.

TABLE I

COMPARISON OF THE SMALLEST TEN EIGENVALUES OF A
CAVITY HAVING A HIGHLY IRREGULAR MESH

Analytical | This Method | Error (This) | Sy = Sg Error

1.510e+27 1.451e+27 3.901e-02 1.064e+27 | 2.951e-01
1.421e+27 1.435e+27 9.909¢-03 9.547e+26 | 3.282e-01
1.155e+27 1.178e+27 1.995e-02 7.516e+26 | 3.491e-01
8.883e+26 8.218e+26 7.482e-02 6.853e+26 | 2.285e-01
7.994e+26 8.180e+26 2.320e-02 6.134e+26 | 2.327e-01
7.106e+26 7.280e+26 2.454e-02 5.189%e+26 | 2.697e-01
4.441e+26 4.372e+26 1.557e-02 3.296e+26 | 2.578e-01
3.553e+26 3.530e+26 6.457e-03 2.099e+26 | 4.090e-01
1.777e+26 1.806e+26 1.635e-02 9.152e+25 | 4.848e-01
8.883e+25 8.971e+25 9.913e-03 3.830e+25 | 5.688e-01

would fail to produce accuracy in such an unstructured mesh,
although the accuracy at some points for some excitations can
be acceptable [32]. In the fourth and fifth column of Table I,
we list the eigenvalues computed by choosing S;, = SeT and
their relative errors compared to analytical data. Comparing
the last column with the third column, the effectiveness of the
proposed method is obvious in obtaining good accuracy.

V. CONCLUSION

In this paper, a new time-domain method having a naturally
diagonal mass matrix is developed for solving Maxwell’s equa-
tions. It is independent of element shape, thus suitable for ana-
lyzing arbitrarily shaped structures and materials discretized
into unstructured meshes. The naturally diagonal mass matrix
results in a strict linear computational complexity at each time
step just like the complexity of an explicit FDTD method.
Numerical experiments on various unstructured discretizations
have validated the accuracy, stability, and generality of the
proposed method. This paper has been successfully extended
to 3-D analyses [24]-[27]. It is also worth mentioning that
the proposed method flexibly supports higher order accuracy
in both electric and magnetic fields. This can be achieved by
using vector bases of any high order in each element to expand
one field unknown, which consequently permits a higher order
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discretization of the curl of the other field unknown in the loop
area normal to the first field unknown.
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