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Symmetric Positive Semidefinite FDTD
Subgridding Algorithms for Arbitrary Grid
Ratios Without Compromising Accuracy

Jin Yan, Member, IEEE, and Dan Jiao , Fellow, IEEE

Abstract— Instability has been a major problem in finite-
difference time-domain (FDTD) subgridding methods. Reci-
procity has been proposed to overcome the problem but with
limited success in producing a symmetric positive semidefinite
(SPD) system without compromising accuracy. In this paper,
we algebraically derive both 2- and 3-D FDTD subgridding
operators, which are SPD by construction, and independent of the
grid ratio. Such operators have only nonnegative real eigenvalues,
and hence the stability of the resulting explicit time marching
is guaranteed. The 3-D operator, the algorithm of which is also
applicable to 2-D analysis, further permits the use of a local time
step, thus achieving a natural subgridding in both space and
time. In addition, the interpretation of the proposed operators in
the original FDTD formulation is also provided. Interestingly,
not only interface unknowns but also subgrid unknowns are
generated in a different way, as compared to the original FDTD,
to simultaneously obtain an SPD system and to ensure accuracy.
Extensive numerical simulations have demonstrated the accu-
racy, stability, and efficiency of the proposed new subgridding
algorithms.

Index Terms— Finite-difference time-domain method (FDTD),
positive semidefinite, spatial subgridding, stability, subgridding,
symmetric, temporal subgridding.

I. INTRODUCTION

SUBGRIDDING is an effective means to locally refine the
grid in a finite-difference time-domain (FDTD) simula-

tion. This is especially useful when simulating a multiscale
problem. In literature, many FDTD subgridding methods have
been developed, such as the variable step size method [1],
the mesh refinement algorithm [2], the multigrid methods [3],
and subgridding schemes with separated temporal and spatial
interfaces [4]. It has been observed that stability and accuracy
are two major challenges, which are also two competing
factors. One can always develop very accurate interpolation
techniques to obtain the field unknowns at the interface
between a subgrid and a base grid. However, the stability
of the resultant time marching cannot be guaranteed. This
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is because the system matrices resulting from these interpo-
lation schemes are often unsymmetrical. An unsymmetrical
matrix can support complex-valued and even negative eigen-
values, which will render an explicit FDTD time marching
absolutely unstable. A proof on this point can be found
in [5]. Various approaches have been proposed to remedy this
issue [3], [6]–[8]. To ensure stability, enforcing reciprocity of
the fields has been proposed [9]–[11]. However, it is difficult
to preserve the symmetry of the original FDTD for general
subgrid arrangements and grid ratios, without compromis-
ing accuracy. In an intelligently designed method like [4],
the subgrid must also be arranged in a special way, certain
grid ratios should be chosen, the H is not centered in the
E loop, the E may not be sampled from the edge center,
etc., in order to ensure the resultant numerical system to be
symmetric.

In this paper, we propose a systematic approach to make
FDTD subgridding symmetric positive semidefinite (SPD)
regardless of the grid ratio and arrangement. We first rewrite
the FDTD into a single-grid patch-based formulation. This
formulation facilitates us to find out how the matrix equations
in different domains are assembled to form a global matrix
equation in the FDTD. It turns out to be very different
from other methods. Based on this finding, we algebraically
derive an FDTD subgridding operator that is theoretically
SPD. We also translate the operator from its matrix form
back to the original form of the FDTD to help readers better
understand how the subgrid unknowns are handled in the
proposed method. Interestingly, not only the subgrid interface
unknowns are changed in their way of being generated, but
also the unknowns inside the subgrid. The preliminary work
of this paper is published in our conference paper [12] as a 2-D
subgridding operator. In this paper, in addition to providing a
systematic algebraic approach to derive an SPD operator, and
completing the development of the 2-D subgridding algorithm
from all theoretical aspects, we further develop an SPD 3-D
operator. This 3-D operator ensures accuracy by preserving
the original FDTD’s differencing schemes, where normal H
is obtained from the center of an E’s loop, and vice versa.
In addition, a local time stepping is also permitted by this 3-D
subgridding operator. Besides theoretically guaranteed stability
and accuracy (which preserves the second-order accuracy of
the original FDTD in time and space), the implementation of
the proposed methods is also made straightforward. It should
be noted that the proposed subgridding does not compromise
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accuracy in the sense that every unknown in the grid and
subgrid is solved using the same second-order accuracy as
that in the conventional FDTD.

This paper is organized as follows. In Section II, we give
a brief review of the background of this paper, including a
patch-based single-grid FDTD representation and the stability
analysis of an FDTD subgridding scheme. In Section III,
we present a systematic algebraic approach to derive an SPD
subgridding operator. In Section IV, we develop a 2-D SPD
subgridding operator based on the approach of Section III.
In Section V, a 3-D SPD operator is developed, which also
naturally permits local time stepping. In Section VI, numerical
examples are given to validate the proposed new subgridding
algorithms. Section VII relates to our conclusions.

II. PRELIMINARIES

A. Review of the Patch-Based Single-Grid
Representation of the FDTD

To facilitate the development of a generic symmetric sub-
gridding algorithm, we employ a patch-based single-grid for-
mulation of the FDTD recently developed in [13] and [14].
This formulation helps reveal more clearly how the equations
in one domain are stitched with the equations in the other
domain to form a global system in the FDTD algorithm.

Consider a 2- or 3-D grid. Let the number of E and H
unknowns be, respectively, Ne , and Nh . Let {e} be a global
electric field unknown vector, while {h} being a global mag-
netic field unknown vector. The original FDTD can be written
into the following form:

Se{e} = −Dμ{ḣ} (1)

Sh{h} = Dε{ė} + Dσ {e} + { j} (2)

where a single dot above a letter denotes a first-order time
derivative, { j} represents a current source vector, and Dμ, Dσ ,
and Dε are diagonal matrices of permeability, conductivity,
and permittivity, respectively.

Based on the patch-based single-grid representation in [14],
each row of Se in (1) corresponds to one patch in the grid,
and hence one magnetic field. This field is located at the patch
center and normal to the patch. Each row of Se has at most four
nonzero entries, at the columns corresponding to the electric
fields along the four sides of the patch. Take an arbitrary i th
row, S(i)

e , as an example, it can be written as

S(i)
e = [ − Li

−1, Li
−1, Wi

−1,−Wi
−1] ⊕ zeros(1, Ne) (3)

where ⊕ denotes an extended addition based on the global
indexes of the four local E unknowns of patch i , and Li and
Wi are, respectively, the two side lengths of patch i . Obviously,
S(i)

e {e} is nothing but a curl of E operation in patch i , which
produces −μḣi , and hi is the normal magnetic field at the
patch center.

In a uniform grid, Sh in (2) is simply the transpose of Se,
that is,

Sh = Se
T . (4)

In other words, the i th column of Sh is the same as the i th
row of Se

S(i)
h = [ − Li

−1, Li
−1, Wi

−1,−Wi
−1]T ⊕ zeros(Ne, 1). (5)

Hence, in Sh , each column corresponds to one patch, and
thereby one magnetic field. Sh is thus of dimension Ne by
Nh . A column i of Sh has also at most four nonzero entries,
located at the rows corresponding to the four electric fields of
patch i . The column signifies how the hi on the patch is used
to produce the electric fields along the four sides of the patch.

Eliminating {h} from (1) and (2), we obtain

Dε{ë} + Dσ {ė} + C{e} = −{ j̇} (6)

where two dots above a letter denote a second-order time
derivative, and C can be written as

C = ShDμ−1Se =
Nh∑

i=1

μi
−1(S(i)

h

)
Ne×1

(
S(i)

e

)
1×Ne

(7)

which is the summation of the rank-1 matrix over all of the
Nh patches. This rank-1 matrix is obtained from multiplying
the column vector S(i)

h on patch i by the row vector S(i)
e .

Using the single-grid patch-based formulation [14], to per-
form an FDTD simulation, we only need to loop over all
the patches in a single grid, regardless of whether the grid
is 2- or 3-D. For each patch, we generate one row vector
S(i)

e shown in (3), and one column vector S(i)
h shown in (5).

Multiplying the two together and add the resultant rank-1
matrix of each patch, we obtain global C. The time-domain
simulation can then be performed based on (6).

B. Stability of FDTD Subgridding Algorithms

The stability of the FDTD is governed by C. If C is
unsymmetrical, in general it supports complex or negative
eigenvalues. When these eigenvalues exist, an explicit time
marching is absolutely unstable, which has been proven in [5]
(Section IV of this reference paper). This is why many
FDTD subgridding algorithms cannot ensure stability. For
convenience of readers, we provide a brief summary of the
proof in [5] here.

The FDTD leapfrog-based time marching is equivalent to
a central-difference-based time marching of (6). Performing
a z-transform of the central-difference-based marching of (6)
results in the following equation:

(z − 1)2 + �t2λz = 0 (8)

where λ is the eigenvalue of D−1
ε C, and �t is the time step.

The two roots of (8) can be readily found as

z1,2 = 2 − �t2λ ±
√

�t2λ(�t2λ − 4)

2
. (9)

If C is not symmetrical, its eigenvalues either are real (can be
negative) or come in complex-conjugate pairs. For complex-
valued λ as well as negative ones, the two roots z1 and z2
shown in (9) satisfy z1z2 = 1, and neither of them has modulus
equal to 1. As a result, the modulus of one of them must be
greater than 1, and hence an explicit time marching of (6) must
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be unstable. If C is SPD, its eigenvalues are nonnegative real.
In this case, the stability of an explicit marching is guaranteed
if we choose

�t ≤ 2/
√

λmax (10)

where λmax is the largest eigenvalue of D−1
ε C [15]. Obviously,

the symmetric positive semidefiniteness of C is satisfied in the
original FDTD in a uniform grid, because of (4).

III. PROPOSED ALGEBRAIC APPROACH FOR DEVELOPING

AN SPD SUBGRIDDING ALGORITHM

In this section, we first analyze how the FDTD equations
in different domains are stitched together to perform a global
simulation in the entire grid. We then algebraically combine
the equations in the subgrids with those in the base grid,
and systematically derive a subgridding operator that can be
symmetric and positive semidefinite by construction.

A. On the Assembling Mechanism of the FDTD

By using (7), we now can analyze how the submatrices in
different domains are actually stitched in the FDTD. Since
each row (column) vector of S(i)

e (S(i)
h ) is built based on the

global ordering of the E unknowns, the field tangential conti-
nuity at the patch interface is actually used to assemble C from
each patch’s contribution. However, the diagonal matrices in
front of the second- and first-order time derivatives in (6) are
assembled differently. Shall they be assembled in the same
way as C is assembled from each patch, the resultant matrices
would be different since each edge is shared by more than one
patch. This is very different from other methods such as the
finite element method.

To better understand the assembling mechanism, we can
consider two regions. Based on (7), the equations in the two
regions are combined in the following way:

Dε{ë} = −[
Sh,1Dμ−1

1
Se,1{e} + Sh,2Dμ−1

2
Se,2{e}

]
(11)

where Sh,1(2) is composed of all the column vectors generated
from the patches in region 1 (2); Se,1(2) is composed of all the
row vectors from the patches in region 1 (2). Notice that each
column vector in Sh,1(2) is of full length Ne, and the same
is true for the row vectors in Se,1(2). The addition in (11) is
a true addition instead of assembling. Here, source term is
omitted as it is irrelevant to stability. Dσ term is also ignored
for simplicity. It can be added without any difficulty.

From (11), it can be seen that the solution of an E unknown
is the addition of two contributions. One is from region 1,
shown by the first term. This term is nothing but Sh,1h1’s
time derivative, where h1 is the magnetic field at the e’s patch
in region 1. The other is from region 2, shown by the second
term in (11). This term is nothing but Sh,2h2’s time derivative,
where h2 is the magnetic field at the e’s patch in region 2. If we
denote

−Sh,1Dμ−1
1

Se,1{e} = Dε{ë}+ (12)

−Sh,2Dμ−1
2

Se,2{e} = Dε{ë}− (13)

Fig. 1. Subgrid embedded in a 2-D base grid.

as can be seen in (11), the assembling of two-domain equations
is performed by

{e} = {e}+ + {e}−. (14)

In other words, neither of the two terms represents a com-
plete e. The two must be added to complete e’s solution.
If both of them represent a complete e, when adding (12)
upon (13), we would get 2{e} in the right-hand side, which
violates (11). The addition shown in (14), in fact, completes
a curl H operation across the patches sharing the E unknown.
One can use a single edge shared by two patches in a 2-D
grid to see this point more clearly.

Now if the two regions are a base-grid region, and a subgrid
region, respectively, as illustrated in Fig. 1, the same principle
applies to add the equations generated from each region.
However, certain transformation between unknowns is needed
since the mesh in the subgrids is different from that in the
base grid.

B. Proposed Algebraic Approach

After finding out how subdomain equations are added up in
the FDTD, we proceed to algebraically derive an SPD operator
for subgridding. We denote the base-grid region by c, standing
for the coarse mesh in the base grid; and the subgrid region
by f , representing a finer mesh in the subgrid.

Let

e f = {efb efi}T (15)

be a vector containing all the E unknowns in the subgrid,
where efb are at the boundary between the subgrid and the base
grid, and efi are internal to the subgrid. Take a 2-D subgrid
shown in Fig. 1 as an example, the efb edges are marked in
green, while efi edges are blue. The same subdivision is done
in a 3-D grid.

Let

ec = {eci ecb}T (16)

be an E unknown vector in the base grid, where ecb are on
the subgrid boundary, and eci are internal to the base grid.
They are shown as edges marked with red and black arrows,
respectively, in Fig. 1. The eci are certainly separated from efi.
However, ecb and efb overlap, as can be seen in Fig. 1.
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Since the field tangential continuity at the subgrid interface
should be satisfied, one common set of E unknowns should
be used at the interface. If we use ecb as the common set, then
we have a global E unknown vector as the following:

{e}Ne×1 = {eci ecb efi}T (17)

to combine the equations in two regions. The total number
of E unknowns, Ne is, hence,

Ne = #eci + #ecb + #efi (18)

that is, the total number of ec unknowns and subgrid unknowns
internal to the subgrid. This is in contrast to using the
following {esub} as the global E unknown vector:

{esub}Ne,s ×1 = {eci efb efi}T (19)

where the efb unknowns are adopted on the subgrid interface
instead of ecb. Here, the length of {esub}, Ne,s , is the sum of
e f unknown number and the number of base-grid unknowns
internal to the base grid.

Using (17) as the global E unknown vector, based on (12),
the e’s solution contributed from the base grid can be written
as

Dε{ë}+ = −Sh,cDμ−1
c

Se,c{e} (20)

where Se,c is obtained from all patches in the based grid,
whose i th row has the expression shown in (3). The Sh,c

is simply the transpose of Se,c. As for the contribution from
the subgrid, we first build the subgrid system using {esub},
i.e., subgrid E unknowns. We obtain

Dε, f {ësub}− = −Sh, f Dμ−1
f

Se, f {esub} (21)

where each row of Se, f is written for one fine patch in the
subgrid, and Sh, f is Se, f ’s transpose.

To combine (21) with (20), we need to transform (21) from
an {esub}-based system to a new one based on {e}. Since
ecb and efb are both on the subgrid boundary, one can be
represented by the other. Let

{efb} = Pfc{ecb} (22)

where Pfc is a mapping matrix used to obtain efb from ecb.
Using (22), we can build a global mapping matrix

PNe,s ×Ne =
⎡

⎣
(I)#eci×#eci 0 0

0 (Pfc)#efb×#ecb 0
0 0 (I)#efi×#efi

⎤

⎦ (23)

such that

{esub}Ne,s ×1 = P{e}. (24)

As a result, (21) formed for {esub} can be transformed to

Dε, f P{ë}− = −Sh, f Dμ−1
f

Se, f P{e}. (25)

However, by doing so, the right-hand side matrix of (25) is
not symmetric any more. To obtain symmetry, we can multiply
both sides of (25) by PT , obtaining

PT Dε, f P{ë}− = −PT Sh, f Dμ−1
f

Se, f P{e}. (26)

Though symmetric, the above cannot be added upon (20) yet
since {e}+ �= {e}−. To make the addition like (14) feasible,
further conversion is required.

Since the n subgrid unknowns efb and the ecb are on the
same base-grid edge, they share the same permittivity in
common. Thus,

PT Dε, f P = PT PDε (27)

and hence (26) can be rewritten as

Dε{ë}− = −(PT P)−1PT Sh, f Dμ−1
f

Se, f P{e}. (28)

Now, based on (14), we can add (28) upon (20) to complete
the entire system of equations, which is

Dε{ë} = −[
Sh,cDμ−1

c
Se,c + (PT P)−1PT Sh, f Dμ−1

f
Se, f P

]{e}.
(29)

Obviously, the matrix contributed from the subgrid region
is a symmetric matrix front multiplied by the inverse of a
symmetric matrix PT P. This subgrid matrix can be further
made symmetric. In the next two sections, we show detailed
constructions for 2- and 3-D problems, respectively.

IV. PROPOSED 2-D SPD SUBGRIDDING ALGORITHM

A. 2-D SPD Subgridding Operator

For a 2-D grid, consider an arbitrary grid ratio n, there are n
subgrid boundary unknowns efb along the edge of a single ecb,
as illustrated in Fig. 1. Pfc can be simply chosen as

Pfc = [1 1 1 . . . 1]T
n×1 (30)

which is a column vector containing n ones. This means the
electric field at the base-grid edge center is used as the electric
field along the edge.

To derive an SPD system from (29), first, we realize(
PT P

)−1
is diagonal, having the following entries:

(PT P)−1 =
⎡

⎣
diag{1}#eci 0 0

0 diag{d−1}#ecb 0
0 0 diag{1}#efi

⎤

⎦ (31)

where # denotes the cardinality of a set, and diag{·} denotes
a diagonal matrix of element (·)

PT
fcPfc = diag{d} (32)

is diagonal, and for the choice of (30)

d = n. (33)

In (31), if we change the diagonal entries corresponding to eci
from 1 to d−1, there is no change of (29) as the matrix of the
subgrid does not involve eci. If we also change the diagonal
entries corresponding to efi from 1 to d−1, we only need to
scale the left-hand side of (29) corresponding to efi in the same
way. This is because the base-grid matrix does not involve efi
unknowns. As a result, (29) can be rewritten as

DpDε{ë} = −Cnew{e} (34)

in which

Dp = diag{{1}#eci, {1}#ecb, {d−1}#efi} (35)
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and

Cnew = Sh,cDμ−1
c

Se,c + d−1PT Sh, f Dμ−1
f

Se, f P. (36)

Obviously, the above numerical system formulated for subgrid-
ding is governed by a symmetric positive definite eigenvalue
problem of

DpDεv = λCnewv. (37)

Since Cnew is SPD, and diagonal matrix DpDε is positive
definite, the eigenvalues of (37) must be nonnegative real.
Hence, the stability of the proposed subgridding algorithm is
guaranteed.

Equation (36) is written for one subgrid region, if there are
multiple subgrid regions, (36) becomes

Cnew = Sh,cDμ−1
c

Se,c +
p∑

j=1

d−1
j PT

j Sh, j Dμ−1
j

Se, j P j (38)

where p is the number of subgrid regions, and j denotes the
subgrid index. Cnew clearly remains to be SPD. The left-hand
side diagonal matrix Dp in (34) will also be augmented with
di for each subgrid region accordingly.

B. Regarding the Computational Overhead

The implementation of (36) and (38) is, in fact, straight-
forward in the patch-based FDTD formulation. Basically, for
every patch in the subgrid, after we obtain its row vector S(i)

e

of four nonzero entries, we simply extend it to length Ne based
on the global ordering of local E unknowns. The operation of
S(i)

e P based on the mapping matrix shown in (30) is simply
to place every entry of S(i)

e whose column is an efb unknown
at the column of corresponding ecb unknown. The PT Sh is
nothing but the transpose of SeP. The d j entry can also be
readily evaluated based on (30). Hence, the computational
overhead of the proposed subgridding scheme is negligible.
In other words, the computation additional to the conventional
FDTD is negligible.

C. Use of Average Length for ecb and e f b Unknowns

For an electric field unknown e at the boundary between
the subgrid and the base grid, the magnetic fields at the two
patches sharing the e edge are used to obtain e. These e include
ecb and efb. The two patches sharing such a boundary e have
different sizes, as one is in the subgrid, and the other in the
base grid.

Like what is done in a nonuniform FDTD grid, for better
accuracy, we use an average length Lave of the two patches
along the direction perpendicular to the e edge to perform
the curl H operation to obtain e. To do so, the row entry of
S(i)

h of the two patches corresponding to the e field will be
changed from 1/Li shown in (3) to 1/Lave. The S(i)

e would
not be modified since the H point is still centered by the four
E edges. In this way, although the resulting S(i)

h S(i)
e is not

symmetric for the patch involved in the modification, the end
result can still be made symmetric as shown in the following.

After replacing Li by Lave for all the boundary e fields,
the change of Cnew is simply

Cnew = D1
(
Sh,cDμ−1

c
Se,c + d−1D2PT Sh, f Dμ−1

f
Se, f P

)
(39)

where the two diagonal matrices D1 and D2 are, respectively,

D1 = diag{{1}#eci, {Lc/Lave}#ecb, {1}#efi} (40)

and

D2 = diag{{1}#eci, {L f /Lc}#ecb, {1}#efi} (41)

where Lc is the base-grid cell size, and L f is subgrid cell
size. The matrix in the parenthesis of (39) appears to be
unsymmetrical. However, again, we can change D2 to a
diagonal matrix of L f /Lc, i.e., 1/n. Hence, (39) becomes

Cnew = D1
(
Sh,cDμ−1

c
Se,c+d−1n−1PT Sh, f Dμ−1

f
Se, f P

)
. (42)

Meanwhile, we scale the left-hand side Dp of (34) by the same
1/n for entries corresponding to efi so that efi’s solutions are
not changed. As a result, the final numerical system remains
to have nonnegative real eigenvalues.

D. Transforming Back to the Original FDTD Formulation
and Accuracy Verification

The operator derived in the above can also be translated
back to the original FDTD format to understand its meaning,
and verify its accuracy. The key of a subgridding method is
essentially how the interface unknown ecb is generated and its
impact on symmetry, since the generation of other unknowns
can stay unchanged.

Consider an arbitrary ecb unknown shown in Fig. 1, whose
global index is k. It is shared by patch i in the base grid, and
n fine patches in the subgrid denoted from 1 to n. From (34)
and (36), we obtain

ε{ ˙ecb} = (
S(i)

h

)
khi + 1/n

n∑

j=1

(
S( j )

h

)
kh j (43)

where subscript k denotes the kth row entry of the vector in
the parenthesis. The above is nothing but to do

ε{ ˙ecb} = hi

Lk
− (h1 + h2 + · · · + hn)

nLk
(44)

which is to use the average of the magnetic fields generated
from the n subgrid patches to obtain ecb, and hence accurate.
In (44), Lk is the length parameter associated with edge k.
After the treatment described in Section IV-C, Lk is averaged
from the side lengths of the two patches sharing edge k. Our
numerical experiments also show this treatment is important
to obtain good accuracy.

As for the impact of (44) on symmetry, as can be seen,
the coefficient in front of the base grid hi is the same as its
normal value. However, the coefficient of the h j for the n
fine patches is scaled by 1/n. This will make the coupling
coefficient from h j to ecb and thereby efb different from that
of efb to h j , yielding an unsymmetrical matrix. However,
as shown by (34), the proposed method also multiplies all
the rows corresponding to efi by 1/n. This will make the
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Fig. 2. (a) Subgrid embedded in a 3-D base grid and its patch assignment.
(b) Subgrid region.

coupling coefficient from h j to all the four e in patch j scaled
simultaneously by 1/n, and hence the resulting system remains
symmetric. In other words, the original S(i)

h S(i)
e is symmetric.

If the rows of S(i)
h are selectively scaled, the resultant would

not be symmetric. However, if all rows are scaled by the
same coefficient, the product will remain symmetric, as it
becomes simply 1/nS(i)

h S(i)
e . Although in this way, the efi

solved would become different, but as shown in the proposed
method, it can be changed back by scaling the left-hand side
matrix in the same way. As can be seen, the aforementioned
symmetric operations are difficult to be conceived in the local
differencing-based framework of the original FDTD, but it
becomes feasible using the proposed system-level approach.

V. PROPOSED 3-D SPD SUBGRIDDING ALGORITHM

For 3-D problems, the formulation derived in Section III
remains the same. This is because a 3-D grid can be viewed
as an assembly of multiple rectangular patches. Each patch’s
normal direction can be orientated in any of the x-, y-, and
z-directions. The S(i)

e row vector and S(i)
h column vector for an

arbitrary patch i have the same expressions as those in 2-D.
However, the efb would not only reside along the coarse edges
at the subgrid interface, i.e., overlapping with ecb, but also
appear on the surfaces of the subgrid interface. This set of
surface efb unknowns are not shared in common by base
grid and subgrid. The P, thus, has to be carefully designed

to ensure the same SPD property without affecting accuracy.
In this section, we first propose a subgridding algorithm for
3-D analysis, which also permits the use of a local time step
only dependent on the local grid size regardless of the grid
size elsewhere. We then show how the new 3-D algorithm is
related to the subgridding operator developed in Section III.

A. Proposed 3-D Subgridding Algorithm
Now, consider a subgrid present in a 3-D base grid, as shown

in Fig. 2(a). We assign the patches of a base-grid size to
the subgrid boundary, as illustrated by the patches colored
in light gray in Fig. 2(a). We place the fine patches inside
the subgrid. In other words, no fine patches are located on
the subgrid interface. Similar to conventional FDTD, the H
unknowns are placed at the center of each patch. Hence, only
base-grid H unknowns are located at the subgrid interface. All
the fine-patch H-unknowns are inside the subgrid region. The
E unknowns are along the edges of the patches. In such a 3-D
setting, the ecb fields reside on the coarse edges of the subgrid
region, as those marked by blue arrows in Fig. 2(b). The efb
either overlap with ecb, or fall onto the surfaces of the subgrid
region, which are shown by red fine edges in Fig. 2(b).

Similar to the algorithm developed in the previous section,
between efb and ecb, we adopt the ecb as the common set of
E unknowns at the subgrid interface to ensure tangential field
continuity. Therefore, our global e vector is the same as that
shown in (17), comprising eci, ecb, and efi. The efb is related
to ecb by efb = Pfcecb.

Next, we elaborate how the row vector S(i)
e , and the column

vector S(i)
h are generated for each patch in the proposed

algorithm. Since once this is determined, using our single-grid
patch-based formulation shown in (7), one can readily obtain
an FDTD subgridding algorithm. In the following, we focus
on the interface patch, and the fine patches inside the subgrid,
as other patches are no different from those in the original
FDTD.

For the six base-grid patches residing on the subgrid bound-
ary, their S(i)

h column vector and S(i)
e row vector are generated

in the same way as how they are generated in the base grid.
Hence, there is no special treatment. For the fine patches
located inside the subgrid, the S(i)

e of each patch remains
the same as that shown in (3); but in the S(i)

h of such a
fine patch, if there are entries in the rows corresponding to
the E unknowns falling onto the subgrid boundary, i.e., efb
unknowns, we set these entries to be zero. This is because efb
are not solved, but interpolated from ecb.

The aforementioned procedure does not involve any addi-
tional computation as compared to the conventional FDTD,
except for the interpolation of efb from ecb. It results in the
following system of equations:
[

Dεc 0
0 Dεi

]{
ëc

ëfi

}

+
[

Sh,cDμ−1
c

Se,c 0
Sh,i Dμ−1

f
Se,fbP′ Sh,i Dμ−1

f
Se,i

]{
ec

efi

}
=

{− j̇c
− j̇i

}
(45)

where {ec} = {eci ecb} contains all unknowns in the base grid,
efi are inside the subgrid, {e} = {ec efi}, subscripts c and i ,
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respectively, denote the quantities associated with the base grid
and the region inside the subgrid. Sh,cDμ−1

c
Se,c is the sum of

every patch’s rank-1 matrix in the base grid, and Sh,i Dμ−1
f

Se,i

is the same in the subgrid, but with the efb unknowns removed.
The [Se,fb Se,i ] constitutes the complete Se obtained from all
fine patches, that is,

Se, f = [Se,fb Se,i ] (46)

with Se,fb corresponding to efb unknowns, and Se,i operating
on efi. Hence,

Se, f e f = Se,fbefb + Se,i efi. (47)

The efb in (45) is replaced by P′ec, where

P′ = [{0}#eci Pfc] (48)

such that

efb = Pfcecb. (49)

The numerical system shown in (45) is, in fact, identical to
the following two subsystems of equations:

Dεc{ëc} + Sh,cDμ−1
c

Se,c{ec} = −{ j̇c} (50)

Dεi {ëi } + Sh,i Dμ−1
f

Se,i {ei } = −{ j̇i} − Sh,i Dμ−1
f

Se,fbP′{ec}
(51)

each of which is SPD since both of Sh,cDμ−1
c

Se,c and
Sh,i Dμ−1

f
Se,i are SPD. Equation (50) is complete for solving

ec. The term of Sh,i Dμ−1
f

Se,fbP′ in (51) plays a role of

interpolating the ecb to obtain the efb, which is then used as a
boundary condition for solving the subgrid internal unknowns.

In addition to symmetry, the accuracy of (50) and (51) are
guaranteed, since every H unknown is generated at the center
of an E loop, and so is the E unknown in the base grid as
well as inside the subgrid. The E unknowns on the subgrid
boundary, {efb}, are interpolated from the base-grid solution,
the accuracy of which can be controlled to any desired order by
the interpolation scheme, without affecting stability. The {efb}
can also be solved in the proposed algorithm by obtaining the
H fields from the base grid adjacent to the {efb}, and using
them to compute {efb}. Again, this does not affect stability.
In addition, (50) and (51) allow for the use of different time
steps in different regions, since the time step of (50) is solely
determined by the Sh,cDμ−1

c
Se,c, thus the time step of the base

grid, while the time step of (51) is determined by the subgrid.
At each time step l, (50) is solved to obtain {ec}(l+1) using a
large time step �tc local to the base grid. The {ec} in each large
time interval of �tc can be interpolated to obtain its values
at instants of �t f , the time step allowed by the subgrid. The
simulation of (51) can then be carried out using its small time
step local to the subgrid.

The entries of Pfc are dependent on the interpolation
scheme. Different from many other subgridding methods, any
interpolation scheme can be used in the proposed 3-D method
without affecting the stability. This is because the Pfc-related
term is used as the source term independent of the subgrid
subsystem to produce fields inside the subgrid, as can be seen
from (51). A linear interpolation is used in this paper. As an

example, an i th column of Pfc has the following nonzero
entries located in the rows correspond to the efb unknowns
interpolated from the i th ecb:
[{1}n, {(n − 1)/n}n, {(n − 2)/n}n, . . . {1/n}n,

{(n − 1)/n}n, {(n − 2)/n}n, . . . {1/n}n]T (52)

where the subscript n of each subset denotes the number in
this subset. For example, the first subset {1}n has n ones, each
of which corresponds to one fine edge unknown located on
the same edge as the ecb unknown. A single ecb is shared
by two patches on the subgrid boundary. The first group of
subsets from {(n − 1)/n}n to {1/n}n corresponds to the efb
falling onto the first patch and parallel to the ecb unknown.
The second group of subsets from {(n − 1)/n}n to {1/n}n

corresponds to those on the second patch.

B. Relationship With the Operator Developed in Section III

The subgridding algorithm algebraically derived in
Section III is, in fact, general for both 2- and 3-D problems.
The key result of this algorithm is given by (29). Depending
on the choice of P, the resultant numerical scheme can be
different. We can show the new 3-D algorithm developed in
the previous section is (29) with a new 3-D interpolation P
as follows.

To align with the operator developed in Section III, we again
will place all fine patches on the subgrid interface. There
are both efb unknowns distributed along the edges, which are
denoted by efb,e; and efb unknowns residing on the faces of the
subgrid interface, which are denoted by efb, f . Both of them
are interpolated from ecb, that is,

{efb} = [efb,e efb, f ] = Pfcecb (53)

and Pfc has entries shown in (52). The Pfc can further be
split as

Pfc =
[

Pfc,e
Pfc, f

]
(54)

where Pfc,eecb produces edge-based efb,e, and Pfc, f when
operating on ecb yields face efb, f . Each column of Pfc,e is
an all-one vector, the same as (30).

When forming the subgrid system of equations shown
in (21), only efb,e are used, since only their equations need
to be added upon the equation of ecb generated from the base
grid to complete ecb’s solution. Hence, {esub} of (21) becomes

{esub} = {eci efb,e efi}T . (55)

Using (54), {esub} can be written as

{esub} = Pe{e} (56)

where global mapping matrix Pe is

Pe =
⎡

⎣
(I)#eci×#eci 0 0

0 (Pfc,e)#efb,e×#ecb 0
0 0 (I)#efi×#efi

⎤

⎦. (57)

The subscript e of Pe is used to highlight the fact that only
edge-based efb,e, and hence Pfc,e part of Pfc is involved in (57).
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Because {esub} only includes efb,e, the Sh, f in the right-
hand side of (21) does not include rows corresponding to efb, f .
Hence, when generating a column vector S(i)

h in the fine patch,
if the row entries correspond to efb, f , they are excluded. As a
result, (25) becomes

Dε, f Pe{ë}− = −Sh, f 0Dμ−1
f

Se, f P{e} (58)

where Sh, f 0 denotes Sh, f with its rows corresponding to efb, f

removed, the right-hand side P has the complete Pfc to obtain
efb, as shown in the following:

P =
⎡

⎣
(I)#eci×#eci 0 0

0 (Pfc)#efb×#ecb 0
0 0 (I)#efi×#efi

⎤

⎦. (59)

Since among all efb unknowns, only efb,e are computed in (58),
not all efb, f unknowns are involved in P{e} in the right-hand
side of (58). Only those efb, f in the fine patches having efb,e,
i.e., immediately adjacent to ecb are involved.

From (58), we obtain

Dε{ë}− = −(
PT

e Pe
)−1PT

e Sh, f 0Dμ−1
f

Se, f P{e} (60)

where (PT
e Pe)

−1 has the same form as that shown in (31). The
above again means using the average magnetic field across all
fine cells immediately adjacent to ecb to perform the curl of
H operation from the subgrid side. The other half of the curl
of H operation is completed by equations generated from the
base grid. By writing out the right-hand side of (60) explicitly,
and using the same Pfc shown in (52), we find ecb is, in fact,
generated in the following way:

Dε{ ¨ecb}− = −Sh,0Dμ−1
f

Se,0{e} (61)

where Sh,0 and Se,0 are the same as those formulated on
the base-grid patches placed on the subgrid interface. Hence,
this is the same as the new 3-D algorithm described in
Section V-A.

VI. NUMERICAL RESULTS

We have simulated a variety of 2- and 3-D examples to
validate the proposed subgridding algorithms. All of the 2-D
examples are simulated by using the formulations given in
Section IV; and the 3-D examples are analyzed by using the
algorithm described in Section V. The CPU time reported in
this paper is the total CPU time that includes the time cost of
every step.

A. 2-D Free-Space Wave Propagation Having a Subgrid

The first example is a free-space wave propagation problem
in a 2-D region of size 0.5 m by 0.5 m. The grid details
are shown in Fig. 3(a). The coarse grid size is Lc = 0.1 m.
The subgrid marked in blue is located in the center having a
grid ratio n from 2, 5, 10, to 100. The Einc is ŷ2(t − t0 −
x/c)e−(t−t0−x/c)2/τ 2

with c = 3 × 108 m/s, τ = 2 × 10−8 s
and t0 = 4τ . All the boundaries are terminated by an exact
absorbing boundary condition. To evaluate the accuracy of the
proposed method, the entire solution error at each time step as
compared to the analytical solution, ‖{e} − {e}anal‖/‖{e}anal‖

Fig. 3. Simulation of a 2-D wave propagation problem. (a) Grid with a
subgrid. (b) Entire solution error versus time for different grid ratios.

TABLE I

PERFORMANCE COMPARISON FOR DIFFERENT GRID RATIOS

with {e} containing all Ne unknowns, is plotted versus time
in Fig. 3(b) for various grid ratios. Excellent accuracy is
observed for all the grid ratios. The large error shown in
early and late time is because fields at that time are zero, and
the theoretical value of the error is infinity. To demonstrate
the efficiency of the proposed FDTD subgridding method,
we also simulate the same problem using the conventional
FDTD method in a uniform mesh. The simulation parameters
are summarized in Table I. Good speedup is achieved over the
conventional FDTD without using a subgrid.

B. 2-D PEC Cavity With Conducting Fins

The second example is a PEC cavity with two conducting
fins separated by a thin gap, as shown in Fig. 4(a). The fins
are of finite conductivity 5.8 × 107 S/m. A current source
is launched at the middle of the fin gap vertically, the pulse
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Fig. 4. Cavity with lossy conductors and fine features. (a) Structure.
(b) Simulated electric fields.

of which is −τ 2e−(t−t0)2/τ 2
with τ = 2 × 10−12 s and

t0 = 4τ . The region between the two fins is discretized into
subgrids. The coarse grid size is 0.1 m, while the subgrid size
is 0.05 m. The number of E unknowns used in the proposed
method is 1932, as compared to the 7532 E unknowns used in
the FDTD without subgridding. The traditional FDTD method
takes 1.06 s to finish the simulation while the proposed
method only takes 0.24 s, so the speedup of the proposed
method is 4.4. As can be seen in Fig. 4(b), the fields sim-
ulated from this method agree very well with the reference
FDTD solution generated from a uniform grid. The two points
simulated are at (1, 1.05) and (2.85, 1.5) mm, respectively.

C. 3-D Free-Space Wave Propagation Having a Subgrid

Next, we simulate a free-space wave propagation problem in
a 3-D cube, the side length of which is 0.5 m. Along all direc-
tions, the base grid step Lc is 0.1 m, resulting in 125 coarse
cells. The coarse cell at the center is further subdivided into
fine cells with grid ratio n, therefore the fine grid size L f is
0.1/n m. The n is chosen to be 2, 5, and 20, respectively.
The incident field is Einc = ŷ2(t − t0 − x/c)e−(t−t0−x/c)2/τ 2

with c = 3 × 108 m/s, τ = 2 × 10−8 s and t0 = 4τ .
An exact absorbing boundary condition is applied to truncate
the outermost boundary. The time step required by fine cells in
the subgrid is 4.0×10−11 s. To examine the solution accuracy
in the entire computational domain, in Fig. 5(a), we assess
the entire solution error measured by ‖{e}− {e}anal‖/‖{e}anal‖
when grid ratio is 2, 5, and 20, respectively, where {e}

Fig. 5. Simulation of a 3-D wave propagation problem. (a) Entire solution
error versus time with different grid ratios, and a global small time step.
(b) Entire solution error versus time with local time stepping as compared to
using a global small time step across the grid.

consists of all E unknowns obtained from the proposed FDTD
subgridding method, while {e}anal is from the analytical result.
As can be seen clearly, the proposed method is accurate at all
points, and across the whole time window simulated.

The proposed method also allows the usage of different
time steps in different domains. To verify this feature, we re-
simulate the same example using �t f = 4.0 × 10−11 s in
the subgrid region, and �tc = 2.0 × 10−10 s in the base
grid for grid ratio n = 5. The entire solution error is plotted
in Fig. 5(b). For comparison, the solution error is also plotted
for the case when the small time step �t f is used in the
entire computational domain. As can be seen clearly, using
local time stepping, the proposed method equally produces
accurate and stable results. The accuracy is only degraded
slightly, as compared to using a global small time step all
over the grid. The simulation using a global time step takes
1.0543 s to finish, while the simulation using different time
steps in different grids only takes 0.2782 s to finish.

D. 3-D PEC Cavity With a Lossy Conducting Object

We then simulate a 3-D cavity excited by a current source.
The cavity is 1-cm long in all directions and its six faces are
all terminated by a PEC boundary condition. The coarse grid
size along each direction is 1 mm except for the small cube
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Fig. 6. Simulation of a 3-D PEC cavity with fine conducting features
discretized into subgrids. (a) Electric fields at two observation points using
a global time stepping. (b) Electric fields at two observation points using a
local time stepping.

centered at (4.5, 4.5, and 4.5) mm. This cube is 1-mm long
in all directions and filled with a conductive material whose
conductivity is 5.7 ×107 S/m. This cube is further subdivided
into fine mesh whose grid size is 0.2 mm. Such a subgridding
mesh results in 3870 E unknowns. A current probe is excited
at (2, 2, and 1.5) mm. The current is a Gaussian pulse whose
waveform is I = ẑτe−(t−t0)2/τ 2

with τ = 2×10−11 s and t0 =
4τ . As the reference, we also simulate the same problem using
the conventional FDTD method with a uniform fine mesh. The
total number of E unknowns in this uniform fine mesh is 390,
150. The time step allowed by the conventional FDTD method
is �t = 3.8×10−13 s. In Fig. 6(a), the electric fields sampled
at point 1 (8, 8, and 7.5) mm and point 2 (4, 4, and 9.5) mm
are plotted in comparison with reference solutions. Overall,
the accuracy of the simulated fields is very good. The small
discrepancy in the waveform can be attributed to the excitation
of the cavity spurious solutions after the wave reaches the
PEC wall. These spurious solutions (source-free solutions
of the cavity) that are captured numerically are different in
different grids used for discretization. As for the CPU time,
the proposed FDTD subgridding method only takes 0.24 s
to finish the entire simulation, while the conventional FDTD
method requires 68.79 s, thus a significant speedup is achieved.

Fig. 7. Simulation of an EMI example. (a) Illustration of the structure.
(b) Simulated electric field in comparison with reference solution.

This efficiency is further improved when using a local time
stepping. We use a large time step �tc = 1.9 × 10−12 s
in the base grid region, while the time step in the subgrid
region remains the same. The electric fields sampled at the
same observation points are plotted in Fig. 6(b). Obviously,
the solution accuracy is not sacrificed. Meanwhile, the CPU
time is reduced to 0.11 s.

E. Electromagnetic Interference Example

In this example, we simulate an electromagnetic interference
(EMI) example as illustrated in Fig. 7(a). The structure is a box
of size 10×11×10 cm truncated by perfect electric boundary
conditions all around. In the center, there is a PEC sheet with
a thin slot. The slot is 1-cm wide and 6-cm long. The coarse
grid size along each direction is 1 cm, while the subgrid size
along y-direction for the slot is 1/3 cm. This structure is
excited by a current source of I = ŷ exp −(t − t0/τ)2 located
at (5, 1.5, and 2) cm, where τ = 5×10−11 s and t0 = 4τ . There
are 3971 unknowns in this mesh. As the reference, we use
a uniform fine grid of size 1/3 cm along y-direction and
simulate the example using the traditional FDTD method. The
number of unknowns used in the traditional FDTD is 11/,473.
To finish the simulation, the proposed subgridding algorithm
takes 0.074 s while the traditional FDTD method takes 0.275 s,
so the CPU time speedup is 3.72. To verify the accuracy,
we sample the electric field at the point (5, 1.5, and 8) cm in



5094 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 65, NO. 12, DECEMBER 2017

Fig. 8. Relative permittivity distribution in a cross section of the phantom
head at z = 2.8 cm.

Fig. 9. Simulated electric fields at two observation points in comparison
with reference FDTD solutions when local time stepping is used.

both the methods and plot it in Fig. 7(b). Overall, the accuracy
is very good across the whole time window.

F. Inhomogeneous 3-D Phantom Head Beside
a Wire Antenna

The last example we study is a large-scale phantom head
beside a wire antenna, which involves many inhomogeneous
materials. The size of the phantom head is 28.16 cm ×
28.16 cm × 17.92 cm. The permittivity distribution of the
head at z = 2.8 cm is shown in Fig. 8. All the boundaries
are truncated by PMC. The wire antenna is located at (3.52,
3.52, and 2.52) cm, the current at which has a pulse waveform
of I = 2(t−t0)e−(t−t0)2/τ 2

with τ = 5.0×10−10 s and t0 = 4τ .
The coarse step size along x-, y-, z-directions is 4.4, 4.4, and
5.6 mm, respectively. To capture fine tissues, the coarse cell
centered at (14.3, 14.3, and 9.24) cm are subdivided into fine
cells in all directions with grid ratio n = 4, meaning the fine
grid size along x-, y-, z-directions is 1.1, 1.1, and 1.4 mm,
respectively. As a result, the total number of E unknowns
in this subgridding mesh is 409 868. In conventional FDTD,
if fine grids are used everywhere, it would require 25 428 608 E
unknowns. Due to the existence of fine grids, the conventional
FDTD method must use a time step of 2.2 × 10−12 s across
the whole grid to ensure stability. In contrast, this method

allows to use a larger time step of �tc = 8.8 × 10−12 s in
the base grid. In Fig. 9, the electric fields at two observation
points whose locations are (3.52, 3.52, and 15.96) cm and
(24.64, 3.52, and 15.96) cm are plotted in comparison with
the reference FDTD solutions. It is clear that the result from
the proposed method agrees well with the reference result.
Since the conventional FDTD method requires a uniform fine
grid which has many more unknowns than that of the proposed
method, it takes the conventional FDTD method 19 222.16 s
to finish the simulation. In contrast, the proposed subgridding
method only costs 105.03 s.

VII. CONCLUSION

In this paper, we develop a systematic approach to alge-
braically derive FDTD subgridding operators that are accurate
and SPD by construction. This is in contrast to conventional
methods where the subgridding scheme is first developed,
whose stability analysis is then attempted. As also shown in
this paper, as long as the system matrix becomes unsymmetri-
cal, in general, it can have complex eigenvalues, which would
make an explicit marching absolutely unstable. In this paper,
starting from a patch-based single-grid matrix representation
of the FDTD, we first study how subdomain equations are
assembled in FDTD to build a global system of equations.
Based on the findings of this study, an algebraic approach is
developed to systematically derive SPD subgridding operators.
Both 2- and 3-D subgridding algorithms are developed with
guaranteed stability and accuracy. They show no limitation
on grid ratio, and no requirement on the special arrangement
of the subgrids. Local time stepping is also realized in this
paper. Extensive 2- and 3-D simulations with various grid
ratios and inhomogeneous materials as well as fine features
have demonstrated the accuracy, stability, and efficiency of
the proposed new subgridding algorithms.
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