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Abstract. The method of asymptotic waveform evaluation (AWE) is applied to the 
combined-field integral equation (CFIE) to achieve fast and accurate frequency-sweep 
calculations of electromagnetic scattering and radiation by three-dimensional conducting 
and dielectric objects. The employment of the CFIE eliminates the interior resonance 
problem suffered by both the electric-field integral equation and the magnetic-field integral 
equation. It is shown that the use of AWE can speed up the calculation by more than 
an order of magnitude. It is also shown that when combined with the complex frequency 
hopping technique, the AWE method can produce an accurate solution within a prespecified 
frequency band. Numerical examples are presented to demonstrate the performance of the 
proposed method. 

1. Introduction 

Many electromagnetic applications require the cal- 
culation of the response of a device over a wide fre- 
quency band rather than at one or a few isolated 
frequencies. For example, for radar target recog- 
nition, one has to compute the radar cross section 
(RCS) of a target over a wide frequency band to 
generate range profiles and synthetic aperture radar 
(SAR) images. For the analysis of antennas, espe- 
cially wideband antennas, one has to calculate the 
input impedance at many frequency points. Such 
calculations can be very time consuming when a tra- 
ditional frequency domain numerical method is used 
because a set of algebraic equations must be solved 
repeatedly at many frequency points. The number of 
algebraic equations is proportional to the electrical 
size of the problem and can be large for most appli- 
cations. Therefore there is an urgent need to find 
efficient solution techniques for determining the fre- 
quency response over a frequency band. Some efforts 

Copyright 1999 by the American Geophysical Union. 

Paper number 1999RS900068. 
0048-6604/99/1999RS900068511.00 

in this direction include the methods of model-based 

parameter estimation (MBPE) [Burke et at., 1989; 
Kottapalli et al., 1991] and impedance matrix inter- 
polation [Newman, 1988], both of which have been 
applied to the method of moments. 

A technique similar to the MBPE is the method 
of asymptotic waveform evaluation (AWE) [Pittage 
and Rohrer, 1990], which was originally developed 
for high-speed circuit analysis. In AWE, the transfer 
function of a circuit is expanded into a series, and 
the circuit model is then approximated with a lower- 
order transfer function by matching moments. There 
have been many papers published on AWE, and it is 
beyond the scope of this paper to give a complete 
review of the literature. The reader is referred to 

Chiprout and Nakhla [1994] for a detailed description 
of the method. A good tutorial article [Smith et at., 
1997] on AWE is also available for electromagnetics 
researchers. The AWE method has recently been ap- 
plied to the finite element and finite difference anal- 
ysis of electromagnetic problems [Yuan and Cendes, 
1993; Kotbehdari et at., 1996; Liet at., 1996; Gong 
and Votakis, 1996; Polstyanko et at., 1997; Zhang and 
Jin, 1998; Bracken et at., 1998; Zhang and Lee, 1998]. 
In these applications, the implementation of AWE is 
straightforward since the resultant matrix equation 
has a simple frequency dependence. (In the limited 
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applications of AWE to integral equations, the de- 
pendence of the scalar Green's function on frequency 
is often neglected in order to arrive at a simplified fi- 
nal numerical system [Bracken et al., 1998].) 

A very useful solution technique for electromag- 
netic scattering and radiation by conducting and di- 
electric objects is the method of moments (MOM), 
which solves a surface integral equation (SIE) for the 
electric current on the surface of an object. This 
method is advantageous because (1) it limits the un- 
known to the current on the surface of an object, and 
(2) it satisfies the radiation condition via the Green's 
function. However, the method results in a dense 
matrix that is computationally expensive to generate 
and invert. Since this matrix depends on frequency 
in a complex manner, one has to repeat the calcula- 
tions at each frequency to obtain the solution over a 
band of frequencies. Recently, Reddy et al. [1998] ap- 
plied AWE to the MOM solution of the electric-field 
integral equation (EFIE) for the fast computation of 
the RCS of a perfect electric conductor (PEC) ob- 
ject. They showed that the AWE method requires 
less CPU time to obtain a frequency response and it 
can speed up the RCS calculation by a factor of 3, 
compared with the direct calculation over a band of 
interest. 

In this paper, the AWE method is applied to the 
combined-field integral equation (CFIE) to achieve 
fast and accurate frequency-sweep calculations of 
electromagnetic scattering and radiation by three- 
dimensional (3-D) PEC and dielectric objects. The 
employment of the CFIE eliminates the interior res- 
onance problem suffered by both the EFIE and the 
magnetic-field integral equation (MFIE). It is shown 
that the use of AWE can speed up the calculation 
by more than an order of magnitude. It is also 
shown that when combined with the complex fre- 
quency hopping (CFH) technique, the AWE method 
can produce an accurate solution within a prespec- 
ified frequency band. Numerical examples are pre- 
sented to demonstrate the performance of the pro- 
posed method. 

2. Formulation 

Consider an arbitrarily shaped 3-D conducting ob- 
ject illuminated by an incident field E i (r). The EFIE 
is given by 

/s 1 Ei h x •(r, rt) ß J(rt)dr •- j-•-• h x (r) (1) 

on $, where $ denotes the conducting surface of 
the object, • is an outwardly directed normal, and 
G(r, r •) is the well-known free-space dyadic Green's 
function, given by 

- i + 
½-jklr-r'l 

g(r,r') -- 4xlr_ r,i, (2) 
_ 

with I being the unit dyad. Also, J(r •) denotes the 
unknown surface current density at a point r • on the 
surface S, k is the free-space wavenumber, and • is 
the free-space wave impedance. For a closed con- 
ducting object, the MFIE is given by 

•J(r)-h x Vg(r,r') x J(r')dr' - hxHi(r) (3) 
on S, where r approaches S from the outside. When 
r - r •, the integral in (3) is interpreted in the princi- 
pal value sense. The CFIE [Mautz and Harrington, 
1978; Huddleston et al., 1986] for a closed conduct- 
ing object is simply a linear combination of the EFIE 
and the MFIE and is of the form 

1 

a EFIE + (1 - a) • MFIE, (4) 
where • is the combination parameter ranging from 
0to 1. 

To solve the CFIE numerically, the conducting sur- 
face S is subdivided into small triangular elements 
and the current on the surface is expanded using the 
Rao-Wilton-Glisson (RWG)basis function fn(r)[Rao 
et al., 1982]' 

N 

J(r)- (s) 
n=l 

where N is the number of unknowns. Applying 
Galerkin's method to (4) results in a matrix equa- 
tion 

- (6) 
in which the impedance matrix Z and vector V have 
the elements given by 

-- 

•/fTm//T• [fm(r) 'fn(rt)-- • V'fm(r)V'fn(rt)] 
X g(r, r•)dr •dr 
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Figure 1. Radar cross section (RCS) frequency response 
of a cube with a side length of I cm from 2 to 22 GHz. 
The asymptotic waveform evaluation (AWE) result is ob- 
tained using one frequency expansion point at 12 GHz 
with L -- 4, M -- 3. 

1{1 4-(1 - a) •-• • fro(r)' f•(r)dr 

- /ffm(r) x ffVg(r,r') x 
- 

I /f [aEi (r) + (1 - a)r/h x H i(r)]- fm (r)dr 

(7) 

(s) 

where Tm and T• denote the support of fm and f•, 
respectively. 

To obtain the solution of (6) over a wide frequency 
band, we approximate I(k) with a reduced-order ra- 
tional Padd function: 

I(k) y]iL=o ai(k -- ko) i - , (9) 

in which k0 is the expansion point. To determine 
the L + M + I unknown coefficients in (9), one can 
sample I(k) at L + M + I frequency points to con- 
struct a set of linear equations to solve for ai and 
bj. However, this requires the solution of the matrix 
equation at the L + M + I frequency points, which 
is rather inefficient. 

The AWE method determines ai and bj by first 
expanding I(k) into a Taylor series: 

L+M 

I(k) - • m•(k - ko) •. (10) 
n----O 

Substituting this into (6), expanding the impedance 
matrix Z(k) and the excitation vector V(k) into a 
Taylor series, and finally matching the coefficients of 
the equal powers of k- k0 on both sides yield the 
recursive relation for the moment vectors: 

m0- 

m• - Z -•(k0) n! 

(11) 

_ •. Z(i) (k0)m•-i] i--1 

n >_ 1, (12) 

where Z (i) denotes the ith derivative of Z(k) and like- 
wise V © denotes the nth derivative of V(k). These 
derivatives are determined analytically in this work 
(see the appendix). 

Once the moment vectors are obtained, the un- 
known coefficients in the rational function are calcu- 

lated by substituting (10) into (9), multiplying (9) by 
the denominator of the Pad6 expansion, and match- 
ing the coefficients of the equal powers of k-k0. This 
leads to the matrix equation 

mL mL--1 mL-2 ß ß ' mL--M+I 

TIZ L + I TIlL TIZ L --1 ' ß ' TIZ L -- M + 2 

TIZ L + 2 m L + l TIZ L ß ß ß TIZ L -- M + 3 

ß 

mL+M-1 mL+M--2 mL+M--3 ß '' mL 

Table 1. CPU Time Comparison for Radar Cross Section Calculations for the 
Perfect Electric Conductor Cube 

AWE Method Direct Method 

(One Expansion Point) (21 Frequency Points) Speedup 

This paper 112.9 s 2,319.6 s 20.6 
Reddy et al. [1998] 2,875 s 7,434 s 2.6 

AWE, asymptotic waveform evaluation. 
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Figure 2. RCS frequency response of a sphere with a 
radius of 0.318 cm from 10 to 50 GHz. The AWE result 

is obtained using two frequency expansion points at 20 
and 40 GHz with L - 4, M - 3. 

bl mL+l 
b2 mL+2 

x b3 -- _ mL+3 
ß , 

ß 

bM mL+M 

(•3) 

which can be solved for bj. With bj, the unknown 
coefficients ai can then be calculated as 

ai- Zbjmi-j 0 _< i _< L. (14) 
j--0 

Clearly, with AWE the impedance matrix Z(k) is 
inverted only once, which is the main reason for the 
efficiency of the method. 

With AWE, one obtains a solution that is accurate 
at frequencies near the point of expansion. The ac- 
curacy of the solution decreases when the frequency 

moves away from the point of expansion. In many 
practical applications, one is often required to find 
the solution over a specified frequency band. In such 
cases, one point of expansion may not be able to yield 
an accurate solution over the entire band, and multi- 
ple points of expansion may become necessary. These 
points can be selected automatically using the CFH 
technique [Kolbehdari et al., 1996], which can be re- 
alized with a simple binary search algorithm [Zhang 
and Jin, 1998], as described below. 

Given a frequency band Ill, f2] and the error toler- 
ance e for the desired quantity, which is the RCS rr in 
this paper, the following steps can be used to select 
the points of expansion to generate a solution of a de- 
sired accuracy within the given frequency band. (1) 
Let fmin -- fl and fmax -- f2. (2) Apply AWE at fmin 
and fmax and obtain rrl (f) and a2(f). (3) Choose 
fmid -- (fmax + fmin)/2 and calculate rr•(fmid) and 
rr2(fmid). (4) If Irr•(fmid)- rr2(fmid)l < e, stop. (5) 
Otherwise, apply AWE at fmid and repeat the steps 
above for the subregions [fmin, fmid] and [fmid, fmax]- 

Note that in the binary search algorithm described 
above, one can also use more points to check the ac- 
curacy of the solution. For example, one can choose 
two points at fcompl = fmin -I-0.4(fmax- frnin) and 
fcomp2 ---- fmin -I-0.6(fmax- fmin) and check the accu- 
racy at these two points. This can reduce the proba- 
bility of false termination of the binary search. The 
implementation described here is one of the two ap- 
proaches of the CFH technique. The other approach 
constructs one rational transfer function over the en- 

tire frequency band by matching the moments calcu- 
lated at different frequency points. As pointed out 
by Kolbehdari et al. [1996], the approach employed 
in this work is generally more efiqcient for generating 
frequency responses. 

3. Numerical Examples 

To demonstrate the efficiency and accuracy of the 
proposed method, a number of numerical examples 

Table 2. CPU Time Comparison for Radar Cross Section Calculations for the 
Perfect Electric Conductor Sphere 

AWE Method Direct Method 

(Two Expansion Points) (41 Frequency Points) Speedup 

This paper 234.4 s 2,982.9 s 12.7 
Reddy et al. [1998] 5,648 s 16,032 s 2.8 
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Table 3. CPU Timings for Radar Cross Section Calculations on a Digital Personal 
Workstation 

AWE Method Direct Method 

Problem Expansion Points CPU Time Frequency Points CPU Time Speedup 

Figure 3 I 10.6 s 61 341.1 s 32.3 
Figure 4 7 1,989.3 s 84 23,220 s 11.7 

are considered. Before presenting some of these ex- 
amples, we note that the interior resonance problem 
suffered by the EFIE and the MFIE is well known, 
and therefore there is no need to demonstrate the 

problem here. In fact, our simulation showed indeed 
that when the expansion point of AWE is close to 
the frequency of interior resonance, both the EFIE 
and the MFIE can exhibit significant errors, whereas 
the CFIE solution is always more accurate. 

The first two examples illustrate the performance 
of the AWE implemented in this work. These two 
examples are the same as those employed by Reddy 
et al. [1998], who have provided detailed information 
on the CPU time for their implementation. To ren- 
der the comparison meaningful, we carried out the 
computation using the same type of computer (SGI- 
Indigo 2 with 250-MHz IP22 processor and 64-Mb 
memory). The first scatterer is a 1 cm x 1 cm x 1 
cm PEC cube with broadside incidence. The num- 

ber of unknowns is 576. With a frequency step of 
1 GHz, it takes the direct method 2319.6 s to ob- 
tain the solution from 2 to 22 GHz. With one ex- 

pansion point and a seventh-order Taylor expansion 
(L - 4, M - 3), the AWE produces an accurate so- 
lution with 0.1-GHz increments over the entire band 

in 112.9 s, which is a speedup of 20.6. The result 
is shown in Figure 1, and a comparison of the CPU 
time is given in Table 1, which shows clearly that our 
method is significantly faster than the one by Reddy 
et al. [1998] even though our implementation of the 
CFIE requires calculation of more integrals than the 
implementation of only the EFIE. 

The second scatterer is a PEC sphere with a radius 
of 0.318 cm. With a frequency step of 1 GHz, it takes 
the direct method 2982.9 s to obtain the solution 

from 10 to 50 GHz. With two expansion points and a 
seventh-order Taylor expansion (L = 4, M = 3), the 
AWE produces an accurate solution with 0.1-GHz 
increments over the entire band in 234.4 s, which 
is a speedup of 12.7. The smaller speedup in this 

case is due to the fact that the AWE solution actu- 

ally extends beyond the band of comparison, which 
is obvious in Figure 2. The number of unknowns is 
432 at 20 GHz and 768 at 40 GHz. A comparison of 
the CPU time is given in Table 2. 

Next, the relation between the bandwidth of AWE 
and its order is demonstrated using the sphere of ra- 
dius 0.318 cm. In the above examples, the order of 
AWE is seven. When this order is increased to 10, 
the AWE produces an accurate solution from 10 to 
70 GHz using only one expansion point at 40 GHz. 
The CPU time is only 10.6 s on a Digital personal 
workstation (500-MHz Alpha 21164 processor), com- 
pared with 341.1 s using the direct method on the 
same computer. The speedup is given in Table 3, 
and the result is shown in Figure 3. 

The next example is to demonstrate the perfor- 
mance of the CFH technique. The scatterer is the 1- 
m-long NASA almond [Woo et al., 1993]. It takes the 

2 
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70 

Figure 3. RCS frequency response of a sphere with a 
radius of 0.318 cm from 10 to 70 GHz. The AWE result is 

obtained using one frequency expansion point at 40 GHz 
with L -- 5, M ---- 5. 
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direct method 23,220 s on a Digital personal work- 
station to calculate the RCS at 84 frequency points 
from 0 to 1.7 GHz. The number of unknowns varies 

from 1560 to 2148 during the frequency sweep. With 
the AWE method, it takes only 1989.3 s to calculate 
the RCS over the entire band using seven expansion 
points. The error tolerance e in RCS was chosen to be 
very small (0.2 dB) in order to obtain a very smooth 
curve (Figure 4). This choice results in the relatively 
small speedup of 11.7. With a slightly larger error 
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Figure 4. RCS frequency response of the 1-m-long 
NASA almond from 0 to 1.7 GHz. (a) VV polarization 
with 0inc __ 90 ø and •)inc • 0 o ' (b) HH polarization with 
0 inc • 45 ø and •)inc • 45 o. 

tolerance, the number of expansion points can be re- 
duced, leading to a larger speedup. The results pre- 
sented in Figure 4 show the RCS for two different 
incidence angles and two different polarizations. 

The AWE method can also be implemented to 
compute the input impedance of antennas and the 
mutual coupling between antennas. The basic for- 
mulation is similar to what is described in section 

2. However, when a wire antenna is attached to a 
conducting body, one has to design a model to sim- 
ulate the current flow at the junction. To demon- 
strate the usefulness of the AWE method, we imple- 
mented it into the MOM code described by Chao 
[1998] and considered two antenna configurations. 
These configurations were chosen because they have 
been analyzed previously by Georgakopoulos [1998] 
and Georgakopoulos et al. [1998] and the measured 
data are available for comparison. The first configu- 
ration consists of two inverted-L antennas on a finite 

ground plane (Figure 5) and the second consists of 
two loop antennas on a finite ground plane (Figure 
6). In both cases, the agreement between the calcu- 
lated and measured results is very good. 

In addition to PEC objects treated above, the 
AWE method is also applicable to dielectric objects. 
A formulation that is widely used for scattering by a 
dielectric object is the so-called PMCHW [Mautz and 
Harrington, 1979], named after Poggio and Miller 
[1973], Chang and Harrington [1977], and Wu and 
Tsai [1977], who originally developed the formula- 
tion. In this formulation, the EFIE for the field in- 
side the dielectric object is combined with the EFIE 
for the field outside the object to form a combined 
equation. Similarly, the MFIE for the field inside the 
object is combined with the MFIE for the field out- 
side the object to form another combined equation. 
These two equations are then solved by the MOM 
in a manner similar to the one described in section 

2. This formulation is found to be free of interior 

resonances and yields accurate and stable solutions. 
Figure 7a shows the backscatter RCS of a dielectric 
sphere having radius 0.5 cm and relative permittiv- 
ity er -- 2.56 from 0 to 30 GHz. With a frequency 
step of 0.5 GHz, it takes the direct method 21,095 
s to obtain the solution on a Digital personal work- 
station. In contrast, the AWE method produces the 
solution with 0.01-GHz increments in 1891 s on the 

same computer. Figure 7b shows the similar results 
for a I cm x I cm x I cm dielectric cube with broad- 

side incidence. 
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4. Concluding Remarks 

In this paper, the AWE method in conjunction 
with the CFH technique was applied to the solution 
of the CFIE to achieve fast and accurate frequency- 
sweep calculations of electromagnetic scattering and 
radiation by 3-D PEC and dielectric objects. The 
employment of the CFIE eliminates the interior res- 

onance problem suffered by both the EFIE and the 
MFIE. It was shown that the use of AWE can speed 
up the calculation by more than an order of magni- 
tude. It was also shown that when combined with 

the CFH technique, the AWE method could produce 
an accurate solution within a prespecified frequency 
band. Numerical examples were presented to demon- 
strate the performance of the proposed method. 

The major drawback of the AWE method is the in- 
creased memory requirements. To implement AWE, 
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Figure 6. The S parameters of two loop antennas on a 
finite ground plane. (a) $xx. (b) $x2. 
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Figure 7. (a) RC$ frequency response of a dielectric 
sphere with a radius of 0.5 cm and a relative permittivity 
of er = 2.56. (b) RC$ frequency response of a dielectric 
cube with a side length of I cm and a relative permittivity 
of er = 2.56. 

one has to store not only the impedance matrix but 
also the derivatives of the impedance matrix. This 
imposes a burden on computer resources for elec- 
trically large problems. It was suggested by Reddy 
et al. [1998] that this problem could be overcome 
by storing the derivative matrices out of core since 
they are required only for the matrix-vector multi- 
plication. We have tested this approach and found 
that it could lead to such an increase in the solu- 

tion time that a speedup would be insignificant. A 

better solution is to evaluate the matrix-vector mul- 

tiplication directly, without generating the derivative 
matrices, using either the adaptive integral method 
(AIM) [Bleszynski et al., 1996; Wang et al., 1998] or 
the fast multipole method (FMM) [Coifman et al., 
1993]. This is possible because the derivatives with 
respect to frequency do not alter the translational 
invariance of the matrices. With the AIM, the mem- 
ory requirements and computational complexity for 
the matrix-vector multiplication can be reduced from 
O(N 2) to O(N 1'5) and O(N 1'5 log N), respectively. 
With the FMM, these can be reduced to O(Nl'5). If 
the more complicated multilevel FMM [Song et al., 
1997] is employed, both the memory requirements 
and computational complexity can be reduced fur- 
ther to O (N log N). 

Appendix' Derivative Formulas 

The integrand in the EFIE can be written in the 
form 

where a is a constant. Its nth derivative is given by 

n--1 

f(•)(k)- Zj i-1 (-1)nn!ri-2 i--1 (i -- 1)!k n-i+• e-J•r 
nUn(_j)n+Xrn-2½-jkr(anU•2 ) 

I ak) +(--j)nrn-Xe-jkr(• -- . 
A carefully designed recursive formula can allow the 
calculation of any derivatives. The integrand in the 
MFIE can be written in the form 

g(k) - (1 + jkr) e-J• r 3 

whose nth derivative is given by 

g(•) (k) - je -jkr (-jr) •-3 (1 + jkr - n) . 
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