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Abstract— To facilitate the broadband modeling of integrated
electronic and photonic systems from static to electrodynamic
frequencies, we propose an analytical approach to study the rank
of the integral operator for electromagnetic analysis, which is
valid for an arbitrarily shaped object with an arbitrary electric
size. With this analytical approach, we theoretically prove that
for a prescribed error bound, the minimal rank of the interaction
between two separated geometry blocks in an integral operator,
asymptotically, is a constant for 1-D distributions of source and
observation points, grows very slowly with electric size as square
root of the logarithm for 2-D distributions, and scales linearly
with the electric size of the block diameter for 3-D distribu-
tions. We thus prove the existence of an error-bounded low-
rank representation of both surface- and volume-based integral
operators for electromagnetic analysis, irrespective of electric size
and object shape. Numerical experiments validated the proposed
analytical approach and the resultant findings on the rank of
integral operators. This paper provides a theoretical basis for
employing and further developing low-rank matrix algebra for
accelerating the integral-equation-based electromagnetic analysis
from static to electrodynamic frequencies.

Index Terms— 3-D, broadband analysis, electrodynamic
analysis, integral operators, rank, theoretical analysis.

I. INTRODUCTION

INTEGRATION is a notable trend. Integration utilizes each
component’s advantages and discards its disadvantages.

Integration minimizes sizes, weight, power dissipation, and
maximizes performance. Compared with the integration tech-
nology in the past, the integration solution in current and
future integrated circuits and systems are being sought for in a
much larger scale (crosscutting electronics and photonics tech-
nologies and spanning Si, GaAs, GaN, SiC, and many other
semiconductor materials) and across a much wider spectrum
(entire electromagnetic spectrum). It is envisioned that it is at
the intersection of these technologies, materials, and spectrum
that some of the greatest challenges and opportunities for
integrated systems arise.
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Driven by the design of advanced integrated systems, there
exists a continued need for reducing the complexity of com-
putational electromagnetic methods. Recently, the H- and
H2-matrix-based mathematical framework [1]–[3] has been
introduced and further developed to accelerate both iterative
and direct solutions of the integral equation-based analysis of
electromagnetic problems at low as well as high frequencies,
for both circuit parameter extraction and wave problems
[4]–[7], [15], [19]. The resultant direct integral equation (IE)
solver [5], [6] successfully solved electrically large problems
of 96 wavelengths with more than 1 million unknowns in
fast CPU time (<20 h in LU factorization, 85 s in one
LU solution), modest memory consumption, and with the
prescribed accuracy satisfied, on a single CPU running at
3 GHz.

In an H matrix [1]–[3], if C is an m ×n off-diagonal block
that describes the interaction between two separated subsets of
the entire unknown set, it can be written as C = ABT where A
is of dimension m ×k, B is of dimension n ×k, and k denotes
the rank of C with k < m and k < n. In addition to a hierar-
chical low-rank representation, the H-matrix framework also
encompasses a system of fast arithmetics that permits compact
storage and efficient computation of dense matrices. The H2

matrix is a special class of H-matrix. It possesses a nested
structure that allows for an efficient reuse of information
across the entire cluster tree, and hence resulting in a better
complexity than an H-matrix-based method. To understand
the actual computational complexity of an H- or H2-matrix-
based method for the integral equation-based analysis of high-
frequency problems, and also to facilitate further acceleration
of the H- and H2-matrix-based computation, it becomes
important to develop a theoretical understanding on the rank’s
dependence with electric size.

Given an accuracy requirement ε, it has been proven that
the rank-r representation (R) generated from singular value
decomposition (SVD) is a minimal rank approximation of the
original matrix M that fulfills ‖M − R‖2 ≤ ε [9]. The SVD-
based minimal-rank approximation does not separate obser-
vation and source coordinates. It treats the entire matrix as a
whole and finds a minimal number of vectors, and hence rank,
to represent the matrix with prescribed accuracy. Our numeri-
cal experiments show that the methods, which do not generate
a minimal rank approximation, such as the interpolation [4],
Taylor series expansion, and plane-wave expansion-based sep-
aration of source and observation coordinates can result in a
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rank that is much higher than the minimal rank required by
accuracy. The rank also scales with electric size at a rate much
higher than linear, as shown by existing fast multipole method
(FMM)-based fast IE solvers [14] and the analysis of degrees
of freedom (DF) [20] that rely on the separation of sources
and observers in approximating Green’s function. To be more
specific, in a source-observer separated representation of the
integral operator, the Green’s function g(|�r − �r ′|), which only
depends on the distance between source �r ′ and observer �r ,
is approximated by a form of f1(�r) f2(�r ′), thus becoming a
function of the full coordinates of �r ′ and �r , yielding a full-
rank representation of electrically large problems.

An SVD analysis is numerical, which makes it not feasible
to find the actual rank required by accuracy for an arbitrarily
large electric size. Therefore, an analytical approach, which
is not restricted by computational resources and is valid for
an arbitrary shape, becomes necessary to develop a theoretical
understanding on the rank’s dependence with electric size.

The contribution of this paper is such an analytical
approach. With this approach, we theoretically prove that
the minimal rank of the interaction between two sepa-
rated geometry blocks in an integral-equation-based analy-
sis of general 3-D objects, for a prescribed error bound,
scales linearly with the electric size of the block diameter.
For 2-D objects, the minimal rank grows very slowly with
electric size as square root of the logarithm of the electric size
of the problem; for 1-D objects, the minimal rank is a constant.
These findings also agree with our findings on the rank of
the inverse finite element matrix [12]. The proposed proof
is applicable to various integral operators in electrodynamic
analysis such as electric field, magnetic field, combined field,
surface-, and volume-based integral operators. As the rank
scales linearly with the electric size of the block diameter,
while the number of unknowns in a surface- and volume-IE-
based analysis scales with electric size in a quadratic, and
cubic way, respectively, we prove the existence of the error-
bounded low-rank representation of both surface and volume
integral operators for electromagnetic analysis, irrespective of
electric size and problem shape.

II. THEORETICAL STUDY

Here, we first provide a problem description, then proceed
to elaborate the relationship between SVD and Fourier analysis
in a linear and shift-invariant system, based on which we
analytically derive the rank bound of the integral operator from
the Fourier transform of Green’s function. In what follows, we
use a boldface letter to denote a matrix, and an italicized letter
to denote a scalar.

A. Problem Description

The integral equation-based analysis of a general electro-
magnetic problem results in a dense linear system of equations

ZI = V . (1)

Consider Zt,s , an arbitrary m × n off-diagonal block of the
system matrix Z, which describes the interaction between

Observer 
group t

Source 
group s 

Fig. 1. Interaction between two separated groups described by an off-diagonal
block in Z.

two separated groups (t and s) of the object being ana-
lyzed, as shown in Fig. 1. The objective of this paper is
to theoretically study whether there exists an error-bounded
low-rank representation of Zt,s irrespective of electric size
and object shape, and if such a representation exists, how
the rank scales with electric size, and hence the number of
unknowns N .

Given an accuracy requirement ε, as shown in [9], the
rank-r representation (R) generated from SVD is a minimal
rank approximation of the original matrix M that fulfils
‖M − R‖2 ≤ ε. However, an SVD analysis is numerical.
Restricted by computational resources, it cannot be used to
find the actual rank required by accuracy for an arbitrarily
large electric size. In this paper, we propose an analytical
approach to solve this problem. In this approach, we make a
connection between an SVD analysis and a Fourier analysis.
By utilizing the relationship between the two analyses in a
linear and shift-invariant system, we succeed in analytically
revealing the rank of the integral operators and its dependence
with electric size.

B. Relationship Between SVD and Fourier Analysis in a Linear
Shift-Invariant System

A linear system can be modeled by the following:

b = H f (2)

where f and b are vectors, and H is a linear operator. We can
perform SVD on H to obtain the following:

b = V�UH f (3)

where superscript H denotes a complex conjugate transpose,
� is the diagonal matrix comprising singular values, and V
and U are matrices comprising singular vectors. Since V and
U are both unitary, we have the following:

VH b = �
(

UH f
)

(4)

which can be written compactly as follows:

bV = � f U (5)

where
bV = VH b; f U = UH f. (6)

Multiplying a unitary matrix by a vector can be thought of as
projecting this vector onto the orthonormal set defined by the
matrix. Thus, (5) can be viewed as representing the response
b in the V basis (bV ), the input f in the U basis ( f U ), and
relating these two projections by a diagonal matrix (�).
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When the operator H is both linear and shift invariant
(LSIV), SVD turns to Fourier analysis [10]. More specifically,
the singular vectors of an LSIV system are weighted Fourier
basis functions (complex exponentials) and the singular values
are the absolute values of the Fourier transform of the system’s
point spread function (impulse response function) [10], [11].
To understand this, consider an LSIV system. Because an
LSIV system operator is a convolution operator [10], the
response b in space domain is a convolution of the input f
with an impulse response h

b(�r) = f (�r) ∗ h(�r) (7)

in which �r is an arbitrary point in space. The above convo-
lution can be converted to a simple multiplication by Fourier
analysis. Thus, we have the following:

F(
b(�r)

) = F(
h(�r)

)F(
f (�r)

)
(8)

where F( ) is a Fourier transform. We can rewrite (8) as
follows:

b(�r)FT = F(h(�r)) f (�r)FT (9)

where b(�r)FT is the representation of b(�r) in the Fourier basis,
and f (�r)FT is the representation of f (�r) in the Fourier basis.
In other words, we represent the input in a unitary basis
(Fourier basis), we also represent the response in a unitary
basis (Fourier basis), and relate the two by F(h(�r)). From (5)
and (9), the relationship between SVD and Fourier analysis
can be clearly seen. The Fourier bases may be different from
the SVD-generated bases. However, if the system is linear
and shift-invariant, the two bases are both Fourier bases [10].
Therefore, the Fourier analysis accomplishes the SVD analysis
of a linear shift-invariant system.

C. Rank Revealing Via Fourier Analysis of the Integral
Operator

There exist many IE formulations for analyzing 3-D electro-
dynamic problems. Examples are electric field integral equa-
tion, magnetic field integral equation, combined field integral
equation, each of which can be formulated in a surface-
or volume-based form. The underlying integral operators are
all linear and shift invariant. Therefore, we can use Fourier
analysis to analytically study the rank of the integral equation-
based system matrix.

The point-spread function in IE-based operators is Green’s
function. Without loss of generality, an integral equation-based
operator can be expressed as the convolution of a certain
source f with Green’s function g as the following:

b(�r) =
∫

g(|�r − �r ′|) f (�r ′) d�r ′ (10)

where response b is the field at observation point �r , and �r ′ is a
source point. The d�r ′ is a short notation of dl (line integral), dS
(area integral), dV (volume integral) over the source domain,
respectively, for 1-D, 2-D, and 3-D distribution of the source
points.

Multiplying both sides of (10) by e− j �k·�r , and integrate over
the observation domain �r , we obtain the following:∫

b(�r)e− j �k·�r d�r =
∫ [∫

g(|�r − �r ′|) f (�r ′) d�r ′
]

e− j �k·�r d�r
(11)

which can be further written as follows:∫
b(�r)e− j �k·�r d�r =

∫
f (�r ′)e− j �k·�r ′

d�r ′

×
∫

g(|�r − �r ′|)e− j �k·(�r−�r ′) d(�r − �r ′)

(12)

and, thereby
B(�k) = G(�k)F(�k) (13)

where

B(�k) =
∫

b(�r)e− j �k·�r d�r

F(�k) =
∫

f (�r ′)e− j �k·�r ′
d�r ′

G(�k) =
∫

g(|�r − �r ′|)e− j �k·(�r−�r ′) d(�r − �r ′) (14)

in which �k = kx x̂ + ky ŷ + kz ẑ. The B(�k), F(�k), and G(�k)
are the Fourier transforms of observation fields b, sources f ,
and Green’s function g, respectively. In (11), (12) and (14),
the integration ranges for �r , �r ′, and �r − �r ′ are the ranges of
the observation domain, the source domain, and the domain
containing all the �r − �r ′ points, respectively.

Equation (13), in a discrete form, can be written as follows:⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

B1
B2
...

Bp

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎛
⎜⎜⎜⎝

G1
G2

. . .

G p

⎞
⎟⎟⎟⎠

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

F1
F2
...

Fp

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(15)

where Gi , Fi , and Bi are, respectively, G(�k), F(�k), and B(�k)
at discrete �ki (i = 0, 1, . . .), and p denotes the number of
frequency points in Fourier transform.

Now consider an arbitrary source domain �s that is geomet-
rically disconnected from an arbitrary observation domain �t .
The number of DF in the source domain is denoted by n, while
that in the observation domain is denoted by m. The matrix
block corresponding to the interaction between �s and �t is
an off-diagonal block in the system matrix Z resulting from
an IE-based analysis of an electromagnetic problem. Denote
this block by Zt,s . Thus, we have the following:

bm×1 = (Zt,s)m×n fn×1 (16)

in which the subscripts denote the dimension of the corre-
sponding vector or matrix. Given a prescribed accuracy, the
minimal rank of Zt,s can be numerically determined by SVD.
Next, we show how to analyze the rank of Zt,s analytically
by the Fourier analysis of the integral operator.

From (14), the B vector in (15) can be written as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B1
B2
...

Bp

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= Bp×m

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b1
b2
...

bm

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= Bp×mbm×1 (17)
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where Bp×m is the p×m matrix that projects the observations
b onto the space of Fourier modes. If using a pulse basis to
represent b, the ij-th matrix element of Bp×m can be readily
identified from the first row of (14) as follows:

Bi, j =
∫

j
e− j �ki ·�r d�r, 1 ≤ i ≤ p, 1 ≤ j ≤ m (18)

where the integral is evaluated on the domain occupied by
the j th observer. For 1-D, 2-D, and 3-D distribution of the
observers, such a domain is a segment, a surface, and a
volume, respectively.

Similarly, from (14), the F vector in (15) can be written as
follows: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

F1
F2
...

Fp

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= Fp×n

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1
f2
...
fn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= Fp×n fn×1 (19)

where Fp×n is the p × n matrix that projects the sources f
onto the space of Fourier modes. Its ij-th matrix element can
also be readily identified from (14) as follows:

Fi, j =
∫

j
e− j �ki ·�r ′

d�r ′, 1 ≤ i ≤ p, 1 ≤ j ≤ n (20)

where the integral is evaluated on the domain occupied by the
j th source.

Substituting (17) and (19) into (15), we obtain the following:

Bb = G(F f ) (21)

where G in boldface denotes the diagonal matrix composed
of the Fourier coefficients of Green’s function shown in (15).
If B is unitary, then

b = (BHGF) f. (22)

In the context of matrix computation, the source and observa-
tion domain represented by an off-diagonal block are both
finite. In addition, they may not span a period used for
evaluating the discrete Fourier transform. Although Fourier
bases are unitary, if a subset of these bases is chosen at selected
source and observation points, neither B nor F is unitary.
In this case, (21) can be written as follows:

b = (BHB)−1(BHGF) f. (23)

With p chosen to be larger than m, (BHB) is invertible.
If (BHB) is not invertible, we can also write B as follows:

B = UB�BVH
B (24)

which is the SVD of B. Then, we have the following:

b = (VB�−1
B UH

B GF) f. (25)

Therefore, we obtain the following:

Zt,s = (VB�−1
B UH

B GF). (26)

Thus, it is clear that if B and F are unitary, then the singular
values of Zt,s are nothing but the absolute values of G’s
entries, which are the Fourier coefficients of Green’s function.
In general cases where B and F may not be unitary, although
the singular values are not the Fourier coefficients any more,

the rank of Zt,s is still bounded by the rank of diagonal matrix
G since the rank of a matrix product is no greater than any of
the matrices being multiplied. Therefore, we can analyze the
Fourier transform of Green’s function to analytically study the
rank of Zt,s .

D. Rank Determined from an Analytical Fourier Analysis of
the Green’s Function

The Green’s function for a general 3-D problem can be
written as follows:

g(|�r − �r ′|) = e− j k0|�r−�r ′ |

4π |�r − �r ′| (27)

where �r ′ is a source point, �r is an observation point, and k0 is
the wave number corresponding to a frequency being studied.
Let

�R = �r − �r ′ = RR̂ (28)

with R being the magnitude of the distance vector �R and R̂ a
unit vector along �r − �r ′ direction, (27) can be further written
as follows:

g(R) = e− j k0 R

4π R
. (29)

The above Green’s function satisfies the following partial
differential equation in an infinite space:

∇2g + k2
0 g = δ(�r − �r ′). (30)

Its Fourier transform can be analytically obtained as follows.
First, we represent the right hand side (RHS) of (30) by its

Fourier transform

δ(�r − �r ′) = 1

(2π)3

∫∫∫
e jkx (x−x ′)e jky(y−y′)

×e jkz(z−z′) dkx dky dkz. (31)

Similarly, we write Green’s function g as follows:

g(�r − �r ′) = 1

(2π)3

∫∫∫
G(k)e jkx (x−x ′)e jky(y−y′)

×e jkz(z−z′) dkx dky dkz (32)

where G(k) is the Fourier transform of g. Substituting (32)
into the left hand side of (30), we obtain the following:

∇2g + k2
0g = 1

(2π)3

∫∫∫
G(k)∇2

×
[

e jkx (x−x ′)e jky(y−y′)e jkz(z−z′)
]

dkx dky dkz

+ 1

(2π)3

∫∫∫
k2

0 G(k)e jkx (x−x ′)e jky(y−y′)

× e jkz(z−z′) dkx dky dkz

= 1

(2π)3

∫∫∫
(−k2 + k2

0)G(k)e jkx (x−x ′)

× e jky(y−y′)e jkz(z−z′) dkx dky dkz (33)

where
k2 = k2

x + k2
y + k2

z . (34)
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Since (33) is equal to (31), we obtain the Fourier transform
of Green’s function as the following:

G(k) = 1

k2
0 − k2

. (35)

The above approach was actually one of the methods
used to derive Green’s function in history, also known as
Ohm-Rayleigh method [13, p. 30], which is also given in
[18, p. 55]. In addition, (35) provides another proof of the inte-
rior resonance problem associated with IE formulations [16],
since it shows that if k0 is the same as one of the ks, the
integral operator becomes singular.

If both source points �r ′ and observation points �r are
distributed in a 2-D domain, without loss of generality, assume
z = z′. From (33), since the term operated on by ∇2 is
e jkx (x−x ′)e jky(y−y′) · 1, we obtain the following:

k2 = k2
x + k2

y . (36)

Note that the above does not suggest that ∂/∂z = 0 because
when the RHS of (32) is integrated out, we obtain δ(z − z′).
If both source points �r ′ and observation points �r are distributed
in a 1-D domain satisfying z = z′ and y = y ′, from (33), we
have the following:

k2 = k2
x . (37)

Again, the above does not suggest that ∂/∂y = ∂/∂z =
0 because when (32) is integrated out, we obtain
δ(y − y ′)δ(z − z′). As can be seen from the above derivation,
the Fourier transform of Green’s function for 1-D, 2-D, and
3-D distributions of source points and observation points has
the same form as that shown in (35). The only difference is
in k2.

Now, we are ready to determine the rank of G in (26).
The G is the diagonal matrix shown in (15), the entries of
which are given in (14), which are the Fourier coefficients of
Green’s function

G(�ki ) =
∫

g(|�r − �r ′|)e− j �ki ·(�r−�r ′) d(�r − �r ′). (38)

For a finite source-observation domain, the geometrical iden-
tity defined by (�r − �r ′) is finite. Take a 3-D (�r − �r ′) domain
as an example, (38) can be explicitly written as follows:

G(�ki ) =
∫ ϕ2

ϕ1

∫ θ2

θ1

∫ R2

R1

e− j k0 R

4π R
e− j �ki · �R R2 sin θ dr dθ dϕ

(39)
where the upper and lower limits describe the region that
(�r − �r ′) occupies. If (�r − �r ′) has multiple disconnected
regions, then the matrix block corresponding to such a source-
observation interaction is the union of the matrix block in
each separated region. Then for each separated region, we can
analyze the rank of the corresponding matrix block via (39).
The rank of a matrix sum is bounded by the sum of the rank of
each matrix [9]. Therefore, the sum of the rank of the matrix
block for each separated region is the upper bound of the
rank of the entire matrix block associated with the interaction
between �r ′ and �r .

Let (ϕ1, ϕ2) = (0, 2π), (θ1, θ2) = (0, π), and R1 → 0,
R2 → ∞. Then (39) becomes (35), and hence

G(�ki ) = 1

k2
0 − (k2

xi + k2
yi + k2

zi )
(40)

where

kxi = m
2π

D
= mπ

a

kyi = n
2π

D
= nπ

a

kyi = p
2π

D
= pπ

a
(41)

in which m, n, and p are integer numbers, D is the maximal
size of the problem along x-, y-, and z-direction, and a is half
of D. In what follows, we use (40) and its corresponding 2-D
and 1-D forms to analytically analyze the rank of G because
the rank of a smaller (�r − �r ′) domain determined by (39) is
bounded by the rank dictated by (40).

Without performing a detailed quantitative analysis, from
(40), we already can predict the existence of a low-rank rep-
resentation of Green’s function. The reason is straightforward.
Given a k2

0, not all of the Fourier modes have a large Fourier
coefficient, only those whose wave number square (k2

i ) are
the closest to k2

0 have the largest Fourier coefficients, whereas
others can be truncated based on the magnitude of their Fourier
coefficients and a prescribed accuracy. The total number of
Fourier modes representing a function defined on a surface
and that defined in a volume is, respectively, proportional to
(electric size)2 and (electric size)3. Thus, the total number of
Fourier modes is linearly proportional to N . However, Green’s
function is different from an arbitrary function that depends
on x , y, and z, because of its R-only dependence, its Fourier
transform has a special form shown in (40). Therefore, only
a subset of Fourier modes needs to be used to represent
the Green’s function for a given accuracy, while the rest
can be discarded without sacrificing the prescribed accuracy.
Hence the rank of G is less than N , thus being low rank.
In addition, (40) also reveals why the rank of a 2-D problem
is, in general, less than that of a 3-D distribution of sources and
observers. This is because in the former, the Fourier modes are
distributed on a 2-D grid as can be seen from (36) and (41),
whereas in the latter; the Fourier modes are distributed on a
3-D lattice. Thus, the number of Fourier modes satisfying a
prescribed accuracy in a 2-D case is smaller than that in a
3-D case. The above analysis is conceptual. Next, we provide
a quantitative analysis of the rank of G and its dependence
with electric size.

Given an accuracy requirement ε, the rank of diagonal
matrix G is the number of Fourier coefficients Gi = G(ki )
satisfying the following criterion:

Gi

max{Gi } = 1/|k2
i − k2

0 |
max{1/|k2

i − k2
0|}i

≥ ε. (42)

Since the maximum of 1/|k2
i − k2

0 | occurs at the minimum of
|k2

i − k2
0 |, (42) can be written as follows:

1/|k2
i − k2

0 |
1/|k2

i − k2
0 |min

≥ ε. (43)
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Let

min = |k2

i − k2
0 |min. (44)

We have
|k2

i − k2
0 | ≤ 
min/ε (45)

with

k2
i =

[
(mπ)2 + (nπ)2 + (pπ)2

]
/a2 (46)

k2
i =

[
(mπ)2 + (nπ)2

]
/a2 (47)

k2
i =

[
(mπ)2

]
/a2 (48)

for 3-D, 2-D, and 1-D distribution of sources and observers,
respectively.

To determine the rank from (45), we can find out the
maximum displacement 
k > 0 satisfying

(k0 + 
k)
2 − k2

0 ≤ 
min/ε (49)

and then compute the number of modes that can exist
between k0 and k0 + 
k . For the modes satisfying (45)
and having k2

i smaller than k2
0, a similar analysis can be

performed.
In 1-D cases, as ki = (mπ)/a, the distance between two

adjacent wave number ki is a constant. The number of Fourier
modes between k0 and k0 + 
k is thus proportional to 
k .
Therefore, the rank in 1-D cases can be written as follows:

Rank|1D ∼ 
k . (50)

In 2-D cases, as the number of Fourier modes having a wave
number between k0 and k0 + 
k is proportional to the area
of a ring with inner radius of k0 and outer radius of k0 + 
k .
Thus, the rank in 2-D cases can be written as follows:

Rank|2D ∼ (k0 + 
k)
2 − k2

0 = 2k0
k + 
2
k . (51)

In 3-D cases, the number of Fourier modes having a wave
number between k0 and k0 +
k is proportional to the volume
of a spherical ring with inner radius of k0 and outer radius of
k0 + 
k . Thus

Rank|3D ∼ (k0 + 
k)
3 − k3

0 = 3k2
0
k + 3k0


2
k + 
3

k . (52)

From the above, it can be seen that the rank’s dependence
with electric size is determined by 
k’s dependence with
electric size. This question was thoroughly studied in [12].
In fact, the Fourier transform of Green’s function has a direct
relationship with the inverse of the finite element matrix by
comparing (35) with the inverse of the finite element matrix
shown in [12]. It is proved in [12] that 
k for 1-D, 2-D, and
3-D modes satisfying (49), for a given ε, asymptotically scales
with frequency in the following way:


k|1D ∼ O(1) (53)


k|2D ∼ O(
√

log k0/k0) (54)


k|3D ∼ O(1/k0). (55)

Substituting them into (50)–(52), we obtain the following:

Rank|1D = constant (56)

Rank|2D ∼ O(
√

log k0). (57)

Rank|3D ∼ O(k0). (58)

Thus, for 1-D problems, for a prescribed error bound, the rank
is a constant; for 2-D problems, the asymptotic scaling rate
of the rank is less than linear; while for 3-D problems, the
rank increases linearly with the electric size of the problem.
The theoretical results shown in (56)–(58) are also numerically
verified by finding out the number of modes having wave num-
bers shown in (46)–(48) and meanwhile satisfying (45) [12].

The above asymptotic growth rate of the rank is for elec-
trically large problems, the electric size of which approaches
infinity. For static, i.e., frequency independent problems, the
k0 is zero in (35). Thus, G(k) becomes frequency independent.
Its largest magnitude occurs at k = 0, which can be evaluated
from G(0) = ∫

g(|�r−�r ′|) d(�r−�r ′) instead of using (35) as (35)
requires a nonzero k. Therefore, given an accuracy requirement
ε, by setting |Gi |/|G(0)| < ε, it can be readily found that the
rank of static problems is a constant irrespective of problem
size. This agrees with the rank of existing fast algorithms
when applied to the analysis of static and electrically small
problems.

It is worth mentioning that although the source-observer
separated representation of Green’s function used in an FMM-
based method results in a rank’s growth rate much higher than
that shown in (56)–(58), the number of spherical harmonics
required to approximate the original Green’s function for a
given accuracy, for the interaction between two separated
blocks, is also shown to scale linearly with the electric size
of the block diameter [14], [17], which supports the proposed
paper. In addition, a problem involving complicated materials
is equivalent to the problem of equivalent currents radiating in
the free space (or background material). Therefore, the same
Green’s function analyzed in this section applies, and hence
the findings on the rank remain the same.

III. NUMERICAL VALIDATION OF THE PROPOSED

ANALYTICAL APPROACH FOR RANK STUDY

We first quantitatively validate the proposed analytical
approach for analyzing the rank of the IE operators by three
representative examples. Through these examples, we also
demonstrate the compressibility of the Fourier coefficients of
Green’s function numerically.

A. Example 1

The first example has a 1-D distribution of source and
observer points. The source domain is in the range of x ′ ∈
(−1.5A,−0.5A), while the observation domain is located at
x ∈ (0.5A, 1.5A). It is clear that �r − �r ′ = (x − x ′, 0, 0)
with x − x ′ ∈ (A, 3A). The wavelength λ = 1 m, thus
k0 = 2π in Green’s function. The A is chosen as 4λ.
A uniform discretization along x is used with a space step
of 
.

The Fourier transforms shown in (14) for sources, obser-
vations, and Green’s function are performed in the range of
(a1, a2) common to source region �r ′, observer region �r , and
�r − �r ′ region, thus with a1 = −1.5A and a2 = 3A. Hence, we
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Fig. 2. Comparison between the matrix generated from the proposed
approach and the original matrix for a line example in the real part of the
first column of Z.

have the following:

B(ki ) =
∫ a2

a1

b(x)e− j ki x dx

F(ki ) =
∫ a2

a1

f (x ′)e− j ki x ′
dx ′

G(ki ) =
∫ a2

a1

g(|x − x ′|)e− j ki (x−x ′) d(x − x ′) (59)

with

ki = i
2π

(a2 − a1)
, i = 0,±1,±2, . . . . (60)

The interval for integration (a1, a2) is chosen to carry out
the discrete Fourier transforms of observations b, sources f ,
and Green’s function g in a common range. The f , b, and
g are padded with zeros in the range beyond where they are
originally defined.

From (59), the diagonal matrix G is obtained with Fourier
mode index i ∈ [−ns/2 +1, ns/2], where ns is the number of
sampling points along x , which is ns = (a2 − a1)/
. The
B matrix and F matrix are constructed based on (18) and
(20), where the line integral is performed with a simple center-
point-based integration. Specifically, their ij-th element for this
example is as follows:

Bi, j = e− j ki x j 
, Fi, j = e− j ki x ′
j 
 (61)

where x j and x ′
j are, respectively, the j th observation and

source point, while i is the index of the Fourier mode. With
G, B, F obtained, we construct Zt,s based on (23), thus

Zt,s = (BHB)−1(BHGF). (62)

To assess the accuracy of the proposed approach, we com-
pare (62) with the original matrix that is directly constructed
from the following:

Zt,s
orig,i j = e− j k0|xi−x ′

j |

4π |xi − x ′
j |


. (63)
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Fig. 3. Normalized magnitude of the entries of diagonal matrix G for the
1-D line distribution of sources and oberservers, which are the normalized
Fourier coefficients of Green’s function.

With a space step of 
 = 1/50λ, the dimension of matrices
B and F is both 900 by 200, and that of diagonal matrix G
is 900 by 900. Thereby, Zt,s is of size 200 by 200. In other
words, there are 200 source points and 200 observation points,
while the number of Fourier modes is 900. The number of
Fourier modes is larger than the number of sources/observers
because the region for performing Fourier transform is an
extended region that contains all of the source region �r ′,
observer region �r , and �r − �r ′ region. The size of this extended
region, though larger, is linearly proportional to the maximum
size of the source and the observer region. In addition,
although G’s size is larger than the matrix size of Zt,s , we
soon will show that G can be truncated to a size much smaller
than that of Zt,s based on prescribed accuracy, thus rendering
Zt,s low rank.

In Fig. 2, we plot the first column of the matrix obtained
from (62) in comparison with that of the original matrix shown
in (63). An excellent agreement can be observed. The same
agreement is observed in all the other columns of the Zt,s

matrix. To assess the entire matrix error of (62), we evaluate
the following matrix error:

error =
∥∥∥Zt,s

orig − Zt,s
∥∥∥

∥∥∥Zt,s
orig

∥∥∥
(64)

in which 2-norm is used. The error is shown to be 2.5769e-14.
Hence, the accuracy of the factorized form shown in (62) is
validated. Therefore, the rank of Zt,s is bounded from above
by the rank of diagonal matrix G.

To demonstrate the compressibility of G, in Fig. 3, we plot
the normalized magnitude of G’s entries sorted in a descend-
ing order, which are the normalized Fourier coefficients. It is
evident that for a given accuracy, G can be truncated. As an
example, we used 1% as a truncation criterion, and obtained
a truncated G matrix. The rank of truncated G is shown to
be 133, which is smaller than G’s original size 900, and
also the size of Zt,s that is 200. With the truncated G, we
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Fig. 4. Comparison between the matrix generated from the proposed
approach and the original matrix for a plate example (Real part of the 998th
column of Z).

constructed the Zt,s matrix based on (62). As G is low rank,
Zt,s is also low rank. The matrix error (64), which assesses the
error of the low-rank approximation, is shown to be 0.46%.
As another example, we used 5% as a truncation criterion
to remove all entries of G whose normalized magnitude is
<5%, the rank of G is found to be 25, which is much
smaller than the size of Zt,s . Though a significant compression
of the rank of Zt,s from 200 to 25, good accuracy is still
achieved since the resulting matrix error (64) is found to be
only 2.74%.

We also repeat the aforementioned analysis by using a space
step of 
 = 1/10λ. In this case, the dimension of B and
F becomes 180 by 40, and that of G is 180 by 180. The
normalized G’s elements are the same as those shown in Fig. 3,
but with only 180 elements. With the complete G, the entire
matrix error of (64) is shown to be 5.54e-15. With a truncated
G of only the 19 largest entries while setting the rest of G’s
elements to be zero, the error of (64) is shown to be 3.3%. It
is evident that G can be truncated based on a desired accuracy,
and the resulting Zt,s is low rank.

B. Example 2

The second example is two separated plates that are hori-
zontally displaced. One is located at (0 ≤ x ′ ≤ A, 0 ≤ y ′ ≤
A, z′ = 0), the other at (3A ≤ x ≤ 4A, 0 ≤ y ≤ A, z = 0).
It is clear that �r − �r ′ = (x − x ′, y − y ′, 0) with (x − x ′) ∈
(2A, 4A) and (y−y ′) ∈ (−A, A). The wavelength is 1 m, thus
k0 = 2π in Green’s function. The A is chosen as 1 wavelength.
A uniform discretization along both x and y is used with a
space step 
.

The Fourier transforms shown in (14) for sources, observa-
tions, and Green’s function are performed in a common range
of (a1, a2) = (0, 4A), and (b1, b2) = (−A, A). Thus, we have
the following:

B(�ki ) =
∫ b2

b1

∫ a2

a1

b(x, y)e− j kxi xe− j kyi y dx dy

F(�ki ) =
∫ b2

b1

∫ a2

a1

f (x ′, y ′)e− j kxi x ′
e− j kyi y′

dx ′ dy ′

G(�ki ) =
∫ b2

b1

∫ a2

a1

g(|x − x ′|, |y − y ′|)e− j kxi (x−x ′)

× e− j kyi (y−y′) d(x − x ′) d(y − y ′) (65)

where

kxi = m
2π

(a2 − a1)
, kyi = n

2π

(b2 − b1)
,

m, n = 0,±1,±2, . . . . (66)

Based on (65), the diagonal matrix G is obtained with
Fourier mode index m ∈ (−nx/2 + 1, nx/2), and n ∈
(−ny/2+1, ny/2), where nx is the number of sampling points
along x which is nx = (a2 − a1)/
, and ny is the number of
sampling points along y which is ny = (b2 − b1)/
. The B
matrix and F matrix are constructed based on (18) and (20).
Again, a straightforward center-point-based integration is used
to calculate the surface integrals. Specifically, the ij-th element
of B and F for this example is as follows:

Bi, j = e− j kxi x j− j kyi y j 
2, Fi, j = e− j kxi x ′
j− j kyi y′

j 
2. (67)

We then construct Zt,s based on (23), thus

Zt,s = (BHB)−1(BHGF).

To assess the accuracy of the proposed approach, we
compare the above with the original matrix that is directly
constructed as the following:

Zt,s
orig,i j = e

− j k0

√
(xi−x ′

j )
2+(yi−y′

j )
2

4π
√

(xi − x ′
j )

2 + (yi − y ′
j )

2

2. (68)

With a space step of 
 = 1/40λ, the dimension of B
and F is both 12 800 by 1600, and that of G is 12 800 by
12 800, thus Zt,s is of size 1600 by 1600. In Fig. 4, we plot a
randomly selected column (column 998) of the matrix obtained
from the proposed approach in comparison with that of the
original matrix shown in (68), an excellent agreement can be
observed. In addition, we compute (64) to assess the entire
matrix error, which is shown to be 1.2429e-14. Again, the
validity of the proposed method of using the Fourier analysis
of Green’s function to study the rank of an integral operator
is demonstrated.

In Fig. 5, we plot the normalized magnitude of G’s entries
sorted in a descending order. It is clear that for a given
accuracy, G can be truncated. We used 1% as a truncation
criterion, and obtained a truncated G matrix, the size of which
is shown to be 183 since the rest of the 12617 entries are all
smaller than the maximum G value by 1%. With the truncated
G, we construct Zt,s based on (62). The error of (64) is shown
to be only 0.71%.

We also repeat the same study by using a space step of

 = 1/10λ. In this case, the dimension of B and F becomes
800 by 100, and that of G is 800 by 800. With the complete G,
the entire matrix error of (64) is shown to be 2.7522e-15. With
a truncated G of only the 51 largest entries while setting the
rest of G’s elements to be zero based on a truncation criterion
of 3%, the error of (64) is shown to be 2.63%. Once again,
it demonstrates that G can be truncated based on a desired
accuracy, and the resulting Zt,s is low rank.
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Fig. 5. Normalized magnitude of the entries of diagonal matrix G for two
horizontally separated plates.

Fig. 6. Comparison between the matrix generated from the proposed
approach and the original matrix for the second plate example (Imaginary
part the 800th column of Z).

C. Example 3

We also consider the same two plates as simulated in the
above example but displaced normally by 2A. Thus, one plate
is located at (0 ≤ x ′ ≤ A, 0 ≤ y ′ ≤ A, z′ = 0), while the
other is at (0 ≤ x ≤ A, 0 ≤ y ≤ A, z = 2A). This is a
3-D configuration of sources and observers. It is clear that
�r − �r ′ = (x − x ′, y − y ′, h) with (x − x ′) ∈ (−A, A) and
(y − y ′) ∈ (−A, A). The other parameters are the same as
used in the above example.

The Fourier transforms shown in (14) for sources, obser-
vations, and Green’s function are performed in a common
range of (a1, a2) = (−A, A), and (b1, b2) = (−A, A), and
(0, h = 2A). Different from (68), now the original matrix
becomes

Zt,s
orig,i j = e

− j k0

√
(xi−x ′

j )
2+(yi−y′

j )
2+h2

4π
√

(xi − x ′
j )

2 + (yi − y ′
j )

2 + h2

2. (69)

With a space step of 
 = 1/40λ, the dimension of B and
F is both 6400 by 1600, and that of G is 6400 by 6400.
In Fig. 6, we plot the imaginary part of a randomly selected
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Fig. 7. Normalized magnitude of the entries of diagonal matrix G for two
vertically separated plates.

column (column 800) of the matrix obtained from the proposed
approach in comparison with that of the original matrix shown
in (69). An excellent agreement can be observed. In addition,
we compute (64) to assess the entire matrix error, which is
shown to be 8.0467e-15. In Fig. 7, we plot the normalized
magnitude of G’s entries sorted in a descending order, which
again reveals the compressibility of G. We used 1% as a
truncation criterion, and obtained a truncated G matrix of
size 33. With the truncated G, we recover the matrix based
on (62). The error of (64) is shown to be 1%. We also repeat
the same study by using a space step of 
 = 1/10λ. In this
case, the dimension of B and F becomes 400 by 100, and that
of G is 400 by 400. With the complete G, the entire matrix
error of (64) is 1.4756-15. With a truncated G based on 1%
criterion, only the 45 largest entries need to be kept, yielding
the error of (64) 0.78%.

In fact, performing a Fourier transform on a convolution
integral is the technique underlying existing FFT-based IE
solvers. Therefore, in addition to a theoretical proof developed
in Section II-C, we also numerically prove that one can use
G’s rank to analytically analyze the rank of an IE operator
irrespective of the operator kind, object shape, and electric
size.

IV. NUMERICAL VALIDATION OF THE RANK’S

DEPENDENCE WITH ELECTRIC SIZE

In Section II-D, we theoretically deduce the rank’s growth
rate with electric size from the Fourier transform of Green’s
function. In this section, we numerically validate our theoreti-
cal findings of the rank by performing an SVD to find out the
minimal rank required by a given accuracy.

A. Two Separated Lines

The first example simulated has a 1-D distribution of sources
and observers. It is the same as the example described in
Section III-A, but the side length A is increased from 1λ
to 100λ to study the rank’s dependence with electric size.
The dense matrix that characterizes the interaction between
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Fig. 8. Rank study of the interaction between two separated lines. (a) Singular
value distributions for 100 different electric sizes from 1 to 100 wavelengths.
(b) Rank for two accuracy requirements versus electric size. (c) Normalized
Fourier coefficients of Green’s function for 100 different electric sizes from
1 to 100 wavelengths.

the source line and the observation line has the following
elements:

Zi j = e− j k0|xi−x ′
j |

|xi − x ′
j |

. (70)

The mesh density chosen is ten segments per wavelength.
After constructing Z based on (70), we perform an SVD on Z.

Fig. 9. Rank versus electric size generated with three different mesh densities.

In Fig. 8(a), we plot the normalized singular values sorted in
a descending order obtained from 1λ to 100λ versus singular
value index. There are 100 lines in this figure. However, they
all overlap with each other above 10−14 accuracy. The singular
values below 10−14 are more than 14 orders of magnitude
smaller than the largest singular value. Because of machine
precision, these singular values cannot be accurately obtained
by computers, thus they differ from one simulation to the
other simulation, and hence cannot be used to study the
rank’s growth with electric size. In Fig. 8(c), we plot the
normalized Fourier coefficients of Green’s function from 1 to
100 wavelengths. There are also 100 lines in this figure, which
all overlap with each other. It is clear that the dependence of
the rank with electric size determined from SVD agrees well
with that found from the Fourier transform of Green’s function.

In Fig. 8(b), we plot the rank of Z versus electric size for
two different accuracy settings. The rank is determined by the
number of singular values that satisfy the following criterion:

σi

σ1
≥ ε (71)

where σi is the i th singular value, σ1 is the largest singular
value, and ε is the accuracy requirement, which is chosen as
10−4, and 10−8, respectively. It is clear that the rank is a
constant regardless of electric size. This is not a surprising
result since it is already shown by Fig. 8(a). As the singular-
value lines for different electric sizes are all on top of each
other, for a given accuracy, the resulting horizontal index, thus
rank is the same for all electric sizes. Thus, the theoretical
result shown in (56) is verified.

B. Two Configurations of a Plate-Plate Interaction

In the second example, we consider two separated plates
in two configurations. In one configuration, the two plates are
located in the same plane; whereas in the other configuration;
one plate is normally displaced from the other plate. The two
examples are the same as the two example described in
Section III-B and -C, respectively. The only difference is that
instead of having a fixed A, we increase A from 1λ to 60λ to
study the rank’s dependence with electric size.
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(a) 

(b) 

Fig. 10. Rank study of the interaction between two separated plates in two
configurations. (a) Singular value distributions for 20 different electric sizes
from 1 to 40 wavelengths with a step of two wavelengths (Red solid: Case 1
and Blue dashed: Case 2). (b) Rank versus electric size for both configurations
required by different accuracy criteria.

We first study the effect of mesh density on the rank’s
growth with electric size. As SVD is computationally inten-
sive, it does not permit a fine discretization for studying a large
electric size. If the effect of mesh density on the rank’s growth
rate is little, we can use a coarser mesh and, thereby a smaller
matrix to study the rank for the same electric size. In Fig. 9,
we plot the rank determined with ε = 10−4 for this example
versus electric size for three different mesh densities: λ/2,
λ/3, and λ/5, respectively. As can be seen from this figure,
the three lines are almost on top of each other. Therefore, in
this and the example shown in next subsection, we use λ/2 as
the mesh criterion so that larger electric sizes can be studied
with SVD.

(a)

(b) 

Fig. 11. Rank study of the interaction between two separated spheres.
(a) Singular value distributions for 20 different electric sizes from 1 to 40
wavelengths with a spacing of two wavelengths. (b) Rank for four accuracy
requirements versus electric size.

In Fig. 10(a), we plot the normalized singular values
obtained from 1λ to 40λ versus singular value index. There
are two sets of lines in this figure. The solid red lines
correspond to the in-plane configuration of the two plates,
whereas the dashed blue lines are the singular values of the
normally displaced plate configuration. Each set has 20 lines
representing singular values from 1λ, 3λ, 5λ, . . ., to 39λ,
respectively, from left to right. It can be seen clearly that
different from the 1-D case shown in the first example, when
electric size increases, the entire singular value distribution
is expanded to the right in both plate configurations, thus
requiring more singular values and hence a larger rank to reach
the same accuracy. However, for any given accuracy within
machine precision, the rank for both configurations is shown
to be less than the matrix size, which is the largest singular
value index, as can be seen from Fig. 10(a). Therefore, the
matrix has a low-rank property.

In Fig. 10(b), we plot the rank versus electric size of
A from 1λ to 60λ for both configurations of the plates.
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Fig. 12. Rank generated by ACA+ and SVD with respect to electric size for a variety of object shapes. (a) Plate. (b) Cylinder. (c) Open cone. (d) Cone
sphere. (e) Sphere.

Case 1 represents the case where the two plates are on the same
plane, while Case 2 is the other configuration. For Case 2, we
plot the rank versus electric size for four different accuracy
settings from ε = 10−12, 10−10, 10−8, to 10−4. The scaling
of the rank is much closer to the linear scaling than to the
quadratic scaling, both of which are shown in Fig. 10(b) for
reference. It can also be seen that the scaling rate for a lower-
order accuracy setting is larger than that of a higher-order
accuracy setting. As for Case 1, the rank is shown to grow
slowly with electric size. The growth rate is less than linear.
It is clear that the rank required by Case 2 is larger than that
in Case 1 for the same accuracy. This can be easily understood
by comparing (69) with (68). The representation of Green’s
function in (69) requires more Fourier modes than that in
(68) because h is involved, and its electric size increases. In
Case 1, the Green’s function for the two-plate interaction is
solely determined by the 2-D x–y plane information, whereas

in Case 2, the Green’s function is contributed by the third
dimension. Therefore, the growth rate of the rank with electric
size for Case 1 is still governed by a 2-D-based growth rate
that is less than linear, while the rank of Case 2 is closer to a
3-D-based rank.

C. Discussion

From Fig. 10(a), for case 2, it can be seen that there is fairly
wide a range of index i within which the normalized singular
values are quite flat. After this range, the normalized singular
values drop rapidly. This phenomenon has been predicted
by (35). The wavenumbers closest to k2

0 have the largest
singular values, and these wavenumbers distribute themselves
on a spherical shell. If one stops at this range to observe the
rank, he will get a quadratic growth with the electric size.
However, the resultant error is very large. In other words,
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by only keeping Fourier modes distributed on a spherical
shell closest to k2

0, the resultant error is too large to use.
Therefore, one has to incorporate also those modes that have
a certain distance away from k2

0, i.e., inside a volume of a
spherical ring with inner radius of k0 and outer radius of
k0 +
k as shown by (52), to obtain an accurate representation
of the integral operator. The height of this volume, 
k , is
inversely proportional to frequency asymptotically. That is
why the resultant rank is linearly proportional to frequency.
In addition, one may observe the growth rate with electric
size changes if different accuracy requirements are set, as
shown by Fig. 10(b). It is also higher than linear when the
accuracy setting is low. That is because the growth rate has
not converged yet. One can increase the accuracy setting until
the growth rate does not increase any more. Upon convergence,
the growth rate is linear, which is proved by the theoretical
bound of 
k .

D. Two Separated Spheres

In the third example, we consider two separated spheres.
One sphere is centered at the origin with diameter A, and the
other is centered at (2A, 0, 0) with the same diameter. The λ
is 1 m, and A is increased from 1λ to 40λ. The mesh density
is λ/2. The sources and observers are located on the spherical
surface. The matrix corresponding to the source-observation
interaction has the following element:

Zi j = e− j k0|�ri −�r ′
j |

|�ri − �r ′
j |

. (72)

The matrix size, which is the number of sources (column
dimension of the matrix) as well as the number of observers
(row dimension of the matrix), ranges from 13, 315, 1018,
2124, to 17 204 when the electric size of the sphere diameter
A increases from 1λ to 40λ. The SVD is then used to compute
the rank of matrix Z for a given accuracy. In Fig. 11(a),
we plot the normalized singular values obtained from 1λ
to 40λ with a spacing of 2λ versus singular value index.
There are 20 lines in this figure. The singular value lines are
shown to expand to the right when electric size increases.
In Fig. 11(b), we plot the rank of Z versus electric size
for four different accuracy settings. The linear scaling line
is also plotted for reference. As can be seen, the growth rate
of the rank with electric size agrees very well with linear
scaling.

E. Suite of Electrically Large Examples

To further verify the proposed theoretical analysis, we
numerically determined the rank of a plate, cylinder, open
cone, cone sphere, and sphere, resulting from a surface-based
electric field integral operator by ACA+ [1], [8] and SVD
from small to very large electric sizes. A detailed description
of this scheme can be found from [5] and Section IV-A in [6].
Basically, we first use ACA+ to obtain a factorized low-rank
form, and then perform an SVD on the factorized form to
find out the minimal rank required by accuracy. The ACA+
is used because a direct SVD is very expensive when matrix

size is large. For all these examples at all the electric sizes
we simulate, a mesh size of 0.1λ is used. The RWG bases are
used to expand unknown current and Galerkin scheme is used
for testing. By an H-matrix partition scheme (Section II-D
in [6]), we partition the dense system matrix into admissible
blocks and inadmissible blocks level by level. The admissible
blocks are blocks that satisfy max{diam(�t ), diam(�s)} ≤
η dist(�t ,�s), where η = 1 is used. In an H matrix, the
admissible blocks are represented by low-rank matrices, while
inadmissible blocks are stored in a full matrix format. The
leafsize used for the multilevel tree construction in the H-
matrix partition is 32. The error used in ACA+ and SVD
truncation is 10−4. We then find the maximal rank kmax
among all the admissible blocks at all tree levels for each
example simulated. It is clear that kmax corresponds to the
rank of the matrix block that has the largest electric size in
each example. In Fig. 12, we plot the kmax versus electric
size for all of the five different objects. As can be seen
clearly, kmax is O(ka). Thus, it verified the proposed theoretical
analysis.

V. CONCLUSION

A theoretical study was conducted in this paper to analyze
the minimal rank of integral operators encountered in electro-
magnetic analysis and its dependence with electric size for a
prescribed error bound. We highlighted the fact that the rank
generated by SVD is the minimal rank required by accuracy.
The SVD-based low-rank approximation does not rely on the
separation of observation and source coordinates for separated
geometry blocks, while methods that separate observers and
sources such as interpolation and plane wave expansion-based
methods do not lead to a minimal rank approximation of the
electrodynamic kernel. Therefore, the rank obtained from these
methods is observed to scale with electric size at a much higher
rate.

The SVD analysis is numerical, which prevents a study of
the rank for an arbitrarily large electric size. By recognizing
the relationship between an SVD analysis and a Fourier
analysis in a linear and shift-invariant system, we successfully
developed an analytical approach to analyze the rank of an
integral operator, and revealed the relationship between the
rank and the electric size for satisfying a prescribed accuracy.
The rank of the interaction between two separated geometry
blocks was shown to scale linearly with the electric size of
the block diameter in a general 3-D problem. As long as the
rank is smaller than the matrix dimension, the matrix is low-
rank. We thus theoretically proved the existence of an error
bounded low-rank representation of electrodynamic integral
operators irrespective of electric size and object shape. In
addition, numerous results were generated to validate both the
proposed analytical approach for analyzing the rank and the
findings of this paper on the rank’s asymptotic dependence
with electric size.

The proof developed in this paper provided a theoretical
basis for employing and further developing low-rank matrix
algebra for accelerating the integral-equation-based computa-
tion of integrated circuits and systems from small to very large
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electric sizes. It is also applicable to the analysis of other
engineering problems, the physical phenomena of which are
governed by Maxwell’s equations.
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